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ABSTRACT
This paper presents GRACE-OS, an energy-efficient soft
real-time CPU scheduler for mobile devices that primarily
run multimedia applications. The major goal of GRACE-OS
is to support application quality of service and save energy.
To achieve this goal, GRACE-OS integrates dynamic voltage
scaling into soft real-time scheduling and decides how fast
to execute applications in addition to when and how long to
execute them. GRACE-OS makes such scheduling decisions
based on the probability distribution of application cycle de-
mands, and obtains the demand distribution via online pro-
filing and estimation. We have implemented GRACE-OS
in the Linux kernel and evaluated it on an HP laptop with
a variable-speed CPU and multimedia codecs. Our experi-
mental results show that (1) the demand distribution of the
studied codecs is stable or changes smoothly. This stability
implies that it is feasible to perform stochastic scheduling
and voltage scaling with low overhead; (2) GRACE-OS de-
livers soft performance guarantees by bounding the dead-
line miss ratio under application-specific requirements; and
(3) GRACE-OS reduces CPU idle time and spends more
busy time in lower-power speeds. Our measurement indi-
cates that compared to deterministic scheduling and volt-
age scaling, GRACE-OS saves energy by 7% to 72% while
delivering statistical performance guarantees.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling; D.4.7 [Orga-
nization and Design]: Real-time systems and embedded
systems

General Terms
Algorithms, Design, Experimentation.
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Power Management, Mobile Computing, Multimedia.
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1. INTRODUCTION
Battery-powered mobile devices, ranging from laptops to

cellular phones, are becoming important platforms for pro-
cessing multimedia data such as audio, video, and images.
Compared to traditional desktop and server systems, such
mobile systems need both to support application quality
of service (QoS) requirements and to save the battery en-
ergy. The operating systems therefore should manage sys-
tem resources, such as the CPU, in a QoS-aware and energy-
efficient manner.
On the other hand, these mobile systems also offer new

opportunities. First, system resources are able to oper-
ate at multiple modes, trading off performance for energy.
For example, mobile processors on the market today, such
as Intel’s XSacle, AMD’s Athlon, and Transmeta’s Crusoe,
can change the speed (frequency/voltage) and corresponding
power at runtime. Second, multimedia applications present
soft real-time resource demands. Unlike hard real-time ap-
plications, multimedia applications require only statistical
performance guarantees (e.g., meeting 96% of deadlines).
Unlike best-effort applications, as long as multimedia appli-
cations complete a job (e.g., a video frame decoding) by its
deadline, the actual completion time does not matter from
the QoS perspective. This soft real-time nature results in
the possibility of saving energy without substantially affect-
ing application performance.
This paper exploits these opportunities to address the

above two challenges, namely, QoS provisioning and energy
saving. This work was done as part of the Illinois GRACE
cross-layer adaptation framework, where all system layers,
including the hardware, operating system, network, and ap-
plications, cooperate with each other to optimize application
QoS and save energy [1, 36]. In this paper, we discuss the
OS resource management of the GRACE framework. In par-
ticular, we focus on CPU scheduling and energy saving for
stand-alone mobile devices.
Dynamic voltage scaling (DVS) is a common mechanism

to save CPU energy [10, 14, 15, 23, 27, 28, 34]. It exploits
an important characteristic of CMOS-based processors: the
maximum frequency scales almost linearly to the voltage,
and the energy consumed per cycle is proportional to the
square of the voltage [8]. A lower frequency hence enables a
lower voltage and yields a quadratic energy reduction.
The major goal of DVS is to reduce energy by as much

as possible without degrading application performance. The
effectiveness of DVS techniques is, therefore, dependent on
the ability to predict application CPU demands— overes-



timating them can waste CPU and energy resources, while
underestimating them can degrade application performance.
In general, there are three prediction approaches: (1) moni-
toring average CPU utilization at periodic intervals [10, 15,
26, 34], (2) using application worst-case CPU demands [27,
28], and (3) using application runtime CPU usage [14, 23,
28]. The first two approaches, however, are not suitable
for multimedia applications due to their highly dynamic de-
mands: the interval-based approach may violate the timing
constraints of multimedia applications, while the worst-case-
based approach is too conservative for them.
We therefore take the third approach, i.e., runtime-based

DVS, and integrate it into soft real-time (SRT) scheduling.
SRT scheduling is commonly used to support QoS by com-
bining predictable CPU allocation (e.g., proportional shar-
ing and reservation) and real-time scheduling algorithms
(e.g., earliest deadline first) [7, 9, 13, 25, 18, 19, 32]. In
our integrated approach, the DVS algorithms are imple-
mented in the CPU scheduler. The enhanced scheduler,
called GRACE-OS, decides how fast to execute applications
in addition to when and how long to execute them. This
integration enables the scheduler to make DVS decisions
properly, since the scheduler has the full knowledge of sys-
tem states such as performance requirements and resource
usage of applications.
Our goal is to obtain benefits of both SRT and DVS—

to maximize the energy saving of DVS, while preserving the
performance guarantees of SRT scheduling. To do this, we
introduce a stochastic property into GRACE-OS. Specifi-
cally, the scheduler allocates cycles based on the statisti-
cal performance requirements and probability distribution
of cycle demands of individual application tasks (processes
or threads). For example, if an MPEG decoder requires
meeting 96% of deadlines and for a particular input video,
96% of frame decoding demands no more than 9 million
cycles, then the scheduler can allocate 9 million cycles per
frame to the decoder. Compared to the worst-case-based
allocation, this stochastic allocation increases CPU utiliza-
tion. It also saves energy at the task-set level, since the CPU
can run at a minimum speed that meets the aggregate sta-
tistical demand of all concurrent tasks. For example, if an
MPEG video decoder and an MP3 audio decoder are run-
ning concurrently with statistical allocation of 300 and 50
million cycles per second, respectively, then the CPU can
slow down to 350 MHz to save energy.
Further, the potential exists to save more energy at the

task level. The reason is that a task may, and often does,
complete a job before using up its allocated cycles. Such
early completion often results in CPU idle time, thus result-
ing in energy waste. To realize this potential, GRACE-OS
finds a speed schedule for each task based on the proba-
bility distribution of the task’s cycle demands. This speed
schedule enables each job of the task to start slowly and
to accelerate as the job progresses. Consequently, if the
job completes early, it can avoid the high speed (high en-
ergy consumption) part. This stochastic, intra-job DVS is
in sharp contrast to previous DVS approaches that either
execute an entire job at a uniform speed or start a job at a
higher speed and decelerate upon early completion.
Since the stochastic scheduling and DVS are both depen-

dent on the demand distribution of tasks, we estimate it via
online profiling and estimation. We first use a kernel-based
profiling technique to monitor the cycle usage of a task by

counting the number of cycles during task execution. We
then use a simple yet effective histogram technique to esti-
mate the probability distribution of the task’s cycle usage.
Our estimation approach is distinguished from others (e.g.,
[14, 23, 32]) in that it can be used online with low over-
head. This is important and necessary for live multimedia
applications such as video conferencing.
We have implemented GRACE-OS in the Linux kernel,

and evaluated it on an HP Pavilion laptop with a variable
speed processor and with multimedia applications, includ-
ing codecs for speech, audio, and video. The experimental
results show four interesting findings:

1. Although the studied code applications vary instanta-
neous CPU demands greatly, the probability distribu-
tion of their cycle demands is stable or changes slowly
and smoothly. Therefore, GRACE-OS can either es-
timate the demand distribution from a small part of
task execution (e.g., first 100 jobs) or update it infre-
quently. This stability indicates that it is feasible to
perform stochastic scheduling and DVS based on the
demand distribution.

2. GRACE-OS delivers soft performance guarantees with
stochastic (as opposed to worst case) allocation: it
meets almost all deadlines in a lightly loaded envi-
ronment, and bounds the deadline miss ratio under
application-specific requirements (e.g., meeting 96% of
deadlines) in a heavily loaded environment.

3. Compared to other systems that perform allocation
and DVS deterministically, GRACE-OS reduces CPU
idle time and spends more busy time in lower-power
speeds, thereby saving energy by 7% to 72%.

4. GRACE-OS incurs acceptable overhead. The cost is
26-38 cycles for the kernel-based online profiling, 0.25-
0.8 ms for the histogram-based estimation, 80-800 cy-
cles for SRT scheduling, and 8,000-16,000 cycles for
DVS. Further, the intra-job DVS does not change CPU
speed frequently. For our studied codes, the average
number of speed changes is below 2.14 per job.

The rest of the paper is organized as follows. Section 2 in-
troduces the design and algorithms of GRACE-OS. Sections
3 and 4 present the implementation and experimental eval-
uation, respectively. Section 5 compares GRACE-OS with
related work. Finally, Section 6 summarizes the paper.

2. DESIGN AND ALGORITHMS
We first introduce the application model, on which the

stochastic scheduling and DVS are based. We consider pe-
riodic multimedia tasks (processes or threads) that release
a job per period, e.g., decoding a video frame every 30 ms.
A job is a basic computation unit with timing constraints
and is characterized by a release time, a finishing time, and
a soft deadline. The deadline of a job is typically defined
as sum of its release time and the period, i.e., the release
time of the next job. By soft deadline, we mean that a job
should, but does not have to, finish by this time. In other
words, a job may miss its deadline. Multimedia tasks need
to meet some percentage of job deadlines, since they present
soft real-time performance requirements.
We use the statistical performance requirement, ρ, to de-

note the probability that a task should meet job deadlines;
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Figure 1: GRACE-OS architecture: the enhanced
scheduler performs soft real-time scheduling and
DVS based on the probability distribution of cycle
demands of each multimedia task.

e.g., if ρ = 0.96, then the task needs to meet 96% of dead-
lines. In general, application developers or users can specify
the parameter ρ, based on application characteristics (e.g.,
audio streams have a higher ρ than videos) or user prefer-
ences (e.g., a user may tolerate some deadline misses when
the CPU is overloaded).
Next, we describe the architecture of GRACE-OS and its

major algorithms for QoS provisioning and energy saving.

2.1 Overview
Our goal is to reduce CPU energy consumption by as

much as possible, while meeting the statistical performance
requirements of multimedia tasks. The operating system
therefore needs to provide predictable CPU scheduling and
speed scaling. To do this, we enhance the CPU scheduler
to integrate scheduling and speed scaling. This enhanced
scheduler, called GRACE-OS, consists of three major com-
ponents: a profiler, a SRT scheduler, and a speed adaptor,
as shown in Figure 1. The profiler monitors the cycle usage
of individual tasks, and automatically derives the probabil-
ity distribution of their cycle demands from the cycle us-
age. The SRT scheduler is responsible for allocating cycles
to tasks and scheduling them to deliver performance guar-
antees. It performs soft real-time scheduling based on the
statistical performance requirements and demand distribu-
tion of each task. The speed adaptor adjusts CPU speed
dynamically to save energy. It adapts each task’s execution
speed based on the task’s time allocation, provided by the
SRT scheduler, and demand distribution, provided by the
profiler.
Operationally, GRACE-OS achieves the energy-efficient

stochastic scheduling via an integration of demand estima-
tion, SRT scheduling, and DVS, which are performed by the
profiler, SRT scheduler, and speed adaptor, respectively. We
describe these operations in the following subsections.

2.2 Online estimation of demand distribution
Predictable scheduling and DVS are both dependent on
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Figure 2: Kernel-based online profiling: monitoring
the number of cycles elapsed between each task’s
switch-in and switch-out in context switches.

the prediction of task cycle demands. Hence, the first step
in GRACE-OS is to estimate the probability distribution of
each task’s cycle demands. We estimate the demand distri-
bution rather than the instantaneous demands for two rea-
sons. First, the former is much more stable and hence more
predictable than the latter (as demonstrated in Section 4).
Second, allocating cycles based on the demand distribution
of tasks provides statistical performance guarantees, which
is sufficient for our targeted multimedia applications.
Estimating the demand distribution of a task involves two

steps: profiling its cycle usage and deriving the probability
distribution of usage. Recently, a number of measurement-
based profiling mechanisms have been proposed [3, 32, 37].
Profiling can be performed online or off-line. Off-line profil-
ing provides more accurate estimation with the whole trace
of CPU usage, but is not applicable to live applications. We
therefore take the online profiling approach.
We add a cycle counter into the process control block of

each task. As a task executes, its cycle counter monitors
the number of cycles the task consumes. In particular, this
counter measures the number of cycles elapsed between the
task’s switch-in and switch-out in context switches. The
sum of these elapsed cycles during a job execution gives
the number of cycles the job uses. Figure 2 illustrates this
kernel-based online profiling technique.
Note that multimedia tasks tell the kernel about their

jobs via system calls; e.g., when an MPEG decoder finishes
a frame decoding, it may call sleep to wait for the next
frame. Further, when used with resource containers [6], our
proposed profiling technique can be more accurate by sub-
tracting cycles consumed by the kernel (e.g., for interrupt
handling). We currently do not count these cycles, since
they are typically negligible relative to cycles consumed by
a multimedia job.
Our proposed profiling technique is distinguished from

others [3, 32, 37] for three reasons. First, it profiles during
runtime, without requiring an isolated profiling environment
(e.g., as in [32]). Second, it is customized for counting job
cycles, and is simpler than general profiling systems that as-
sign counts to program functions [3, 37]. Finally, it incurs
small overhead, which happens only when updating cycle
counters before a context switch. There is no additional
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Figure 3: Histogram-based estimation: the his-
togram approximates the cumulative distribution
function of a task’s cycle demand.

overhead, e.g., due to sampling interrupts [3, 37].
Next, we employ a simple yet effective histogram tech-

nique to estimate the probability distribution of task cycle
demands. To do this, we use a profiling window to keep track
of the number of cycles consumed by n jobs of the task. The
parameter n can either be specified by the application or be
set to a default value (e.g., the last 100 jobs). Let Cmin and
Cmax be the minimum and maximum number of cycles, re-
spectively, in the window. We obtain a histogram from the
cycle usage as follows:

1. We use Cmin = b0 < b1 < · · · < br = Cmax to split
the range [Cmin, Cmax] into r equal-sized groups. We
refer to {b0, b1, ..., br} as the group boundaries.

2. Let ni be the number of cycle usage that falls into the
ith group (bi−1, bi]. The ratio

ni
n
represents the prob-

ability that the task’s cycle demands are in between
bi−1 and bi, and

∑i
j=0

nj

n
represents the probability

that the task needs no more than bi cycles.

3. For each group, we plot a rectangle in the interval
(bi−1, bi] with height

∑i
j=0

nj

n
. All rectangles together

form a histogram, as shown in Figure 3.

From a probabilistic point of view, the above histogram
of a task approximates the cumulative distribution function
of the task’s cycle demands, i.e.,

F (x) = P[X ≤ x] (1)

where X is the random variable of the task’s demands.
In particular, the rectangle height,

∑i
j=0

nj

n
, of a group

(bi−1, bi] approximates the cumulative distribution at bi, i.e.,
the probability that the task demands no more than bi cy-
cles. In this way, we can estimate the cumulative distribu-
tion for the group boundaries of the histogram, i.e., F (x)
for x ∈ {b0, b1, ..., br}.
Unlike distribution parameters such as the mean and stan-

dard deviation, the above histogram describes the property
of the full demand distribution. This property is neces-
sary for stochastic DVS (see Section 2.4). On the other
hand, compared to distribution functions such as normal
and gamma (e.g., PACE [23]), the histogram-based estima-
tion does not need to configure function parameters off-line.
It is also easy to update, with low overhead, when the de-
mand distribution changes, e.g., due to a video scene change.
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Figure 4: Stochastic cycle allocation: allocating the
smallest bm with P[X ≤ bm] ≥ ρ.

2.3 Stochastic SRT scheduling
Multimedia tasks present demanding computational re-

quirements that must be met in soft real time (e.g., decoding
a frame within a period). To support such timing require-
ments, the operating system needs to provide soft real-time
scheduling, typically in two steps: predictable cycle alloca-
tion and enforcement.
The key problem in the first step is deciding the amount of

cycles allocated to each task. GRACE-OS takes a stochas-
tic approach to addressing this problem: it decides cycle al-
location based on the statistical performance requirements
and demand distribution of each task. The purpose of this
stochastic allocation is to improve CPU and energy utiliza-
tion, while delivering statistical performance guarantees.
Specifically, let ρ be the statistical performance require-

ment of a task— the task needs to meet ρ percentage of
deadlines. In other words, each job of the task should meet
its deadline with a probability ρ. To support this require-
ment, the scheduler allocates C cycles to each job of the
task, so that the probability that each job requires no more
than the allocated C cycles is at least ρ, i.e.,

F (C) = P[X ≤ C] ≥ ρ (2)

To find this parameter C for a task, we search its histogram
group boundaries, {b0, b1, ..., br}, to find the smallest bm

whose cumulative distribution is at least ρ, i.e., F (bm) =
P[X ≤ bm] ≥ ρ. We then use this bm as the parameter C.
Figure 4 illustrates the stochastic allocation process.
After determining the parameter C, we use an earliest

deadline first (EDF) based scheduling algorithm to enforce
the allocation. This scheduling algorithm allocates each task
a budget of C cycles every period. It dispatches tasks based
on their deadline and budget— selecting the task with the
earliest deadline and positive budget. As the selected task
is executed, its budget is decreased by the number of cycles
it consumes. If a task overruns (i.e., it does not finish the
current job but has used up the budget), the scheduler can
either notify it to abort the overrun part, or preempt it to
run in best-effort mode. In the latter case, the overrun task
is either executed by utilizing unused cycles from other tasks
or is blocked until its budget is replenished at the beginning
of next period.



2.4 Stochastic DVS
SRT scheduling determines which task to execute as well

as when and how long (in number of cycles) to execute it.
We next discuss another scheduling dimension— how fast
to execute a task (i.e., CPU speed scaling). The purpose
of the speed scaling is to save energy, while preserving the
statistical performance guarantees of SRT scheduling.
The intuitive idea is to assign a uniform speed to execute

all tasks until the task set changes. Assume there are n tasks
and each is allocated Ci cycles per period Pi. The aggregate
CPU demand of the concurrent tasks is

n∑
i=1

Ci

Pi
(3)

cycles per second (MHz). To meet this aggregate demand,
the CPU only needs to run at speed

∑n
i=1

Ci
Pi
. If each task

used exactly its allocated cycles, this uniform speed tech-
nique would consume minimum energy due to the convex
nature of the CPU speed-power function [5, 17].
However, the cycle demands of multimedia tasks often

vary greatly. In particular, a task may, and often does, com-
plete a job before using up its allocated cycles. Such early
completion often results in CPU idle time, thereby wasting
energy. To save this energy, we need to dynamically adjust
CPU speed. In general, there are two dynamic speed scaling
approaches: (1) starting a job at the above uniform speed
and then decelerating when it completes early, and (2) start-
ing a job at a lower speed and then accelerating as it pro-
gresses. The former is conservative by assuming that a job
will use its allocated cycles, while the latter is aggressive by
assuming that a job will use fewer cycles than allocated. In
comparison, the second approach saves more energy for jobs
that complete early, because these jobs avoid the high speed
(high energy consumption) execution. GRACE-OS takes
the second approach, since most multimedia jobs (e.g., 95%)
use fewer cycles than allocated (as shown in Section 4.2).
Specifically, we define a speed schedule for each task. The

speed schedule is a list of scaling points. Each point (x, y)
specifies that a job accelerates to the speed y when it uses x
cycles. Among points in the list, the larger the cycle number
x is, the higher the speed y becomes. The point list is sorted
by the ascending order of the cycle number x (and hence
speed y). According to this speed schedule, a task always
starts a job at the speed of the first scaling point. As the
job is executed, the scheduler monitors its cycle usage. If
the cycle usage of a job is greater than or equal to the cycle
number of the next scaling point, its execution is accelerated
to the speed of the next scaling point.
Figure 5-(a) shows an example of a task’s speed schedule

with four scaling points. Figure 5-(b) shows the correspond-
ing speed scaling for three jobs of the task. Each job starts
at speed 100 MHz and accelerates as it progresses. If a job
needs fewer cycles, it avoids the high speed execution. For
example, the first job requires 1.6×106 cycles and thus needs
to execute at speed 100 and 120 MHz only.
Next, we discuss how to calculate the speed schedule for

each task based on its demand distribution, similar to the
stochastic DVS techniques proposed by Lorch and Smith [23]
and Gruian [14]. The goal is to minimize the task’s energy
consumption, while meeting its statistical performance re-
quirements. To do this, we allocate some CPU time to each
task as follows. If there are n concurrent tasks and each
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Figure 5: Example of speed schedule and corre-
sponding speed scaling for job execution: each job
starts slowly and accelerates as it progresses.

task is allocated Ci cycles per period Pi, then the scheduler
allocates the ith task CPU time

Ti =
Ci∑n

i=1
Ci
Pi

(4)

every period Pi. The reason for time allocation (in addition
to cycle allocation) is to guarantee that each task executes
for up to its allocated cycles within its allocated time, re-
gardless of speed changes. That is, we want to preserve the
statistical performance guarantee of SRT scheduling when
using DVS to save energy.
The speed schedule construction problem thus becomes,

for each task, to find a speed for each of its allocated cycles,
such that the total energy consumption of these allocated
cycles is minimized while their total execution time is no
more than the allocated time. Formally, if a cycle x exe-
cutes at speed fx, its execution time is

1
fx
and its energy

consumption is proportional to f2
x [8]. Since a task requires

cycles statistically, it uses each of its allocated cycles with a
certain probability. Therefore, each allocated cycle x is ex-
ecuted with a certain probability; consequently, its average
energy consumption is proportional to

(1− F (x))f2
x (5)

where F (x) is the cumulative distribution function defined
in Equation (1). In this way, constructing the speed schedule



for a task is equivalent to:

minimize:
C∑

x=1

(1− F (x))f2
x (6)

subject to:
C∑

x=1

1
fx

≤ T (7)

where C and T are the task’s allocated cycles and allocated
time per period, respectively.
To solve the above constrained optimization, we need to

know the cumulative distribution, F (x), for each allocated
cycle. However, our histogram-based estimation provides
the cumulative distribution for only the group boundaries
of the histogram; i.e., we know F (x) for x ∈ {b0, b1, ..., bm},
where bm = C is the cycle group boundary that is equal
to the number of allocated cycles (i.e., the ρth percentile of
the task’s cycle demands fall into the first m groups of its
histogram, as discussed in Section 2.3).
We therefore use a piece-wise approximation technique to

find the speed for the group boundaries and use a uniform
speed within each group. That is, we rewrite the above
constrained optimization as:

minimize:
m∑

i=0

si × (1− F (bi))f
2
bi

(8)

subject to:
m∑

i=0

si × 1
fbi

≤ T (9)

where si is the size of the ith group, i.e.,

si =

{
b0 : i = 0

bi − bi−1 : 0 < i ≤ m
(10)

By Jensen’s inequality [20], Equation (8) has a lower bound
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(11)

if and only if

∀i fbi =

m∑
j=0

√
s3

j (1− F (bj))

T
√

si(1− F (bi))
(12)

Equation (12) gives the speed for each of the group bound-
aries, i.e., fx for x ∈ {b0, b1, ..., bm = C}. Therefore, we can
construct the speed schedule of a task by adding a scaling
point for each group boundary. That is, the speed sched-
ule consists of m + 1 scaling points. Each point has cycle
number bi and speed fbi , 0 ≤ i ≤ m. Since the speed fbi in-
creases as the cycle number bi increases, this speed schedule
accelerates the CPU as a job progresses.

3. IMPLEMENTATION
We have implemented a prototype of GRACE-OS. The

hardware platform for our implementation is an HP Pavil-
ion N5470 laptop with a single AMD Athlon 4 processor [2].
This processor features the PowerNow technology, and sup-
ports six different frequencies, {300, 500, 600, 700, 800,
1000 MHz}. Further, its frequency and voltage can be ad-
justed dynamically under operating system control.
The prototype software is implemented as a set of mod-

ules and patches that hook into the Linux kernel 2.4.18 (Fig-
ure 6). The entire implementation contains 716 lines of C
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Figure 6: Software architecture of implementation.

Table 1: New system calls for SRT tasks.
API Description

start srt Start real-time mode by specifying period and
statistical performance requirement ρ.

exit srt Exit real-time mode.
finish job Tell the scheduler that the task finishes a job.

set budget Set the task’s cycle budget.
set dvspnt Set a scaling point in the task’s speed schedule.
* The last two are used to tell the kernel about the results of

the demand estimation, which is moved to the user level.

code, including about 30 lines of modification to the stan-
dard Linux scheduler files, sched.h and sched.c. The im-
plementation includes four major issues:

1. Adding new system calls. We add three new sys-
tem calls (Table 1) to support soft real-time requirements of
multimedia tasks. A task uses start_srt to declare itself as
a SRT task and to require statistical performance guaran-
tees from the OS. It uses finish_job to notify the scheduler
that it has finished its current job. Upon the finish_job

call, the scheduler gets the number of cycles used by the
task’s current job, and may (re)calculate the task’s demand
distribution, cycle budget, and speed schedule if necessary.
This calculation, however, requires double data type com-

putation (e.g., Equation (12)), which currently is not sup-
ported in the Linux kernel modules. To solve this problem,
we move the calculation to the user level by intercepting the
finish_job call. Before returning to the calling task, this
call estimates the demand distribution in the user level and
uses set_budget and set_dvspnt to tell the scheduler about
the task’s budget and speed schedule, respectively. This in-
terception is enabled only for demand estimation, and is
disabled otherwise to reduce overhead.
Note that a scaling point’s speed, calculated via Equation

(12), may not overlap with the speeds supported by the
Athlon processor. Hence, we need to convert the calculated
speed to the supported one. To do this, we round the speed
of each scaling point to the upper bound in the supported
speeds, and combine scaling points that have the same upper
bound. As a result, a task’s speed schedule consists of at
most six points, each for one of the supported speeds. This
conversion is specific to the processor specification; so there
may be different number of points for different processors.
We once considered an alternative approach, often used

in simulations, that approximates a calculated speed with
two bounding supported speeds [14, 17, 23]. This approach
divides cycles that need to be executed at the calculated
speed into two parts, one for the lower bound and the other
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for the upper bound. This approach provides more accurate
approximation. It, however, requires a very fine granularity
of speed scaling (about tens of microseconds) due to the
cycle division, and may potentially result in large overhead
when used in real implementations.

2. Modifying the process control block. We add
five new attributes into the process control block (i.e., the
task_struct), as shown in Figure 7. The first new attribute
SRT flag indicates if the task is a SRT task. The other four
attributes apply to SRT tasks only. Cycle counter is used
for profiling (Section 2.2). Cycle budget stores the num-
ber of allocated cycles (Section 2.3). Speed schedule is a
list of speed scaling points, which define how to accelerate
the CPU for a job execution. Current point specifies the
current execution speed for the task (Section 2.4).

3. Adding SRT and DVS modules. We add two new
modules in the kernel, one for soft real-time scheduling and
the other for speed scaling. The PowerNow module is respon-
sible for setting speed by writing the frequency and voltage
to a special register FidVidCtl [2, 28, 36]. This module
provides a simple, clean interface for speed setting, and is
separated from the DVS decision maker (the scheduler in our
case). In doing so, we improve the flexibility and reusability
of our implementation: we can apply the stochastic schedul-
ing and DVS to other processors by replacing only the speed
setting module (e.g., using Transmeta’s LongRun [10]).
The SRT scheduling module is hooked into the standard

Linux scheduler, rather than replacing the latter. This is
similar to hierarchical real-time scheduling [13, 28]. There
are two reasons for this: (1) to support the coexistence of
real-time and best-effort applications, and (2) to minimize
the modification to the OS, thus improving the usability of
our implementation. We patch the kernel with the UTIME
package [21] and add a periodic, 500 µs resolution UTIME
timer into the kernel. The SRT scheduler is attached as the
call-back function of the timer and hence is invoked every
500 µs. Like soft-timers [4], UTIME timers achieve high
resolution with low overhead by running the hardware timer
as an aperiodic device [21]. We use this high resolution
timer, rather than the standard Linux kernel timer with 10
ms resolution, because the latter’s resolution is too coarse
for our SRT scheduling and intra-job DVS.
When the UTIME timer expires, the SRT scheduler is

invoked to perform real-time scheduling as follows: (1) it
checks the cycle budget of the current task. If the budget
is exhausted, it sets the current task’s scheduling policy to
best-effort mode for overrun protection. (2) It checks all
SRT tasks. If a task begins a new period, it replenishes

Table 2: Experimental multimedia applications.
Application Type Jobs Period (ms)

mpgplay MPEG video decoder 7691 30
madplay MP3 audio decoder 6118 30

tmn H263 video encoder 1000 400
tmndec H263 video decoder 1000 30
toast GSM speech encoder 11631 25

the task’s cycle budget and puts the task back to real-time
mode. (3) It sets the priority of all real-time tasks based
on their deadline— the earlier the deadline, the higher the
priority. (4) Finally, it invokes the standard Linux scheduler,
which in turn dispatches the real-time task with the earliest
deadline.

4. Modifying the standard Linux scheduler. We
modify the standard Linux scheduler to add profiling, cy-
cle charging, and DVS. When the schedule() function is in-
voked, if there is no context switch (i.e., the current task
is dispatched again), the Linux scheduler may accelerate
the speed for the current task based on its speed sched-
ule. If a context switch happens, the Linux scheduler does
some housekeeping for the switched-out task by (1) increas-
ing its cycle counter by the number of cycles elapsed since its
last switch-in, (2) decreasing its cycle budget by the same
amount, and (3) advancing its current scaling point if its
cycle counter reaches the cycle number of the next scaling
point. The Linux scheduler then adjusts the speed for the
switched-in task based on its current scaling point. This
task will execute at the new speed after the context switch.

4. EXPERIMENTAL EVALUATION
Our experiments are performed on the HP Pavilion N5470

laptop with 256MB RAM. The operating system is Red Hat
Linux 7.2 with a modified version of Linux kernel 2.4.18, as
discussed in Section 3. The experimental applications are
codecs for video, audio, and speech. Table 2 summarizes
these applications and their inputs. We have also experi-
mented with other inputs for each codec, but do not show
results here due to space limitations.
Unless specified otherwise, we repeat each of the following

experiments at least eight times, and measure the relevant
metrics (such as scheduling cost and CPU energy consump-
tion) in each run. For each metric, we discard the largest
and smallest value measured in the multiple runs, and report
the average of the remaining ones.

4.1 Overhead
In our first experiments, we evaluate GRACE-OS’s over-

head by measuring the cost for demand estimation, SRT
scheduling, and DVS. We measure cost in cycles, rather than
time, since the elapsed time for an operation (e.g., an invo-
cation of SRT scheduling) depends on the speed, while the
number of consumed cycles does not change substantially
with the speed. We get the number of cycles by reading the
timestamp register (a CPU cycle counter) in the kernel, and
provide an API to get the cycle count in the user level.
First, we evaluate the cost for the new system calls in Ta-

ble 1. To do this, we run the mpgplay task, and measure
the elapsed cycles for each new system call in the mpgplay
program. Table 3 shows that these system calls take around
1000 cycles (about 3-6 µs at speed 300 MHz). This over-



Table 3: Cost of new system calls (in cycles).
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Figure 8: Cost of demand estimation.

head is low and negligible relative to multimedia execution,
since our studied codecs consume about 2× 105 to 2.5× 108
cycles for a frame processing (i.e., these new system calls
cost about 0.0004% to 0.5% of job cycles). Note that the
cost for finish_job does not include cycles for calculat-
ing the demand distribution of the calling task (recall that
this calculation is moved to the user level by intercepting
finish_job when the demand distribution changes).
Second, we measure the cost for demand profiling and esti-

mation. The profiling cost primarily results from the access
to the timestamp register (i.e., reading the current number
of cycles). It is about 26-38 cycles on the HP laptop. To
evaluate the estimation cost, we run the mpgplay codec and
measure the number of cycles for building histogram and
calculating cycle budget and speed schedule. The results
(Figure 8) show that the estimation cost is dependent on
the size of the profiling window and histogram groups. The
cost is in hundreds of thousands of cycles and hence is quite
large. It is about 0.1% to 100% of the number of cycles con-
sumed by jobs of our studied codecs (2 × 105 to 2.5 × 108
cycles per job). This means that the online demand estima-
tion cannot happen frequently; otherwise, it will incur un-
acceptably large overhead. In Section 4.2, we will show that
the demand distribution of our studied multimedia tasks is
relatively stable; consequently, GRACE-OS only needs to
estimate their demand distribution infrequently.
Third, we measure the cost for SRT scheduling. We run

one to ten copies of the toast codec and measure the number
of cycles elapsed during each SRT scheduling. We choose
toast, since it presents low CPU demand (about 2 × 105

cycles per job) and hence multiple copies can run concur-
rently without violating the EDF schedulability (i.e., the
total CPU utilization is no more than 100%). For each run,
we sample the scheduling cost 10,000 times in the kernel.
Figure 9 plots the results with 95% confidence intervals. The
scheduling cost depends on the number of multimedia tasks
since the SRT scheduler needs to check the status of each
task (e.g., whether it begins a new period). When tasks
do not begin a new period, the cost primarily results from
budget charging for the currently running task and status
checking for all tasks. It is below 300 cycles for up to ten
tasks. With a scheduling granularity of 500 µs, the relative
scheduling cost is below 0.06%-0.2%, depending on the CPU
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Figure 9: Cost of soft real-time scheduling (with
95% confidence intervals).

Table 4: Cost of speed scaling (in cycles).
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frequency

(MHz)

to frequency (MHz)
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Table 5: Average # of speed changes per job.

concurrent 
run

single run

0.800. 941.2802.14
toasttmndectmnmadplaympegplay

concurrent 
run

single run

0.800. 941.2802.14
toasttmndectmnmadplaympegplay

speed1. When a task begins a new period, the SRT scheduler
needs to replenish its cycle budget and change its scheduling
parameters. As a result, the scheduling cost becomes larger,
but is still small relative to multimedia execution (e.g., no
more than 0.4% of job cycles).
Finally, we measure the cost for speed scaling. To do

this, we adjust the processor from one speed to another one,
and measure the number of cycles for each change. The re-
sults (Table 4) show that the CPU can change speed within
8,000-16,000 cycles (about 10-50 µs). It means that the
speed scaling does not incur large overhead, but should be
invoked only infrequently. This is one of the reasons that our
implementation uses a 500 µs timer to trigger SRT schedul-
ing and DVS. Note that with the advances in microprocessor
design, the speed change overhead will become smaller; e.g.,
the lpARM processor can change speed in about 1250 cycles
and continue operation during the change [27].
We notice that the stochastic intra-job DVS may poten-

tially result in frequent speed changes due to the context
switches between different tasks and the acceleration of each
task’s job execution. In practice, however, GRACE-OS does

1For every 500 µs, the processor provides 500µs × 300MHz
= 1.5×105 cycles at speed 300 MHz, and 500µs × 1000MHz
= 5× 105 cycles at 1000MHz.



not change speed frequently for two reasons: (1) jobs often
complete early before accelerating, and (2) there are only
six speeds available, which means that the CPU speed may
remain the same after a context switch. To validate this,
we run each of the codecs one at a time and run all of them
(except tmn) concurrently. During each run, we measure
the average number of speed changes per job. The results
(Table 5) confirm that the stochastic intra-job DVS does
not change speed frequently. In particular, there is almost
no speed change during the single run of the madplay and
toast codecs, since the lowest speed, 300 MHz, is sufficient
to meet their CPU demands.

4.2 Stability of demand distribution
The stochastic scheduling and speed scaling both depend

on the probability distribution of task demands. If a task’s
demand distribution is stable, the scheduler can estimate
it with a small profiling window; otherwise, the scheduler
can either estimate the demand distribution with a large
profiling window or update it when it changes. Our next
experiment examines the stability of the demand distribu-
tion. To do this, we profile cycle usage of each codec during
various time intervals of its execution (e.g., during the first
50 and 100 jobs), estimate the demand distribution from
the cycle usage, and compare the demand distributions of
different time intervals. Note that the cycle usage and de-
mand distribution of each codec are both dependent on its
inputs. Although we report the results for only the inputs
in Table 2, we have also experimented with other inputs for
each codec and found similar results.
Figure 10-(a) depicts the cycle usage of the mpgplay ap-

plication for the whole video clip lovebook.mpg with frame
size 320 × 240 pixels and 7691 frames. Figure 10-(b) plots
its demand distribution for decoding different parts of the
video (e.g., the first 50 and 100 frames). The figure shows
two important characteristics of the mpgplay ’s CPU usage.
First, its instantaneous cycle demands are bursty and most
jobs do not need the worst case cycles; e.g., for the first 100
jobs, the worst-case demand is 9.9× 106 cycles, but 99% of
jobs require less than 9.4 × 106 cycles. This indicates that
compared to worst-case-based allocation and speed scaling,
stochastic allocation and scaling can improve CPU and en-
ergy utilization. For example, the scheduler can improve
CPU utilization by 5% when delivering the mpgplay codec
99% (as opposed to 100%) deadline guarantees.
Second, mpgplay ’s instantaneous cycle demands change

greatly (up to a factor of three), while its demand distribu-
tion is much more stable. For example, the cumulative prob-
ability curves for the first 50 jobs, the first 100 jobs, and all
7691 jobs are almost the same. This stability implies that
GRACE-OS can perform stochastic scheduling and DVS for
mpgplay based on a small part of its cycle usage history (e.g.,
cycle usage of the first 50 jobs).
We next repeat the experiment for other codecs. Fig-

ure 11-(a) to (d) plot the demand distribution of the toast,
madplay, tmn, and tmndec codecs, respectively. The re-
sults show that toast and madplay both present low CPU
demands; e.g., the 95th percentile of their jobs need less
than 2.3 × 105 and 8.6 × 105 cycles, respectively. Further,
the probability distribution of their cycle demands is stable;
e.g., the cumulative probability curve for the first 50 jobs is
almost the same as that for all jobs.
On the other hand, tmn and tmndec present high CPU de-
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Figure 10: Cycle usage and estimated demand dis-
tribution of mpgplay : its instantaneous cycle de-
mands change greatly, while its demand distribution
is much more stable.

mands; e.g., the 50th percentile of tmn’s jobs need more than
2.5×108 cycles. Further, their demand distribution changes
over time (i.e., for different parts of the input video). The
reason is that their input videos have several scene changes
and hence require different amount of CPU cycles. Such
changes indicate that GRACE-OS needs to dynamically up-
date the demand distribution for tmn and tmndec. However,
the demand distribution of tmn and tmndec changes in a
slow and smooth manner (e.g., there is little variation be-
tween the first 50 and 100 jobs). This implies that GRACE-
OS only needs to update their demand distribution infre-
quently (e.g., for every 100 jobs).

4.3 Efficiency of GRACE-OS
We now evaluate GRACE-OS’s efficiency for QoS support

and energy saving by comparing it with other schemes that
perform allocation and/or DVS deterministically:

• Worst-uniform (wrsUni). It allocates cycles based on
each task’s worst-case demand, and sets a uniform
speed that meets the aggregate allocation of the cur-

rent task-set, i.e.,
∑n

i=1

Cws
i
Pi
, where there are n tasks

and each has period Pi and worst-case demand Cws
i .

• Worst-reclaim (wrsRec). It is the same as wrsUni ex-
cept that it reclaims the unused cycles when a task

completes a job early. It sets CPU speed to
∑n

i=1

Cact
i
Pi
,
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Figure 11: Stability of demand distribution of other codecs: toast and madplay ’s are stable, and tmn and
tmndec’s change slowly and smoothly.

where Cact
i equals to the worst-case demand upon a

job release and to the number of actually consumed
cycles upon a job completion. WrsRec represents DVS
techniques that first start jobs at high speed and then
decelerate upon early completion [5, 28].

• Worst-stochastic (wrsSto). It allocates cycles based on
each task’s worst-case demand, and performs stochas-
tic DVS to adjust the speed for each task based on the
task’s demand distribution.

• Stochastic-uniform (stoUni). It allocates cycles based
on each task’s statistical demand, and sets a uniform
speed that meets the aggregate allocation for the cur-

rent task-set, i.e.,
∑n

i=1

Cst
i

Pi
, where there are n concur-

rent tasks and each has period Pi and statistical cycle
demand Cst

i .

• Stochastic-reclaim (stoRec). It is the same as wrsRec
except that it allocates cycles based on each task’s
statistical demand and sets CPU speed correspond-
ingly. That is, the parameter Cact

i is set to the statis-
tical demand (as opposed to the worst-case demand in
wrsRec) when the ith task releases a job.

Like GRACE-OS, all the above schemes also use the EDF-
based soft real-time scheduling with overrun protection. We
run the codecs in Table 2 under each of the above schemes
and measure two metrics: deadline miss ratio and CPU en-
ergy consumption. Since we currently do not have power

meters like PowerScope [11], we cannot measure the actual
energy consumption. Instead, we evaluate CPU energy by
measuring the fraction of CPU idle time and the distribu-
tion of busy time at each speed. This is similar to the mea-
surement in Vertigo [10]. The correlation between speed
levels and energy consumption has been studied in the liter-
ature [11, 28]. Intuitively, the CPU saves energy, if it spends
more time in lower speeds and has less idle time.
To simplify the comparison among different schemes, we

also calculate normalized energy as follows. We assume the
CPU power is proportional to the cube of the speed, and
then normalize the power at the highest speed as one unit;

i.e., the CPU power at speed f is p(f) =
(

f
fmax

)3

, where

fmax is the maximum speed. This assumption holds, since
the speed is proportional to the voltage (i.e., f ∝ V ) and the
dynamic power, which dominates CPU energy consumption,
is proportional to the speed and the square of the voltage
(i.e., p(f) ∝ fV 2) [8]. Based on this power normalization,
the CPU consumes normalized energy of∫ T

0

p(f(t)) dt =

∫ T

0

(
f(t)

fmax

)3

dt (13)

where T is the total execution time and f(t) is the speed
at time t, 0 ≤ t ≤ T . Such a normalized evaluation is also
commonly used in previous work [5, 14, 23, 26, 28, 34].
Unless specified otherwise, we set each codec’s statisti-

cal performance requirement ρ to 0.95 (i.e., the codec task
needs to meet 95% of deadlines) and estimate its demand
distribution from the cycle usage of its first 100 jobs. The



Table 6: CPU speed distribution for mpgplay.

percent of

idle time
percent of CPU busy time at each speed (MHz)

1000800700600500300

29.1%0.2%0.4%7.1%92.3%GRACE-OS

54.2%48.4%51.6%stoRec

54.2%100%stoUni

29.1%0.2%0.4%7.1%92.3%wrsSto

54.2%48.4%51.6%wrsRec

54.2%100%wrsUni

percent of

idle time
percent of CPU busy time at each speed (MHz)

1000800700600500300

29.1%0.2%0.4%7.1%92.3%GRACE-OS

54.2%48.4%51.6%stoRec

54.2%100%stoUni

29.1%0.2%0.4%7.1%92.3%wrsSto

54.2%48.4%51.6%wrsRec

54.2%100%wrsUni

Table 7: Energy and deadline miss ratio for mpgplay.

0.4%0.6%0.5%0.5%0.3%0.4%deadline miss ratio

8.217.228.88.217.228.8normalized energy

GRACE-OSstoUniwrsStowrsRecwrsUniwrsUni

0.4%0.6%0.5%0.5%0.3%0.4%deadline miss ratio

8.217.228.88.217.228.8normalized energy

GRACE-OSstoUniwrsStowrsRecwrsUniwrsUni

first 100 jobs of each codec task are executed in best-effort
mode and at the highest CPU speed, 1000 MHz. That is,
GRACE-OS allocates cycles and changes the speed for each
task after the task has finished 100 jobs. We do not count
the missed deadlines of the first 100 jobs since they do not
have performance guarantees.

Run a single application. We first run the mpgplay codec
without CPU competition from other applications and mea-
sure the speed distribution, normalized energy, and deadline
miss ratio (Tables 6 and 7). The results show two important
observations. First, GRACE-OS delivers statistical perfor-
mance guarantees by bounding the deadline miss ratio under
1−ρ = 5%. Actually, the deadline miss ratio for all schemes
is approximately 0 (the measured values 0.3%-0.6% are pri-
marily due to the uncertainty resulted from several low-level
mechanisms such as caching and interrupts). The reason is
that when mpgplay overruns, it utilizes unallocated cycles,
which exist since the CPU has discrete speed options and
often runs faster than required.
Second, GRACE-OS spends most CPU busy time (92.3%)

in the lowest speed, 300 MHz, and also has less idle time
(29.1%). This implies that GRACE-OS slows down the
CPU and reduces idle slack. Consequently, it results in a
53.4% to 71.6% reduction of normalized energy. This ben-
efit of energy saving primarily results from stochastic DVS.
Stochastic allocation does not contribute to energy saving;
e.g., GRACE-OS and wrsSto have the same normalized en-
ergy. We expect that the reason for this result is the ex-
istence of discrete speed options. To verify this, we take
a look at mpgplay ’s speed schedule, and find that it is the
same in GRACE-OS and wrsSto. As a result, GRACE-OS
and wrsSto have the same speed scaling, and hence consume
the same energy, during the mpgplay run.
We then run each of the other codecs one at a time, and

measure the above metrics. We find that similar to the mpg-
play run, deadline miss ratio is negligible for other codecs.
Therefore, we focus on energy evaluation. Table 8 shows
the speed distribution for tmn, tmndec, toast, and madplay.
For each DVS method (i.e., uniform, reclaim, and stochas-
tic), we plot worst-case and statistical allocation together
(e.g., wrsSto/GRACE-OS), since they have the same speed

Table 8: Speed distribution for other codecs.

percent of

idle time
percent of CPU busy time at each 

speed (MHz)

800700600300

0.2% 10.6%88.8%11%wrsSto/GRACE-OS

10.8%99.1%0.9%wrsRec/stoRec

10.8%100%wrsUni/stoUni

percent of

idle time
percent of CPU busy time at each 

speed (MHz)

800700600300

0.2% 10.6%88.8%11%wrsSto/GRACE-OS

10.8%99.1%0.9%wrsRec/stoRec

10.8%100%wrsUni/stoUni

percent of
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schedule and speed scaling when executing a single task. We
notice immediately that for tmn and tmndec, GRACE-OS
reduces the CPU idle time and spends more busy time at
lower speeds. This implies that GRACE-OS consumes less
energy during the single run of both tmn and tmndec. The
normalized energy is summarized in Figure 12.
On the other hand, for toast and madplay, all schemes

spend their time at the lowest speed, 300 MHz, and have
the same fraction of idle time. This indicates that com-
pared to other schemes, GRACE-OS does not save energy
for toast and madplay (Figure 12). The reason is that these
two applications present a low CPU demand. Specifically,
the stochastic allocation of toast and madplay is 2.2 × 105
and 8.6×105 per period 25 and 30 ms, respectively; i.e., they
demand only 8.8 and 28.6 million cycles per second (MHz),
respectively. Their low CPU demands mean that their speed
schedule has only a single scaling point, associated with the
lowest speed, 300 MHz. Consequently, the processor always
runs at the lowest speed, thereby resulting in the same speed
distribution and energy consumption for all schemes.
We therefore conclude that for a single low-demand ap-

plication, the effectiveness of GRACE-OS’s energy saving
is limited by the available discrete speeds. We expect that
GRACE-OS can save energy for a single low-demand appli-
cation if there are more CPU speeds available. This expec-
tation can be validated via trace-based simulation; we leave
it for future work.

Run multiple applications concurrently. We next run
all codecs concurrently (except tmn that demands too many
cycles for concurrent execution). Tables 9 and 10 show the
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Figure 12: Summary of normalized energy for single and concurrent runs.

Table 9: Speed distribution for concurrent run.
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Table 10: Energy and deadline miss ratio for con-
current run.
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results. We notice that the deadline miss ratio of stochas-
tic allocation schemes is higher than in the single run case
(compared to Table 7). The reason is that multiple tasks
may compete for the CPU during overruns (recall that an
overrun task runs in best-effort mode by utilizing unused
cycles, as discussed in Section 2.3). However, GRACE-OS
bounds deadline miss ratio under application statistical per-
formance requirements; i.e., the deadline miss ratio 4.9% is
below 1− ρ = 5%.
Another obvious result is that GRACE-OS spends more

CPU busy time in lower-power speeds and has less idle time
than wrsSto; e.g., the fraction of CPU busy time at speed
300 MHz of GRACE-OS and wrsSto is 83.8% and 64.4%,
respectively. This implies that stochastic allocation and
stochastic DVS both contribute to energy saving (Table 10).
This is different from the single run cases, where GRACE-
OS and wrsSto consume the same energy (see Tables 6-8).
The reason behind this difference is that the integration
of stochastic scheduling and DVS yields statistical multi-
plexing gains for concurrent run; e.g., since the EDF-based
scheduling is work-conserving, it enables a task to take ad-
vantage of residual budgets from other tasks.
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Figure 13: Impact of ρ on normalized energy.

4.4 Impact of ρ and mixed workload
In all the above experiments, we set each task’s statistical

performance requirement ρ to 0.95, and do not run any best-
effort application in the background. Now, we examine the
impact of the parameter ρ and mixed workload on GRACE-
OS’s energy saving.
First, we repeat the above mpgplay and concurrent runs,

but change the parameter ρ from 0.5 (average-case require-
ment) to 1.0 (worst-case requirement). The results (Figure
13) show that normalized energy increases as ρ increases
from 0.5 to 0.95. The reason is that a higher performance
requirement means more CPU allocation, which in turn re-
sults higher execution speed.
When ρ changes from 0.95 to 1.0, however, energy con-

sumption is almost the same (the concurrent run consumes
more energy with ρ = 1.0 as explained above). The rea-
son is that during this interval of ρ, (1) the cycle budget of
codecs does not change significantly; e.g., mpgplay ’s budget
changes from 9.3 to 10 millions as ρ increases from 0.95 to
1.0, and (2) the speed schedule of codecs has little difference
after rounding up to the available speeds. It implies that the
discrete speed options limit GRACE-OS’s energy saving.
Next, we analyze the impact of best-effort applications on

GRACE-OS’s energy saving. To do this, we repeat the above
mpgplay and concurrent runs, but execute math, a CPU-
intensive program, in the background. Math runs when
multimedia applications do not use the CPU, and its ex-
ecution speed is the same as that of the previously-executed



8.2 8.2 8.4 8.4 9.1

17.7 1920.5 20.6 20.8

26.2
28.2 29.1

35.7

0

10

20

30

40

0 5 10 20 50 100 200

best-effort allocation (MHz)

no
rm

al
iz

ed
 e

ne
rg

y mpgplay
concurrent

Figure 14: Impact of mixed workload.

multimedia application (i.e., the scheduler does not adjust
speed for math.)
To protect math from starvation, we allocate it some mil-

lions of cycles per second (MHz). Figure 14 plots normalized
energy for the mpgplay and concurrent runs by changing the
best-effort allocation from 0 to 200 MHz. The results indi-
cate that the extra best-effort allocation increases energy
consumption. The reason is that the extra allocation in-
creases total CPU demand. Consequently, each multimedia
application is allocated less time and needs to run faster (see
Equation (4) and (12)). Note that for the mpgplay run, the
extra 5 MHz allocation does not affect the normalized en-
ergy, since mpgplay ’s speed schedule does not change (due
to the discrete CPU speed options).

4.5 Summary
Overall, our experimental results show that GRACE-OS

provides significant benefits for QoS provisioning and energy
saving and incurs acceptable overhead. GRACE-OS meets
almost all deadlines in a lightly loaded environment (with-
out CPU competition) and bounds deadline miss ratio under
application statistical requirements in a heavily loaded en-
vironment. Compared to other systems with deterministic
scheduling and DVS, GRACE-OS spends more CPU time
in lower-power speeds, thus saving energy. When executing
a single high-demand application, stochastic DVS primarily
contributes to energy saving, reducing normalized energy
by 10%-72%. When executing multiple applications concur-
rently, stochastic scheduling and DVS both contribute to
energy saving, reducing normalized energy by 7%-64%.
We also find that GRACE-OS’s efficiency is limited by the

discrete speed options, especially when executing a single
low-demand application and when changing the statistical
performance requirement ρ from 0.95 to 0.99. This is similar
to Pillai and Shin’s finding [28], which shows through simu-
lations that the speed availability profoundly affects energy
saving of real-time DVS algorithms.

5. RELATED WORK
Soft real-time scheduling for QoS support. Recently,
a number of soft real-time (SRT) scheduling mechanisms
has been proposed to support QoS requirements of multime-
dia applications. These approaches typically integrate pre-
dictable CPU allocation (such as proportional sharing [7, 9,
13, 18, 25] and reservation [19, 29]) and real-time scheduling
algorithms (such as EDF and rate monotonic [22]). GRACE-

OS distinguishes itself from the above SRT approaches for
two reasons: (1) GRACE-OS derives each task’s CPU de-
mands via online profiling and estimation, while others typ-
ically assume that the CPU demands are known in advance,
e.g., via off-line profiling; and (2) GRACE-OS uses SRT
scheduling, integrated with DVS in a variable speed context,
while others implicitly assume a constant CPU speed. The
variable speed context brings challenges to SRT scheduling,
e.g., how to enforce budget (share or reservation) when the
underlying speed changes.
Several groups have also studied stochastic SRT schedul-

ing for statistical performance guarantees. Gardner [12] pro-
posed a stochastic time demand analysis technique to com-
pute the bound of deadline miss ratio for fixed-priority sys-
tems. This computation is based on runtime execution by
analyzing the time demands of a task and other tasks with
higher priority. In contrast, GRACE-OS aims for dynamic-
priority (EDF-based) systems, and delivers statistical guar-
antees by allocating cycle budget based on the demand dis-
tribution of each individual task. Hamann et al. [16] and
Wang et al. [33] proposed a scheduling technique to provide
statistical guarantees for imprecise computations and differ-
entiated services, respectively. Both approaches assume a
predefined stochastic distribution of resource demands. In
contrast, GRACE-OS obtains the demand distribution via
online profiling and estimation.
More recently, Urgaonkar et al. [32] proposed automatic

profiling and overbooking techniques to provide statistical
guarantees. Their approach is similar to our stochastic al-
location. However, there are two differences: (1) their ap-
proach profiles resource busy intervals in an isolated envi-
ronment using on-off traces, while GRACE-OS profiles the
number of cycles consumed by each task at runtime. (2)
The overbooking technique aims to support more services
in shared hosting platforms, while GRACE-OS aims to save
energy in mobile devices.

Dynamic voltage scaling for energy saving. DVS is
commonly used to save CPU energy by adjusting the speed
based on application workload. Recently, DVS has been in-
vestigated in two main areas, general-purpose systems (GP-
DVS) and real-time systems (RT-DVS). GP-DVS algorithms
heuristically predict the workload based on average CPU
utilization [15, 26, 34]. Although they save energy with-
out degrading performance of best-effort applications, they
are unsuitable for multimedia applications due to the tim-
ing constraint and demand variations of multimedia appli-
cations. For example, Grunwald et al. [15] concluded that
no heuristic algorithm they examined saves energy without
affecting multimedia application performance.
RT-DVS algorithms, often integrated with CPU schedul-

ing, derive workload from worst-case CPU demands of real-
time applications [27, 28]. That is, they set CPU speed
based on the assumption that applications require worst-
case CPU resources. Since an application’s demand is not
always the worst-case, some reclamation techniques have
been proposed to reclaim the unused cycles to save more
energy [5, 28]. These reclamation techniques first run CPU
fast (assuming the worst-case demand) and then decelerate
when a job finishes early.
Stochastic DVS is an alternative approach to handling

runtime demand variations [14, 23]. It starts a job slowly
and then accelerates as the job progresses. Gruian [14] used
stochastic DVS for hard real-time systems, while Lorch and



Smith [23] proposed a technique, called PACE, to improve
GP-DVS algorithms. Their basic idea is similar to that in
GRACE-OS— finding a speed for each cycle based on the
demand distribution of applications.
GRACE-OS differs from the above two stochastic DVS

techniques for three reasons. First, GRACE-OS obtains
the demand distribution via online profiling and estimation,
while the other two either assume a given distribution func-
tion or estimate it off-line. Second, GRACE-OS supports
multiple tasks by integrating SRT scheduling and DVS. In
contrast, PACE supports only a single task and treats con-
current tasks as a joint workload without isolation among
them. Although Gruian’s approach [14] claims to support
concurrent tasks for fixed-priority systems, it is not clear
on how it decides the time allocation for multiple tasks.
Finally and more importantly, the other two present sim-
ulations only, while GRACE-OS implements the stochas-
tic DVS. More recently, Lorch and Smith implemented the
PACE algorithm in Windows 2000 [24]. Their implementa-
tion, however, does not support soft real-time scheduling.
Recently, some groups proposed a per-job stochastic DVS

technique [30, 31], which changes speed for each job of a
task based on a stochastic model (e.g., Markov process) of
the task’s CPU demands. This per-job DVS changes speed
only when starting a job, while GRACE-OS changes speed
within a job execution.
Finally, GRACE-OS is built on our previous work [35],

which shows the benefits of integration of soft real-time
scheduling and DVS via simulation.

6. CONCLUSION
This paper presents the design, implementation, and eval-

uation of GRACE-OS, an energy-efficient soft real-time CPU
scheduler. GRACE-OS explores an observation that multi-
media applications present dynamic cycle demands, and the
probability distribution of their cycle demands is relatively
stable. This observation provides opportunity both for sav-
ing energy and for delivering soft guarantees to multimedia
applications. To realize this opportunity, GRACE-OS sta-
tistically allocates cycles to individual applications, and ex-
ecutes their allocated cycles at different speeds. It makes
such stochastic decisions based on the demand distribution
of multimedia applications.
Our experimental results, based on the real implemen-

tation, show that GRACE-OS provides significant deadline
guarantees and energy saving with acceptable overhead. It
bounds deadline miss ratio under application-specific re-
quirements, and saves energy by 7% to 72%. This energy
saving primarily results from the stochastic DVS, especially
when executing a single application.
Although our current study on GRACE-OS yields strong

results, lessons learned motivate the following future work:

1. Limitation of energy saving due to few speed
options in the HP Pavilion laptop. We expect
that GRACE-OS will result in more benefits, if there
are more speeds available and frequent speed changes
incur low overhead. In general, such expectation can
be examined in three ways: (1) using a trace-based
simulator to experiment with an ideal processor that
supports continuous DVS, (2) converting an optimal
speed to two available speeds [14, 17, 23], and (3) ap-
plying GRACE-OS to processors that support contin-

uous DVS (e.g., lpARM [27]). We plan to examine the
first two approaches.

2. Limitation of experiments due to lack of diver-
sity of application classes. GRACE-OS is targeted
to periodic multimedia applications whose demand dis-
tribution is stable. We expect that GRACE-OS can
also benefit best-effort applications and other soft real-
time applications such as hosting servers with highly
bursty demands [32]. Investigating GRACE-OS’s im-
pact on these applications is a part of our future work.
We also plan to analyze its impact on the perceptual
quality of multimedia and interactive applications.

3. Limitation of energy evaluation due to lack of
actual energy measurement. GRACE-OS uses a
normalized approach for energy evaluation with three
assumptions: (1) the CPU power is proportional to
the cube of the speed, (2) stochastic scheduling and
DVS do not incur energy overhead, and (3) DVS has
no impact on energy consumption of other resource
components such as memory. In practice, however,
these assumptions may be too strong. We therefore
plan to purchase and use power meters to measure the
actual energy consumption, and analyze GRACE-OS’s
practical impact, e.g., by comparing the expected and
measured energy saving.
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