Transactions with Nested
Parallelism

(Adding Transactions to Cilk)

Kunal Agrawal, Jeremy T. Fineman,
and Jim Sukha

MIT CSAIL
TRANSACT
August 16, 2007

A Sample Cilk Program

int supplyl[10000];

int supply2[10000];

int N = 4;

cilk int main() {
spawn buy_computer (supplyl);
spawn buy_computer (supply2);
sync;
return 0;

}

cilk void buy_computer (int* c)
i = rand() % (10000-N);
for (j = 0; j < N; Jj++)

spawn buy_ part (c, i+j);

sync;

}

cilk void buy_ part (int* c,

int i)

{ cli]-—; }

A Cilk program which
updates inventory after
buying two computers.

Purchasing a computer
decrements parts from
the inventory arrays,
supplyl and supply2,
potentially in parallel.

Cilk Runtime and Performance

int supplyl[10000];

int supply2[10000];

int N = 4;

cilk int main() {
spawn buy_computer (supplyl);
spawn buy_computer (supply2);
sync;
return 0;

}

cilk void buy_computer (int* c)
i = rand() % (10000-N);
for (j = 0; j < N; Jj++)

spawn buy_ part (c, i+j);

sync;

}

cilk void buy_ part (int* c,

int 1)

{ cli]-—; }

4 workers
threads

O O
H B

T, =16, T. =5, P=4

The Cilk runtime schedules
the program using work-
stealing. Cilk executes a
computation with work T,
and span (critical path) T, on
P processors in time

O(T,/ P+ T.,), w.h.p.

Transactions in Cilk?

int supply1[10000]; 4 workers
int N = 4; DOENE X1
cilk int main() {
spawn buy_ computer (supplyl); //X1
spawn buy_ computer (supplyl); //X2
sync; return O;
}
cilk void buy_computer (int* c) {
atomic {
i = rand() % (10000-N);
for (j = 0; j < N; j++)
spawn buy part (c, i+j);

Suppose both computers
require parts from the same

sync; inventory.
} Can we use transactions to
} ensure both calls to
cilk void buy part (int* c, int i) buy_ computer () are atomic,
{ ecli]-—; 1} even though x1 and x2

contain nested parallelism?

Transactions with Nested Parallelism
and Nested Transactions?

int supplyl[10000]; 4 workers
int N = 4; NEEE N
cilk int main() {
spawn buy_ computer (supplyl); //X1
spawn buy_ computer (supplyl); //X2
sync; return O;
}
cilk void buy_computer (int* c) {
atomic {
for (j = 0; J < N; j++) {
i = rand() % 10000;
spawn buy_part (i) ;

}

sync;

} Suppose each computer
} can use more than one of
cilk void buy part (int* ¢, int i) the same part. Can we
{ atomic { c[i]--; } } have parallel transactions

nested inside x1 and x27

Motivation: Library Functions

int supplyl[10000];
int N = 4;
cilk int main() {
spawn buy_ computer(a); // X1
spawn buy_ computer(a); // X2
sync; return O;
}
cilk void buy_computer (int* c) {
atomic {
spawn foo(c);

sync;
} If transactions can have nested

} parallelism and nested

cilk void foo (int* c) { transactions, then we can
noo composably call some library
L functions written using Cilk inside
// spawn?) . :

) a transaction without knowing

their exact implementation.

XCilk Design

o We describe XCilk, a theoretical design for a
software transactional memory system for
Cilk which supports transactions with
nested parallelism and nested transactions,
both of unbounded nesting depth.

o XCilk uses an XConflict data structure to
efficiently check for transaction conflicts.

o XCilk lazily cleans up memory locations on
aborts.

XCilk Bounds on Overhead

XCilk provides a provable bound on the
overhead of TM in the following special case:

o For a computation with no transaction
conflicts and no concurrent readers to a
shared memory location, if the
computation has work T; and critical
path T., XCilk executes the computation

on P processors in time Linear speedup if
P = O(N(T,/T.)),
O(Ty /P + PT.). vs. O(T/T.) for

normal Cilk.
o The XCilk runtime system still works
correctly in the general case, with
conflicts and parallel readers.

Outline

o Definition of Conflict in XCilk
o Efficient XConflict Queries

Summary of XCilk Semantics

o XCilk performs eager conflict
detection.

o Transactions in XCilk are closed-
nested.

o These two conditions imply a prefix
race-free execution [ALS06]. If the
effects of aborted transactions can be
“ignored”, then prefix race-freedom =
serializability.

XCilk Computation Tree

XCilk builds a computation tree as a
transactional program executes. A

program begins with a single root
node (X,).

XCilk Computation Tree (spawn)

XCilk builds a computation tree as a X
transactional program executes. A
program begins with a single root
node (X,).

A spawn creates a P-node (P,) with
two S-nodes (s,, S,) as children. The
worker then starts executing the left
child.

XCilk Computation Tree (steal)

XCilk builds a computation tree as a X
transactional program executes. A
program begins with a single root
node (X,).

A spawn creates a P-node (P,) with
two S-nodes (s,, S,) as children. The
worker then starts executing the left
child.

In XCilk, as in Cilk, a worker can steal
an S-node (s,) from the deque of
another worker.

Y,

XCilk Computation Tree (xbegin)

XCilk builds a computation tree as a
transactional program executes. A
program begins with a single root
node (X,).

A spawn creates a P-node (P,) with
two S-nodes (s,, S,) as children. The
worker then starts executing the left
child.

In XCilk, as in Cilk, a worker can steal
an S-node (s,) from the deque of
another worker.

An xbegin creates a transactional S-
node (X,)

X

XCilk: Readsets and Writesets

Conceptually, every transaction X 3 workers %ol W(X,)={L}
maintains a set of locations that the 1 2] B
transaction read from (the readset
R (X)), and a set of locations that

the transaction as written to (the
writeset W(X)).*

W(X,)=0

The root of the tree represents the
world; we assume the writeset of
the root contains a value for all

memory locations L. W(Y,)=0 Y,
When a memory operation u, on a = é)
location L occurs, it reads the value

from the closest ancestor Y,

transaction with L in its readset.

*We assume W (X) is a subset of R (X).

XCilk: write

Conceptually, every transaction X 3 workers %ol W(X,)={L}
maintains a set of locations that the 1 2] B
transaction read from (the readset
R (X)), and a set of locations that

the transaction as written to (the
writeset W(X)).*

W(X,)=0

The root of the tree represents the
world; we assume the writeset of
the root contains a value for all

memory locations L. W(Y,)= {L}

When a memory operation u, on a =

location L occurs, it reads the value

from the closest ancestor Y,

transaction with L in its readset.

u,: write to L

XCilk: xend

An xend commits a X
transaction. With closed
nesting, when a
transaction (¥,;) commits,
it conceptually merges
its readset and writeset W(X,)={L}
into the readset/writeset
of its transactional
parent (Xx,).

=)

W(X,)={L}

w(y,)= {L}

XCilk: Conflicting write

If v, tries to write to 1, XCilk detects a
conflict, because x, is not an ancestor
of v,.

Since v, conflicts with x,, XCilk can
choose to abort z, immediately.

Alternatively, XCilk can also signal an
abort of x,, wait for worker 1 to
notice, and then finish v,.

Conflict

W(X,)={L}

Invariant: Conflict-Free Execution

XCilk performs eager conflict detection, and guarantees
that the execution is always conflict-free.

Aborted
[] Inactive
@ Writeto L

@ Read from L

At any time, for any given
memory location L:

1. All active transactions that
have L it their writeset fall

along a chain.

2. All active transactions with
L in their readset are
either along the chain or
are descendants of the end
of the chain.

Conflicts with the Last Writer to L

In the case where no transactions abort, XCilk reduces

conflict detection to queries checking for conflicts
against the id of the last transaction to write to L.

Let Y be the last transaction

[] Inactive
@ Writeto L

which last wrote to L. X* must
be an ancestor of ¥, i.e., Y has
“merged” into X* because of

@ Read from L

transaction commits.

If a transaction z wants to
perform a read from L,

1. Determine if X* is an
ancestor of z.

2. If no, report a conflict.

The XConflict Oracle

XConflict (*, Z,) Y,

XConflict (Y, 2) answers this query:

["] Inactive Q
(S (S) For any running node Z,
Y, int XConflict_Oracle(Y, Z) {
Q Q X «— Y’'s closest active
© S S © ancestor transaction
Y, [1] 1] ¥, if (X is an ancestor of Z)
(P) Y, {ly * Z; 2, return “no conflict”
° else
S © P P return “conflict”;
Y, ©6G © © }
Case 1: No conflict
Y, Z, Case 2: Conflict

The XConflict data structure is able to answer the query of
XConflict_Oracle in O(1)-time.

Outline

o Definition of Conflict in XCilk
o Efficient XConflict Queries

Sources of Overhead in XCilk

Assume we keep a history of accesses to
each memory location L. The overhead in

XCilk comes from two sources:

o Updates to the XConflict data structure /
histories after a transaction Y commits.

o Queries to XConflict to check for conflicts
on (potentially) every memory access.

Explicit Merges on Commit

Option 1: Explicit Merge
When we commit a
transaction Y into its parent X,
for every location L in ¥'s
readset and writeset, we
change the id from Y to X in
L’s history.

Advantage: Faster queries.

On a query, the last
transaction to write to L is

always active.

Slow Commit with Explicit Merging

Explicitly merging writesets
immediately on transaction
commits can blow up work by
a factor proportional to the
nesting depth.

For example, consider a chain
of nested transactions with
depth d, with each transaction
X, accessing a different
memory location L..

No nesting: O(d) work.
Closed nesting: O(d?) work.

W(x,)= {Lo, Ly, L,, Ls ...
I—d—1l Ld}

o) ¥
W(x,)= {L;, L,, Ls ...

W(x,)= {L,, Ls ...
I—d—1l Ld}

W(x,y ,)= {Lg2 Lg-1, Lt

0(2)]

W(X,4-,)={Lg1, La}

0(1)]

W(Xy)= {Lg}

Implicit Merges

= al v, Option 2: Implicit Merge
Inactive
g 5 Implicitly merge Y into its
closest active transactional
bl v, al ¥, ancestor. On commit, do
® ® nothing to histories for L.
© S S ©
Y, b clYs [g] h] [i] Advantage: Fast updates.
® Y@ [dy, [> *
S ® ® ®
blblblY, ©®6G © ©
dl|d]d] [el [f
Y, Z, 2,

Sets a through i represent
groups of transactions which
have merged together.

Implicit Merges with Slow Queries?

[] Inactive

Option 2: Implicit Merge
Implicitly merge Y into its
closest active transactional

ancestor. On commit, do
nothing to histories for L.

Advantage: Fast updates.

Disadvantage: Slow queries?

If the XConflict query must
walk up the tree to determine
which transaction Y has
merged into, the query might
require Q(d) time.

XCilk potentially performs an XConflict query on every memory access.
Therefore, we need queries to take O(1) time!

The XConflict Query

XConflict (*, Z,) Y,

For any running node Z,

["] Inactive Q
(S int XConflict_Oracle(Y, Z) {
Y, X «— Y’'s closest active
Q Q ancestor transaction
=) S S S if (X is an ancestor of 2)
return “no conflict”
Y Y 2] 2] |2
2 [. 2 aloe
P s Ys > return “conflict”;
©® ® ® }

Y
3 ©©® © © Case 1: No conflict
Case 2: Conflict

XConflict can run in O(1) time because it does not
always need to find x to answer the oracle query.

Trace Construction: Updates

XCilk speeds up XConflict queries, 3 workers
by dividing the computation tree 1 2] B
into traces, with each trace

executed by a single worker.*

In Cilk, traces are created by
splitting on steals.

traces = O(# steals)
= O(PT.)

Thus, we can afford to acquire a
global lock on steals, and perform
O(1) amortized work per trace.

Nested transactions are merged
together by merging traces together
when traces complete.

_

*Trace construction is similar to the construction in
[BFGLO4, FinemanO05], used for parallel race detection in Cilk.

Trace Construction: Queries

XCilk speeds up XConflict queries, 3 workers
by dividing the computation tree 1 2] B
into traces, with each trace

executed by a single worker.*

An XConflict query involves a
constant number of O(1)-time
operations at two tiers: a global tier
(queries between traces), and a
local tier (between tree nodes).

When there are no transaction
conflicts and no parallel readers to
the same memory location, XCilk
performs (at most) one XConflict

query per memory access.

_

*Trace construction is similar to the construction in
[BFGLO4, FinemanO05], used for parallel race detection in Cilk.

XCilk Performance Bound

o In the special case of a computation with
no transaction conflicts and no concurrent
readers to a shared memory location,
XCilk performs (at most) one O(1)-time
XConflict query per memory access.

o Maintaining the XConflict data structure
introduces overhead of O(T,/ P + PT,).

o Therefore, the entire program runs in
time O(T,/ P + PT..).

o Linear speedup if P = O(N(T,/T..)),
compared to P =0O(T,/T.) for normal Cilk.

Open Questions

o Can we provide any performance
guarantees on programs which are
conflict-free, but also allowing parallel
reads to the same location? What if
there are conflicts?

o Can we “garbage-collect” XCilk's
metadata (e.g., transaction ids) in a
provably-efficient manner?

o Can we simplify the XCilk data
structures in special but possibly
“common” cases? For example, what
if the nesting depth is bounded by d?

