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ABSTRACT
This paper describes RacerX, a static tool that uses flow-
sensitive, interprocedural analysis to detect both race condi-
tions and deadlocks. It is explicitly designed to find errors in
large, complex multithreaded systems. It aggressively infers
checking information such as which locks protect which op-
erations, which code contexts are multithreaded, and which
shared accesses are dangerous. It tracks a set of code fea-
tures which it uses to sort errors both from most to least
severe. It uses novel techniques to counter the impact of
analysis mistakes. The tool is fast, requiring between 2-14
minutes to analyze a 1.8 million line system. We have ap-
plied it to Linux, FreeBSD, and a large commercial code
base, finding serious errors in all of them.
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General Terms
Reliability, Verification.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—reliability,validation; D.4.5 [Operating systems]:
Reliability—verification

1. INTRODUCTION
The difficulty of finding data races and deadlocks is well

known. Detecting such errors with testing is hard since
they often depend on intricate sequences of low-probability
events. This makes them sensitive to timing dependencies,
workloads, the presence or absence of print statements, com-
piler options, or slight differences in memory models. This
sensitivity increases the risk that errors will elude in-house
regression tests yet make grand entrances when software is
released to thousands of users. Further, even if a test case
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happens to trigger an error it can be difficult to tell that
it has happened. Data races in particular are hard to ob-
serve since often they quietly violate data structure invari-
ants rather than cause immediate crashes. The effects of
these violations only manifest millions of cycles after the er-
ror occurred, making it hard to trace back to the root cause.

Because of these problems, many approaches have been
developed to catch data races (deadlocks have received less
attention). Language-level approaches attempt to simplify
concurrency control by providing higher-level constructs
that disallow uses that are error-prone. The most success-
ful such effort are monitor-based primitives, which showed
up early in systems programming [23] and have recently
been incorporated in such languages as Java [18]. Other
languages allow programmers to statically bind shared vari-
ables to the locks that protect them [9]. However, while
languages can ameliorate some of the complexity of concur-
rency, they do not eliminate its problems. Common errors
include simply not protecting shared data consistently, or
using too-small critical sections to do so (such that a vio-
lated invariant is visible to other threads), or having locking
cycles. While recent efforts have made progress in address-
ing some of these limitations [1, 19], in the end a language
approach to protection is rather drastic: all code must be
written in the language to get any benefits from it, which
prevents system builders from choosing any other language
that may better suit their needs. Also, language definitions
tend to be relatively slow moving, and thus difficult to adapt
as analysis sophistication increases.

As a result, there have been many tools developed to at-
tack the problem: dynamic, post-mortem, and static as well
as model checking.

The best known dynamic tool is the Eraser data race de-
tector [29], which dynamically tracks the set of locks held
during program execution. Eraser uses these “locksets” to
compute the intersection of all locks held when accessing
shared state. Shared locations that have an empty intersec-
tion are flagged as not being consistently protected. Since
set intersection is commutative, Eraser can flag errors irre-
spective of actual thread interleavings. Choi et al [7] have
since improved upon Eraser. Most significantly, they incor-
porate static analysis to remove unnecessary checks from the
runtime analysis. This reduces the runtime analysis over-
head from factors of 10 in the original Eraser to 13 - 42 per-
cent. While they do find errors in real programs, it is unclear
how effective their solution would be on a multi-million line
operating system. Tools similar to Eraser have been devel-
oped for Cilk programs [6] and Java [7]. Prior tools [13, 25,



27] used a more chancy approach based on Lamport’s “hap-
pens before” relationship [22] that only checked the schedul-
ing interleavings that occurred while testing.

The strength of dynamic tools is that by operating at run-
time they only visit feasible paths and have accurate views of
the values of variables and aliasing relations. However, dy-
namic monitoring has a heavy computational price, making
it time consuming to run test cases and impossible on pro-
grams that have strict timing requirements. High overheads
mean that while in theory such tools can compute arbitrarily
precise information, in practice they are limited to what can
be computed efficiently (both in time and space). Further-
more, their reliance on invasive instrumentation typically
precludes their use on low-level code such as OS kernels, de-
vice drivers, and embedded systems, yet these are precisely
the applications for which concurrency errors are the most
dangerous. Finally, they can only find errors on executed
paths. Unfortunately, the number of feasible paths grows
roughly exponentially with the size of code. This means
that in practice testing can only exercise a tiny fraction of
all feasible paths, leaving large systems with a residue of
errors that could take weeks of execution to manifest. Even
worse, much of the code in a large OS cannot be run. The
bulk of such code resides in device drivers, and only a small
fraction of these drivers can be tested at a typical site, since
there is usually a small number of installed devices.

Post-mortem techniques [21] analyze log or trace data af-
ter the program has executed in a manner similar to dynamic
techniques. While post-mortem analyses can affect perfor-
mance less than dynamic analyses they suffer from the same
limitation as dynamic techniques in that they can only find
errors along executed paths.

Another way to find races is to use model checking [8],
which is a formal verification technique that can be viewed
as a more comprehensive form of dynamic testing. Model
checking takes a simplified description of the code and ex-
haustively tests it on all inputs, using techniques to explore
vast state spaces efficiently. It grew out of the need to ex-
plore the massive state spaces in hardware circuits, in part
to find concurrency errors. It can provide help for find-
ing software races as well. The Java PathFinder [2] and
Bandera [10] projects use model checking to find errors in
concurrent Java programs. The more specialized Teapot
system was developed expressly for finding errors (including
concurrency errors) in software-based multiprocessor cache
coherence protocols [5]. Unfortunately, while model check-
ing trumps testing in terms of state space exploration, get-
ting a large system into a model checker is still rare. It
requires significant effort both to specify the system (which
can involve writing an abstract specification in a simplified
programming language) and in scaling it down enough to
execute in the model checked environment. Model checking
an entire system the size of an OS is a long way off.

At the other end of the spectrum are static tools. While
these have less precise local information, they can provide
significant advantages for large code bases. Unlike a dy-
namic approach, static analysis does not require executing
code: it immediately finds errors in obscure code paths that
are difficult to reach with testing. Because they occur offline
they can also do analysis impractical at runtime.

Two of the better known static race detection approaches
are the Warlock tool for finding races in C programs [30] and
the Extended Static Checking [12] (ESC) and ESC/Java [24]

tools for Modula-3 and Java respectively, which use a the-
orem prover to find errors. Burrows et al [3] have since
extended ESC/Java to check for stronger properties than
unprotected variable accesses, which is the only error most
prior tools flag. Unfortunately, in part because of lack of pre-
cision at compile time, both Warlock and ESC make heavy
use of annotations to inject knowledge into the analysis and
to reduce the number of false positives. Anecdotally this
caused problems when applying Warlock to large code bases;
sophisticated code requires many annotations just to sup-
press spurious errors. Initial measurements from Flanagan
and Freund [15] give a more quantitative feel for the state-of-
the-art in annotation-based race checking — they measured
an overhead of one annotation per 50 lines of code at a cost
of one programmer hour per thousand lines of code [15].
Applying this approach to a several million line operating
system would require roughly 100 continuous days of anno-
tations. While there has been work on partially automat-
ing the annotation process, current tools still require much
manual assistance. For example, Houdini [16] was able to
reduce the number of non-concurrency annotations needed
on a 36,000 line program from 3679 to 2037.

We want to build tool that effectively finds data races and
deadlocks in large, complex systems. The main rules of this
game are as follows:

1. The tool should need no annotations other than an indi-
cation as to what functions are used to acquire and re-
lease locks. We want do not want users to have to invest
time annotating large portions of their system. (Though,
we do we welcome any annotations they do provide.) In
particular it must automatically infer checking informa-
tion and have automatic ways of handling common false
positives without user intervention.

2. The tool must be able to separate out potentially severe
errors from the mass of violations it will find. In our
experience the key problem with race detection is not the
analysis needed to find errors — even simple analysis can
find thousands of unprotected shared variable accesses in
a large system. Rather, the hard problem is finding those
errors that can actually cause problems.

3. The tool must minimize the impact of analysis mistakes
and the false positives they cause. Empirically, if the
first few errors a user inspects are false positives, or if
there are too many false positives in a row, users will
stop inspecting a tool’s output and even discard the tool.

4. The tool must scale to millions of lines of code both in
speed and in its ability to report complex errors.

Ideally, we want users to specify their system’s locking func-
tions, run the tool, and immediately find serious errors.

This paper describes RacerX, a static tool that uses flow-
sensitive, interprocedural analysis to detect both race con-
ditions and deadlocks. It aggressively infers checking infor-
mation such as which locks protect which operations, which
code contexts are multithreaded, and which shared accesses
are dangerous. It tracks a set of code features which it
uses to sort errors from most to least severe. It uses novel
techniques to counter the impact of analysis mistakes — for
example by selecting the results of those paths that are the
most trustworthy, cross-checking decisions in multiple ways,
and inferring which semaphores are being used for mutual
exclusion as opposed to unilateral synchronization. The tool
is fast, requiring somewhere between 2-14 minutes to ana-



lyze a 1.8 million line system. We have applied it to Linux,
FreeBSD, and a large commercial code base. It has found
serious errors in all of them.

The next section gives an overview of RacerX. Section 3
describes the generic lockset analysis. Sections 4—7 de-
scribe: the deadlock checker, how we make it more accurate,
how we mitigate lockset mistakes, and results. Section 8 de-
scribes the race detector and its results. Section 9 concludes.

2. OVERVIEW
This section gives an overview of RacerX and the systems

we check. At a high level, checking a system with RacerX in-
volves five phases: (1) retargeting it to system-specific lock-
ing functions, (2) extracting a control flow graph from the
checked system, (3) running the deadlock and race checkers
over this flow graph, (4) post-processing and ranking the re-
sults, (5) inspection. The first and last phases are done by
the user, the middle three by RacerX.

To retarget it to a new system, the user supplies a ta-
ble specifying functions used to acquire and release locks
as well as those that disable and enable interrupts (some
might do both). These functions have a set of attributes
attached that specify whether they: spin, block, or are “try
locks” that return an error code rather than block, as well
as whether the locks are recursive, are semaphores, or are
read locks. RacerX uses this information to determine the
effects of acquiring or releasing a given lock.

In addition, users may optionally provide an annotator
routine that marks whether routines are single-threaded,
multi-threaded, or interrupt handlers. These are used by the
race detector to determine whether accesses need locks. Of-
ten systems have naming conventions that can be exploited
during this process. This approach has a significant advan-
tage over traditional annotations in that it only requires a
small, fixed cost to get results.

In the end, RacerX annotation overhead is modest — less
than 100 lines of annotations for millions of lines of checked
code. For example, Linux needs 18 lines of lock annotations
and 31 lines of function annotations; FreeBSD needs 30 and
36 lines; and System X needs 50 and 52 lines.

The extraction phase iterates over each file in the checked
system and extracts a control flow graph (CFG) that is
stored in a file. The CFG contains all function calls, uses
of global variables, uses of parameter pointer variables and,
optionally, uses of all local variables. Any concurrency op-
eration — lock, unlock, interrupt disable and enable – is an-
notated. The CFG also includes the symbolic information
for these objects, such as their names and types, whether
a variable access is a read or write, whether a variable is a
parameter, whether a function or variable is static, the line
number of the enclosing statement, etc. To support flow-
sensitive analysis, each statement has a set of pointers to all
statements that immediately follow it in the program text.

The analysis phase reads the emitted CFG files for the
entire system into memory, constructs a linked whole-system
CFG, and then traverses it checking for deadlocks or races.
Functions are linked first within their containing file and
then globally. The resultant graph will be cyclic if the code
contains recursion or loops. The CFG potentially has many
different roots, which are functions that have no callers. A
typical OS will have many roots, one for each system call. 1

1Note that unreachable functions will also be roots; the race

Given the set of roots, the analysis phase iterates over
each and does a flow-sensitive, depth-first, interprocedural
traversal of the CFG, tracking the set of locks held at any
point. This lockset is similar to that used previously in
Eraser [29] and Warlock [30]. At each program statement,
the race detection or deadlock checkers are passed the cur-
rent statement, the current lockset, and other information,
which they use to emit error messages and statistics used
during the final inspection phase. Since there may be expo-
nentially many paths through this graph, we cache analysis
results so that we do not have to re-analyze parts of the
CFG that we have reached with the same lockset.

The final phase, inspection, consumes the analysis results
and post-processes them to compute ranking information
for error messages. It then presents these to the user for
manual inspection. Ranking sorts messages based on two
features: (1) the likelihood of being a false positive, and (2)
the difficulty of inspection. A great deal of our effort has
been absorbed by the need for clever ranking. In contrast,
the analysis has proven relatively straightforward.

2.1 The systems we check
We checked three systems. The first two are Linux ver-

sion 2.5.62 and FreeBSD version 5.1 (note we do not check
FreeBSD for races). These are large systems written by
many different programmers and as such is a good test that
our approach can handle different coding and design styles.

We also checked a large commercial operating system
(roughly 500K lines of code), which we call “System X.”
Its development environment differs radically from that of
Linux and FreeBSD. System X undergoes regular, uniform
testing by a dedicated QA department, the development
group is relatively tight-knit and fits within a single build-
ing, and all code undergoes a peer review process. While the
core Linux kernel undergoes a similar review process (albeit
more spatially separated) the bulk of the OS is developed
and tested more haphazardly. Using the results from sys-
tems developed under such vastly different conditions gives
a feeling for the generality of the approach.

We crudely calibrated the quality of System X by run-
ning two static checkers from [20]. These flagged uses of
freed memory and not releasing an acquired lock. The free
checker’s error rate was .25% ( four free errors out of 1600
checks) and the lock checker’s was .4% (two lock errors out
of 500 checks). Linux had slightly higher error rates at .3%
and .46% respectively.

There was also an unfortunate, practical reason to check
a commercial system: while it is simple to determine that a
shared access occurs without a lock, it is extremely difficult
in general to take a large unknown system and understand
if an access can actually cause incorrect behavior. Doing
so requires reasoning about code invariants and actual in-
terleavings (rather than potential ones), both of which are
often undocumented. As a result, a single race condition
report can easily take tens of minutes to diagnose. Even at
the end it may not be possible to determine if the report is
actually an error. In contrast, other types of errors found
with static analysis can take seconds to diagnose (e.g., uses
of freed variables, not releasing acquired locks). By working
with paid developers it was much easier to get confirma-

detection throws away static functions with no callers, since
they often have many race conditions when detached from
their intended caller.



tion of race condition errors; race reports to Linux tend to
go unconfirmed, perhaps because the maintainers had the
same difficulties in reasoning about them as we did.

3. LOCKSET ANALYSIS
This section describes our generic lockset algorithm,

which RacerX uses to detect both deadlocks and races. We
compute locksets at all program points using a top-down,
flow- and context-sensitive, interprocedural analysis. Top-
down because it starts from the root of each call graph and
does a depth first search (DFS) traversal down the control
flow graph (CFG). Flow-sensitive because we analyze the ef-
fects of each path, rather than (say) conflating them at join
points. It is context-sensitive because it analyzes the lockset
at each actual callsite.

Conceptually, the analysis is simple — a DFS graph
traversal that (1) adds and removes locks as needed and
(2) calls the race and deadlock checkers on each statement
in the flow graph. We cache analysis results at both the
statement and function level. Caching works because the
analysis is deterministic — two executions that both start
from statement s within the CFG with the same lockset l
will always produce the same result.

We cache the locksets that have reached each statement
in the CFG using a statement cache. If we reach statement
s with lockset l and l is in s’s statement cache, we stop
analyzing the current path and backtrack to the last join in
the CFG. Otherwise we add l to s’s cache and continue.

We memoize the effect of each function f using a summary
cache. This cache summarizes the effects of each function by
recording for each lockset l that entered f the set of locksets
(l1, . . . , ln) that was produced (i.e., the union of all locksets
that reached each exit point in f). If we reach function f
with lockset l and l is in the summary cache, we do not
analyze f again, but instead skip over it. Otherwise, we do
analyze it, record the locksets it produced (l1, . . . , ln), and
add l → (l1, . . . , ln) to f ’s summary cache. In either case we
continue the analysis forward within the calling function n
different times, once for each lockset (l1, . . . , ln).

The exit locksets include all effects of the function and any
functions that it calls. Since the analysis is flow sensitive, a
function could produce an exponential number of locksets:
one for each different control path interleaving that starts
from its entry statement and reaches its exit statements, in-
cluding all paths in all functions that it calls. In practice
their effects are more modest. Most functions either release
all locks they acquire or avoid acquiring them at all. Thus,
a function that only calls other such functions will produce
the same single lockset with which it was entered. Func-
tions that do more interesting locking tend to produce a few
different locksets at most.

The core analysis algorithm is given in Figure 1. It has
three main parts:

1. traverse cfg, which iterates over all roots in the flow
graph and calls traverse fn.

2. traverse fn, which takes a function f and lockset l and
analyses it. It first checks to see if the lockset is in the
function’s summary cache (lines 12-14). If so, it returns
the set of all locksets that have reached the exit points
of fn when analyzed starting with lockset ls. Otherwise
it processes the function. If it is involved in a recursive
call, it breaks the recursion and returns. Otherwise, it

marks that it is processing this function (line 19), and
then calls traverse stmts on the fn’s entry statement.
This routine does a DFS traversal of all successors and
returns the union of all locksets that reach exit points.
Its result is added to fn’s summary cache (line 27) and
returned (line 28).

3. traverse stmt applies lockset ls to statement s. As with
traverse fn it also does caching, but does not need to
track the summary — any cache hit will have been visited
by a traversal that did reach an exit point (and produced
an exit lockset). If we have not seen this lockset be-
fore, we add it to the statement cache and continue. If
we have reached an exit statement we return the current
lockset (line 43-44). The summary for this path says that
if we start with entry ls we will produce ls. The code
then adds or removes locksets as needed. Lines 51-65
do the bulk of the work. We first build an initial work-
list — if the statement s is a resolved function call this
list contains the exit locksets returned by traverse fn;
otherwise it is just the current lockset. We then iter-
ate over each lockset in the worklist, recursively calling
traverse stmt on each of s’s children. We then return
the union of all locksets returned by these traversals.

It may not be obvious why we need to track the initial
entry lockset entry ls and store it in the cache (line 36).
It is required because different entry locksets can converge
to the same lockset within a function. If this convergence
happened and we did not record the entry lockset in the
cache along with the current lockset, a cache hit in the midst
of the function could terminate the computation before the
final exit locksets have been found. Adding the entry lockset
to the cache prevents such masking.

The basic algorithm is modeled on the analysis frame-
works of ESP [11] and the MC system [20], both of which
are based in part on RHS [28]. Our implementation is sim-
pler since we specialized it to lockset analysis rather than
supporting arbitrary extensions. The analysis is also less
sophisticated in that if we enter a function with a new lock-
set, we compute all exit locksets. A more advanced system
would do relaxation computations that would allow it to
use the exit locksets produced by different entry locksets.
Despite this limitation, the analysis is fast overall.

Practical issues. Locksets are interned in a hash table
so that we can compare them using pointers. Further, note
that only locking operations cause the lockset to grow and
shrink. I.e., if a lock name contained in a lockset goes out
of scope, the lockset does not change — the fact that a
storage location has a value indicating it is locked persists
independently of whether this location has a name in the
current scope.

For error reporting we obviously need a backtrace of the
current callchain along with any interesting events that hap-
pened on it (such as lock acquisitions). Getting the trace of
all functions above the current call is easy. Unfortunately,
we also need a trace of all the events that led to the current
lockset, including any calls into children functions that had
some effect. Further, since we skip functions that hit in the
summary cache, we also have to track the backtrace to all
locksets in the summary cache. When reporting an error, we
traverse back along the current trace, splicing in summary
cache traces at every skipped callsite. Because longer traces
are harder to reason about, we pick the smallest trace for



1 : // Apply analysis to all roots
2 : void traverse_cfg(roots)
3 : foreach r in roots
4 : traverse_fn(r, {});
5 : end
6 :
7 : // Compute and return the set of locksets produced
8 : // when entering function fn with lockset ls. For
9 : // speed we cache a summary.
10: set of locksets traverse_fn(fn, ls)
11: // check fn’s summary cache first
12: foreach edge x in fn->cache
13: if(x->entry_lockset == ls)
14: return x->exit_locksets;
15:
16: // break recursion arbitrarily
17: if(fn->on_stack_p)
18: return {};
19: fn->on_stack_p = 1;
20: // make a new edge.
21: x = new edge;
22: x->entry_lockset = lockset;
23: x->exit_locksets = traverse_stmts(fn->entry,ls,ls);
24: fn->on_stack_p = 0;
25:
26: // add to summary cache.
27: fn->cache = fn->cache U x;
28: return x->exit_locksets;
29: end
30:
31: // DFS traversal of all statements in fn. Computes
32: // the set of locksets produced on exit from each path
33: // given that we entered fn with lockset entry_ls.
34: set of locksets traverse_stmts(fn, s, entry_ls, ls)
35: // for speed, don’t analyze if we’ve seen already.
36: if((entry_ls, ls) in s->cache)
37: return {};
38: // add to statement cache. note we need entry_ls
39: // here!
40: s->cache = s->cache U (entry_ls, ls);
41:
42: // summary for this path is: (entry_ls->ls)
43: if(s is end-of-path)
44: return ls;
45:
46: if s is lock
47: ls = add_lock(ls, s);
48: else if s is unlock
49: ls = remove_lock(ls, s);
50:
51: // if call is not resolved, process lockset.
52: if s is not resolved call
53: worklist = { ls };
54: // get the set of locksets returned by
55: // function when entered with ls.
56: else
57: worklist = traverse_fn(s->fn, ls);
58:
59: // process all locksets in worklist, computed
60: // computing set of exit locksets produced by
61: // statement children
62: summ = {};
63: foreach l in worklist
64: foreach k in s->kids
65: summ = summ U traverse_stmts(fn,k,entry_ls,l);
66: return sum;
67: end

Figure 1: Pseudo-code for interprocedural lockset
algorithm.

functions that have multiple paths leading to the same exit
lockset.

OS code can transfer control between two points without
requiring an explicit code path between them. For example,
most OSes provide a way to copy data from the user to
kernel space and vice versa (e.g., “copyin” and “copyout”
on BSD). If the memory they access is not in core, these
routines will take a page fault, implicitly transferring control
to the page fault handler. Thus, every callsite that invokes
these functions has an implicit call to the page fault handling
code. Since page fault handling typically involves a heavy
degree of locking it is important not to miss this transfer.

Similarly, there are implicit ordering dependencies be-
tween the main bodies of system calls. For example, open
must occur before read or write which cannot occur after
close. 2 Again, compilers cannot see these dependencies.

Fortunately, there is a simple solution. We let the user
write “stub” portions of code that encode these dependen-
cies. These are then compiled as normal code, and used to
form any necessary edges. For example, the following stub
tells RacerX that copyin calls do page fault:

int copyin(void *dst, void *src, size_t len) {
do_page_fault();

}

For the ordering constraint above, we would write code that
calls system calls in the orders that we want them analyzed.

Approximations. Our analysis has several important
limitations. First, we do not do alias analysis. We crudely
represent local and parameter pointer variables by their type
name rather than their variable name. For example, a pa-
rameter foo that is a pointer to a structure of type bar

will be named “local:struct bar.” This approximation is
mostly conservative in that it can cause false positives for
our deadlock detector but will not lead to missed errors.
However, it may lead to a lower ranking for errors that in-
volve such pointers than would otherwise be warranted. We
plan to use more sophisticated pointer analysis in the future.

Second, we do only simple function pointer resolution. We
record all functions ever assigned to a function pointer of a
given type (either with an explicit assignment or using a
static initialization) and, at each callsite, assume that all of
the functions could be invoked. We will not correctly resolve
functions that are passed as arguments to a routine that then
assigns them to a function pointer. Despite this limit, we
resolve most of the function pointers used in practice.

Finally, we have one main speed problem, caused by the
fact that OS code tends to have several widely-used func-
tions which can potentially invoke large portions of the OS.
For example, kernel memory allocators (such as Linux’s
kmalloc) can invoke an enormous amount of code if memory
is low and paging gets triggered, including non-trivial por-
tions of the virtual memory system, file system, and various
drivers. This large reach causes problems if the function is
called in many different locations with different locks held,
since each different entry lockset causes us to reanalyze the
function. We take a simple approach to this problem: if the
number of distinct entry locksets in a function’s summary
cache exceeds a fixed limit (100) we skip the function. (This
is similar in spirit to PREfix’s truncation of path visits [4].)

2Of course the initial portion of these routines can run in any
order, since the user can call them with impunity; however,
out of order calls will fail.



While not entirely satisfactory, this approach does not seem
to be that important sources of false negatives. For example,
increasing it yields few additional checks. Additionally, in
our experience, there is little real interaction between these
functions and their callers — code with many callers tends
to implement core kernel functionality and rarely calls back
into its calling context.

4. DEADLOCK CHECKING OVERVIEW
This section describes the core deadlock checking algo-

rithm and the ranking scheme used to order flagged errors.
Deadlock checking has the unfortunate problem that a sin-
gle mistake can cause an avalanche of false reports. As a
result, the bulk of our ingenuity has gone into developing
techniques to reduce false positives, which we describe in
the subsequent two sections.

4.1 Computing locking cycles
The deadlock detector works in two passes: (1) constraint

extraction, which extracts all locking constraints and (2)
constraint solving, which does a transitive closure flagging
cycles. We discuss each below.

Constraint extraction: is called by the generic analy-
sis engine on every lock acquisition and iterates over every
lock in the current lockset, emitting the ordering constraint
produced by the current acquisition. For example, if lock a
is in the current lockset and lock b has just been acquired,
the constraint “a → b” will be emitted, along with a trace
of how to get from the acquisition of a to that of b that in-
cludes the number of conditionals, function calls, and degree
of aliasing involved.

The most difficult part of constraint extraction is guarding
against false constraints caused by invalid locksets. Elimi-
nating false positives consists solely of techniques to elimi-
nate false constraints.

Constraint solving: reads in the emitted locking de-
pendency constraints and computes the transitive closure of
all dependencies. It records the shortest path between any
cyclic lock dependency, ranks the results, and displays them
to the user for inspection. The algorithm computes dead-
locks involving 2, . . . , n threads, where n is a user-specified
threshold.

As an example, given the constraints a → b, b → c, c → a,
the algorithm derives the constraints a → c, b → a, c → b,
etc. It will then flag the three-thread cyclic dependency
between a → c and c → a that arises if thread 1 holds a and
waits on b, thread 2 holds b and waits on c, and thread 3
holds c and waits on a.

While the core transitive closure algorithm is simple, the
need for intelligible error messages requires a fair amount of
boilerplate, several times the amount of code needed to do
the actual check. We have found this a common problem
with program checking tools — detecting an error is often
simple, most of the complexity arises in articulating why the
tool believes it is error.

4.2 Ranking
Since inspecting deadlock errors can take tens of minutes,

effective error ranking is very important. At a high level,
ranking error messages consists of sorting them based on
the locking constraints that led to them both by how easy
these constraints are to inspect, and by how likely they are
to be wrong. We rank based on three criteria:

ERROR: 2 thread global-global deadlock.
<rtc_lock>-><rtc_task_lock> occurred 1 time
<rtc_task_lock>-><rtc_lock> occurred 1 time

<rtc_lock>-><rtc_task_lock> =
depth = 1:

linux-2.5.62/drivers/char/rtc.c:rtc_register:723
->rtc_register:728

int rtc_register(rtc_task_t *task) {
if (task == NULL || task->func == NULL)

return -EINVAL;
spin_lock_irq(&rtc_lock);
if (rtc_status & RTC_IS_OPEN) {

spin_unlock_irq(&rtc_lock);
return -EBUSY;

}
spin_lock(&rtc_task_lock);
if (rtc_callback) {

spin_unlock(&rtc_task_lock);
spin_unlock_irq(&rtc_lock);
return -EBUSY;

<rtc_task_lock>-><rtc_lock> =
depth = 1:

linux-2.5.62/drivers/char/rtc.c:rtc_unregister:749
->rtc.c:rtc_unregister:755

int rtc_unregister(rtc_task_t *task) {
spin_lock_irq(&rtc_task_lock);
if (rtc_callback != task) {

spin_unlock_irq(&rtc_task_lock);
return -ENXIO;

}
rtc_callback = NULL;
spin_lock(&rtc_lock);

Figure 2: Simple deadlock between two global locks.

1. Whether the locks involved are local or global. Global
lock errors are preferred over local ones, since local errors
could be a result of naming mistakes because we replace
non-global lock names with their type.

2. The depth of the call chain and the number of condition-
als it spans. In general, short call chains with few condi-
tionals are better than longer ones: there is less chance
that an analysis mistake happened, and with each addi-
tional branch and call, inspecting errors becomes harder.

3. The number of threads involved. Each constraint in the
computed cycle adds another thread. Errors with fewer
threads are preferred to errors involving many threads
because they tend to be: (1) significantly easier to reason
about, (2) more likely to happen, and, importantly, (3)
require touching far less code to get fixed.

We use these ranking criteria hierarchically sort error mes-
sages. We first divide errors into classes based on how many
threads were involved, and place the classes in ascending or-
der. We then further subdivide each of these classes based on
the number of non-global locks they depend on, and arrange
these sub-classes in ascending order. At the end, the first
class will contain all errors involving two threads and two
global locks, the next class all errors involving two threads
and one local lock, and so forth. Finally, we sort the errors
within each class by the number of conditionals and call
chain depth involved in the shortest lock constraint (each
call counts the same as three conditionals).

Figure 2 gives the highest ranked error we have found.



It involves two global locks, both acquired within the same
function. The output shown is the raw output from our tool
(though the code example has been reformatted). It states
that this is a two thread deadlock involving the two global
locks rtc lock and rtc task lock, which are acquired in
the order rtc lock→rtc task lock once and the order
rtc task lock→rtc lock once. Both locks are only in-
volved in this error and the call chains for both have a depth
of one — i.e., both acquisitions happen within the same
function. The error occurs if thread A enters rtc register,
acquires rtc lock and thread B enters rtc unregister and
acquires rtc task lock. Both threads will then deadlock
while they attempt to acquire the other’s lock.

Since both routines occur next to each other in the source
code, it appears that the programmer might have even done
this ordering deliberately, perhaps because it mirrored the
fact that register is reversed by unregister and so the lock-
ing order should be reversed. Numerous of our other Linux
errors followed a similar pattern, where a device registration
used exactly the opposite lock ordering of the unregister op-
eration.

5. INCREASING ANALYSIS ACCURACY
This section describes techniques that eliminate two sig-

nificant sources of false lock dependencies caused by (1)
semaphores used to enforce scheduling dependencies (rather
than mutual exclusion) and by (2) “release-on-block” locks.

5.1 The rendezvous problem
One of the largest sources of false positives come from

the fact that semaphores have two conflated uses: (1) bi-
nary semaphores used as locks to provide mutual exclusion
or (2) signal-wait semaphores used to implement scheduling
dependencies. In the latter case, one thread will wait on
a semaphore using the “down” operation (an atomic decre-
ment that sleeps if the counter is zero) until another thread
indicates it should proceed using “up” (an atomic increment
that may wake a sleeping thread). If we naively always treat
a signaling semaphore as a lock, we would flag invalid lockset
cycles. Consider the following code:

Producer Consumer
up(s); // signal ready lock(l);

down(s); // wait for result
unlock(l);
...
lock(l);

If the semaphore s were indeed a lock, then the consumer’s
code has a cyclic dependency that can cause a deadlock (sim-
ilar to the deadlock described in Figure 5). The deadlock
occurs if two threads A and B can both run the consumer’s
code with the following interleaving: (1) A acquires l, ac-
quires s, releases l and (2) B acquires l. Both threads will
deadlock waiting on the other’s lock.

For similar reasons, signal-wait semaphores can cause false
negatives for the race condition checker described in Sec-
tion 8. In the above code, since the call to “down(s)” is not
followed by a matching “up” call, RacerX would believe that
the “lock” s is held on every subsequent path, when in fact
s provides no mutual exclusion at all.

We use belief analysis [14] to distinguish when a
semaphore is being used as a lock as opposed to a signal-wait
semaphore. The former we track as we do other locks, the

latter we ignore. Signal-wait semaphores have two behav-
ioral patterns: (1) they are almost never paired and (2) they
have roughly as many unmatched up(s) calls as down(s)

calls. In contrast, valid locks have exactly the opposite be-
havior: (1) they are almost always paired and (2) when not
paired, they have many more unmatched lock calls than
unlock calls (the most common unpairing is a lock with no
matching unlock).

Thus, we have a simple classification problem: given a
semaphore s does it behave more like a lock or like a schedul-
ing semaphore? We answer this question by first measuring
how often the large supply of known, non-semaphore locks
satisfy these tests. We then measure how often s does and
use statistical analysis to compute the probability that s

belongs to a population similar to the known locks. More
precisely, we use the following four-step algorithm:

1. Calculate how often true locks satisfy these two behav-
ioral patterns. We take the entire set of known locks
and count the number of lock acquisitions atotal, lock re-
leases rtotal, and unlock errors errtotal. We then calculate
the average (“expected”) ratio of releases to acquisitions
t1lock = rtotal/atotal and the expected ratio of unlock
errors to unlock callsites t2lock = errtotal/rtotal.

2. Calculate similar values for s: t1s = rs/as and t2s =
errs/rs.

3. Use hypothesis testing [17] to calculate the probability p
we would observe t1s and t2s (or a more unlikely event)
if s belongs to a population with a true measurement of
t1lock and t2lock. Details are in [17]. We treat the tests
as independent, allowing us to compute p-values p1 and
p2 for each test in isolation and derive p by multiplying
the results: p = p1 · p2.

4. Discard semaphores below some probability threshold. In
our case we set it to p = 0.17, but the exact value does
not matter much, given the extremes exhibited by either
population.

This approach closely follows that of [14]. The main differ-
ence is that we extend it to handle multiple tests (this prior
work only looked at one).

Table 2 gives a few examples from both extremes, with
representative counts. The lack of any release, and a high
ratio of unlock errors to acquisitions are good indicators that
the semaphore is not being used as a lock. This classifica-
tion eliminated over twenty false positives out of roughly 40
examined deadlocks from our experiments.

Name Acq Rel Unlock Err
PQFCHBA.TYOBcomplete 5 0 5
event exit 2 0 9
thread exit 2 0 1
us data.dev semaphore 8 28 2
mm struct.mmap sem 141 208 2

Table 2: Three signal-wait semaphores and two lock-
ing semaphores classified by our analysis. Signal-
wait semaphores behave differently than locking
semaphores. Note there are more releases than ac-
quisitions when there are more paths after a lock
that contain an unlock.



� 4.2: Rank errors involving few threads, local pointer locks, conditionals, and function calls over those with many.

� 5.1: Automatically detect and suppress dependencies caused by semaphores used to enforce scheduling constraints.

� 5.2: Do not generate constraints between release-on-block locks and lock acquisitions that block.

� 6.1: Set lockset to empty after encountering a locking error (e.g., a double lock).

� 6.2: Inspect errors found with downward-only propagation over those from upward.

� 6.4: Rank errors flagged by both upward and downward lockset propagation over those by only one method.

� 6.3: When propagating locksets to callers, pick the lockset that occurred on the most exit edges; break ties by
taking the smallest lockset.

� 6.5: Use unlockset analysis to remove lockset members not released on any subsequent path.

Table 1: Techniques to reduce deadlock false positives. The first two additionally help ease-of-inspection.
The remaining techniques primarily focus on eliminating bogus constraints.

Code Actual semantics
lock_kernel(); lock_kernel();

// constraint: BKL->lock
spin_lock(lock); spin_lock(lock);

// constraint: lock->sem
// false constraint: BKL->sem

down(sem); while(down(sem) would block) {
// release BKL on block: no
// constraint between BKL
// and sem.
unlock_kernel();
schedule(); // reschedule
// constraint: BKL->lock.
// possible deadlock.
lock_kernel();

}

Figure 3: Code illustrating problems caused by
semaphores.

5.2 Release-on-block (ROB) lock semantics
One unanticipated source of false positives is that many

older operating systems such as FreeBSD and Linux use
global, coarse-grained locks that have “release-on-block”
(ROB) semantics. These are a legacy left from their simi-
lar evolution from single-processor (mostly) single-threaded
kernels to (somewhat) multi-threaded kernels running on
multiprocessors. Initially, their main source of concurrency
was interaction between the kernel and device interrupts,
which they managed by disabling interrupts. They then
introduced multiple kernel threads, managed using a sin-
gle kernel lock, essentially turning the OS into a single,
large monitor. Linux does so using the “big kernel lock”
(BKL) released and acquired with calls to lock kernel()

and unlock kernel(). FreeBSD similarly has the “Giant”
lock managed with standard locking calls. Because there
was only one such lock, any kernel thread that went to sleep
holding it would deadlock the system. Thus, as with nor-
mal monitors [23] it was released and then reacquired after
blocking.

Since then, these systems have moved towards more fine-
grained locking, but their single ROB lock remains active
and intermixed with the newer additions. Unfortunately,
this intermixing causes two problems. First, for the pro-
grammer, it makes it easy to cause deadlocks when a thread
acquires the single-kernel lock, acquires another lock, and
then sleeps. Second, for the tool, it causes many bogus con-
straints to be emitted.

Figure 3 gives example code illustrating both of
these problems. The code acquires the BKL (using

lock kernel()), acquires lock and then attempts to acquire
sem. If the acquisition of sem would block, the locking code
will release the BKL and switch to another thread. When
the blocked thread is subsequently rescheduled, it will at-
tempt to reacquire the BKL and then, if that succeeds, at-
tempt to acquire sem. Because of ROB semantics, this final
acquisition does not form a dependency between BKL and
sem and cannot cause a deadlock: another thread holding
sem while attempting to acquire the BKL will eventually
succeed since the thread that holds the BKL will keep re-
leasing it when it fails to acquire sem [26]. Thus, we do
not emit a constraint when a thread holds a ROB lock and
attempts to acquire a lock that blocks (rather than spins).
This change eliminated a large number of false positives.

While ROB semantics prevent deadlocks with blocking
locks, they make deadlocks with spinlocks more difficult to
avoid. The release and acquisition of the BKL in the above
code can cause a deadlock if another thread holds the BKL
while attempting to acquire lock. In general, such a locking
cycle arises whenever a thread has acquired a ROB lock,
acquired a spinlock, and then blocks. Since many operations
cause rescheduling — blocking memory allocation, kernel
page-faults on user data, explicit sleeps — correctly using
the single ROB lock with other spinlocks is difficult.

While these types of deadlocks are hard for the program-
mer to avoid, they are especially easy for the tool to flag:
emit an error whenever a lockset that has a dependency from
a ROB lock to a spinlock reaches a potentially blocking op-
eration. Although this check is not difficult to build, we in-
stead check a more stringent rule used by Linux, FreeBSD,
and OpenBSD to prevent such deadlocks: do not call a
blocking operation with a spinlock held or interrupts dis-
abled. A 50-line extension to our deadlock checker flags the
shortest path between such acquisitions and any blocking
operation. It finds hundreds of errors in the latest version
of Linux.

Figure 4 gives a representative example where the routine
atm ioctl calls put user with the atm dev lock spinlock
held. The routine put user puts data at a user-specified
address and can block if a page fault occurs. This routine is
a good a good example of the value of automatic checking
— atm ioctl has over 20 such errors. These errors are po-
tential security holes since the user can cause a page fault at
will. We do not discuss these results further: our checker is
conceptually no different than that described by in previous
work [20], though it is a completely different implementa-
tion.



//linux-2.5.62/net/atm/common.c:556:atm_ioctl:ERROR:BLOCK
// calling blocking function <put_user> w/ lock held!

spin_lock (&atm_dev_lock);
vcc = ATM_SD(sock);
switch (cmd) {
case SIOCOUTQ:

....
ret_val = put_user(...); // ERROR: can block.

Figure 4: Example security deadlock: a call to
put user (which can block) with a spinlock held.

6. HANDLING LOCKSET MISTAKES
Deadlock false positives are caused by false locking con-

straints, most from analysis mistakes. This section describes
four techniques we use to mitigate the effects of such mis-
takes.

The single most significant cause of invalid locksets are
intra- and interprocedural false paths. Almost all false con-
straints arise from a data-dependent lock release, either
parameter-controlled locking or, more commonly, correlated
branches such as the following:

void foo(int x) {
if(x)

lock(l);
...
if(x)

unlock(l);
}

Without path-sensitive analysis (which we do not do) Rac-
erX will believe there are four paths through foo, one of
which acquires lock l, but does not release it. On this in-
valid path, the analysis will exit function foo with an invalid
lockset containing l, which will promptly begin generating
spurious constraints. Our interprocedural analysis makes
these mistakes worse because it will aggressively push such
bogus locksets over as large an extent of code as possible.

While we intend to add path sensitivity to reduce the ef-
fects of this problem, the problem is undecidable in general
and often difficult in practice. Instead we have used our
experience examining false error reports to design simple,
novel propagation techniques that minimize the propaga-
tion of invalid locksets, often limiting them to the actual
function that caused the problem. Importantly, these tech-
niques should work just as well with stronger analysis and
other checking system.

6.1 Cutting off lock-error paths
We prune the lockset on paths that contain a locking er-

ror — double lock acquisitions, lock releases without a prior
acquisition, or failure to release an acquired lock. Either the
locking error is valid, in which case the system is in an incon-
sistent state and subsequent reports are neither surprising
nor trustworthy, or the analysis has made a mistake, which
will have similar results. In either case we want to suppress
the effects of these mistakes. In the case of double locking
and releases of unacquired locks, when run in deadlock-mode
RacerX sets the current lockset to empty, thereby eliminat-
ing any constraints that straddle the locking error. 3 (In

3Naively, we might instead chose to stop following the path.
While this decision works if the path is truly infeasible, it
may not work when the locking error was caused by an anal-
ysis mistake — if all paths to this program point have such

lock-error mode, it will emit a message so the user can in-
spect such locking errors.) Initially, we detected the third
error, unreleased locks, when we finished processing a given
root. We emitted an error for each held lock and demoted
constraints emitted on that path. This case has since been
subsumed by unlockset analysis (§ 6.5).

In a sense, lock acquisitions and releases can be viewed
as crude programmer-supplied annotations indicating which
code paths they believe must be taken. Paths that contain
matching lock-unlock annotation pairs are likely valid and
should be trusted; those with mismatches likely invalid and
should not be.

6.2 Downward-only lockset propagation
A significant source of false positives for upward propa-

gation occur when it falsely believes that a lock is held on
function exit when it is not. Obviously, if we only propa-
gate locksets downward from caller to callee but never up-
ward back to the caller we eliminate this problem. Errors
from this method tend to be the most reliable. Further, in
our experience, they are also easier to reason about since
they involve looking at one related call chain rather than
the up and down progress through various subsystems and
their abstractions.

We almost always use downward-only propagation to get
to the first round of deadlock errors. However, this approach
is vulnerable to false negatives, since it does not propagate
the effects of locking “wrapper functions” (whose sole pur-
pose is to acquire or release locks) up to their callers. Thus,
after inspecting these results, we then do a second pass using
upward propagation.

6.3 Selecting the right summary
Not all function summaries are equally trustworthy. An

effective way to reduce false constraints is to only propagate
the most plausible ones. We describe two different summary
propagation strategies to isolate the effects of bad locksets.

Majority summary selection: after looking at around
fifty locking errors similar to the code example at the begin-
ning of this section we had the obvious-in-hindsight realiza-
tion that since locking mistakes tend to occur on a minor-
ity of paths — most paths are correct, a few are wrong —
this pattern can be exploited to select the most reasonable
lockset from our summary cache. Rather than following all
locksets a function call generates we instead take the one
produced by the largest number of exit points within the
function. Our assumption is that the lockset that reaches
the most different exit edges within a function is the one
that most accurately describes the actual locking interface
of the function.

Minimum-size summary selection: almost all false
positives come from paths that fail to release locks — such
errors will cause the lockset on these paths to be one larger
in size than on well-formed paths. This leads to the second
realization that the effects of these errors go away if we sim-
ply select the smallest lockset exiting a given function. This
insight can also be added to the majority summary selection
scheme above as a means to break ties.

While summary selection is simple, it makes a significant
difference in practice. We expect it will handle similar prob-
lems we have encountered in other checkers.

mistakes, we will abort all of them, leaving the subsequent
code path unexplored.



6.4 Constraint intersection
Downward-only and upward lockset propagation have are

vulnerable to different problems: downward propagation
to wrapper functions, upward propagation to invalid sum-
maries that fool their selection criteria. We can exploit these
different weaknesses to determine the most reliable lock de-
pendencies.

In general, the more different ways to compute the same
result the more confidence one has in its correctness. Lock-
ing dependencies are no different. If both methods state
that the dependency a → b exists, we have more confidence
in it than if a → b was produced by just one of the methods.
We use this to rank different errors based on the number of
different methods that agreed on the involved dependencies.

In practice, we first examine errors based on constraints
derived from both methods, then the errors from downward
propagation, then the errors from upward.

6.5 Unlockset analysis
Unlockset analysis is a simple yet effective method for re-

moving invalid locks from a lockset. We developed it after
attempting to find deadlocks in FreeBSD. While the tech-
niques described so far were sufficient to handle Linux and
System X, they left a large number of false positives on
FreeBSD, mainly due its more complex control flow deter-
mining lock acquisition and release.

Unlockset analysis allowed us to eliminate by far the ma-
jority of the false constraints this complexity caused. It
came from three related observations. First, when emitting
a dependency a → b, almost all false positives are due to
mistakes about a. Intuitively, this makes sense — propa-
gating a from its acquisition site to the acquisition site of b
requires making at least several, and potentially many anal-
ysis decisions correctly. In contrast, we are naturally pro-
tected against most mistakes about b since the dependency
a → b is emitted immediately at b’s acquisition site, with
little opportunity for a mistake. Thus, a good way to cut
down on false constraints is to only leave those locks in the
lockset which we have a high degree of confidence that they
are acquired.

Second, after examining the false positives caused by false
constraints a → b, we noticed that in almost all cases, the
code after the acquisition of b had no unlock of a. I.e., most
false constraints are caused when an acquired lock “goes too
far” and is propagated past all of its releases.

Third, as a result of the prior observations, we had un-
consciously evolved a pattern of inspecting deadlock errors
caused by dependencies where the lock a was explicitly re-
leased after the second lock b was acquired. These errors
are the easiest to inspect, since they demonstrate that the
lock a was held past the acquisition of b. The code for
rtc register in Figure 2 is a good example. First it ac-
quires rtc lock, then rtc task lock, then it subsequently
releases rtc lock, strongly implying it was held. Thus,
when ranking errors we would like to emit those first that
are explicitly paired with a unlock.

Unlockset analysis exploits all of these observations. In-
tuitively it is simple: at program statement s, remove any
lock l in the current lockset if there exists no successor state-
ment s′ reachable from s that contains an unlock of l. If l
reaches no unlock after statement s on any subsequent path
then it is almost certain our analysis has made a mistake.
Conversely, if it does reach an unlock then it becomes more

likely that the lock is indeed held. The nice thing about
this technique is that it tightly fits the lockset to the set of
locations that the analysis seems able to handle. For exam-
ple, consider the locksets obtained in the code given at the
beginning of this section if we drop all locks that will not
reach a subsequent release:

1: void foo(int x) { // unlockset
2: if(x) { }
3: lock(l); { l }
4: ... { l }
5: if(x) { l }
6: unlock(l); { l }
7: } { }

As with the original analysis, the lockset will contain l at
lines 3, 4, and 5. However, unlike the original analysis, l is
eliminated on the false path of the check at line 5 since it
reaches no subsequent release. The lockset is exactly what
RacerX would compute if it could suppress the infeasible
path. The nice thing it that unlockset analysis is comple-
mentary to traditional analysis.

Unlockset analysis runs in two passes. Its implementation
is similar to that of liveness analysis, which is used to de-
termine if there is a path from statement s that can reach
a use of variable v. The first pass is a backwards analysis
that runs before deadlock checking. For each statement s
it computes s’s statement unlockset, which is the set of un-
locks reachable using a downward traversal starting from s.
We compute statement unlocksets using a backwards pass
from the leaves of the CFG reached during lockset analysis
back up to the root(s). It is essentially the inverse of lockset
analysis: as unlocks are encountered, they are added to the
unlockset, as locks are encountered, the unlock they reverse
is removed. A statement’s unlockset is the union of all of its
children’s unlocksets, plus the effect of any lock or unlock
that it itself contains. Additionally, if statement s is a call
to resolved function f , we add the unlockset of f ’s entry
block to s’s. Similar to lockset analysis, we do not insert
unlocks for which there was no preceding lock. Each state-
ment persistently records its unlockset for use by the second
pass.

The second pass is a forward analysis that runs during
deadlock checking and computes the dynamic call unlockset,
which is specific to each call chain. The call unlockset is
the union of the statement unlocksets of each callsite in the
current call chain. For example, assume we are analyzing
function h reached by the call chain f → g → h. The
call unlockset used to analyze h is computed by taking the
union of the statement unlocksets at the callsite of (1) f ’s
call to g and (2) g’s call to h. We use the call unlockset
to support context sensitivity. I.e., different callers c1 and
c2 may release different locks after the call to h returns —
these releases should just be added to the unlockset of each
callsite and this call to h rather than to all callsites. In
general, we compute the call unlockset as follows. Before
processing a root we initialize the current call unlockset to
the empty set. When the analysis follows a resolved function
call to h at statement s in function g, we calculate the new
call unlockset used to analyze h by taking the union of the
original unlockset used in g and s’s statement unlockset.

Deadlock checking eliminates invalid locks in the lockset l
at statement s by intersecting l with s’s statement unlockset
and the current call unlockset.



System Confirmed Unconfirmed False
System X 2 3 7
Linux 2.5.62 4 8 6
FreeBSD 2 3 6

Table 3: Deadlock bugs in System X, Linux, and
FreeBSD. We separate confirmed from unconfirmed
bugs since these messages can be hard to diagnose
correctly in someone else’s system.

7. DEADLOCK RESULTS
Table 3 summarizes the errors found in System X, Linux,

and FreeBSD. We found two confirmed deadlock errors in
System X and three unconfirmed. There were seven false
positives, three because of a complex check that acquired
locks in different orders depending on their global order-
ing. Initially, there were over 20 false positives, but these
were eliminated by the analysis of signal-wait semaphores
described in Section 5.1

Four errors in Linux were confirmed and patched. The
others looked almost certain. There were six false positives.
Since deadlock errors tend to take a while to inspect, we still
have over fifty uninspected error reports for Linux.

Finally, there were two confirmed errors in FreeBSD (both
fixed), and three unconfirmed, though they seem probable.
The six false positives come from complicated locking proto-
cols. A very large number of false positives were eliminated
with the unlockset analysis in Section 6.5.

We describe two of the more interesting errors below.
A surprising error: a single code path introduces a

cyclic dependency: (1) code acquires a, acquires b, releases
a, and (2) reacquires a. The last reacquisition introduces a
circularity that can cause deadlock if another thread “slips
in” and acquires a between steps (1) and (2) and then waits
on b.

Figure 5 gives an example taken from the commercial
code System X. Here a thread enters the routine FindHandle
while holding scsilock and acquires handleArrayLock. It
then calls Validate, which can potentially sleep using the
routine CpuSched Wait. Unfortunately, CpuSched Wait will
release scsiLock before blocking and then reacquire it when
waking. This sequence creates a locking cycle.

While obvious in hindsight, this was not a type of deadlock
we had initially expected. The first error report that showed
such a case was greeted with silence for 30 seconds or so,
then surprised laughter.

The most complex error: we only inspected a small
subset of all deadlocks emitted by the tool. The error in
Figure 6 was the most complex. It requires three threads,
involves one global and two non-global locks, and one deep
call chain. The deadlock occurs in the following case:

1. Thread 1 executes igmp timer expire in the IPV4 net-
working code where it acquires im→lock and then follows
a six-level call chain to the routine inet select addr

where it tries to acquire the global lock inetdev lock.

2. Thread 2 executes the routine inet select addr where
it acquires the global lock inetdev lock and tries to get
the lock in dev→lock.

3. Thread 3 executes the routine igmp heard query where
it acquires in dev→lock and then calls igmp mod timer

where it tries to get im→lock.

// Entered holding scsiLock
int FindHandle(int handleID) {

prevIRQL=SP_LockIRQ(&handleArrayLock,SP_IRQL_KERNEL);
//find the right handle
Validate(handle);
handle->reserved = 1;
SP_UnlockIRQ(&handleArrayLock, prevIRQL);
...

// Entered holding scsiLock->handleArrayLock
int Validate(handle) {

ASSERT(SP_IsLocked(&scsiLock));
while (adapter->openInProgress) {

// BUG: Releases scsilock!
CpuSched_Wait(&adapter->openInProgress,

CPUSCHED_WAIT_SCSI, &scsiLock);
SP_Lock(&scsiLock);

Figure 5: An unexpected deadlock pattern: an ac-
quired lock is released and then reacquired by the
same thread, forming a cycle.

This deadlock takes a while to diagnose, even when told
exactly what the problem was by a static tool. It is difficult
to imagine finding this error without such hand-holding.

8. RACE DETECTION
This section describes the race checker in RacerX. Race

detection is significantly harder than deadlock detection. It
requires having good answers to the following questions:

1. Is the lockset valid? The problems caused by invalid lock-
sets can be even worse than in the deadlock checker. Most
paths have relatively few locking operations. Thus, for
deadlock detection, an invalid lockset often not encounter
subsequent lock operations, rendering the mistake harm-
less. In contrast, there are many variable accesses, which
invalid locksets will immediately hit.

2. Can the code containing an unprotected access run con-
currently with another thread that accesses the same
shared state? Many parts of an OS, such as initialization
code, are effectively single threaded. Others, may have
very restricted forms of concurrency, such as a device
driver whose global state is private to a single hardware
device, and thus need only manage concurrent accesses
made by its interrupt handling code.

3. Does the access actually need to be protected? Many
concurrent, unprotected accesses to shared state are per-
fectly harmless. They may involve reads of data that no
other thread will write [29], or simple assignments that
are carefully ordered to provide a coherent picture of the
state. More difficult, we must differentiate pointers that
point to shared state from those that only refer to local
state. We must identify calls to functions that require
locks (even if we do not have their source code).

Below we give an overview of the basic algorithm and de-
scribe the techniques RacerX uses to answer these questions.

8.1 Race detection overview
At a high level, the race checker is called by the lock-

set analysis on each statement. It uses the current lockset
and internal bookkeeping data structures to determine if it
should emit an error or not. As with the deadlock detec-
tor, given lockset analysis, the checking logic itself is sim-
ple: by far the majority of effort goes into ranking error



thread 1: <local:ip_mc_list.lock>->inetdev_lock =
depth = 7:

// linux-2.5.62/net/ipv4/igmp.c
void igmp_timer_expire(...) {

...
spin_lock(&im->lock);
im->tm_running=0;
...
err = igmp_send_report(...);
->ip_route_output_key:2149
->__ip_route_output_key:2142

->ip_route_output_slow:1988
->fib_semantics.c:__fib_res_prefsrc:638
->devinet.c:inet_select_addr:759

read_lock(&inetdev_lock);
...

thread 2: <inetdev_lock-><local:ip_mc_list.lock> =
depth = 1:

// linux-2.5.62/net/ipv4/devinet.c
u32 inet_select_addr(...) {

...
read_lock(&inetdev_lock);
in_dev = __in_dev_get(dev);
if (!in_dev)

goto out_unlock_inetdev;
read_lock(&in_dev->lock);

...
thread 3: <local:in_device.lock>-><local:ip_mc_list.lock>

depth = 2:
// linux-2.5.62/net/ipv4/igmp.c
static void igmp_heard_query(...) {

...
read_lock(&in_dev->lock);
for (im=in_dev->mc_list; im; im=im->next) {

...
igmp_mod_timer(im, max_delay);

->igmp_mod_timer:165
spin_lock_bh(&im->lock);

Figure 6: Complex deadlock involving three
threads, non-global locks, and one deep callchain.
Since fixed in Linux.

messages. Ranking for race detection is even more impor-
tant since we must simultaneously guard against mistakes
(1) in false paths, (2) in determining if code can run concur-
rently, and (3) in determining if the access needs protection.
The checker can be run in three modes, from least to most
precise:

1. Simple checking: only flags global accesses that occur
without any lock held (i.e., the lockset is empty when
the access occurs). Because it does not depend on re-
solving lock names correctly or inferring that a pointer
can reference shared state, it eliminates several sources
of false positives and its results are relatively robust. We
always run this mode first.

2. Simple statistical: infers which non-global variables and
functions must be protected by some lock.

3. Precise statistical: infers which specific lock protects an
access and flags when an access occurs when the lockset
does not contain that lock. We run this mode last, since
it is the most sensitive to analysis mistakes.

We use a set of heuristics to identify and rank likely races.
Since different error messages will satisfy different heuristics,
we need a way to compare them. We do so using a scoring
function, which is the usual way to map non-numeric at-
tributes to a numeric value suitable for comparison:

1. Each heuristic has a point value associated with it, posi-
tive when the heuristic correlates with a race, negative if
it does not. Table 4 summarizes these heuristics and their
default scores; the following four subsections describe the
heuristics in more detail.

2. We compute a score for each error message by summing
the point values of each heuristic it satisfies.

3. We sort all messages based on their point value.

4. We then use deterministic ranking (as in Section 4.2) to
sort messages with the same point value.

The downside of this approach is that assigning points to
heuristics is ad hoc. Unfortunately, since the heuristics do
not typically directly dominate one another, there funda-
mentally does not seem to be an alternative. Fortunately,
ranking does not seem overly sensitive to the exact scoring
used. Further, the user can customize the scores to values
more to their taste, and we could (but do not) use a learning
algorithm to fit them more to the data.

The next four subsections describe how we determine: (1)
if a lockset is valid, (2) if a context is multithreaded, (3) if
an unprotected access is unsafe, and (4) if an access should
be protected by a specific lock. We then describe some tech-
niques to detect false negatives and finally results.

8.2 Is the lockset valid?
Deadlock false positives happened when the lockset con-

tained invalid locks. Race detection false positives happen
when the lockset does not contain all valid locks. We use
the following techniques described in the deadlock checking
sections to handle this problem, though some have to be
changed to conservatively include locks rather than conser-
vatively omit them. First, we use summary selection (§ 6.3)
to decide what locksets to propagate to callers, though we
bias towards picking the lockset containing the most entries
rather than those with the least. Second, we use intersec-
tion ranking (§ 6.4) and rank race conditions found by both
downward and upward propagation over those found with
upward alone. Finally, we use the automatic classification
of scheduling semaphores (§ 5.1) to eliminate false negatives.

8.3 Is code multithreaded?
We have two methods of determining if code is multi-

threaded: (1) multithreading inference and (2) programmer-
written automatic annotators that use system-specific
knowledge to mark known single and multithreaded code.

Multithreaded inference: is a simple, automatic tech-
nique that uses a form of belief analysis [14] to infer whether
a programmer believes code is multithreaded. It relies on the
fact that in general programmers do not do spurious lock-
ing. Locks are acquired and released to protect something.
Thus, any concurrency operation implies that the program-
mer believes the surrounding code is multithreaded. These
operations include locking, as well as calls to library rou-
tines that provide atomic operations such as atomic add or
test and set. (From this perspective, concurrency calls can
be viewed as carefully inserted annotations specifying that
code is multithreaded.)

RacerX marks a function as multithreaded if concurrency
operations occur (1) anywhere within its body, or (2) any-
where above it in the current callchain. Note that con-
currency operations below it do not necessarily imply that
the function itself is multithreaded. For example, it could



� 8.2 Is the lockset valid?
Rank errors flagged by both downward and upward
propagation highest.
Order errors with the same score based on number of
conditionals and call chain depth.
Count visits to statement with empty lockset versus
not.

+2 if always visited with empty lockset.
+1 if more visits with empty lockset than not.

� 8.3: Is code multithreaded?
Were there concurrency operations in this function or
earlier in callchain?

Rank all true cases before false ones.
Data shared with interrupt handler.

+2 if written in interrupt handler.
+1 if read by interrupt handler.

Count modifications n on different roots.
+2 if n > 2.
+1 if n > 1.
� 8.4 Does X need to be protected?

Count number of times that X was the first, last or
only object in a critical section.

+4 If only object > 1 times, +2 if 1 time.
+1 If first object > 0 times.
+1 If last object > 0 times.

Compute z-test statistic based on count of how often
protected with any lock versus not protected.

+2 If z > 2.
−2 If is non-global and z < −2.

Count the number n of unprotected variables in the
non-critical section.

+2 If n > 4.
+1 If n > 1.

Non-atomic updates: writes to > 32-bits or bitfields.
+1.

Access was a write.
+1.

Table 4: Subset of ranking and scoring criteria used
to rank race conditions warnings. Ranking com-
putes the total score for each message and then does
a descending sort.

be calling library code that always conservatively acquires
locks. RacerX computes this information in two passes.
First, it walks over all functions, marking them as multi-
threaded if they do explicit concurrency operations within
their body. Second, when doing the normal lockset compu-
tation, it tracks if it has hit a known multithreaded function
and, if so, adds this annotation to any error emitted.

Programmer-written annotators: As stated in Sec-
tion 2 clients can iterate over RacerX’s representation of
the checked system’s functions marking them as: (1) sin-
gle threaded (such as initialization code), (2) functions that
should be ignored, (3) multithreaded (such as system call
entry points) (4) interrupt handlers, which can run at any
point unless interrupts are explicitly disabled, and (4) func-
tions that should be ignored. RacerX skips the first two
categories and promotes errors in the latter two. As in the
automatic inference, reports originating from multithreaded
code paths are more likely than those coming from possibly
single-threaded code paths.

Annotators can exploit naming conventions and other sys-
tem knowledge to label functions. For example, the follow-
ing is our Linux annotator that marks all functions begin-
ning with “sys ” (i.e., system calls) as multithreaded:

// client annotator called by RacerX
void mark_entry_routines(struct flist *fl) {

for(struct fn *f = fn_begin(fl); f; f = fn_next(f))
if(strncmp(f->name, "sys_", 4) == 0)

f->multithreaded_p = 1;
}

The fact that annotators can automatically classify large
numbers of functions based on programmer knowledge has
been a big win.

RacerX automatically propagates these annotations to
other “equivalent” functions by exploiting the fact that
in systems code, functions assigned to the same function
pointer typically belong to an equivalence class in that they
all implement the same interface (e.g., open, read, write,
close) [14]. Thus, if a function f marked with some annota-
tion (“multithreaded,” “single,” etc.) is assigned to function
pointer fp, RacerX automatically propagates its annotation
to all other functions assigned to the same function pointer.

8.4 Does X need to be protected?
We take three approaches to answering this question: (1)

eliminating accesses unlikely to be dangerous, (2) promoting
accesses that have a good chance of being unsafe, and (3)
inferring which variables programmers believe must not be
accessed without a lock. We describe each below.

Ignored accesses: we ignore variables read but never
written, since they require no concurrency control. We op-
tionally demote variables written but rarely or never read
since they are often statistics variables that the program-
mer explicitly tolerates lost updates on. Warnings about
them are often unwelcome and can hide more important er-
rors. We avoid flagging races on variables still private to
a given thread by stripping out all references to newly al-
located data. We avoid flagging common harmless initial-
izations by demoting assignments of 0 and 1 to variables.
Finally, we demote errors where data appears to be writ-
ten only during initialization and only read afterwards. We
do so by counting the number of different roots that reach
a write to a given variable; variables written only from a
single root are likely candidates and their errors demoted.

Non-atomic modifications: We also want to detect ac-
cesses that have a high probability of being unsafe so that
we can promote them. We have found several heuristics that
work well. First, we favor errors that write data over read
errors, since there are many more ways that reads can be
safe. Second, we rank each error on an unprotected code
path (a “non-critical-section”) by the total number of other
accesses to writable shared state. If there are many vari-
ables on this path that could be written by other threads
then it is almost certain a thread executing this path will
see an inconsistent view of the world. (Figure 7 contains an
example.) As a special case, we explicitly flag variables that
cannot be read or written atomically such as bit fields and
64-bit variables on 32-bit machines. Unprotected accesses
to these variables can result in surprising values, which is
rarely the intent.

Programmer beliefs: We rank unprotected accesses es-
pecially high if the programmer appears to believe that the
variable or routine should be protected. The first effective



/* unprotected access to
vars=[logLevelPtr,

_loglevel_offset_vmm,
(*theIOSpace).enabledPassthroughPorts,
(*theIOSpace).enabledPassthroughWords]

[nvars=4] [modified=1] [has_locked=1] */
LOG(2,("IOSpaceEnablePassthrough 0x%x count=%d\n",

port, theIOSpace->resumeCount));
theIOSpace->enabledPassthroughPorts = TRUE;
theIOSpace->enabledPassthroughWords |= (1<<word);

Figure 7: Simple race: four unprotected accesses
to global data on a path that had previously seen
locking. (Note, the first two occur in the LOG macro.)

way to infer such beliefs is to realize that the first, last,
or only shared data in a critical section are special. As
noted above, programmers do not write redundant critical
sections. Thus, if a variable or function call is the only piece
of potentially shared state within the critical section, then
we have strong evidence that the programmer thinks (1)
the state should be protected and (2) that the acquired lock
does so. Similarly, the first and last pieces of shared state in
a critical section are also noteworthy (although to a lesser
degree), since programmers often acquire a lock on the first
shared state access that must be protected and release it
immediately after the last one. (Another way to look at it is
that programmers do not make critical sections gratuitously
large).

The second way we use statistical analysis to infer if a pro-
grammer appears to believe an access should be protected.
Oversimplified, it works by assuming all functions and all
pointer variables must be protected by a lock. It then counts
how many times they are accessed with a lock held versus
not. Routines and types the programmer believes should
be protected will have a relatively high number of locked
uses and few unlocked uses. Identically to [14] (and simi-
larly to § 5.1) we then use the z-test statistic to determine
how likely it is that these counts were due to chance (i.e.,
the programmer protected the variable or function coinci-
dently rather than with intent). The reader does not need
to understand the details, other than we use the formula:

z = (s/n − p0)/
�

p0 × (1 − p0)/n

Here s is the number of protected accesses, n the total num-
ber of accesses, and p0 represents how often that we expect a
function or variable that does not need to be protected will
be protected coincidently. (We set p0 = 0.8, which reflects
that such coincidental protections are frequent.) A high pos-
itive value of z implies that the number of protected accesses
was more than that we would expect from chance.

An example error: Figure 7 shows a race that we give
a high ranking to based on the features discussed in this
section. The output is the unprocessed error message emit-
ted by RacerX (a post-processing pass can make the output
prettier, but more verbose). Properly interpreted they in-
dicate that this error should be ranked high in the error
messages. The main features:

1. The field nvars=4 indicates there are four accesses to
shared state in this “non-critical section.” While there
are safe ways to update a single variable without locks
while sharing it with others, modifying and reading a set
of variables is almost certainly an error. The aggregate

set will take on values impossible under any valid sequen-
tial interleaving. In this case, we can also lose an update
to the field enabledPassthroughWords.

2. The field has locked=1 specifies that locking was used
earlier in the call chain, suggesting that we are in a mul-
tithreaded context.

3. The field modified=1 specifies that at least one of the
shared variables was modified.

This is a real error that has since been fixed. It was caused
because the developer forgot to adapt this function when
porting the code to SMP. When the system is run on a
uniprocessor, there is no problem. When it is run on an
SMP machine, things get more exciting.

8.5 Does X need to be protected by L?
We infer whether a given lock protects a variable using a

statistical approach similar to that in the previous section.
The inference works in two passes. The first does a local
pass over the entire system counting (1) the total number
of accesses to a variable or routine and (2) the number of
times these accesses held a specific lock. The second pass
filters the candidate locks for each variable by picking a sin-
gle “best” lock out of all the candidates and then doing an
interprocedural pass checking with it. Since we can make
mistakes in deciding that lock l protects x, we rank errors
where no lock is held over those where the wrong one was.
The main refinements in practice are (1) deciding what to
count and (2) some evidence is more compelling than others.

What to count. we have made two mistakes in deciding
what to count. The first mistake is to record whether or
not a given statement accesses a variable or routine with
a lock held every time the statement is encountered during
analysis. Doing so has two problems. First, the number
of times a statement is hit has little to do with anything
other than that there are many paths to it that acquire
different locks (and thus defeat caching). Second, a single
piece of code really only gives one piece of evidence that
the programmer believed a lock protected a variable. The
number of times it is hit during analysis is irrelevant. Thus,
we only allow each point in the CFG to make exactly one
contribution to a lock count.

A second mistake is to not take strong steps to suppress
coincidental lock pairings. For example, if we call foo with
lock l held it is generally a bad idea to mark accesses to
variables in foo as being protected by l — it will tend to
access many related things, which will thus have high num-
bers of successful accesses under l, polluting the checking
results. Similarly, if variable v is accessed within a critical
section we only count it once, not matter how many times it
was accessed. Not suppressing multiple counts causes prob-
lems because a few critical sections may make heavy use of a
given variable that is (coincidentally) then viewed as heavily
protected by a lock and its errors then ranked highly.

What evidence really matters. As in the previous
subsection, we give special weight to the first, last, and only
shared data in a critical section, since they imply that the
programmer believes that the critical section’s lock protects
them. These are also great examples to display during in-
spection since they make it very clear to a user of RacerX
what exactly is being protected.

An example error: Figure 8 gives a simple example of
this. There were 37 accesses to serial out with the argu-



// ERROR: linux-2.5.62/drivers/char/esp.c:
// 2313:block_til_ready: calling <serial_out-info>
// w/o cli!
restore_flags(flags); // re-enable interrupts
...
// non-disabled access to serial_out-info!
serial_out(info, UART_ESI_CMD1, ESI_GET_UART_STAT);

// Example 1 drivers/char/esp.c:1206
save_flags(flags); cli();
/* set baud */
serial_out(info, UART_ESI_CMD1, ESI_SET_BAUD);
serial_out(info, UART_ESI_CMD2, quot >> 8);
serial_out(info, UART_ESI_CMD2, quot & 0xff);
restore_flags(flags);

// Example 2: rivers/char/esp.c:1426
cli();
info->IER &= ~UART_IER_RDI;
serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK);
serial_out(info, UART_ESI_CMD2, info->IER);
serial_out(info, UART_ESI_CMD1, ESI_SET_RX_TIMEOUT);
serial_out(info, UART_ESI_CMD2, 0x00);
sti();

Figure 8: Error caught by inferring the serial out

must be called with interrupts disabled. There were
28 places where the routine serial out was used as
the first or last statement in a critical section.

ment info with interrupts disabled, in contrast there was
only one non-disabled use. The routine-argument pair was
the first statement of a critical section 11 times and the
last one 17 times. Even knowing nothing about the system,
simply looking at the examples makes it obvious that the
programmer is explicitly disabling interrupts before invok-
ing this routine. Having such examples makes inspection
much easier. In practice we almost always look at errors
that have such features before those that do not.

8.6 How to find false negatives?
While eliminating false positives is important, so is re-

moving false negatives. Below we describe three methods
we use to guard against different types of false negatives.

Statistical inference of locking functions. Obviously,
the more locking functions RacerX knows of, the more ef-
fective it will be. While it uses interprocedural analysis to
propagate information across procedure boundaries, it re-
quires knowing a set of “root” locking functions. Although
many such functions are well-known, large systems have a
startling number of special-purpose locking routines. To in-
fer these functions we use a variant of the belief analysis
used in [14] to infer paired functions. To determine if func-
tions a and b should be paired, we count how often they are,
how often they are not, and rank the results using the z-test
statistic. We modify this approach to give high priority to
functions implemented in the same file and functions that
have suggestive names (“lock,” “unlock,” “disable,” etc.).
Users can inspect derived pairs either as a means to en-
sure that they did not miss any, or as a way to simply infer
all of them from the source code. There were forty such
functions in System X, including four that we had missed,
despite working with its source code in collaboration with
core implementors for over eight months.

Errors in lockset analysis. Static checkers have the
invidious problem that any errors in their analysis that cause

System Bug Unconfirmed Benign False
System X 7 4 13 14
Linux 2.5.62 3 2 2 6

Table 5: Race results for System X and Linux. Be-
nign errors are races that are not considered impor-
tant enough to fix (e.g., statistics variables).

false negatives are silent. Some cleverness is needed to find
ways to detect such silent failures. We have three main ways.

First, many systems, such as FreeBSD and System X,
make heavy use of locking assertions which we can check
statically. The most prevalent example are places where the
programmer asserts that a given lock is held:

ASSERT(Is_Locked(&lock));

RacerX checks its lockset each time it reaches such assertions
and emits an error if the lock is not in the lockset: such
missing locks signal either programmer or analysis mistakes.

Second, we exploit the fact that we can check for other
errors. Flagging lock pairing errors gives us an easy way to
ensure that our system correctly matches locks.

Third, we again exploit the fact that programmers do not
gratuitously do locking operations. The intent of a critical
section is to protect something. Thus, we can detect false
negatives in RacerX by counting how many shared variables
each critical section contains. Critical sections with zero
count either indicate the programmer made a mistake (e.g.,
a typo in a variable name) or that our state tracking is bro-
ken. We found eight errors in the RacerX implementation
when we modified it to flag empty critical sections. There
were six minor errors, one error where we mishandled arrays
(and so ignored all array uses indexed by pointer variables)
and a particularly nasty silent lockset caching error that
caused us to miss over 20% of all code paths. We plan to
extend this approach more globally and ensure that every
shared variable is associated with some lock and that every
lock is associated with some shared state.

8.7 Race results
Table 5 summarizes the results for System X and Linux.

System X had seven hard bugs, four unconfirmed bugs, and
thirteen harmless errors. Six of the false positives were due
to signal-wait semaphores; we obtained these results before
developing the analysis described in Section 5.1. The other
eight were unfortunate interactions with function pointers.

We had fewer inspected messages for Linux than for Sys-
tem X because it was harder to get confirmation of them.
There were three valid bugs (all fixed), two unconfirmed
errors, two errors involving statistic variables and six false
positives.

9. CONCLUSION
RacerX is a static tool that uses flow-sensitive, interproce-

dural analysis to detect both race conditions and deadlocks.
It uses novel strategies to infer checking information such as
which locks protect which operations, which code contexts
are multithreaded, and which shared accesses are dangerous.
We applied it to FreeBSD, Linux and a large commercial
code base and found serious errors in all of them.
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