
Terra: A Virtual Machine-Based Platform for Trusted Computing

Tal Garfinkel Ben Pfaff Jim Chow Mendel Rosenblum Dan Boneh
{talg,blp,jchow,mendel,dabo}@cs.stanford.edu

Computer Science Department, Stanford University

ABSTRACT
We present a flexible architecture for trusted computing, called
Terra, that allows applications with a wide range of security re-
quirements to run simultaneously on commodity hardware. Ap-
plications on Terra enjoy the semantics of running on a separate,
dedicated, tamper-resistant hardware platform, while retaining the
ability to run side-by-side with normal applications on a general-
purpose computing platform. Terra achieves this synthesis by use
of a trusted virtual machine monitor (TVMM) that partitions a
tamper-resistant hardware platform into multiple, isolated virtual
machines (VM), providing the appearance of multiple boxes on a
single, general-purpose platform. To each VM, the TVMM pro-
vides the semantics of either an “open box,” i.e. a general-purpose
hardware platform like today’s PCs and workstations, or a “closed
box,” an opaque special-purpose platform that protects the privacy
and integrity of its contents like today’s game consoles and cellular
phones. The software stack in each VM can be tailored from the
hardware interface up to meet the security requirements of its ap-
plication(s). The hardware and TVMM can act as a trusted party to
allow closed-box VMs to cryptographically identify the software
they run, i.e. what is in the box, to remote parties. We explore
the strengths and limitations of this architecture by describing our
prototype implementation and several applications that we devel-
oped for it.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
design, security

Keywords
virtual machine, virtual machine monitor, VMM, trusted comput-
ing, attestation, authentication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

1. INTRODUCTION
Commodity computing systems have reached an impasse. There

is an increasing need to deploy systems with diverse security re-
quirements in enterprise, government, and consumer applications.
However, current hardware and operating systems impose funda-
mental limitations on the security these platforms can provide.

First, commodity operating systems are complex programs that
often contain millions of lines of code, thus they inherently offer
low assurance. Building simple, high-assurance applications on
top of these operating systems is impossible because applications
ultimately depend on the operating system as part of their trusted
computing base.

Next, commodity operating systems poorly isolate applications
from one another. As a result, the compromise of almost any appli-
cation on a platform often compromises the entire platform. Thus,
applications with diverse security requirements cannot be run con-
currently, because the platform’s security level is reduced to that of
its most vulnerable application.

Further, current platforms provide only weak mechanisms for
applications to authenticate themselves to their peers. There is no
complete and ubiquitous mechanism for distributed applications to
verify the identities of programs they interact with. This makes
building robust and secure distributed applications extremely dif-
ficult, as remote peers must be assumed to be malicious. It also
significantly limits the threat models that can be addressed. For
example, an online game server cannot tell whether it is interact-
ing with a game client that will play fairly or one which has been
subjected to tampering that will allow users to cheat.

Finally, current platforms provide no way to establish a trusted
path between users and applications. For example, an application
for trading on financial markets has no way of establishing if its in-
puts are coming from a human user or a malicious program. Con-
versely, human users have no way of establishing whether they are
interacting with a trusted financial application or with a malicious
program impersonating that application.

To address these problems, some systems resort to specialized
closed platforms, e.g. cellular phones, game consoles, and ATMs.
Closed platforms give developers complete control over the struc-
ture and complexity of the software stack, thus they can tailor it to
their security requirements. These platforms can provide hardware
tamper resistance to ensure that the platform’s software stack is not
easily modified to make it misbehave. Embedded cryptographic
keys permit these systems to identify their own software to remote
systems, allowing them to make assumptions about the software’s
behavior. These capabilities allow closed platforms to offer higher
assurance and address a wider range of threat models than current
general-purpose platforms.

The security benefits of starting from scratch on a “closed box”

special-purpose platform can be significant. However, for most ap-
plications these benefits do not outweigh the advantages of general-
purpose open platforms that run many applications including a huge
body of existing code and that take advantage of commodity hard-
ware (CPU, storage, peripherals, etc.) that offers rich functionality
and significant economies of scale. In this work, we describe a soft-
ware architecture that attempts to resolve the conflict between these
two approaches by supporting the capabilities of closed platforms
on general-purpose computing hardware through a combination of
hardware and operating system mechanisms.

Our architecture, called Terra, provides a simple and flexible pro-
gramming model that allows application designers to build secure
applications in the same way they would on a dedicated closed plat-
form. At the same time, Terra supports today’s operating systems
and applications. Terra realizes this union with a trusted virtual ma-
chine monitor (TVMM), that is, a high-assurance virtual machine
monitor that partitions a single tamper-resistant, general-purpose
platform into multiple isolated virtual machines. Using a TVMM,
existing applications and operating systems can each run in a stan-
dard virtual machine (“open-box VM”) that provides the seman-
tics of today’s open platforms. Applications can also run in their
own closed-box virtual machines (“closed-box VMs”) that provide
the functionality of running on a dedicated closed platform. The
TVMM protects the privacy and integrity of a closed-box VM’s
contents. Applications running inside a closed-box VM can tai-
lor their software stacks to their security requirements. Finally, the
TVMM allows applications to cryptographically authenticate the
running software stack to remote parties in a process called attes-
tation.

Both open- and closed-box VMs provide a raw hardware in-
terface that is practically identical to the underlying physical ma-
chine. Thus, VMs can run all existing commodity software that
would normally run on the hardware. Because a hardware-level
interface is provided, application designers can completely specify
what software runs inside a VM, allowing them to tailor an applica-
tion’s software stack to its security, compatibility, and performance
needs. Closed-box VMs are isolated from the rest of the platform.
Through hardware memory protection and cryptographic protec-
tion of storage, their contents are protected from observation and
tampering by the platform owner and malicious parties.

The next section presents the Terra architecture and describes
the basic properties of trusted virtual machine monitors, the mech-
anism that allows applications with open-box and closed-box se-
mantics to run side-by-side. It describes the process of attestation
that Terra uses to identify the contents of VMs to remote parties
and presents several models for user interaction with the TVMM.
Section 3 describes Terra’s local security model, Terra’s impact on
application assurance, and how remote parties can take advantage
of Terra’s security model. In Section 4 we describe the design of the
Terra TVMM. Section 5 describes a prototype implementation of
this design and the implementation of closed-box applications that
utilize our prototype. These applications include a “cheat-resistant”
closed-box version of the popular multi-player game Quake and
trusted access points (TAPs), a system of closed-box VMs that can
be used to regulate access to a private network at its endpoints. We
discuss related work in section 6 and conclude in section 7.

2. TERRA ARCHITECTURE
At the heart of Terra is a virtual machine monitor (VMM). Like

any VMM, Terra virtualizes machine resources to allow many vir-
tual machines (VMs) to run independently and concurrently. Terra
also provides additional security capabilities including acting as a

TVMM

Hardware Platform Attestation, Sealed Storage
Device

Email,
Web
Apps

Commodity
OS

SETI@Home
Client

Commodity
OS

Online
Game

Thin
OS

Management
VM

Thin
OS

Figure 1: Terra Architecture. A trusted virtual machine mon-
itor (TVMM) isolates and protects independent virtual ma-
chines (VMs). Closed box VMs, shown in gray, are protected
from eavesdropping or modification by anyone but the remote
party who has supplied the box. Here, the SETI@Home client
is in a closed box so that its server can verify that it has not been
modified to claim it has run checks that it actually has not, and
an online game is in another to deter cheating (see section 5.2
for more information). The TVMM can identify the contents of
the closed box to remote parties, allowing them to trust it. Also
shown here are the management VM and an open-box VM run-
ning a commodity operating system.

trusted party to authenticate the software running in a VM to re-
mote parties. Because of this property we refer to it as a “trusted
VMM” (TVMM).

At a high level, the TVMM exports two VM abstractions. Open-
box VMs provide the semantics of today’s open platforms. These
can run commodity operating systems and provide the appearance
of today’s general-purpose platforms. Closed-box VMs implement
the semantics of a closed-box platform. Their content cannot be
inspected or manipulated by the platform owner. Thus, their con-
tent is secure, neither inspectable nor modifiable by any but those
who constructed it, who can explicitly provide themselves access.
Figure 1 depicts an instance of the Terra architecture with an open-
box VM, two closed-box VMs, and the management VM (to be
described later).

Terra provides a raw virtual machine as the development target
for applications, lending great flexibility to application designers.
Applications can be designed from the (virtual) hardware up, using
the operating systems that best suit their security, portability, and
efficiency needs. Operating systems that run in VMs may be as
simple as a bootstrap loader plus application code or as complex as
a commodity operating system that runs only one application. Ap-
plications can completely tailor the OS to their security needs. In-
stead of running single closed-box applications, a closed-box VM
might run a special trusted OS with a selection of applications de-
signed specifically for it, thus providing something similar to the
NGSCB [13] model.

VMs on a single physical machine communicate with one an-
other over virtualized standard I/O interfaces such as NICs, serial
ports, etc. The VMM can also multiplex the display and input de-
vices. Thus, from the user’s perspective, a closed-box VM may
take on the appearance of a normal application, a virtual network
appliance, or a virtual device (e.g. a USB device).

The responsibility for configuring how these VMs are granted
storage and memory, connected, started, stopped, etc. is delegated

to a special management VM. The TVMM offers the management
VM a basic interface to carry out these tasks. Where the TVMM
provides resource management mechanisms, the management VM
decides policy, providing a higher-level interface to users and other
VMs.

2.1 The Trusted Virtual Machine Monitor
Terra’s architecture is based on a virtual machine monitor [33],

a thin software layer that allows multiple virtual machines to be
multiplexed on a single physical machine. The virtual machine
abstraction that the VMM presents is similar enough to the un-
derlying architecture that programs and operating systems written
for the physical hardware can run unmodified on the virtual hard-
ware. Terra takes advantage of the following properties of tradi-
tional VMMs:

Isolation A VMM allows multiple applications to run in different
virtual machines. Each virtual machine runs in its own hardware
protection domain, providing strong isolation between virtual ma-
chines. Secure isolation is essential for providing the confidential-
ity and integrity required by closed-box VMs. Also, the abstraction
of separate physical machines provides an intuitive model for un-
derstanding the isolation properties of the platform.

Extensibility Any “one size fits all” approach to providing an op-
erating system for a trusted platform greatly limits a platform’s
flexibility because it ties all applications to one interface. If this
interface is too complex, it compromises the simplicity of the sys-
tem, forcing many applications to deal with an unacceptably low
level of assurance. Conversely, if it is too simple, it compromises
the performance and functionality of the system, severely limiting
the variety of applications that can usefully take advantage of it.

Terra addresses this conflict by allowing application implementers
to view a VM as a dedicated hardware platform, allowing an ap-
plication’s software stack to be built from the (virtual) hardware
up. This allows application designers to select the OS that best
addresses their requirements for security, compatibility, and per-
formance.

For example, simple applications that require very high assurance
(e.g. electronic voting) can use a very minimal OS layer that con-
sists of little more than bootstrapping code. Other applications
(e.g. the trusted access points covered in section 5.3) may require
high assurance and a rich set of OS primitives for access control
such as the NSA’s SELinux [43] or EROS [52]. A third class of ap-
plications may need only a modest level of assurance, but require a
relatively feature-rich OS offering high performance and compati-
bility, such as a stripped-down version of Windows or Linux. Many
online games likely fall in this category.

Beyond choosing an operating system to meet their needs, design-
ers can tailor the OS to include only the components required for
their applications. Modular OSes such as QNX and Windows CE,
commonly used in embedded systems, illustrate how an OS can
facilitate this type of application-specific customization.

Efficiency Experience with virtual machine monitors over the past
30 years has shown the overhead of virtualization on virtualiz-
able hardware platforms can be made essentially negligible. Even
without virtualizable hardware, the overheads can be made very
small [34]. Thus, a VMM can provide essentially the same prop-
erties as separate devices with more modest resources whose total
resources sum to those of the physical machine. An application
running under Terra can potentially be more efficient than its stan-
dard OS counterpart because it can tailor the OS abstractions it uses

to its needs as in exokernels [24]. This is essential to providing a
platform flexible enough to run a wide range of applications with
differing performance demands.

Compatibility VMMs can run today’s operating systems, such as
Linux and Windows, and applications without modifications, un-
like alternative approaches to secure isolation, such as microker-
nels [42] and isolation kernels [61]. This allows existing systems
to run under Terra, and means that specialized standalone appli-
cations targeted to Terra can run side-by-side with legacy applica-
tions. The greater isolation of a VM, compared to a process in an
ordinary OS, can improve assurance on its own; untrusted applica-
tions can be transformed into low-assurance trusted applications in
closed boxes with minimal changes (see section 5.2 for an exam-
ple). It also allows new stand-alone applications to leverage exist-
ing toolchains, operating systems, etc. for their construction.

Security A VMM is a relatively simple program (Disco has only
13,000 lines of code [12]), with a narrow, stable, well-defined in-
terface to the software running above it. Unlike traditional operat-
ing systems, that must support filesystems, network stacks, etc., a
VMM only needs to present relatively simple abstractions, such as
a virtual CPU and memory. As a result of these properties, VMMs
have been heavily studied as an architecture for building secure op-
erating systems [38, 30]. VMMs have long been a mainstay of
mainframe computing [20], where their security has been lever-
aged for implementing systems for banking and finance, health
care, telecommunication [1], defense [47], etc. The isolation prop-
erties of real-world VMMs such as that of the IBM zSeries have
received intense scrutiny and been certified as conforming to the
highest standards for assurance according to Common Criteria re-
quirements [3].

Terra’s TVMM provides three additional capabilities not found
in traditional VMMs. These capabilities are essential to providing
a “closed box” abstraction:

Root Secure Even the platform administrator cannot break the ba-
sic privacy and isolation guarantees the TVMM provides to closed-
box VMs.

Attestation This feature allows an application running in a closed
box to cryptographically identify itself to a remote party, that is, to
tell the remote party what is running inside the closed box. This
allows that party to put trust in the application, i.e. to have faith
that the application will behave as desired. The following section
discusses the basics of attestation.

Trusted Path Providing a trusted path from the user to the ap-
plication is essential for building secure applications [44]. In a
TVMM, a trusted path allows a user to establish which VM they
are interacting with as well as allowing a VM to ensure that it is
communicating with a human user. It also ensures the privacy and
integrity of communications between users and VMs, thereby pre-
venting snooping or tampering by malicious programs.

2.2 Attestation and VM Identity
Attestation enables an application in a VM to authenticate it-

self to remote parties [39, 62]. Attestation authenticates who built
the platform hardware and what software was started at each layer
of the software stack, from the firmware up to the VM. Receiving
an attestation tells the remote party what program was started on
a platform, but it does not confirm that the program has not sub-
sequently been compromised. The party receiving an attestation

must judge for itself how strongly it believes in the correctness and
security of each of the platform’s layers.

Attestation requires building a certificate chain, from the tamper-
resistant hardware all the way to an application VM, to identify
each component of the software stack. This chain begins with the
hardware, whose private key is permanently embedded in a tamper-
resistant chip and signed by the vendor providing the machine. The
tamper-resistant hardware certifies the system firmware (e.g. PC
BIOS). The firmware certifies the system boot loader, which certi-
fies the TVMM, which in turn certifies the VMs that it loads.

At a high level, each certificate in this certificate chain is gen-
erated as follows: A component on the software stack that wants
to be certified first generates a public/private key pair. Next, the
component makes an ENDORSE API call (see section 4.3) to the
lower level component, passing its public key and possibly other
application data it wants certified. The lower-level component then
generates and signs a certificate containing (1) a SHA-1 hash of the
attestable parts of the higher-level component, and (2) the higher-
level component’s public key and application data. This certificate
binds the public key to a component whose hash is given in the
certificate.

Certification of a VM being loaded by the TVMM involves the
TVMM signing a hash of all persistent state that identifies the VM.
This includes the BIOS, executable code, and constant data of the
VM. This does not include temporary data on persistent storage or
NVRAM contents that constantly change over time. The separa-
tion between data which does and does not need to be included in
the attestation is application-specific, made by the VM’s developer.
Terra supports these two type of data by providing VMs with both
“attested storage” that the TVMM incorporates in the VM’s hash
and “unattested storage” that it does not (see section 4.2).

Example attestation
As an example of how a VM can use an attestation certificate, con-
sider a home banking application VM, such as Quicken, that is at-
testing its validity to a remote banking server. For simplicity, we
assume that the VM and remote server are establishing an authen-
ticated channel using the standard SSL session key exchange pro-
tocol. SSL is well suited for this purpose because it allows both
parties the opportunity to present a certificate chain.

For the SSL handshake protocol the VM and remote party use
their attestation certificate chains and private keys for authentica-
tion. At the end of the protocol both parties share a secret session
key. During the handshake protocol, the remote server validates the
VM’s certificate chain as follows:

1. It verifies that the lowest certificate in the chain, certifying
the hardware, is from a trusted certificate authority and that
the certificate has not been revoked.

2. It verifies that all hashes in the certificate chain are on the re-
mote server’s list of authorized software. That is, the remote
server trusts the BIOS, the bootloader, and the TVMM.

3. It verifies that the hash of the VM’s attested storage, provided
in the topmost certificate, is on a list of authorized applica-
tions (e.g. the VM is a valid version of Quicken).

If all these checks are satisfied, then the remote server knows
that it is communicating with an authorized application VM. It
then completes the session-key exchange protocol to establish an
authenticated channel. Omitting the key exchange would open up
the attestation process to a man-in-the-middle attack. For exam-
ple, a malicious user could wait for attestation to complete, then re-

boot the machine into an untrusted state without the remote server’s
knowledge.

Establishing trust
Validation of the VM’s attestation certificate chain at the remote
server requires further explanation. In the discussion above we re-
quired the remote server to verify that the hash of the VM’s attested
storage is on the server’s list of authorized applications. However,
since there are many versions of a given application it is unrea-
sonable to require the remote server (e.g. a bank) to keep track of
hashes of all these versions. Instead, the remote server should re-
quire the application VM to also send a certificate from its software
vendor (e.g. Intuit, in the case of Quicken) certifying that a given
VM hash is indeed a valid version of the application. Thus, we see
that the attestation certificate chain proves to the remote server the
components that were loaded onto the local machine. The remain-
ing certificates prove what these components are.

We can see from the above that two chains of trust are involved in
attestation. Both of these start at a CA (either the same CA or dif-
ferent ones) and end at the application VM. The first chain certifies
that a particular software binary image is running; the CA certifies
the hardware manufacturer, which signs the tamper-resistant hard-
ware, which signs the TVMM, which signs the application VM’s
hash. The second chain certifies that the binary image is in fact a
version of some interesting program, e.g. version 4.3 of Quicken;
the CA certifies the software manufacturer, which signs the VM’s
hash. Taken together, the two certificate chains show that a VM
with a particular hash is running and that that hash represents a par-
ticular version of a particular software program. Additional chains,
provided by the software vendors that shipped these components,
can be used to certify the BIOS, boot loader, and TVMM. Dur-
ing attestation, all the certificates of interest are sent to the remote
server, which uses them to decide whether it trusts the various soft-
ware vendors and whether it trusts the applications that these soft-
ware vendors are certifying.

Software upgrades and patches
The mechanism described above makes the software upgrade and
patch process straightforward. Every upgrade to a VM simply in-
cludes a new certificate proving that the resulting VM hash is still a
valid version of the application. Cumulative patches that supersede
all previously released patches can work the same way.

The situation is a bit more complex for vendors that allow any
subset of a collection of patches to be applied to a base VM. We
speculate that in this case, the vendor could issue a certificate that
states that a specified base VM, plus any or all of a list of specified
patches, is a valid version of some software program. The TVMM
would sign a certificate that identified the variant in use and include
both certificates in attestations.

Revocation
A user who could extract the private key from the tamper-resistant
hardware could completely undermine the attestation process. Such
a user could convince a remote peer that the local machine is run-
ning well behaved software, when in fact it is running malicious
code. Worse yet, by widely publishing the private key and cer-
tificate the user could enable anyone to undermine the attestation
process.

This scenario shows the importance of revoking compromised
hardware. Revocation information must be propagated to every
host that might depend on revoked certificates for attestation using
CRLs, OCSP, or CRTs (see survey of certificate revocation meth-
ods in [37]). It is much harder to recover from a compromise of

a manufacturer’s signing key (e.g. Dell’s signing key) without re-
certifying all deployed devices, so it is critical that manufacturers’
private keys be protected as carefully as root CA private keys.

Privacy
The attestation process completely identifies the machine doing the
attestation, which raises a privacy concern. Given the resistance
met by Intel when it introduced processor serial numbers, this con-
cern must be taken seriously.

One option for maintaining user privacy, proposed by the Trusted
Computing Group, is to use a special CA, called a Privacy CA
(PCA). Periodically, the user’s machine sends an attested certificate
request to a PCA. The PCA verifies the machine’s hardware certifi-
cate and then issues a certificate containing a random pseudonym
in place of the real identity. From then on, the machine uses this
anonymized certificate for attestation. Although the mapping be-
tween real identities and pseudonyms is kept secret, the PCA does
keep track of the mappings for revocation purposes. Note that the
anonymized hardware certificate must be periodically renewed with
a fresh pseudonym; otherwise the anonymized certificate functions
as a unique processor ID.

Past experience shows that users are generally unwilling to pay
for anonymity services such as PCAs. As a result, the PCA incurs
significant liability with no income—not a good business model.
Consequently, it is unlikely that this PCA mechanism will be used
in practice.

Fortunately, practical cryptographic techniques enable private at-
testation without the need for a third party. The simplest mecha-
nism, due to Chaum [14], is known as group signatures. A practical
implementation is given in [9]. In our context, group signatures en-
able private attestation without any extra work from the user. When
using group signatures, the hardware manufacturer embeds a differ-
ent secret signing key in each machine. As in standard attestation,
this key is used to sign the firmware (e.g. BIOS) at boot time. How-
ever, the signature does not reveal which machine did the signing.
In other words, the attestation signature convinces the remote party
that the hardware is certified, but does not reveal the hardware iden-
tity. Furthermore, in case a machine’s private key is exposed, that
machine’s signing key can be revoked so that attestation messages
from that machine will no longer be trusted.

Interoperability and Consumer Protection
Attestation is a valuable primitive for building secure distributed
systems. It frequently simplifies system design and reduces pro-
tocol complexity [28]. However, attestation also has a variety of
potentially ominous implications that bear careful consideration.

In today’s open distributed systems, programs from any source
can interoperate freely. This has led to a proliferation of clients
and servers for a wide variety of protocols, including commercial,
free, and open source variants. This has benefited consumers by
fueling innovation, encouraging competition, and preventing prod-
uct lock-in. Attestation would allow software vendors to create
software that would only interoperate with other software they had
provided. This creates the tremendous risk of stifling innovation
and enabling monopoly control [5]. Given this risk it is critical that
the deployment of attestation be given careful consideration, and
that appropriate technical and legal protections are put in place to
minimize abuse.

Another far-reaching implication of attestation is its ability to
facilitate digital rights management (DRM). If trusted computing
is deployed ubiquitously, media providers could decide to only re-
lease their content to platforms that would prevent copying, expire
the media after a certain date or number of viewings, etc. A full

discussion of technical, commercial, and legal implications are be-
yond the scope of this work.

2.3 Secure User Interface
A secure user interface provides a trusted path to applications.

It prevents malicious applications from confusing the user about
which VM is in use. This can be achieved by providing unforgeable
and unobstructable visual cues that allow the user to identify the
current VM. A wide range of options exist for addressing this from
a UI design perspective.

One model presented by the NetTop architecture [47] is a virtual
KVM (keyboard, video, mouse) switch model. In this model the
user is presented with separate virtual consoles which the user can
select using a virtual KVM switch. A small amount of space at
the top of the screen displays which VM the physical console is
currently showing. This space is reserved for exclusive use by the
VMM.

Another option for accomplishing the same end has been used in
compartmented mode workstation systems [18]. In these systems
a secure window manager controls the entire desktop and applica-
tions (in our case, VMs) can only write to portions of the display
to which they have been granted access. Tags on the frame of each
window indicate which VM owns it, and a dedicated space is again
reserved to inform the user which VM is in use.

We have not implemented a secure user interface in our Terra
prototype. We believe that implementing a secure UI that allows
the capabilities of commodity graphics hardware to be utilized will
require additional hardware and software support. This is due to
problems imposed by the massive complexity and resulting low as-
surance of today’s video drivers. We discuss how to address these
problems in 4.5 and 4.6 respectively.

3. PLATFORM SECURITY

3.1 Local Security Model
Terra’s basic access control model is specified completely by the

TVMM and the management VM. It is assumed that the manage-
ment VM will make a distinction between the platform owner and
platform user, similar to the distinction between system adminis-
trator and normal users in a standard OS access control model. We
assume the platform owner can choose the TVMM (or OS) that
boots, although only certain TVMMs will actually be trusted by
third parties.

The trusted virtual machine monitor runs at the highest privilege
level. It is “root secure,” [54] meaning that it is secure from tam-
pering even by the platform owner who has root level access, from
the management VM, etc. The TVMM only dictates policy that is
required for attestation; it isolates VMs from each other, it will not
falsely attest to a VM’s contents, and it will not disclose or allow
tampering with the contents of a closed-box VM. The TVMM can-
not guarantee availability. All other policy decisions are left to the
discretion of the management VM, i.e. the platform owner.

The management VM formulates all platform access control and
resource management policies. It grants access to peripherals, di-
vides storage among VMs, and issues CPU and memory limits. It
might formulate policies that limit how many VMs can run, which
VMs can run (i.e. what software can run in a given VM), which
VMs can access network interfaces or removable media, and so on.
The management VM also starts, stops, and suspends VMs.

The management VM that runs is determined by the platform
owner, so the security guarantees that the TVMM provides must
not depend in any way on the management VM. The TVMM en-
forces these security guarantees, independent of the management

VM. The management VM does have the power to deny service to
a VM, by failing to provide a required resource. This power is not a
security failing because the platform owner and/or user can do the
same thing, e.g. by unplugging the device.

3.2 Application Assurance
The most important property Terra provides for improving ap-

plication security is allowing applications to determine their own
level of assurance.

In traditional operating systems isolation between applications is
extremely poor. The OS kernel itself has poor assurance and is eas-
ily compromised, and the great deal of state that is shared between
applications makes it difficult to reason about isolation. As a re-
sult, compromising a single application often impacts a significant
portion of the platform. Thus, the security of the entire platform is
often reduced to that of its most vulnerable component. In Terra,
applications in different VMs are strongly isolated from one an-
other. This prevents the compromise of any single-application VM
from impacting any other applications on the system. Thus, ap-
plications with greatly differing assurance requirements may run
concurrently, because an application’s level of assurance is inde-
pendent of other applications on the system.

Terra’s ability to run an application-specific operating system
aids assurance in a variety of ways. Operating systems tailored
to an application can be smaller and simpler than general-purpose
OSes. Further, an OS tailored to an application can provide the best
abstractions for satisfying the security requirements of that applica-
tion. For example, the fine-grained access controls of SELinux [43]
could be used to compartmentalize a more sophisticated application
with many components, while a simpler application could reduce
its TCB to simple bootstrapping code.

Attestation also has potential benefits for application assurance.
Because applications can ensure that they only interact with trusted
peers, they add an additional level of depth to their defenses. An
attacker wishing to exploit the application must first either exploit
its peer or find some means of impersonating its peer, in order to
provide a vector for attack.

The assurance of applications running in Terra is still ultimately
limited by the assurance of the operating system, in this case the
TVMM. However, we believe that with adequate hardware support
a VMM can provide isolation at the highest levels of assurance [3].

3.3 Trusting Software
Attestation allows a user to authenticate what hardware and soft-

ware are in use on a remote platform. This is referred to as estab-
lishing that the remote platform is “trusted.” This can be a valuable
capability for gaining confidence in the integrity of a system’s com-
ponents, but correctly using this capability can also be quite subtle.
In particular, it is easy to construe an attestation as promising more
than it actually can. It is critical that developers not overestimate
what this capability provides.

Naively assuming a client is completely trustworthy based on at-
testation can potentially make applications needlessly fragile and
ultimately degrade their security instead of improving it. This can
occur when a remote party places too much faith in the client’s good
behavior, ignoring relevant issues in the threat model, and making
overly strong assumptions about software assurance or hardware
tamper resistance. This can also occur if the trust provided by at-
testation is used as a replacement for stronger alternatives such as
cryptography.

Attestation cannot make a promise about the future. A trusted
node can fail at any time, through many means—hardware failure,
power failure, a user unplugging the device—so an attestation can-

not reliably guarantee that the node will do anything at a later time.
At best, a trusted platform can only ensure the integrity and confi-
dentiality of the software it is running. In this respect it is no worse
than a real closed-box platform.

Hardware in the hands of malicious remote users can only be
trusted up to the level of hardware tamper resistance. Current inex-
pensive commodity hardware that offers only modest tamper resis-
tance, such as the minimal amount required to support TCPA [58],
should generally be assumed to deter only the least resourceful at-
tacker. It is our hope that as tamper-resistant hardware becomes
more widely deployed, in the form of TCPA, high-quality tamper-
resistant hardware will become affordable due to economy of scale.
Effective means to take hardware tamper resistance and the threat
from the local user and physical security into account in the design
of trusted systems has been studied extensively. A good starting
point on this topic is work by Anderson [6] and Yee [59].

4. TRUSTED VIRTUAL MACHINE MONI-
TORS

Trusted virtual machine monitors provide application developers
with the semantics of real closed-box platforms. VMs provide a
raw hardware interface equipped with virtual network cards, video
cards, secure disks, etc. VMs can attest to their contents by ob-
taining signed certificates using a direct interface to the TVMM.
The TVMM provides the management VM with interfaces to cre-
ate and manage VMs, and to connect them through virtual devices.
In this section we describe these interfaces, and how they are im-
plemented by the TVMM. We also describe hardware required for
building TVMMs.

4.1 Storage Interface
The TVMM provides an interface for maintaining application

security in the face of the threat model presented by mainstream
tamper-resistant hardware such as a TCPA-equipped PC. It assumes
that the hardware platform will provide tamper resistance for the
memory, CPU, etc., but will not protect the disk. Thus, the disk
may be removed from the machine, accessed by a different OS,
etc. In light of this threat, Terra provides several classes of virtual
disks that VMs can use to secure the privacy and integrity of their
data. VMs can select what type of disk they are using for any given
virtual disk, based on their security, performance, and functionality
requirements:

Encrypted disks hold confidential data. The TVMM transpar-
ently encrypts/decrypts and HMACs [10] storage owned by a given
VM on that VM’s behalf, ensuring the storage’s privacy and in-
tegrity.

Integrity-checked disks store mutable data whose integrity is im-
portant but does not require privacy. The TVMM uses a simple
HMAC to prevent tampering. Optionally, a secure counter can pre-
vent rollback (see section 4.6).

Raw disks provide unchecked storage. These are useful for shar-
ing data with applications outside the VM.

In addition to these basic disk types, disks are also specified as
being attested or unattested. Attested disks contain the program
binary and other immutable state that make up the identity of the
VM for the purpose of attestation. Which disks are attested is spec-
ified as part of a VM’s metadata i.e. its basic configuration data.
Persistent state that will change, e.g. variable configuration state or
application data, is not kept on attestable disks, because a hash of

its contents would not generally be meaningful to a remote party.
Attestable disks may be encrypted or left in the clear at the discre-
tion of the VM’s developer.

Any VM that desires attestation must have been booted from an
attestable disk. This disk’s hash makes up the primary identity of
the VM, along with the VM firmware and other immutable VM
state. Additional disks may also be made attestable. The hash of
each of these disks, if any, constitutes a secondary identity for the
VM. The reason for this separation is to facilitate the specialization
and redistribution of closed-box VMs. For example, suppose Acme
firewall company produces a closed-box VM that provides trusted
access point functionality (see section 5.3). The primary identity of
this VM will be given by the VM supplied by Acme. Each company
that purchases this box will add a separate disk which stores site-
specific configuration data (e.g. firewall rules, VPN keys). The hash
of this disk forms a secondary identity for the VM. A VM may have
only one primary identity, but it may have any number of secondary
identities.

Cryptographic keys used for protecting storage are sealed under
the TVMM’s public key (see section 4.6 for information on sealed
storage). The hardware will release the TVMM’s private key only
to the TVMM itself, maintaining the confidentiality of these keys.

4.2 Implementing Attestation
In principle, computing the identity of an application for attesta-

tion is done by applying a secure hash to the entire executable im-
age of an application before that application is started. In practice
many issues must be taken into account. What portions of the VM
are hashed? How is the VM decomposed for hashing? When are
the hashes actually computed? The answers to all of these questions
have important practical implications for security and performance.

A complete VM image consists of a variety of mutable and im-
mutable data. The VM is defined not only by the initial contents
of its virtual disks, but also by its NVRAM, system BIOS, PROMs
for any BIOS extensions, and so on. Each VM also includes a
“descriptor” that lists hashes for attestable parts of the VM, includ-
ing attestable disks. The TVMM takes responsibility to ensure that
loaded data actually matches these hashes.

Verifying an entire entity (e.g. a virtual disk) with a single hash is
efficient only if the entity is always processed in its entirety. If sub-
sections of a hashed entity are to be verified independently (e.g. de-
mand paging a disk) then using a single hash is undesirable. So,
instead of a single hash, Terra divides attestable entities into fixed-
size blocks, each of which is hashed separately. The VM descriptor
contains a hash over these hashes.

If the VM is accompanied by a list of the individual block hashes,
subsections of the hashed entity can then be verified at a block-
sized granularity, e.g. blocks can be verified as they are paged off
disk. Whether the list of hashes is available or not, the entity as a
whole can still be verified against the hash of hashes.

The problem of efficiency in hashing an entire entity is recursive.
Hashing a 4 GB entity into 20-byte SHA-1 hashes with a 4 kB block
size yields 20 MB of hashes. Storing these hashes on disk should
not be a problem, since normal filesystems have a small per-block
overhead anyway. A possible real problem is memory and time; be-
fore any of these hashes is used to verify a block, the entire 20 MB
of hashes must themselves be verified against the hash in the VM
descriptor. If it is too expensive to verify these 20 MB of hashes at
startup or to keep them in memory, use of a Merkle hash tree [46]
would trade startup delay for runtime performance. In the current
Terra prototype we have not not yet implemented generalized hash
trees to verify hashes, because we have not yet encountered space
or performance constraints that necessitate their use.

Ahead-of-Time Attestation
Each stage in the boot process is responsible for signing a hash of
the next stage before invoking it. All of these stages deal with small
amounts of data that are loaded into memory in a single step. Thus,
they are hashed in their entirety before they are given control. We
call this “ahead-of-time attestation” because the attestation occurs
before the code runs.

After boot, ahead-of-time attestation is appropriate for use with
small, high-assurance VMs. The TVMM reads in the entire VM,
verifies all of its attestable components against the VM’s descriptor.
It also pins the VM into physical memory to avoid the possibility
of corruption due to malicious tampering.

Optimistic Attestation
Ahead-of-time attestation is impractical for larger VMs. The data
to be verified must be both read and hashed. Both of these steps can
take a significant amount of time. For example, ignoring disk trans-
fer time, hashing 1 GB of data with OpenSSL’s SHA-1 implemen-
tation takes over 8 seconds on a 2.4 GHz Pentium 4. (Section 5.2
measures performance of attestation in a real VM.) Moreover, any
part of an attestable disk that is paged out and later read back must
be verified again to detect malicious tampering.

To address these issues, we introduce the technique of “opti-
mistic attestation.” With optimistic attestation, the TVMM attests
to whatever hashes the VM descriptor claims for its attestable disks,
but it does not verify them at startup. Instead, individual blocks of
the VM are lazily checked by the TVMM as they are read from disk
at runtime. If a block fails to verify at the time it is read from disk,
the TVMM halts the VM immediately.

Ahead-of-Time vs. Optimistic Behavior
Ahead-of-time attestation and optimistic attestation exhibit poten-
tially different semantics. If attestation is done in advance, a single
corrupted bit in an attestable disk prevents a VM from loading, but
if attestation is performed optimistically, the VM will start and run
until the first access to the corrupted block. VM designers may
take this into account, but they should be aware that many kinds of
events, including hardware failures and power outages, can cause a
VM to stop suddenly at any time.

4.3 Attestation Interface
The TVMM provides a narrow interface to closed-box VMs for

supporting attestation. This interface provides the following oper-
ations:

cert← ENDORSE(cert-req)

Places the VM’s hash in the common name field of a certificate
and places the contents of cert-req in the certificate. Signs the
certificate with the TVMM’s private key, and returns it to the VM.
The cert-req argument contains the VM’s public key and any other
application data used for authenticating the VM. This function
forms the basis of attestation.

hash← GET-ID()

Retrieves the hash of the calling VM. (The VM image cannot con-
tain its own hash.) Useful for a VM that wishes to check whether
the hash in an attestation from a remote party matches its own
hash. This is frequently useful as closed boxes often have peers of
the same type, e.g. the online game example shown in section 5.2.

4.4 Management Interface
Terra delegates VM administration duties to a special VM called

the management VM. The management VM is responsible for man-

aging the platform’s resources on behalf of the platform owner, pro-
viding a user interface for starting, stopping, and controlling the
execution of VMs, and connecting VMs through virtual device in-
terfaces. The TVMM provides only basic VM abstractions. This
simplifies its design as well as providing flexibility as policy can be
completely determined by the management VM.

The TVMM provides basic services, such as support for running
multiple, isolated VMs concurrently, but the management VM is re-
sponsible for higher-level resource allocation and management. In
particular, the management VM allocates memory and disk space
to VMs, and controls VM access to physical and virtual devices.
It uses a function call interface into the TVMM to accomplish its
tasks. The most important of these functions are outlined below:

device-id← CREATE-DEVICE(type, params)

Creates a new virtual device of a given type with specified parame-
ters, and yields a handle for the new device. The type may specify
a virtual network interface, a virtual disk, etc. In the case of a vir-
tual disk, params is a list of physical disk extents corresponding
to the virtual disk’s content. Other types of devices require other
kinds of additional parameters.

CONNECT(device-id-1, device-id-2)
DISCONNECT(device-id-1, device-id-2)

Connects (or disconnects) the specified pair of devices. Each
device-id is a virtual device id returned from CREATE-DEVICE

or the well-known id of a physical device. When a pair of devices
is connected, data output from one of them becomes input on the
other and vice versa. For example, a virtual network device can
be used to read and write network frames on a real network if it is
connected to a physical network device.

vm-id← CREATE-VM(config)

Prepares a VM to be run, and produces a handle for it. The pa-
rameter is a set of configuration attributes for the new VM. The
configuration includes a pointer to the VM’s descriptor. The VM
by default has no attached devices.

ATTACH(vm-id, device-id)
DETACH(vm-id, device-id)

Attaches a given physical or virtual device to a VM, or removes
one, respectively.

ON(vm-id)
OFF(vm-id)

Powers a VM up or down, respectively.

SUSPEND(vm-id)
RESUME(vm-id)

Temporarily prevents a VM from running or allows it to resume,
respectively. The VM must already be on. (Individual VMs may
disable this function.)

4.5 Device Driver Security
Device drivers pose an important challenge to TVMM security.

Most of today’s commodity platforms support a huge range of de-
vices. Today’s drivers can be very large (e.g. those for high-end
video cards, software modems, and wireless cards) which makes
gaining a high degree of confidence in their correctness virtually
impossible. Further, there are a huge number of device drivers, and
drivers frequently change to support new hardware features. Of-
ten these are written by relatively unskilled programmers, which
makes their quality highly suspect. Empirically, driver code tends
to be the worst quality code found in most kernels [16] as well as
the greatest source of security bugs [8]. Given these facts, we can-
not expect to include device drivers as part of the TVMM’s trusted

computing base.
The problem of untrusted device drivers has currently not been

addressed by our TVMM prototype. However, a variety of solu-
tions exist. Protecting the TVMM from untrusted device drivers re-
quires several problems to be addressed. First, the TVMM must be
protected from direct tampering by the driver code. This is achieved
by confining drivers via hardware memory protection and restrict-
ing their access to sensitive interfaces. A wide variety of systems
have addressed this problem, from exotic microkernel [42, 45] and
safe language based systems [11] to practical adaptations to exist-
ing operating systems, such as Nooks, which provides device driver
isolation for fault tolerance in Linux [56].

A further threat that must be addressed is posed by malicious de-
vices using hardware I/O capabilities (e.g. hardware DMA) to mod-
ify the kernel. Addressing this requires additional assistance from
the I/O MMU or similar chip set. One approach has been demon-
strated in a modified version of the Mungi system [40], that runs
device drivers at user level, as independent processes, and prevents
them from performing DMA outside their own address spaces.

Another approach to this problem is specified by the forthcom-
ing NGSCB architecture. In NGSCB the issue of supporting device
drivers is avoided altogether by leveraging the device drivers of an
untrusted operating system (e.g. Windows XP) that runs concur-
rently on the platform. In NGSCB, a trusted operating system such
as a TVMM can run in “curtained memory,” memory that is pro-
tected from tampering by both the untrusted operating system, and
from “attacks from below” via DMA. The trusted operating system
leverages the device drivers of the untrusted operating system by
interfacing with them via an explicit interface in the untrusted OS’s
kernel. As a side benefit of this approach, the TVMM does not need
to provide its own drivers and instead can leverage those of an ex-
isting operating system (e.g. Windows). Leveraging the drivers of
another operating system to support a TVMM would be very simi-
lar to the hosted VMM approach of VMware Workstation [55].

Untrusted device drivers pose another problem. If the TVMM
cannot trust device drivers, it cannot rely on them to provide a
trusted path. Overcoming this challenge requires additional hard-
ware support, discussed below.

4.6 Hardware Support for Trusted VMMs
Terra relies on the presence of a variety of hardware assistance:

Hardware Attestation Minimally, the hardware must be able to
attest to the booted operating system.

Sealed Storage Encrypts data under the private key of the tamper-
resistant coprocessor that is responsible for attestation etc. (e.g. a
TPM in the TCPA architecture). A hash of the booted trusted OS
is also included with the encrypted data. The coprocessor will only
allow a trusted OS with the same hash that sealed data to unseal it.
This functionality is used by the TVMM to store its private key on
persistent storage. Using this functionality ensures that hardware
will only release a TVMM’s private key to it to the same TVMM
that stored it.

Both of these features are currently supported by TCPA. Several
other forms of hardware support are desirable:

Hardware Support for Virtualization Specialized hardware sup-
port for accelerating virtualization has long been available in IBM
mainframes [33]. We believe this type of hardware support signif-
icantly eases the burden of implementing a virtual machine mon-
itor capable of efficiently handling the operating system diversity
of commodity computing platforms. Hardware assistance is espe-
cially important for efficient interfacing to complex hardware such

as graphics and 3-D accelerators. Additional hardware support can
also greatly simplify virtualization, allowing very simple VMMs to
be built, which in turn aids security.

Hardware Support for Secure I/O As discussed above, we can-
not assume trust in device drivers on commodity platforms. Given
this, it is essential to provide some means of establishing a secure
connection between the TVMM and devices required to provide
a trusted path (e.g. mouse, keyboard, video card, etc.). One way
to accomplish this is by use of cryptography to secure communi-
cation between hardware devices and the TVMM. This could be
supported either through additional support for encryption on new
devices, or by way of hardware dongles to support legacy devices.
Clearly encrypting all communication with the device would sim-
ply necessitate moving the driver into the TVMM. Thus, another
step to supporting secure I/O would be splitting device interfaces.
For example, on video cards the interface could be split into a sim-
ple 2D interface that could run in the TVMM and be used to imple-
ment the secure UI. A sophisticated 3D interface could be exposed
directly to VMs, enabling high-performance graphics operations.

Secure Counter A secure counter, that is, a counter that can only
be incremented, greatly enhances the functionality of a VM [23]. A
secure counter is necessary to guarantee freshness, e.g. to prevent
filesystem rollback attacks. A secure real-time clock is also useful,
e.g. for expiring old session keys, defending against replay attacks,
and rate limiting (discussed in section 5). Secure clocks are cur-
rently difficult to manufacture inexpensively, so for now it may be
necessary to make do with secure counters.

Device Isolation The TVMM would like to protect itself and the
VMs it runs from attacks from below, i.e. attacks coming from de-
vices that have access to the DMA controller, PCI bus, etc. Hard-
ware support for controlling access to these resources, in particular
to shield VMs and the TVMM from attack would greatly increase
the platform’s security, because we would not have to trust device
drivers. We anticipate that support for limiting device access to
DMA, etc., will soon be present in commodity PCs to support Mi-
crosoft’s NGSCB architecture [13, 4].

Real-Time Support Closed-box applications often have real-time
requirements (e.g. game consoles, cellular phones) that cannot be
satisfied by today’s operating systems or VMMs. We believe ad-
ditional hardware support could aid in addressing this problem as
well. How best to accommodate these through a combination of
low-level virtualization techniques and resource management is a
topic for future work.

5. EXPERIENCE AND APPLICATIONS
In this section we describe the Terra prototype and provide an

in-depth discussion of several applications that we built using the
prototype. We also look at how these applications demonstrate the
capabilities and the limitations of the closed-box abstraction that
Terra provides. We also discuss other potential applications.

5.1 Prototype Implementation
We built a prototype of the trusted virtual machine monitor us-

ing VMware GSX Server 2.0.1 with Debian GNU/Linux as the host
operating system. Neither Debian nor VMware GSX Server is suit-
ably high assurance for a real TVMM, but they form a convenient
platform for experimentation. In practice the same techniques that
we describe here can be applied to a dedicated VMM offering high
performance [34] and assurance, such as a hypothetical lightweight
client-side version of VMware ESX Server [60].

Communication between VMs and the TVMM’s attestation de-
vice is implemented with a VMware virtual serial device. A Python
program monitors the host end of this device and handles requests
specified by the attestation interface (section 4.3).

We currently do not attempt to emulate the underlying TCPA
hardware that the TVMM would communicate with. We believe
that since these interactions are relatively minimal and well under-
stood, adding it to our prototype system would be superfluous.

Secure Storage
To implement optimistic attestation and other changes to the way
VMware GSX Server uses storage, we had to modify the way it
accesses virtual disks. We achieved this by interposing on the
VMM’s read and write operations using a dynamic preload library.
This allowed us to modify the underlying implementation of virtual
disks to support our new disk types without the need to change the
VMM’s source code, which was not available to us.

Ahead-of-time attestation was implemented by verifying whole
file hashes before a VM is started. For optimistic attestation, our
shared library verifies hashes as data is read from the files that
VMware GSX Server uses to represent a virtual disk. Only aligned,
full-size blocks can be verified with hashes, so the preload library
extends the start and end positions of each read to the edge of an
aligned block boundary. Misaligned or partial block writes also re-
quire one or two block reads. The same strategies are applied to ac-
cesses to integrity-checked and encrypted storage. We use bounce
buffers to prevent the VM from seeing unverified data, although
for performance a real implementation might try to avoid them on
aligned full-block reads, perhaps by temporarily marking pages in-
accessible.

System Management
A Python program implements the management VM utilizing the
interface described in section 4.4. It currently only provides a sim-
ple means of managing VMs for testing purposes. The manage-
ment interface is a Python wrapper layered over a variety of man-
agement and configuration interfaces provided by VMware GSX
Server.

For certificate management we relied on the OpenSSL library.
Our certificates are in X.509v3 format, with X.509 certificate re-
quests used to request attestation. Currently the “common name”
field is used for the attestation hash; an extension field would be
more suitable. The prototype uses a single trusted CA, which signs
a hardware certificate, which signs the TVMM’s certificate. The
TVMM in turn signs each application’s attestation certificate.

5.2 Trusted Quake
Commercial multiplayer online games have soared in popular-

ity since the mid-1990s. As the popularity of these games has in-
creased, so has the incidence of cheating. Cheating in these games
most often occurs when a malicious party alters the client, the
server, or their data files to unfairly change the rules of the game.
Cheaters may also take advantage of insecure communication be-
tween clients and servers, either to spy on their opponents or mali-
ciously alter traffic.

To better understand how to combat these problems in a real-
world online game, we built “Trusted Quake,” a closed-box version
of “Quake II” [35], a popular “first-person shooter” with a long and
storied history of problems due to cheating.

Trusted Quake runs Quake in a closed-box VM and uses attes-
tation to ensure that all of the hosts it contacts, whether clients or
servers, also run the same version of Trusted Quake. The attesta-
tion protocol is used to exchange 160-bit SHA-1 HMAC keys [10]

and 56-bit DES keys. All normal Quake traffic is then exchanged
using the HMAC and DES keys for integrity and confidentiality,
respectively. The TVMM will not falsely attest that a different VM
is Trusted Quake, and the isolation properties of the TVMM keep
the keys from leaking.

Our prototype of trusted Quake uses a VM running a minimal
Linux 2.4.20 kernel on top of a minimal installation of Debian
GNU/Linux 3.0. The VM boots directly into Quake. No shell or
configuration interface is available to users. A dynamic preload
library interposes on Quake’s network communication to perform
attestation and key exchange. It uses a custom user-space imple-
mentation of the IPsec Encapsulating Security Payload (ESP) pro-
tocol [2] to provide both integrity and confidentiality. DNS traffic
is special-cased, with the preload library checking incoming DNS
responses for proper formatting to allow interaction with conven-
tional DNS servers.

We measured the time for the Trusted Quake VM to boot with
different forms of attestation. Booting without any form of at-
testation takes 26.6 seconds. Ahead-of-time attestation adds 30.5
seconds, totaling 57.1 seconds. Substituting optimistic attestation,
boot totals only 27.3 seconds. Adding encryption to optimistic at-
testation raises the total boot time to 29.1 seconds. (Times are av-
eraged over five runs.) We conclude that optimistic attestation has
significant benefits for VM startup. As for interactive performance
after boot, we found it to be subjectively indistinguishable from
untrusted Quake running within a VM.

Security in Quake, as in many such games, originally took the
form of “security by obscurity.” However, given its huge popularity
it was not long before its binary, graphics and audio media files,
and network protocol were reverse-engineered by those intent on
modifying the game. These modifications led to development of a
wide variety of well-documented ways to cheat, by observing and
modifying the game client, server, and network traffic.

The security properties provided by Trusted Quake prevent many
common types of cheating and other security problems in untrusted
Quake:

Secure Communication The secrecy provided by the closed-box
VM allows Quake to maintain a shared secret that it can use to se-
curely communicate with its peers. This defeats several forms of
cheating. First, since Trusted Quake authenticates all of its traffic,
traffic cannot be forged from it, nor can its traffic be modified. This
defeats active attacks in the form of aiming proxies [19], agents
that interpose on game traffic on behalf of a player to improve aim-
ing. It also defeats passive attacks. When users can observe oppo-
nents’ Quake network traffic, they can find out important informa-
tion about game state, such as the location of other players.

Client Integrity Edited client 3D models can facilitate cheating,
e.g. modified models of opposing players can make them visible
from farther away or around corners. Similarly, clients can modify
sounds that indicate nearby players, making them louder or more
distinctive [26]. Some Quake variants verify weak checksums of
models to attempt to prevent this type of cheating, but these can be
bypassed using modified clients or modified models that still match
the expected checksum [26]. Trusted Quake frustrates these attacks
because users cannot edit files in the Trusted Quake VM.

Server Integrity The Quake server coordinates and controls the
game. It is often run by one of the players in a game, so incentive
to cheat is strong. A trusted server prevents two kinds of problems.
First, it prevents cheating by the server itself, in which the server
offers advantages to selected players. Second, it allows only trusted
clients to connect, preventing cheating by individual players.

Isolation A corollary of isolating Quake is that the rest of the sys-
tem is protected if Quake is misbehaving due to remote compro-
mise.

Trusted Quake cannot prevent some kinds of cheating:

Bugs and Undesirable Features Quake has some commands that
inadvertently allow cheating. For instance, one command displays
the number of rendered polygon models on-screen. When this num-
ber increases, it can indicate that another player is about to come
into view. Another command can be used to simulate network lag,
allowing the player to hang in mid-air for a limited time.

Network Denial-of-Service Attacks Trusted Quake does not af-
fect attacks that prevent communication between a client and a
server. This can be used to introduce lag into other players’ con-
nections, putting them at a disadvantage. This is especially easy for
the server’s owner, who has direct control over outgoing packets.

Out-of-Band Collusion Multiple players who are physically near
each other can gain extra information by watching each others’
monitors or talking to one another, which may allow them an unfair
advantage over opponents. Similar cheating is possible via tele-
phone or online chat services.

Trusted Quake provides a specific example of a solution to the
very general problem of protecting the privacy and integrity of a
complex service in the face of a variety of threats. The techniques
we applied here could be used to improve the security of a wide
variety of online games, as well as other types of multi-user appli-
cations. Trusted Quake also illustrates the limitations of this tech-
nique. Even given the features that Terra provides, it is no panacea.
Applications must still be carefully designed and some forms of at-
tack simply cannot be prevented with the features Terra provides.

5.3 Trusted Access Points (TAPs)
Trusted Quake illustrates how a specific application can be hard-

ened to ensure that it acts as a well-behaved peer. However, for
many applications it is not necessary to harden the entire applica-
tion. Rather, we simply want to ensure that its communication is
well regulated, e.g. rate limited, monitored, access controlled. This
can be achieved with a trusted access point (TAP), that is, a filter
for network traffic that runs on each client that wishes to access the
network. The TAP examines both incoming and outgoing packets
and forwards only those that conform to policy. A TAP system can
be used to secure the endpoints of overlay networks such as cor-
porate VPNs, to secure point-to-point connections to access points
such as wireless APs, dial-in access, and even standard wired gate-
ways [28], or simply to regulate access to network service.

We implemented a TAP system designed to allow a company
(or other entity) to securely grant outside visitors limited access
to its internal network. To receive this limited use of the internal
network via the TAP system, a machine’s owner physically con-
nects the machine to the “restricted network,” that is, a network
isolated from the internal network, then installs the TAP closed-
box VM on it. This VM contains a VPN client and firewall soft-
ware for filtering packets. At startup, the VPN client connects to
a TAP gateway that bridges the internal network to the restricted
network. The client attests itself to the TAP gateway, and the client
and gateway server exchange secret parameters used for encrypting
and integrity-checking data packets between the two machines.

The TAP VM can implement a traditional network policy pre-
venting IP spoofing, unapproved port usage, rate-limiting, etc. Only
packets that adhere to policy are permitted to pass between the

internal and restricted networks. The TAP VM can also imple-
ment more complex network policy, running remote vulnerabil-
ity scanners like Nessus and network intrusion detection systems
like Snort. When applied to large numbers of clients by a single
server, these can consume considerable network and computational
resources. Pushing these costs to the client significantly eases the
burden.

As with our Quake VM, the TAP prototype runs a minimal Linux
2.4.20 kernel sitting on top of a minimal Debian 3.0 installation
within a closed-box VM. The VM is single-purpose and has no user
interface. We use the popular OpenVPN secure IP tunnel daemon,
version 1.3.0, to transmit packets between the TAP VM and the
TAP gateway. Key exchange and certificate presentation is carried
out over SSL, a built-in feature of OpenVPN. On the TAP gateway
we check the client’s certificate via OpenVPN’s ability to do so
using an external program.

Benefits
Use of a TAP system has several benefits:

Prevents Source Forging The TAP VM can reject packets whose
source address does not match the address assigned to the machine.

Prevents DoS Attacks The TAP VM can detect denial-of-service
attacks on machines in the internal network and throttle service at
the source. (Attempts at source forging might be a sign of a DoS
attempt.) Self-detection of DoS attacks could be augmented by
notification from an authority on the internal network.

Scalability A centralized router can be overloaded relatively easily
if each packet must traverse an entire TCP/IP stack, go through a
network intrusion detection system, and so on. When the client that
wishes to send or receive packets is also responsible for verifying
them, scalability is improved.

Network Scalability Vulnerability scans, such as port scans, can
consume considerable network bandwidth. Performing scans be-
tween VMs within a computer, instead of over a wire, reduces
bandwidth costs and may allow the frequency of scans to be in-
creased.

TAP systems do have limitations. In particular, there can be no
assumption that all packets on a wire are authenticated using a TAP
system. Nothing prevents an untrusted host from physically con-
necting to the network, and nothing prevents a trusted host from
rebooting into an untrusted OS or bypassing the TAP VM. Thus,
attacks, such as flooding attacks, on the restricted network can-
not be prevented. However, if individual ports on a switch can be
limited to pass only properly HMAC’d or encrypted packets, with
some provision for initial negotiation of keys, then this issue can be
eliminated.

5.4 Additional Applications
We have explored just a few of the potential applications of this

platform. It can support a wide range of other applications, includ-
ing:

• High-Assurance Terminals

Many applications require a trusted platform as a secure plat-
form for sending or receiving relatively basic information
from the user. In these situations we leverage three prop-
erties: the platform’s ability to provide a trusted path to and
from the user, its ability to support high-assurance applica-
tions that are highly robust in the face of a remote attacker,

and the remote host’s ability to ensure that the user is fol-
lowing best practice by running a closed-box version of the
application.

One example is “feeds” that report current stock prices, news,
and other data that financial analysts use to make decisions.
Such interfaces must be extremely reliable. Malicious ma-
nipulation of these applications could have devastating con-
sequences for individual traders, whole firms, even entire fi-
nancial markets. This capability could also be used to pro-
vide voting stations that attest their integrity to the remote
tabulation service.

• Isolated Monitors

The strong isolation provided by Terra’s use of a VMM is by
itself extremely useful. This can be used to harden a vari-
ety of host security mechanisms against attack, such as key
stores, intrusion detection systems [27], secure logging sys-
tems [21], and virus scanners [4].

• Virtual Secure Coprocessors

Many applications studied in the context of secure coproces-
sors such as the IBM 4758 [22, 53] also lend themselves to
implementation in this architecture. Some of these applica-
tions include privacy-preserving databases [54, 36], secure
auctions [49], and online commerce applications [63]. A key
constraint in adapting applications from such architectures
to a trusted platform like Terra will be ensuring that the plat-
form provides an adequate level of hardware tamper resis-
tance for the application.

Clearly, the range of specific applications that can benefit from
the general mechanisms provided by Terra is far too long to list.
More specific mechanisms that could leverage Terra such as desk-
top separation [47], application sandboxing, and OS authentica-
tion [62] have already been explored elsewhere.

6. RELATED WORK
The central mechanism in our work is the virtual machine moni-

tor. Extensive discussion of VMMs and their properties is found in
seminal work by Goldberg [32, 33] and more contemporary work
on Disco [12] and VMware [55, 60]. More recently, Chen [15] ar-
gues for routine and extensive use of VMMs for security purposes.

Our primary reason for choosing a VMM based architecture is
the flexibility it provides. Our claim is that a trusted operating sys-
tem best serves developers by providing a hardware abstraction as
a typical closed platform would, thereby providing maximum flex-
ibility. A more general argument about the inherently limiting na-
ture of committing to a single OS abstraction has been made by the
extensible OS community, perhaps most concisely in arguing for
exokernels [24]. Exokernels and VMMs are in many ways quite
similar. They are primarily differentiated by the fact that an exoker-
nel’s resource abstractions are optimized for performance, whereas
those of a VMM are optimized for compatibility.

Computer systems able to cryptographically demonstrate their
security properties to other systems are mentioned first in the work
on trusted computing systems [57] and security kernels [30, 50]
from the late 1970s and early 1980s. These systems took the prin-
ciple of least privilege to the extreme in a general-purpose oper-
ating system, relying on a small kernel to do isolation, while all
other operating functions, such as memory management and pro-
cess scheduling, were pushed upward into less-trusted code. It was
found that this led to systems that by and large were extremely

inefficient, for diminishing returns in simplicity. Reported experi-
ence with these systems, especially those to kernelize the already
svelte VM370 [17] in the form of KVM370 [31, 51], led us to be-
lieve that the VMM represents a least common denominator for
virtualization, simplification beyond which yields little additional
benefit [30].

The concept of authenticating a platform’s software stack was
fully developed in the Distributed System Security Architecture of
Gasser et al. [29]. This work had all the essential components found
in today’s architectures for trusted computing, such as TCPA [58].
Each computer system contained dedicated hardware with a pub-
lic/private key pair that it could use to authenticate to others the
identity of the system it had booted by signing a hash of the boot
image. The operating system (VMS) could in turn use its own
key pair to sign for applications loaded by the system, etc., allowing
a system’s software to fully authenticate itself to a remote system.
Including the machine as part of the authentication process, explic-
itly taking its composition into account, was also included in the
authentication systems developed in later work on Taos [62]. This
approach is treated thoroughly by Lampson et al. in their related
treatise on authentication in distributed systems [39]. The more
recent IBM 4758 secure coprocessor [22, 53] also allows for au-
thenticating the source of outbound connections. Authentication
in Terra differs most prominently from this previous work on plat-
form authentication in that an application’s software stack is treated
as a single authenticated unit, in contrast with previous solutions
which authenticated to individual parts of an applications software
stack in a piecemeal fashion. Terra’s support for rapid authenti-
cation of large applications further distinguishes it from previous
systems. On the opposite end of the spectrum, Execute Only Mem-
ory (XOM) [41] uses cryptographic hardware in the processor to
preserve the privacy and integrity of code running in a process on
an untrusted operating system. It provides much less functionality
than Terra for building secure applications, such as a trusted path
to I/O devices.

Efforts by Yee and Tygar on Dyad [59] explored hardware mech-
anisms to bootstrap trust in the host with secure coprocessors on
standard PC hardware. More importantly, this work brought to
light the practical applications of this technology for consumers,
such as electronic currency, stamps, and copy protection, and ar-
ticulated a vision of including such hardware on mainstream PCs.
The AEGIS system by Arbaugh [7] provides a practical foundation
for implementing secure boot on a PC. AEGIS uses a signed hash
to identify each layer in the boot process, as does Terra. Unlike
Terra, the primary purpose of AEGIS is to ensure that only a single
authorized software stack can be loaded on a machine. Terra’s sig-
natures are designed to prove to third parties the software running
on the machine, whereas those in AEGIS enforce booting only a
single software stack.

Recently, hardware support for sealed storage and attested boot
has become available in the form of commodity platforms imple-
menting TCPA. TCPA 1.1b [58] provides all the basic features to
support Terra, although the addition of some of the optional fea-
tures described in section 4.6, such as improved support for device
isolation, secure counters, etc., are certainly desirable, and may
be forthcoming in the as-yet-unreleased TCPA 1.2 specification.
TCPA is only a hardware mechanism for trusted computing, lack-
ing a vision for support of trusted computing in operating systems.

In recognition of this need for OS support for trusted computing,
Microsoft began development of its NGSCB (formerly Palladium)
architecture [13, 4, 23, 48, 25]. This work is the most similar to
ours in that it provides a “whole system” solution to the problem
of trusted computing. NGSCB works by partitioning the platform

into two parts (“trusted” and “untrusted”) each of which runs a dif-
ferent operating system. It achieves this through what can be seen
as a very special purpose VMM that only supports two VMs. The
untrusted part runs one of today’s commodity operating systems
(e.g. Windows) while the trusted part runs a dedicated trusted op-
erating system (the “nexus” in NGSCB parlance). This dedicated
operating system is designed to run small, high-assurance programs
called “agents.” Agents work in conjunction with code on the un-
trusted side of the system, providing all of the security-critical func-
tionality that programs on the untrusted side need (e.g. sensitive key
storage).

NGSCB differs from Terra most prominently in its programming
model and how it supports high-assurance applications. Terra al-
lows application designers to specify any OS they desire for closed-
box applications. In contrast, NGSCB requires application design-
ers to target their closed-box applications to a single, specific Mi-
crosoft OS. Terra also differs in its attestation model. In Terra
an application’s entire software stack is attested, while in NGSCB
only agents are attested. Superficially it appears that Terra provides
a more flexible model for building applications, but making any
concrete comparison at this point would be difficult, because the
NGSCB software architecture is as yet largely unpublished.

Ultimately, NGSCB’s architecture may complement Terra’s. It
appears that hardware support for NGSCB may be fairly OS neu-
tral, thus allowing other architectures (such as Terra) to take advan-
tage of the trusted path support in devices, hardware support for
isolation, etc. that it provides. Likewise, an architecture like Terra
that can provide an arbitrary number of compatible VMs should be
able to host a software architecture like NGSCB which requires just
two VMs.

We presented the initial idea of providing a closed-box abstrac-
tion for trusted computing through the use of a virtual machine
monitor in a short position paper [28].

7. CONCLUSION
We presented a flexible architecture for trusted computing, called

Terra. Terra allows applications to run in an “open box” VM with
the semantics of a modern open platform, or in a “closed box”
VM with those of dedicated, tamper-resistant hardware. The key
primitive that Terra builds on is a trusted virtual machine moni-
tor (TVMM). The TVMM mechanisms allow Terra to partition the
platform into multiple, isolated VMs. Each VM can tailor its soft-
ware stack to its security and compatibility requirements.

We examined the primitives the TVMM provides for building
closed-box VMs, in particular those required to support “attesta-
tion,” the mechanism used to cryptographically identify the con-
tents of closed-box VMs to remote parties. We described how to ef-
ficiently implement these primitives. We implemented these prim-
itives in a prototype implementation of Terra and built a selection
of applications using this prototype that demonstrate its capabili-
ties. We believe that the closed-box VM abstraction provided in
the Terra architecture forms the basis for a truly general-purpose
trusted computing platform.

8. ACKNOWLEDGMENTS
Our shepherd Ted Wobber gave us a great deal of valuable feed-

back that significantly improved the quality of this work. Dis-
cussions and feedback from Matthias Jacobson, Ulfar Erlingsson,
and John DeTreville also greatly assisted us, as did the comments
of our anonymous reviewers. Discussions with Paul England and
Marcus Peinado were very valuable in formulating our ideas about
trusted computing and gaining insight into the motivation behind

the NGSCB design. We are very grateful to Cristen Torrey and
Kathryn Waffle for their editorial assistance and moral support.
This work was supported in part by the National Science Founda-
tion under Grant No. 0121481, the Packard Foundation, and Stan-
ford Graduate Fellowships.

9. REFERENCES
[1] IBM mainframe servers: Case studies.

http://www-1.ibm.com/servers/eserver/
zseries/library/casestudies/.

[2] IP security protocol (IPsec) charter. http://www.ietf.
org/html.charters/ipsec-charter.html.

[3] Security: IBM zSeries partitioning achieves highest
certification.
http://www-1.ibm.com/servers/eserver/
zseries/security/certification.htm%l,
December 2002.

[4] Microsoft next-generation secure computing base—technical
FAQ. http://www.microsoft.com/technet/
treeview/default.asp?url=/technet/
security/%news/NGSCB.asp, February 2003.

[5] R. Anderson. Cryptography and competition policy: Issues
with trusted computing. In Proc. Workshop on Economics
and Info. Sec., pages 1–11, May 2003.

[6] R. Anderson and M. Kuhn. Tamper resistance—A cautionary
note. In Proc. 2nd USENIX Workshop on Electronic
Commerce, pages 1–11, Nov. 1996.

[7] W. Arbaugh, D. Farber, and J. Smith. A secure and reliable
bootstrap architecture. In Proc. 1997 IEEE Symp. Sec., pages
65–71, May 1997.

[8] K. Ashcraft and D. Engler. Using programmer-written
compiler extensions to catch security holes. In IEEE Symp.
Sec. and Privacy, Oakland, May 2002. IEEE, IEEE
Computer Society Press.

[9] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A
practical and provably secure coalition-resistant group
signature scheme. In Proc. CRYPTO’2000, 2000.

[10] M. Bellare, R. Canetti, and H. Krawczyk. Message
authentication using hash functions—the HMAC
construction. CryptoBytes, 2(1), Spring 1996.

[11] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, safety,
and performance in the SPIN operating system. In Proc. 15th
ACM Symp. on Operating Sys. Principles, Dec. 1995.

[12] E. Bugnion, S. Devine, and M. Rosenblum. Disco: running
commodity operating systems on scalable multiprocessors.
In Proc. 16th ACM Symp. Operating Sys. Principles, Oct.
1997.

[13] A. Carroll, M. Juarez, J. Polk, and T. Leininger. Microsoft
Palladium: A business overview.
http://www.microsoft.com/PressPass/
features/2002/jul02/0724palladiumwp.asp,
August 2002.

[14] D. Chaum and E. V. Heyst. Group signatures. Advances in
Cryptology, Eurocrypt ’91, 547:257–265, 1991.
Springer-Verlag Lecture Notes on Computer Science.

[15] P. M. Chen and B. D. Noble. When virtual is better than real.
In Proc. 2001 Workshop on Hot Topics in Operating Sys.
(HotOS-VIII), Schloss Elmau, Germany, May 2001.

[16] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating system errors. In Proc. 18th
ACM Symp. Operating Sys. Principles, Oct. 2001.

[17] R. J. Creasy. The origin of the VM/370 time-sharing system.
IBM J. Research and Development, 25(5):483–490,
September 1981.

[18] P. Cummings, D. Fullan, M. Goldstien, M. Gosse,
J. Picciotto, J. Woodward, and J. Wynn. Compartmented
model workstation: Results through prototyping. In Proc.
IEEE Symp. Sec. and Privacy, pages 27 – 29, April 1987.

[19] DarkNova. Interview with an aimbot coder. http://www.
lamerkatz.com/webvoid/issue7/1.shtml.

[20] J. J. Donovan and S. E. Madnick. Hierarchical approach to
computer system integrity. IBM Sys. J., 14(2):188–202, 1975.

[21] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M.
Chen. Revirt: Enabling intrusion analysis through
virtual-machine logging and replay. In Proc. 2002 Symp.
Operating Sys. Design and Implementation, December 2002.

[22] J. Dyer, M. Lindemann, R. Perez, R. Sailer, S. Smith, L. van
Doorn, and S. Weingart. Building the IBM 4758 secure
coprocessor. IEEE Comp., 34:57–66, October 2001.

[23] P. England. Personal communication.
[24] D. Engler, M. Kaashoek, and J. O’Toole. Exokernel: An

operating system architecture for application-level resource
managment. In Proc. 15th ACM Symp. on Operating Sys.
Principles, Dec. 1995.

[25] P. Englund, B. Lampson, J. Manferdelli, M. Peinado, and
B. Willman. A trusted open platform. IEEE Spectrum, pages
55–62, 2003.

[26] Flocutus. The ultimative Quake cheating page: Illegitimate
cheats. http:
//www.gamescenter.de/uqc/illegal.htm.

[27] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In
Proc. Net. and Distributed Sys. Sec. Symp., February 2003.

[28] T. Garfinkel, M. Rosenblum, and D. Boneh. A Broader
Vision for Trusted Computing. In 9th Workshop on Hot
Topics in Operating Sys. (HotOS-IX), May 2003.

[29] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The
digital distributed system security architecture. In Proc. 12th
NIST-NCSC Nat’l Comp. Sec. Conf., pages 305–319, 1989.

[30] B. Gold, R. Linde, and P. Cudney. KVM/370 in retrospect. In
Proc. IEEE Symp. Security and Privacy, April 1984.

[31] B. Gold, R. Linde, R. J. Peller, M. Schaefer, J. Scheid, and
P. D. Ward. A security retrofit for VM/370. In AFIPS Natl.
Comp. Conf., volume 48, pages 335–344, June 1979.

[32] R. Goldberg. Architectural Principles for Virtual Computer
Systems. PhD thesis, Harvard University, 1972.

[33] R. Goldberg. Survey of virtual machine research. IEEE
Computer Magazine, 7:34–45, June 1974.

[34] R. Howworth. Virtual servers pay off. IT Week, March 2003.
[35] I. id Software. Quake.

http://www.idsoftware.com/games/quake/.
[36] A. Iliev and S. Smith. Prototyping an armored data vault:

Rights management on Big Brother’s computer.
Privacy-Enhancing Technology, 2002. Springer-Verlag
Lecture Notes on Computer Science.

[37] G. Jain. Certificate revocation: A survey.
http://www.cis.upenn.edu/˜jaing/papers/.

[38] P. Karger, M. Zurko, D. Bonin, A. Mason, and C. Kahn. A
retrospective on the VAX VMM security kernel. In IEEE
Trans. Soft. Eng., Nov. 1991.

[39] B. Lampson, M. Abadi, M. Burrows, and E. Wobber.
Authentication in distributed systems: Theory and practice.

ACM Trans. Comp. Sys., 10(4):265–310, 1992.
[40] B. Leslie and G. Heiser. Towards untrusted device drivers.

Technical Report 0303, University of New South Whales,
March 2003.

[41] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. C. Mitchell, and M. Horowitz. Architectural support for
copy and tamper resistant software. In Architectural Support
for Programming Languages and Operating Systems
(ASPLOS IX), pages 168–177, 2000.

[42] J. Liedtke. On µ-kernel construction. In Proc. 15th Symp. on
Operating Sys. Principles, pages 237–250, December 1995.

[43] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the linux operating system. In Proc.
USENIX Tech. Conf., FREENIX Track, pages 29–42, 2001.

[44] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C.
Taylor, S. J. Turner, and J. F. Farrell. The inevitability of
failure: The flawed assumption of security in modern
computing environments. In Proc. Nat’l Info. Sys. Sec. Conf.,
pages 303–314, October 1998.

[45] M. Accetta et al. Mach: A new kernel foundation for UNIX
development. In Proc. USENIX Summer Conf., 1986.

[46] R. Merkle. Protocols for public key cryptosystems. In IEEE
Symp. Security and Privacy, Oakland, April 1980. IEEE,
IEEE Computer Society Press.

[47] R. Meushaw and D. Simard. NetTop: Commercial
technology in high assurance applications. http:
//www.vmware.com/pdf/TechTrendNotes.pdf,
2000.

[48] paul england and marcus Peinado. Authenticated operation
of open computing devices. In Proc. 7th Australian Conf.
Info. Sec. and Privacy, pages 346–361, 2002.
Springer-Verlag Lecture Notes on Computer Science.

[49] A. Perrig, S. Smith, D. Song, and J. Tygar. SAM: A flexible
and secure auction architecture using trusted hardware.
eJETA.org: The Electronic Journal for E-Commerce Tools
and Applications, 1(1), January 2002.

[50] S. R. Ames, Jr. Security kernels: A solution or a problem? In
Proc. IEEE Symp. Sec. and Privacy, April 1981.

[51] M. Schaefer and B. Gold. Program confinement in
KVM/370. In Proc. 1977 Ann. ACM Conf., pages 404–410,
October 1977.

[52] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A fast
capability system. In Symp. on Operating Sys. Principles,
pages 170–185, 1999.

[53] S. W. Smith. Outbound authentication for programmable
secure coprocessors. In D. Gollman et al., editor, ESORICS
2002: 7th European Symp. Research in Comp. Sec., volume
2502/2002, pages 72–89, Zurich, Switzerland, October 2002.
Springer-Verlag Heidelberg.

[54] S. W. Smith and D. Safford. Practical server privacy with
secure coprocessors. IBM Sys. J., 40(3):683–695, 2001.

[55] J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing I/O
devices on VMware workstation’s hosted virtual machine
monitor. In Proc. 2001 Ann. USENIX Tech. Conf., Boston,
MA, USA, June 2001.

[56] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. In Proc. 19th
Symp. on Operating Sys. Principles, October 2003.

[57] P. S. Tasker. Trusted computer systems. In Proc. IEEE Symp.
Sec. and Privacy, April 1981.

[58] Trusted Computing Platform Alliance. TCPA main

specification v. 1.1b.
http://www.trustedcomputing.org/.

[59] J. D. Tygar and B. Yee. Dyad: A system for using physically
secure coprocessors. In IP Workshop Proc., 1994.

[60] C. A. Waldspurger. Memory resource management in
VMware ESX Server. In Proc. 2002 Symp. Operating Sys.
Design and Implementation, December 2002.

[61] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the Denali isolation kernel. In Proc. 5th
USENIX Symp. on Operating Sys. Design and
Implementation, December 2002.

[62] E. Wobber, M. Abadi, M. Burrows, and B. Lampson.
Authentication in the Taos operating system. ACM Trans.
Comp. Sys., 12(1):3–32, 1994.

[63] B. Yee and D. Tygar. Secure coprocessors in electronic
commerce applications. In Proc. 1st USENIX Workshop on
Elec. Commerce, New York, New York, July 1995.

