
���������	
��� �����������
� ��������� ������ �����

���� �� ���

Torvald Riegel
Joint work with

Pascal Felber, Christof Fetzer, Ulrich
Müller, Martin Süßkraut, Heiko Sturzrehm

(Dresden University of Technology, Germany, and
University of Neuchatel, Switzerland)

MICS

2

�������

� How many real users does your STM have?
� Can real users easily try out your STM?

� Lack of users is a major problem
� Lack of workloads
� No education of users, no feedback from

them

� Not just technical reasons (slow STM), also:
� Availability, ease-of-use, lock-in?, costs, …

3

� ����������������

� Tanger
� Open source compiler support
� Application code with transaction boundary

declarations is transformed to real transactional code
that uses an STM

� Uses LLVM’s compiler framework

� Tarifa
� Transforms declared transactions in IA32 assembler

code to transactional asm code
� More detail: ask me (later)

� License: GPL

4

� ���������� ����

� Application code uses minimal declaration API:
� begin, commit, init/shutdown function calls
� Language syntax not changed, tools continue to work

� Tanger transforms code to use word-based STM API:
� Find transactional code (bounded by begin/commit)
� Redirect to STM functions (begin, commit, malloc, …)
� Memory accesses to STM load/store
� Redirect calls to transactional versions of functions

5

� �������������
���
.c .cpp …

.bc .bc.bc

�������� (LLVM frontend):
• compile to intermediate representation (IR)
(.bc = bitcode)

.bc

Transactional .bc

.bcSTM .bc

.c .sSTM .o

Executable app

������� (LLVM linker/optimizer):
• link and optimize (potentially whole-program)

Tanger (compiler pass)
• transform/create transactional code

�������:
• link in STM, optimize

��� (LLVM backend):
• create target architecture asm or C code

���:
• compile and link with remaining binary
objects or libraries

6

� �
�!!"# $

� LLVM (Low Level Virtual Machine):
� Good intermediate representation (IR) for code

(see next slide)
� Very modular compiler
� Link-time optimizations
� JIT compilation support
� Generates native code (e.g., x86, PowerPC, ARM, …)

and C code (gcc)

� Alternatives:
� Source to source translation: Easier? Optimizations?
� gcc: Easier?

7

!!"# �%����� �������
&��������������%&

� Sufficiently low-level (few dependencies), but still
platform-independent and light-weight

� Can express C/C++ programs (important applications!)
� On-disk (.bc) and human-readable representations
� API for modifying IR is good and quick to learn
� IR uses types from source code (e.g., C structs)
� SSA
� Memory accesses are explicit (load/store)
� Stack contents in virtual registers unless accessed via

pointers (fewer load/stores transformed!)

8

����������	��� ����
����
'�# (��������������

771278.8Tanger

811569.4Manual, llvm-gcc

11Manual, gcc

19Global lock, llvm

StoreLoad

calls in executable
ThroughputRBTree (STAMP)

3161.3Manual, llvm-gcc

1.8Manual, gcc

6101.3Tanger

StoreLoad

calls in executable
ThroughputLinked list

9

�������� �)���������������*��+�

� Our goals for Tanger: An STM environment:
� Easy to use, practical: attract users!
� Not just a research prototype
� But allow plugging in research prototypes

� Compiler-based optimizations
� More features / subsystems:

� Privatization, external actions, …
� STM support code (tracing, statistics, …)
� If you have ideas/plans, please talk to me

10

,���	����	��������

� Decreases initial hurdles significantly
� Minimal instrumentation overhead

(parallelization, begin/commit, external
actions)

� Only have to select an STM
� Performance is likely to get better, not worse

� Can get TM experience earlier
� Can follow research progress more easily

11

,���	����	��������������� � ����

� User feedback: usability, workloads, …
� Smaller time-to-benchmark
� Environment for evaluation of your STM
� Comparing STMs gets easier (e.g., TL2 with tinySTM)
� Reference implementations for

� Language integration proposals
� Compiler support

� Benchmark writers could target Tanger instead of STM

-�� ������������(����
'�# (�����	� ��

���.**���
��� /���

