
User-level Internet Path Diagnosis

Ratul Mahajan Neil Spring David Wetherall Thomas Anderson

University of Washington

ABSTRACT
Diagnosing faults in the Internet is arduous and time-consuming,
in part because the network is composed of diverse components
spread across many administrative domains. We consider an ex-
treme form of this problem: can end users, with no special privi-
leges, identify and pinpoint faults inside the network that degrade
the performance of their applications? To answer this question,
we present both an architecture for user-level Internet path diag-
nosis and a practical tool to diagnose paths in the current Internet.
Our architecture requires only a small amount of network support,
yet it is nearly as complete as analyzing a packet trace collected
at all routers along the path. Our tool, tulip, diagnoses reordering,
loss and significant queuing events by leveraging well deployed but
little exploited router features that approximate our architecture.
Tulip can locate points of reordering and loss to within three hops
and queuing to within four hops on most paths that we measured.
This granularity is comparable to that of a hypothetical network
tomography tool that uses 65 diverse hosts to localize faults on a
given path. We conclude by proposing several simple changes to
the Internet to further improve its diagnostic capabilities.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

General Terms
Measurement, performance

Keywords
Path diagnosis, measurement tools

1. INTRODUCTION

A distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable.

L. Lamport

Lamport’s classic quote is an apt description of the Internet –
when it fails to perform as expected it is nearly impossible to tell

Authors’ e-mails: {ratul,nspring,djw,tom}@cs.washington.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

what happened. Consider a user whose Web download is exces-
sively slow due to a problem within the network. There are many
potential causes, including data corruption due to “dirty fiber,” small
buffers or mistuned RED parameters at routers, packet reordering,
or simply, inadequate provisioning by the user’s Internet service
provider (ISP). All of these problems are hidden inside the “black
box” abstraction of the Internet. They typically manifest them-
selves only as packet loss, even a small amount of which degrades
the performance of TCP [29].

In this paper we focus on the problem of locating performance
faults such as loss, reordering, and significant queuing at specific
links, routers, or middleboxes (e.g., firewalls) along Internet paths.
We consider this problem from the point of view of an ordinary
user, with no special privileges, in a general setting where paths
cross multiple administrative domains. We refer to this as the prob-
lem of user-level path diagnosis.

It is important that unprivileged users be able to diagnose their
paths. Performance depends on the interaction of the properties of
the entire path and the application. Since operators do not share
the users’ view of the network, they are not always well-placed to
even observe the problem. Even when they are, they may be little
better off than users. Operators may have no more insight than un-
privileged users for problems inside other administrative domains
because of the distributed management of the Internet, and most
Internet paths cross multiple domains.

Of course, users must also be able to do something about the
problems they observe. Often, detailed knowledge is enough. By
mapping the faulty component to the ISP that owns it [47, 24],
the user can directly contact the responsible ISP leading to faster
problem resolution; operators are frequently not even aware of the
problem. Further, we believe ISPs will better provision and manage
their networks if their users can readily identify faults. For exam-
ple, users can demand that their ISP provide additional capacity if
upstream links are frequently overloaded. In the absence of fault
localization, ISPs tend to blame poor performance on factors be-
yond their control. Finally, recent research has examined various
ways to route around network problems, either through manipulat-
ing BGP policy choices or via overlay-level source routing [3, 41,
44]. These techniques are more effective and scalable with fault
localization than blindly trying all possibilities [37].

Unfortunately, existing diagnosis tools have significant limita-
tions because they are based on round trip measurements to routers.
For instance, pathchar measures the queuing at each hop along the
path by analyzing round trip times to successive routers [18]. But
this approach has the fundamental disadvantage that it confuses the
properties of the forward and reverse paths. The asymmetry of most
Internet paths, with different paths to and from routers, makes it
even harder to draw strong conclusions about per-hop behavior.

We began our work by observing two little exploited features
in many Internet routers. These features, ICMP timestamps and
IP identifier counters, return remote timing and ordering informa-
tion. Leveraging this support, we designed and built tulip, a tool
to diagnose reordering, loss, and queuing along Internet paths. We
validate tulip’s correctness using a combination of end-to-end and
internal consistency measurements. We find that it is able to local-
ize problems even with today’s incomplete deployment of ICMP
timestamps and IP identifier counters. On most paths we mea-
sured, tulip narrows the location of reordering and loss to within
three hops and queuing to within four hops. Based on these initial
tests, we have started using tulip to diagnose operational network
problems. That work is at an early stage and is not reported here.

To understand how effective tulip is at pinpointing faults, we
compared it with a promising alternative approach: network to-
mography that infers the location of faults by comparing obser-
vations on overlapping paths taken from multiple vantage points.
While to our knowledge there are no widely available tomography
tools that can diagnose arbitrary paths, the approach is attractive be-
cause it needs no network support and research suggests that such
a tool might be feasible [13, 31, 50]. We found that the diagnosis
granularity of tulip is comparable to that of an idealized tomogra-
phy tool that coordinates measurements across 65 diverse hosts to
localize faults. An implication is that multiple vantage point to-
mography is not essential to diagnose paths in the current Internet.

We are also interested in understanding how the Internet should
evolve to provide support for path diagnosis. There are numerous
proposals for adding measurement support into the Internet, e.g.,
IPMP [23], but to date there has been no theory explaining how
powerful each of the options are, either singly or in combination.
The router features above, while effective in many contexts, are by
themselves incomplete for diagnosing the range of potential prob-
lems in the Internet. To explore this question of completeness, we
develop an architecture that is nearly as powerful as a complete
packet trace at all routers along the path, but is lightweight enough
to be implementable using current technology. The features lever-
aged by tulip can be considered approximations of this architecture,
and by contrasting the two we can reason about the limitations of
tulip. We then propose simple, incremental changes to the Internet
that would further improve the effectiveness of tulip.

We begin the rest of this paper by describing our architecture
in Section 2 to help place the features used by tulip in context.
We next describe tulip in Section 3 and evaluate it in Section 4.
In Section 5 we discuss the limitations of tulip and suggest several
simple changes to the Internet to improve its diagnostic capabilities.
We discuss related work in Section 6 and conclude in Section 7.

2. DIAGNOSIS ARCHITECTURE
In this section we design an architecture that enables users to

diagnose performance faults experienced by their flows. This sup-
port must be scalable, work across multiple organizations, and be
lightweight enough to be part of packet forwarding. Starting with
an ideal support that is complete for our problem but unrealistic, we
progressively reduce it to a level that is practical yet retains much
of the diagnostic ability of the ideal system. The purpose of this ex-
ercise is to document the missing capabilities and so demonstrate
the near completeness of the resulting architecture. In Section 3.1,
we argue that the Internet already supports many of the features of
our architecture, and we show how to leverage this existing support
to build a practical path diagnosis tool.

A B

Input packet
Flow: AB (fid)

Time received
id

Flow: AB (fid)
Output packet
Time sent

id

Figure 1: Illustration of the ideal packet trace approach. The
clouds represent different administrative domains. The path
from A to B traverses the shaded routers. Routers log every
packet at incoming and outgoing interfaces. To diagnose the
path, A can query for these log items to find properties such as
where a packet was lost (the routers before the loss would have
the corresponding log entry, while those after the loss would
not) and the time taken by each link to forward a packet.

2.1 Problem
Our problem setting is shown in Figure 1. Host A is communi-

cating with host B by sending packets that travel along a series of
routers and links, shown as the shaded path. This path crosses mul-
tiple administrative regions, indicated by the clouds. We consider
packets exchanged between A and B that belong to an application
such as a Web server and its client. The collection of packets that
are exchanged is the flow of interest. Note that with Internet routing
a single flow may traverse more than one path, but this is omitted
from the figure for simplicity.

Our goal is to allow A and B to cooperate to find performance
faults that affect their flow, and measure the magnitude and pinpoint
the location of the fault. Intuitively, performance faults are prop-
erties, such as significant reordering, loss, and high delay, that ad-
versely impact applications. These are observable properties rather
than underlying causes such as Ethernet auto-negotiation failures,
congestion, or unreliable links. In our view, once the problem is lo-
calized, the domain administrator can be notified and further privi-
leged debugging can isolate the root cause.

We assume that routers and middleboxes along the path are co-
operative, and do not experience Byzantine failures such as inten-
tionally misreporting diagnostic information.

2.2 An Ideal Trace-based Solution
We begin by considering a hypothetical trace facility, illustrated

in Figure 1. Routers log packet activity and make these traces avail-
able to users. Due to privacy concerns, users can only access traces
for packets that belong to their flows. The log at each router is
recorded for both input and output interfaces. It consists of each in-
put packet and its arrival time, each output packet and its send time,
and the linkage between the two packets. The linkage is needed as
packets may be transformed inside network devices such as net-
work address translators (NATs).

The architecture above is impractical for deployment, but it is in-
teresting for framing an argument because it provides an ideal level
of support for path diagnosis. All manner of flow properties can be
estimated for path segments inside the network, including reorder-
ing, duplication, loss, corruption, queuing delay, transformations
(e.g., network address translation), and so forth. This is important
because performance faults depend on the application, and so we
do not have a fixed list of properties of interest. We must therefore

ensure that any architectural support is broadly useful and suffi-
cient even for unanticipated properties. With the path trace, any
noticeable effect on the flow at some point(s) along the path can
be localized by comparing traces taken before and after that point.
Without network support, a pair of hosts can only determine what
happened over the entire path, not where it happened.

2.3 Packet-based Solutions
Architectures for collecting system-wide traces similar to that

outlined above do exist, such as NetFlow [9], SPIE [46], trajectory
sampling [12] and Magpie [5]. Most of these systems use sam-
pling or aggregated trace representation for tractability. However,
before we improve the efficiency of our architecture we make a
fundamental switch from recording information in logs to record-
ing information in packets as they are forwarded. The reason for
this is simple: providing access to traces for many, arbitrary users
requires a significant security infrastructure. We work around this
problem by moving the information from routers to packets, which
are already delivered to the right users. The systems mentioned
above are intended for a few privileged users, or they too would
face this issue.

2.3.1 Complete Embedding
Still in our idealized world, we ignore packet size and efficiency

issues in the switch from an ideal trace to a nearly equivalent em-
bedding of information in packets. Each router along the path
records information into each packet that it forwards. As a packet
is received, the global address of the router input interface and the
time are recorded. As it is sent, the global address of the router
output interface, the time, and the entire content of the input packet
are recorded. Since the end points of the flow cooperate in the
diagnosis, the database consists of the same information and has
simply been inverted. Instead of recording the attributes of every
packet at each router it traverses, we record the attributes of every
traversed router in each packet. This is the reason that an output
packet records the whole input packet.

Barring two exceptions, the scheme above is equivalent to the
path trace. One exception is when packets are lost, as their trace
information is also lost. The second exception is when packets are
corrupted such that the diagnostic information contained in them is
mutated. Fortunately, most corruption events are turned into loss
due to link-level checksums and can be diagnosed similarly (see
below). Corruption that does not lead to loss is a transformation,
discussed in the next section. While it might seem that packet du-
plication is also an exception, the recording of time in the packets
enables us to discover the responsible link or router. The dupli-
cated packets would have the same timestamps before duplication,
and different timestamps after that.

The ability to at least observe the location of loss is valuable
for diagnosis. To restore this we require that routers record a flow
specific counter in the packet, denoting the number of packets pro-
cessed for the flow. Differences in counters received from routers
reveal loss points. For example, if a packet is lost between the sec-
ond and third router, the counters in the next successful packet will
show that the second router processed one more packet for this flow
than the third router.

2.3.2 Reduced Embedding
The complete embedding loses little information compared to

the original trace, but to be practical we must make it more effi-
cient. We first remove the step of embedding the complete input
packet in the output packet; this is obviously prohibitive, causing
the packet to double in size at each hop. The purpose of this em-

bedding was to capture packet transformations. Instead, we assume
that the packets in a flow can be uniquely identified even if they
are transformed. This can be easily accomplished by including a
unique identifier that is not changed by the network. Such an iden-
tifier already exists: the IP identifier that is placed in IP packets
by the sender to assist with packet fragmentation (a transforma-
tion). To locate the transformation point, a sender must also be
able to send packets part way along the path and observe the re-
sult. Borrowing from the Internet again, this can be accomplished
with the time-to-live (TTL) field in packets; TTL is decremented by
routers along the path, and when it reaches zero, in our approach
routers return an error message to the sender that includes the orig-
inal packet.1 The sender can look at the embedded packet to de-
cide if it was transformed before it reached the responding router.
Probes with different initial values of TTL can be used to locate the
point of transformation. This approach requires that all routers on
the return path, including the transformer, forward the error mes-
sage without modification.

We further reduce the overhead by recording information only at
the input interface. Output interface information can often be in-
ferred from the next input interface information. For example, the
output timestamp is the next input timestamp minus the fixed prop-
agation delay of the preceding link. The link propagation delay
can be estimated using a series of input timestamp measurements
at the two ends [18]. Even when we cannot approximate the output
information, the net effect is to reduce the resolution of diagno-
sis by lumping together all components between consecutive input
recording points.

At this point routers along the path are recording input interface
identifier, arrival time, and flow counter in the packet. The first
two of these can be obtained with the IP options for Record Route
and Internet Timestamp (with flags 0 or 1) [40]. However, by de-
sign these options can return information for only the first few hops
along the path.

2.3.3 Constant Space Embedding
The reduced embedding suffers from the problem that the packet

size is variable as it depends on the path length. This is undesirable
because of packet fragmentation issues [20]. To remedy this prob-
lem and further reduce the packet size, we select only one router
along the path to record the input information. This is similar to
the IP Internet Timestamp option with flag 3, but includes more
complete information. In our architecture, the router is selected
with another TTL field, the sample TTL, which is set by the sender
and counts down until a sample is taken. This moves us to a sys-
tem in which information is sampled and results are inferred using
statistical methods, which is comparable to other traffic monitoring
systems [9, 14, 45]. The assumption here is that path properties are
stationary enough to be measured [55].

However, sampling paths introduces another complication – paths
can change. While we can discover the path between the two hosts
(using either TTL field) and then sample it, these steps are not
atomic. There is no guarantee that the samples will correspond
to the same path. We need to detect path changes to avoid mixing
samples from different paths. We solve this problem using a fixed
size field to record the path signature. Routers add their identity
into the field using a simple operation, e.g., a Bloom filter insertion
using an OR operation [52]. With high probability, depending on
the number of bits in this field, hosts can now detect route changes.

1TTL is somewhat of a misnomer, as it reflects hop-count rather
than time. TTL-expired responses in the current Internet include
the header of the original packet, not the whole packet.

Field Purpose

Path signature Records path information
Sample TTL Selects the sampling router
Timestamp Time at the sampling router
Counter Flow counter from the sampling router
Interface Id Interface address of the sampling router

Table 1: Packet header fields in our architecture.

2.3.4 Real clocks
As a final simplification, we remove the requirement of ideal

clocks. Real clocks may not be synchronized with true time. For-
tunately, an unsynchronized clock that runs at a stable rate (over
short periods of time) is both simple to implement – a glorified
cycle counter – and sufficient to measure delay variation, an impor-
tant diagnostic property because it corresponds to queuing. While
it might seem that synchronized clocks would be better, they are
not suitable for measurement tasks because the resynchronization
process, if invisible to endpoints, can cause large swings in packet
timings [34].

Another limitation of real clocks is that they have finite precision,
limiting the granularity with which we can obtain packet timings.
Finite precision clocks lose ordering information too, if two pack-
ets receive the same timestamp, but per-flow counters preserve that
information in our architecture.

2.4 An Architecture
At this point, we have a sketch of a simple architecture enabling

unprivileged users to diagnose their paths. The fixed-size fields, in
addition to those already present in IP, needed in our architecture
are shown in Table 1.

Compared to the ideal trace facility presented earlier, this is a
vastly simplified architecture which possesses a surprisingly sim-
ilar diagnostic ability. Briefly, the key limitations are that mea-
surement is statistical and relies on sampling and stationarity of
path properties (as do practical trace systems), that only relative
rather than absolute one-way delays can be inferred, and that locat-
ing transformation points requires a TTL-driven search.

3. DIAGNOSIS TOOLS
We now switch our focus from architectural support to practical

tools for performing path diagnosis. In Section 3.1 we show how
some key primitives of our architecture can be approximated in the
Internet. In the remainder of this section we use these approximate
primitives to develop tulip.

3.1 Internet Approximations
We use the following Internet mechanisms that approximate the

packet embedding mechanisms sketched in the last section:

1. Out-of-band measurement probes: We approximate the in-
band sampling of our architecture with out-of-band probes to
routers. These probes serve the purpose of both the sam-
ple TTL and interface identifier (obtained from the router
address in the probe response) of our architecture. In-band
probes ensure that the measured behavior matches that of the
application; out-of-band probes have the fundamental limi-
tation that if measurement traffic is treated differently than
application traffic, our tools may not diagnose network faults
properly. We restrict ourselves to probes that traverse the
same path as application traffic. This is usually true for TTL-

R1 R2 R3A B

Figure 2: Inferring link properties from path properties. The
properties of link R2→R3 can be estimated by subtracting the
measured properties of path A→R2 from those of path A→R3.

limited probes that are addressed to the destination, but some
of our probes are addressed directly to the routers along the
path. We use traceroute to verify that the path taken by a
probe is a prefix of the path to the destination; this may not
be the case when directly addressing routers due to policy
routing.

2. ICMP timestamp requests to access time at the router:
We approximate the router timestamps in our architecture us-
ing ICMP timestamp requests [39]. Alternatively, we could
have used the IP Internet Timestamp option, but packets with
options often travel through the network more slowly [7]. In
response to an ICMP timestamp request, the router returns
its local time with a resolution up to 1 ms. We found this fea-
ture to be accessible in over 90% of the routers we measured.
This result agrees with that of Anagnostakis et al. [2], but we
also found that exceptions are systematic. For instance, none
of AT&T’s routers support ICMP timestamps.

3. IP identifiers instead of per-flow counters: All IP pack-
ets include an identifier (IP-ID) field, designed to be unique
among all packets sent by a machine to the same destination,
to allow IP fragments to be re-assembled. A common imple-
mentation on routers uses a 16-bit counter, incremented with
every generated packet. Routers generate packets, and thus
increment their counter, for routing updates, TTL-expiration
replies, and other management traffic; the counter is not in-
cremented during normal packet forwarding. Over 70% of
the routers we measured implement the IP-ID using a counter.
Because routers do not source much traffic, the counter can
allow us to discover the order and number of probe pack-
ets that reach the router, at least over a short duration if no
other probe or management packets intervene. Thus, the IP-
ID field approximates the per-flow counter described in our
architecture. In Section 5.3 we discuss a small change to the
IP-ID counter implementation to allow for interleaved probes
along multiple flows.

These approximations enable the Internet to mimic some of the
key features of our architecture. We next describe how tulip lever-
ages these features for path diagnosis in the Internet. In Section 5
we discuss the limitations of these approximations and provide some
solutions to address them.

3.2 Building Blocks
We focus on diagnosing packet reordering, loss, and queuing de-

lay. These three properties directly influence the performance of
transport protocols and applications. For instance, the performance
of TCP is sensitive to even small amounts of loss [29]. It also suf-
fers when more than a few packets are received out of order [49].
A high queuing delay is indicative of congestion, believed to be
the source of most losses in the Internet. A variable queuing delay
leads to jitter, which can hurt the performance of interactive appli-
cations. Obviously, these are not the only metrics worth measuring
in a diagnostic tool; they are meant to be both practically useful

id

id+x
id

id+x
id+x

id
id+x

id

Reordering

Forward +
Reverse

Reordering
Reverse

Reordering
Forward

Reordering
No

(a) (b) (c) (d)

Figure 3: Detecting forward and reverse path reordering. The
router must insert sequential IP-IDs in its responses.

and illustrative of the capabilities of our approach. We plan to add
support for pinpointing other properties, such as checksum errors
and bandwidth limits [19].

For reordering, loss, and queuing delay, locating the fault point
requires inferring the properties of individual links. Since we can-
not measure these directly, we instead compare measurements of
the forward paths to the two ends of the link, as illustrated in Fig-
ure 2. Thus, in each case, we need an accurate way to measure
the path to each router between the source and destination. The re-
mainder of this section considers how to measure these prefix paths
for each metric of interest.

3.2.1 Packet Reordering
Measuring forward path packet reordering requires information

about the order in which two packets reach the remote router. This
can be obtained using IP-IDs. Our technique, illustrated in Fig-
ure 3, sends two probes to the router. Each probe elicits a reply;
we can distinguish the replies because they include the header of
the probe that triggered them. When there is no reordering in ei-
ther direction (Figure 3a), we receive the responses in order and
the second probe evokes a higher IP-ID. With only forward path
reordering (Figure 3b), the second probe evokes a lower IP-ID and
its response reaches the source first. With only reverse path reorder-
ing (Figure 3c), the first probe evokes a lower IP-ID but its response
reaches the source second. Concurrent bidirectional reordering has
a signature of its own (Figure 3d).2 Our approach is an adaptation
of the dual-connection test of sting [6]. Sting targets end hosts run-
ning TCP-based servers at well-known ports; our technique can be
used with routers as well as hosts.

The extent of reordering, or the reordering rate, is simply the
number of reordered probe pairs divided by the number of probe
pairs for which both responses are received. We discard probe pairs
for which either of the two probes or their replies are lost.

3.2.2 Packet Loss
We next consider the problem of determining whether the for-

ward path to a router is lossy. We use IP-IDs for this measurement
as well. Our technique is illustrated in Figure 4. We send three
probes to the router: the middle probe is a data packet, and the
other two are control packets. The source receives all three re-
sponses when there are no losses in either direction. If the data
packet is lost on the forward path and the control packets arrive at
the router close enough in time to evoke consecutive IP-IDs, the
source sees the response pattern in Figure 4b, and knows that the
packet was lost in the forward direction.
2A trivial extension of this method can detect forward and reverse
path packet duplication with equal IP-ID values.

Forward
Loss

Forward
Loss

Reverse
Loss

(c)

Loss
No

(a) (b) (d)

id+x

id+y

id id id

id+x
id+x

id

id+1

Figure 4: Detecting forward path loss. Consecutive IP-IDs in
the control responses, as in (b), implies a forward path loss.
Events (c) and (d) are indistinguishable at the source.

Receipt of non-consecutive IP-IDs in the control responses is not
a reliable indicator of the direction of the data loss. This behavior
can stem from either of the two events – indistinguishable at the
source – in Figures 4c and 4d. If it could be known with relative
certainty that consecutive IP-IDs were evoked, for example, if the
router uses per-flow IP-ID counters, then the separation of the con-
trol response IP-IDs by two implies a reverse path loss.

It is not possible to infer the direction of data loss when a control
packet or its response is lost.

Our loss detection mechanism has three requirements. First, the
control packets should be preserved even when the data packet is
lost. Fortunately, this tends to occur, despite possible bursty losses,
when the data packets are large (which is usually true except for
voice applications) and the control packets are small. This is be-
cause routers are more likely to drop large packets, perhaps due to
the lack of buffer space. We tested this hypothesis using 40-byte
control packets and 1000-byte data packets. We sent 500 probe
triplets each to 5000 IP addresses chosen randomly from the Skit-
ter list [17]. In over 60% of the cases when any packet in the triplet
was lost, only the data packet was lost. With equal sized packets,
the same statistic was 12% for 40-byte triplets and 5% for 1000-
byte triplets.

Second, the probes should arrive at the router in order and close
enough in time to evoke consecutive IP-IDs. We can reduce re-
ordering while mostly retaining consecutive IP-IDs by introducing
a small inter-packet spacing. The reordering probability is higher
when a small packet is followed by a large packet (see Section 5.1),
as is the case for our second and third probes. So we use an inter-
packet spacing of 0.5 ms between the first and second packets,
and 3 ms between the second and third packets. Measurements to
over 5000 routers that generate sequential IP-IDs show that we can
evoke consecutive IP-IDs at least 80% of the time from over 90%
of the routers.3 These results are not very sensitive to the exact
inter-packet spacing.

Third, rate-limiting of responses at routers should not be inter-
preted as path losses. The misinterpretation would happen if the
response to only the data packet is suppressed due to rate-limiting.
To detect such rate-limiting, we experimented with the insertion of
a 1000-byte check packet after the data packet. The check packet
takes the same path to the measured router but goes beyond it. For
path losses, there will be a correlation between the data and check
packet losses. In a rate-limiting scenario, the check packet will tend

3Some routers appear to increment IP-IDs by two instead of
one. Currently, tulip considers such routers as generating non-
consecutive IP-IDs. We also found that some routers return an
IP-ID of zero for 1000-byte probes while returning sequentially in-
creasing IP-IDs for 40-byte (traceroute-like) probes.

0 100 200 300

time (seconds)

0

100

200

300

m
ea

su
re

d
R

T
T

 (
m

s)

Figure 5: An example of the measured round trip times (RTT)
to a router. An ICMP timestamp request was sent every 100 ms
for 400 seconds. One-way delays showed a similar effect.

to survive even when the response to the data packet is suppressed.
We used this technique early on in our experiments, but found that
it is not needed in practice. Responses to closely following con-
trol packets are suppressed as well whenever there is rate-limiting.
A consequence is that our three-packet methodology is useful even
without sequential IP-IDs. It can measure round trip loss to a router
by considering only data losses; a single packet mechanism cannot
distinguish between rate-limiting and path losses. To minimize net-
work load, we used only the three packet methodology (without the
check probe) in the experiments presented in this paper.

We use simple definitions to compute the loss rate. The forward
loss rate is the number of triplets with the forward loss IP-ID pattern
(Figure 4b) divided by the total number of triplets sent. For the
round trip loss rate we ignore the IP-ID values; it is calculated as
the number of triplets with only data loss divided by the number of
triplets sent. Both these measures underestimate the loss rate when
a control loss accompanies the data loss.

3.2.3 Packet Queuing
We next discuss how to measure packet queuing delay on the

forward path to a router. Measuring one-way delay requires knowl-
edge of the time at which the packet arrives at the other end. For
this purpose, we use ICMP timestamps as recently suggested by
Anagnostakis et al. [2]. Our methodology is similar but for the two
practical problems mentioned below. The response to an ICMP
timestamp request contains the local time when the probe arrived
at the router.4 However, with unsynchronized clocks and an un-
known propagation delay, we cannot measure the queuing delay
directly. In the absence of route changes, the propagation delay is
constant, and any transit time variation is due to queuing. Assum-
ing that some of the probes will observe no queuing, we can obtain
the queuing delay for a probe by subtracting the minimum observed
transit time from its transit time [18].

The mechanism above assumes that the difference between the
two clocks remains constant for the duration of the measurement.
This assumption is violated in the presence of relative clock skew
(the difference in the rate at which the clocks progress) or clock
jumps. These behaviors can be corrected at the source by calibrat-
ing the time returned by the router [27, 36, 53]. For this purpose,
we use fixclock [42], which is robust to congestion and non-linear
clock behavior such as jumps and changes in the rate of progress.

4A small fraction of routers seem to insert garbage in the timestamp
field. It is easy to filter them out as their timestamps do not progress
as expected. Some routers insert timestamps in the wrong byte
order, which we detect and correct.

Property Conditions

Reordering Sequential IP-IDs in TTL-expired responses; or
and loss prefix path and sequential IP-IDs in either

Port-Unreachable or ICMP echo responses
Queuing Prefix path and ICMP timestamp support

Table 2: Conditions that must be satisfied by a measurable
router on the path. Port-Unreachable responses are generated
in reply to probes targeted at a closed port at the router. Prefix
path holds when the path for a packet addressed to the router
is a prefix of the path to the destination.

Two practical problems remain. First, the time reported by the
routers includes the time to generate the ICMP timestamp response.
The ICMP specification includes timestamps for both request ar-
rival and response transmission. But in practice routers insert just
one timestamp. While other researchers have shown that the time to
generate ICMP responses is minimal most of the time [2, 16], we
discovered that the deviations from the minimal generation time
are systematic. Periodically, the time a router takes to generate an
ICMP response increases from a negligible amount to 100-300 ms.
These jumps typically occur every sixty seconds, suggesting that
the underlying cause of this behavior is periodic maintenance ac-
tivity at the router [32].5 An example of such behavior is shown
in Figure 5. We found a similar pattern for many routers, and for
all kinds of responses that a router might generate, including ICMP
echo, TTL-expired, and Port-Unreachable. This behavior is a mea-
surement artifact – traffic traversing the router is not delayed.

We account for this behavior by spreading our measurements
over a period longer than the maintenance window and by using
a queuing delay metric that is robust to outliers. Within these con-
straints, applications are free to pick a delay metric that matters to
them. In our experiments we use the median; a high median delay
indicates persistent queuing at the router.

The second practical problem is that certain network elements,
such as cable modems and wireless links, may introduce large de-
lays due to arbitration for media access. If unaccounted for, these
devices will always appear to have a high queuing delay. The differ-
ence between such delays and queuing may not matter to certain ap-
plications, for instance, those interested only in jitter. Applications
interested only in queuing can flag such elements by sending back-
to-back probes; if the experienced delay is dominated by queuing,
both probes would suffer similar delays. We have not tested this
methodology widely across various shared media devices, but in
initial tests it was successful with 802.11 wireless links.

3.3 Tulip
In this section we present tulip, which uses the building blocks

above to localize performance faults. It takes the destination as in-
put and identifies the faulty segment along the forward path. Equiv-
alently, tulip can be used at the destination to locate problems on
the reverse path. Tulip is publicly available [51] and built on top of
Scriptroute, a flexible Internet measurement infrastructure [48].

Tulip starts by discovering the path to the destination using trace-
route and identifying the measurable routers along it. Measurable
routers are those that support the forward path diagnosis primitives
summarized in Table 2. Some routers do not produce sequential IP-
IDs for the TTL-expired responses, but do so for other responses.
We use whichever probe type evokes sequential IP-IDs.

5This behavior is colloquially called a “coffee-break” and most
likely occurs when routers push forwarding tables to the line cards.

In the next step, based on a user option, tulip conducts a parallel
or binary search. Parallel search interleaves measurements to dif-
ferent routers by cycling through them in rounds. A measurement
entails executing the building block of the relevant property, for
instance, two probes for reordering. A round consists of one mea-
surement to each router. To control the network load, a router is
measured after the measurement to the previous router completes.
After a configurable number of rounds (M) with a configurable wait
time (W) between the start of consecutive rounds, tulip outputs the
performance statistics, e.g., the reordering rate, for paths to all mea-
sured routers. The faulty path segment will have a non-faulty near
end and a faulty far end.

Binary search reduces diagnostic traffic at the cost of increased
diagnosis time. It first measures to the destination, and stops if the
path is fault-free. Otherwise, it searches the path by measuring to
the midpoint, recursively focusing on whichever half exhibits the
problem.

Both search modes identify the faulty path segment, surrounded
by measurable routers. Optionally, tulip can further localize faults
through round trip probing because that does not require sequential
IP-IDs or ICMP timestamps, and can rule out faults from some
hops. For example, if the round trip to the third router in a four-hop
faulty segment is fault-free, the fault must be after that router.

3.3.1 Network Load and Diagnosis Time
The network load and diagnosis time of tulip depends on the

search mode and the number of measurements per router. Assume
that M measurements of B bytes each are used, wait time is W
seconds, and the number of measurable routers is L. Then, the
bandwidth requirement is at most BL

W
Bps (bytes per second) for

parallel search, and B
W

Bps for binary search. These values over-
estimate the bandwidth requirement when the round trip time to
routers is large, such that a round cannot be finished in W seconds.
Binary search uses less bandwidth but is log2(L) times slower than
parallel search.

For the experiments in the paper, we used M=200, B=80, W=1
for reordering, M=500, B=1080, W=1 for loss, and M=1000,
B=40, W=0.5 for delay. We used more measurements for loss
than for reordering because it is rarer. For delay, M has to be large
enough to calibrate clocks [42]. The number of measurable routers
(L) on most paths is less than 10. These numbers translate to a
parallel search bandwidth requirement of 800 Bps for reordering
and delay, and 10,800 Bps for loss. For binary search, the require-
ment is 80 Bps and 1080 Bps respectively. The diagnosis time is
approximately 10 and 30 minutes per path.

The bandwidth requirement of parallel search (or equivalently,
the time for binary search) can be decreased using some simple
modifications. The first few hops can be skipped if they are known
to be fault-free; for instance, when they are being used by other
flows without problems. Probing to some routers can be aborted
early if it can be determined that they are fault-free. Depending
on the magnitude of the fault, fewer than M measurements may
be needed to rule out a particular router, while more are needed to
confirm the identity of the faulty segment.

3.4 Diagnostic Process
We envision tulip being used in two contexts. First, an end user

might notice that network performance is particularly slow to some
destination. Since the problem could be due to misconfiguration at
the end host (e.g., too small a TCP receive window) the user could
use existing tools to rule in or out those effects [4, 30]. If network
performance is to blame, tulip could be invoked to isolate where
along the path attention should be focused.

Some network administrators, particularly those at popular web
sites, actively monitor their networks for anomalous behavior by
tracing incoming and outgoing packets. For example, packet traces
can be used to detect changes in loss rates, reordering, and round
trip times between any two hosts [28, 54]. Tulip could then be
used to focus in on the source of the problem. This allows for
faster detection and repair of problems, especially those that are
significant yet too small for any single end user to notice.

Integration with a trace analysis tool would also enable tulip to
closely match application behavior. As we point out in Section 5.1,
ideally in the future, measurement probes would be automatically
carried in application packets, so that the behavior being measured
is the same as that being diagnosed. Given that tulip uses out-of-
band probes, the basic techniques outlined in Section 3.2 can be
adjusted to track the patterns eliciting the anomalous behavior. For
instance, more than two probes can be sent for reordering mea-
surements if the application usually generates multi-packet bursts,
the probe packet size can be chosen to be the same as the appli-
cation’s, or an ICMP timestamp request can tailgate [21] an ap-
plication packet to deduce the delay suffered by it. The number
of measurements (M) can also be guided by the magnitude of the
passively measured fault.

4. EVALUATION
In this section we evaluate tulip’s applicability and validate its

correctness. While we have begun to use tulip on operational net-
work problems, that work is only just beginning and is not reported
here. Instead we argue for tulip’s utility through two evaluations.
First, in Section 4.1 we measure the diagnosis granularity possible
with tulip in the current Internet. Second, in Section 4.2 we verify
that tulip’s inferences for reordering, loss, and queuing are correct.
We are able to find and locate all three properties in the wild.

We show the results from two additional experiments. In Sec-
tion 4.3 we study the location of loss and queuing delay in aggre-
gate, showing that these properties tend to cluster close to the des-
tinations for the paths we measured. In Section 4.4 we show that
network faults are persistent enough to make tulip’s binary search
a viable strategy. Full characterization of faults and their location
in the Internet has been left for future work.

We conducted our experiments from three geographically di-
verse sources – the University of Washington, the Massachusetts
Institute of Technology, and a hosting site in London, United King-
dom. We obtained similar results from all three sources, and present
only aggregated results in the paper. The destinations in our exper-
iments were randomly selected from over 400,000 IP addresses in
the Skitter list [17]. Skitter is an attempt to map the entire Internet,
and the addresses in this list span all parts of the network. While
not all of these addresses represent hosts, the vast majority repre-
sent entities (routers or hosts) at the edge of the network. Unless
otherwise stated, the destinations were chosen independently for
each experiment and for each source within the experiment. Of
course, our results are valid only for the paths we measured; other
source-destination pairs may have different behavior.

4.1 Diagnosis Granularity
In this section we measure tulip’s potential for diagnostic preci-

sion in the current Internet, by examining how many routers along
each path support tulip’s forward path measurement probes.

Tulip partitions a path into diagnosable segments by identifying
the measurable routers along it. The diagnosis granularity of a net-
work path is the weighted average of the lengths of its diagnosable
segments, representing the expected precision if a random link in
the path were faulty. For example, if a 10-hop path has two diag-

0 10 20 30

number of hops

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 o
f

pa
th

s

Loss granularity
Queuing granularity
Path length

Figure 6: Diagnosis granularity of tulip for the measured paths.
The x-axis is the diagnosis granularity or path length. The y-
axis is the cumulative fraction of measured paths.

nosable segments of length 4 and 6, the granularity of the path is
5.2. In a perfectly diagnosable path, the length of each diagnosable
segment, and the granularity of the path itself, would be one.

Figure 6 shows the diagnosis granularity for loss and queuing,
compared to the overall path length, as a cumulative distribution
function (CDF) for the paths we measured. This graph was plotted
using paths from each source to more than 2000 randomly cho-
sen destinations that responded to our traceroute probes. Since we
cannot ascertain the path length for unresponsive destinations, they
were not considered in the analysis. Only routers that return con-
secutive IP-IDs at least 80% of the time were considered measur-
able for loss. The campus networks of two of our three sources
load balance traffic internally, such that the prefix path property
holds for some routers when considering only the path beyond the
campus but not the part of the path within it. We considered such
off-campus routers as measurable in this analysis.

Even with today’s partial deployment of features used by tulip,
useful diagnosis granularity is achieved. For loss, 50% of the paths
have a granularity of less than three hops, and 75% of them have a
granularity of less than four hops. For queuing delay, 35% of the
paths have a granularity of less than three hops, and 50% of them
have a granularity of less than four hops. The median number of
diagnosable segments in a path (not shown) is nine for loss and six
for queuing delay. The granularity for reordering (not shown) is
slightly better than that for loss since it only requires that a router
return monotonically increasing IP-IDs (may not be consecutive).

The diagnosis granularity for queuing delay is coarser than that
for loss even though the support for ICMP timestamps (90%) in
the current Internet is more than that for sequential IP-IDs (70%).
Since ICMP timestamp requests are addressed to the router directly,
they cannot be used when the prefix path property does not hold.
In contrast, when diagnosing loss, we can use TTL-limited probes
for 75% of the routers. These probes usually take a prefix path.

We believe that we can improve the diagnosis granularity of tulip
in two ways. First, round trip measurements described in Sec-
tion 3.3 can be used to rule out the presence of faults in some of
the hops in the faulty segment. Second, a segment surrounded by
two routers r1 (near) and r2 (far), that do not satisfy the prefix path
property but support the necessary basic primitive (IP-IDs or times-
tamps), is diagnosable if the path to r2 includes the path to r1 and
the part between r1 and r2 is part of the end-to-end path [2]. We
have not yet quantitatively evaluated these extensions.

0 10 20 30

number of hops

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 o
f

pa
th

s

Tulip (loss)
Tomography (PlanetLab)
Tulip (queuing)

Figure 7: Comparison of diagnosis granularity of tulip with
that of an idealized tomography system using PlanetLab. All
curves represent the CDFs of the measured paths.

4.1.1 Multiple Vantage Point Approach
We next compare the diagnosis granularity of tulip to that of a

hypothetical tomography tool that would infer the fault location by
measuring overlapping paths from multiple vantage points. As-
suming that faults are rare, problems can be isolated by looking for
common elements among those paths that exhibit faults.

We are not aware of any practical tomography tool to diagnose
arbitrary paths in the Internet, but research suggests that such an
approach might be feasible [13, 31]. Assuming that it is, we com-
puted the diagnosis granularity of a hypothetical tool that uses all
of the 65 PlanetLab [38] sites as vantage points to diagnose a given
path. We traced from the source to all of the vantage points, and
from all of the vantage points to the destination. These traces at-
tached to the path between the source and the destination at various
routers that partition the path into diagnosable segments. The di-
agnosis granularity of the path is then computed as for tulip. This
methodology provides an upper bound for the precision of a real
tomography tool, since the paths to and from the vantage points
also traverse parts of the network not shared by the path being di-
agnosed. If those other parts of the network also exhibit faults, the
ability to localize the fault along the given path could be impaired.

Figure 7 shows the results for the same set of sources and des-
tinations as Figure 6. For the paths we measured, our data shows
that the diagnosis granularity of tulip is similar to that of our hypo-
thetical tomography tool, even though the latter uses many hosts to
diagnose each path.

An interesting line for future research would be to combine the
direct measurement techniques of tulip with tomography data. For
example, it may be possible to improve tulip’s granularity by mea-
suring to routers or hosts that are just off the path between the
source and destination, chosen so that the paths diverge in the mid-
dle of a diagnosable segment (at an otherwise unmeasurable router).
Such an approach would need highly accurate topology informa-
tion [17, 47] to identify candidate measurement targets.

4.2 Validation
In this section we evaluate the accuracy of tulip in measuring

reordering, loss, and queuing along Internet paths. Recall from
Figure 2 that accurate measurement of forward path to routers is a
key building block for tulip; we localize faults by comparing mea-
surements of the near and far ends of each diagnosable segment.

We verified tulip’s correctness in four steps. First, we considered
tulip’s accuracy in measuring an end-to-end path where we con-

trolled both end points. In this case, we could precisely measure
the amount of reordering, loss, and queuing using packet traces.
We then compared these direct measurements with those gathered
by tulip using IP-IDs and ICMP timestamps. For this evaluation we
used paths from each source to 65 PlanetLab hosts that were spread
over different sites, and found that tulip’s results agreed with the
packet trace in all cases. This showed that tulip is accurate, at least
when measuring the end-to-end paths to those hosts.

We next evaluated tulip’s accuracy while measuring end-to-end
reordering and loss on paths to arbitrary hosts. For this, we com-
pared tulip’s results with those of sting [6, 43], a tool to measure
one-way reordering and loss. We used sting’s single-connection re-
ordering test for comparison since its methodology is significantly
different from that of tulip. Quantitatively comparing the two tools
is complicated because they use different patterns of probes; even
different types of tests within sting measure different reordering
rates [6]. However, we found that sting and tulip generally agreed
on the presence or absence of loss and reordering along the one-
way paths from our sources to randomly sampled destinations. Due
to space constraints, we omit the detailed results of this evaluation.

Third, we evaluated the internal consistency of tulip’s inferences.
Without privileged access to routers, we cannot directly verify the
accuracy of tulip when working with routers. But if tulip is mea-
suring the property (reordering, loss, or queuing delay) correctly
and not getting confused by router idiosyncrasies, the extent of the
measured property should not decrease as we move further along
the path. The above validations considered only hosts; this evalua-
tion was intended to show that tulip works well with the behaviors
of deployed routers.

Finally, we considered tulip’s hop-by-hop measurements on paths
to 65 PlanetLab hosts. We found that the hop-by-hop data to in-
termediate routers along these paths was consistent with the data
collected at the end points using packet traces. Due to space con-
straints, we also omit the detailed results for this portion of the
validation; instead, we present detailed results only for the first and
third validation steps.

4.2.1 Reordering
In this section we verify the correctness of tulip’s reordering

measurements. We measured reordering using 200 probe pairs.
End-to-end correctness We first evaluated tulip using Plan-

etLab. Concurrently with tulip, we ran tcpdump on the remote end.
For every pair of probes, the tcpdump trace provided an authorita-
tive answer as to whether there was reordering. We measured paths
from each source to 65 hosts spread over distinct sites. Approx-
imately 20% of the paths had non-zero reordering. For each pair
of probes, we compared tulip’s inference with that obtained using
tcpdump. We found the two inferences to always be in agreement.

Internal consistency We next evaluated the hop-by-hop con-
sistency of tulip’s reordering measurements. If tulip’s inferences
are correct, the reordering rate should not decrease as we move fur-
ther into the path (at least for the modest amounts of reordering
we observe on most paths). We verified this by using tulip in the
parallel search mode, which gave us the measured reordering rate
at the two ends of each diagnosable segment in the path. We then
computed the reordering rate delta for each segment, which is the
rate at the far end minus that at the near end. For the tool to be
consistent (and correct), these deltas should be non-negative.

Figure 8a shows the CDF for all forward path reordering rate
deltas, plotted using data from each source to 2000 destinations. It
shows that forward path reordering measurements were consistent,
with 85% of the deltas being non-negative. Some negative deltas
arose from the statistical nature of the measurement. For example,

-0.4 -0.2 -0.0 0.2 0.4

reordering rate delta

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 o
f

pa
th

 s
eg

m
en

ts

(a) forward path

-0.4 -0.2 -0.0 0.2 0.4

reordering rate delta

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 o
f

pa
th

 s
eg

m
en

ts

(b) round trip

Figure 8: The CDF of reordering rate deltas for forward path
and round trip measurements.

even when we measured to the same router using two sets of 200
measurements each, one set had 15 (7.5%) reordered samples and
the other had 20 (10%).

We computed the fraction of negative deltas that were not statis-
tically significant. We assumed that the reordering measurements
are independent binomial experiments and used the Chi-squared
test for proportions [25]. For cases where the reordering rate was
too low to use the Chi-squared test (the test has minimum sample
size constraints based on the frequency of the underlying process),
we used the more conservative exact binomial test. We tested the
null hypothesis that the difference can be considered the result of
a statistical variation. With a 95% confidence interval 80% of the
negative deltas were not statistically significant, and with a 99%
confidence interval 90% of them were not statistically significant.

Currently, we do not have an explanation for the remaining statis-
tically significant negative deltas; possibilities include undetected
path variations, probes being reordered more than once, and the
nature of the reordering process. An example negative delta (15-
33, at the fourth segment) rejected by our test was part of a path
with 0, 0, 24, 33, 15, 18, and 20 reordered samples to successive
routers.

The fraction of paths in which reordering observed at an earlier
hop disappeared later in the path was less than 5%, and predomi-
nantly consisted of paths with a low overall reordering rate.

For comparison, Figure 8b shows the CDF of round trip reorder-
ing rate deltas. The same probes we used for measuring one-way
reordering can be used to determine round trip reordering. Note
that because of route asymmetry, the return path from adjacent
routers may be different. There are visibly more (25%) negative
deltas in round trip measurements, presumably caused by uncon-
trolled variability along the reverse path. This implies that relying
on round trip measurements would be less accurate than tulip in lo-
cating reordering problems. Roughly half of these negative deltas
were statistically significant with a 99% confidence interval.

4.2.2 Loss
In this section we evaluate the accuracy of tulip’s loss measure-

ments. We measured loss using 500 probe triplets.
End-to-end correctness We first evaluated tulip’s loss mea-

surements using PlanetLab. This experiment is similar to that for
reordering and used tcpdump. We measured paths from each source
to 65 PlanetLab hosts. Approximately 7% of the paths showed non-
zero loss. In all instances where tulip reported forward loss, tcp-
dump showed that loss. PlanetLab hosts have per-flow IP-ID coun-
ters (more precisely, one per remote host they converse with), so
tulip never confused forward and reverse path loss. They also rate-

-0.04 -0.02 0.00 0.02 0.04

loss rate delta

0.0

0.2

0.4

0.6

0.8

1.0
fr

ac
ti

on
 o

f
pa

th
 s

eg
m

en
ts

(a) forward path

-0.04 -0.02 0.00 0.02 0.04

loss rate delta

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 o
f

pa
th

 s
eg

m
en

ts
(b) round trip

Figure 9: The CDF of loss rate deltas for forward path and
round trip measurements.

limit probe responses; we lost more responses due to rate-limiting
than due to path losses. Tulip (correctly) did not infer a path loss
in any rate-limiting instance. However, tulip missed roughly 38%
of the data packet losses seen by tcpdump because a control packet
was lost as well. All paths with losses in tcpdump traces had at
least one loss that was detected by tulip.

Internal consistency We next evaluated the hop-by-hop con-
sistency of tulip’s loss measurements. If tulip is measuring loss
correctly, the measured loss rate should not decrease as we move
further into the path. This analysis is similar to the one in the previ-
ous section and used loss rate deltas for diagnosable path segments.

Figure 9a shows the CDF for forward path loss rate deltas, plot-
ted using paths from each source to 2000 destinations. Paths that
showed no loss were excluded. It shows that the forward loss mea-
surements were consistent, with over 85% of deltas being non-
negative. Over 95% of the negative deltas were not statistically
significant (computed using the procedure outlined in the last sec-
tion) with a 95% confidence interval, and all of them were not sta-
tistically significant with a 99% confidence interval.

In less than 3% of the paths, forward loss observed along an
earlier hop disappeared later along the path. Such paths had a very
low loss rate.

Figure 9b shows the CDF of round trip loss rate deltas. Even
round trip loss measurements appear internally consistent. Since
loss often occurs close to the destination (Section 4.3), round trip
loss measurements are confused by path asymmetry to a lesser de-
gree than their reordering counterparts.

4.2.3 Queuing Delay
In this section we evaluate the correctness of tulip’s queuing de-

lay inference. We measured queuing delay using 1000 probes.
End-to-end correctness We first validated the end-to-end cor-

rectness of queuing delay measurement using tcpdump on Planet-
Lab hosts. This experiment evaluated whether there are any inher-
ent limitations in using ICMP timestamps because of their imple-
mentation or because ICMP timestamp requests travel through the
network more slowly. Concurrent with tulip sending ICMP times-
tamp requests, we sent UDP probes to the remote machine. We
compared one-way queuing delay inferred by tulip with that in-
ferred using the tcpdump trace for the UDP probes. We had to
calibrate the timestamps in the tcpdump trace too, even though the
machines were synchronized using NTP (with different servers).

We measured to 65 PlanetLab hosts from each source, and found
that for all of the paths the two median queuing delays were within
2 ms of each other. The small discrepancy arose from the poorer
resolution (1 ms) of the ICMP timestamps.

-20 0 20 40

queuing delta (ms)

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 o
f

pa
th

 s
eg

m
en

ts

(a) forward path

-20 0 20 40

queuing delta (ms)

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 o
f

pa
th

 s
eg

m
en

ts

(b) round trip

Figure 10: The CDF of median queuing delay deltas for for-
ward path and round trip measurements.

0 5 10 15

hops from source

0

10

20

30

m
ed

ia
n

qu
eu

in
g

de
la

y
(m

s)

round trip
forward path

Figure 11: Round trip and forward path median queuing de-
lay for hops along an example path. Using round trip mea-
surements to locate the source of queuing delay would be mis-
leading for this path.

Internal consistency We next validated tulip for its hop-by-
hop consistency. If tulip is measuring queuing delay correctly, the
delay should not decrease as we move further along the path. We
verified this using a methodology similar to the previous two prop-
erties and used deltas for median queuing delay.

Figure 10a shows the results for forward path median queuing
delays for paths from each source to 2000 destinations. Paths with
no queuing delay were excluded. Almost all of the forward median
delay deltas were non-negative, pointing to the consistency of tulip.

Figure 10b shows that the round trip median delay deltas were
relatively less consistent, reflecting the variability in the return path
from the routers. This implies that round trip measurements are
less reliable than tulip for locating points of queuing delay in the
network. Figure 11 shows an example of a path where round trip
measurements would have provided the wrong answer. Round trip
measurements indicated that there was significant queuing between
hops 10 and 14. The forward path measurements showed that the
actual location of the queuing delay was between hops 15 and 17.

4.3 Locating Loss and Delay in the Internet
In this section we examine the average location of loss and delay

inferred by tulip along the paths we measured. While the conven-
tional wisdom is that most loss and delay in the Internet occurs
close to the edges, it has proven difficult for researchers to verify
how frequently this is true [15]. Through its hop-level diagnosis,
tulip facilitates answering such questions.

0 10 20 30

hops to destination

0.0

0.2

0.4

0.6

0.8

1.0
fr

ac
ti

on
 o

f
pa

th
s

(a) loss

minimum
average
maximum

0 10 20 30

hops to destination

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 o
f

pa
th

s
(b) queuing

minimum
average
maximum

Figure 12: Location of loss and queuing delay along measured
paths. The x-axis is the distance from the destination. The y-
axis is the cumulative fraction of measured paths.

Figure 12 shows the location of loss and queuing delay along
the paths to the same 2000 destinations as in Section 4.2. Since all
of our sources are well-connected sites, our results are suggestive
rather than representative of the Internet as a whole. The figure
shows the distance, to the destination, of the first segment with a
non-zero loss rate or more than 5-ms median delay. Since a seg-
ment is usually composed of multiple links, we show three curves
for the minimum, maximum, and average distance to the destina-
tion. For example, if the path is 20 hops long and the first lossy
segment is between hops 15 and 17, the minimum, maximum and
average distance is 3, 5 and 4 hops.

The figure shows that most loss and queuing delay events oc-
curred close to the destination. In roughly 75% of the cases, for
both kinds of properties, the average distance of the problem seg-
ment from the destination was less than five hops.

4.4 Persistence of Faults
In this section we evaluate how successful tulip’s binary search

will be in diagnosing faults in the Internet. Binary search consumes
less network bandwidth, but for it to be effective the fault has to
persist for the duration of the search.

In this experiment we first used parallel search to diagnose paths.
For paths that contained faults, we counted the number of consec-
utive runs of parallel search for which the same fault persisted in
the same segment. For instance, a fault present in runs 1, 2, 4 and
5 persists for 2 runs. For the purposes of this experiment, a fault
is a non-zero loss rate or a median delay of more than 5 ms. Ten
parallel search runs were conducted for each faulty path.

Figure 13 shows the results for loss and queuing. Reordering
is more persistent as it depends on the network topology itself;
loss and delay are primarily functions of load on the network, and
thus are more likely to be transient. Each graph was plotted us-
ing roughly 100 faulty paths from each source, found from a pool
of 1000 destinations. Two curves are shown for loss – paths with
any loss and paths with a loss rate more than 0.5%. The difference
in the curves does not necessarily imply that low loss rates do not
persist. Our definition of persistence is a simple one, based on the
presence in consecutive runs; low loss rates found in one run can
disappear in the next due to statistical variations. Accurately mea-
suring such low loss rates requires more measurements than we
used in this experiment (500).

The figure shows that queuing delays and at least high loss rates
tended to persist for the paths we measured. Over 80% of the paths
with a high loss rate or queuing delay demonstrated the fault for

0 2 4 6 8 10

number of runs

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 o
f

pa
th

s

(a) loss

loss rate > 0
loss rate > 0.005

0 2 4 6 8 10

number of runs

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 o
f

pa
th

s

(b) queuing

Figure 13: Persistence of faults. The x-axis is the number of
parallel search runs for which the fault persisted. Ten paral-
lel search runs were conducted, where each run takes approx-
imately ten minutes. The y-axis is the cumulative fraction of
measured paths.

at least six runs, more than the time binary search would take to
localize the fault on a typical path.

Given that each parallel search run takes approximately 10 min-
utes, these fault persistence results are in broad agreement with
those of Zhang et al. [55].

5. RECOMMENDATIONS
In Section 3.1 we described the Internet router features exploited

by tulip as approximations of the more idealized architecture of
Section 2. That architecture enables an application to sample key
metrics on paths to intermediate routers as part of normal data
transfer (in-band). In this section we discuss the limitations im-
posed by tulip’s use of standard router features, and recommend
several, incremental changes to the Internet infrastructure to over-
come some of them. The limitations of tulip are:

1. Tulip conducts out-of-band measurements by generating its
own traffic to infer path properties. Consequently, its infer-
ence might differ from the application experience. We dis-
cuss this in Section 5.1.

2. Like all Internet path measurement tools, tulip requires the
routing path to be stable. While most Internet routes are
stable for long periods [35], route changes during diagno-
sis should be detected, lest tulip reach an incorrect inference.
Currently, we can use TTLs and router addresses in the re-
sponses as a coarse verification mechanism. We propose a
more robust mechanism in Section 5.2.

3. Tulip’s forward path loss detection relies on the exclusive ac-
cess to the router’s IP-ID counter for the duration of a probe
triplet (not the entire duration of diagnosis). While we found
this to be often true today, it may not be in the future, for in-
stance when many users start using tulip. In Section 5.3 we
propose a simple mechanism to address this concern.

4. There are limitations in the way ICMP timestamps are cur-
rently implemented. We discuss these in Section 5.4.

5.1 In-band vs. Out-of-band Diagnosis
The traffic generated by a measurement tool may not observe

the same network behavior as the application it debugs for several
reasons. First, different protocols (e.g., ICMP probe packets vs.

TCP) may be treated differently by routers and middleboxes. Sec-
ond, different connections may traverse different paths due to load-
balancing among network paths and servers. Finally, variations in
workload (packet size and spacing) may change the observed be-
havior of the network.

We tested the impact of different protocols by measuring loss
rate with three different methods – ICMP echo and TTL-limited
UDP and TCP probes. Similar loss rates were inferred by all three
methods along the 100 lossy paths we measured. This leads us to
believe that most routers at least on these paths do not prioritize
these protocols differently.

We show that an application’s experience depends on the work-
load using two simple experiments with reordering (Section 3.2.2
describes how the loss rate experience differs with the choice of
packet size). In the first experiment, we measured the reordering
rate on a path that was known to reorder packets using all four
combinations of 40- and 1000-byte probes. The reordering rate was
12% with two 40-byte probes, 20% with two 1000-byte probes, 3%
with a 40-byte probe followed by a 1000-byte one, and 93% with a
1000-byte probe followed by a 40-byte one.6 In the second exper-
iment, we sent three types of packet trains: i) six 40-byte probes,
ii) six 1000-byte probes, and iii) a 1000-byte probe followed by
five 40-byte probes. We found that the leading packet arrived at
the destination later than three or more trailing packets 5%, 7%,
and 36% of the time, respectively. The second case represents how
frequently TCP’s loss detection strategy based on three duplicate
acknowledgements would trigger a false positive if data packets
are emitted in a burst.

Potential differences between inference using out-of-band probes
and application experience motivated in-band diagnosis in our ar-
chitecture. These differences are likely to grow as the complex-
ity of the network increases, with differentiated services, traffic
shapers, and many kinds of middleboxes becoming more common.

In the long term it seems worthwhile to evolve the Internet to-
wards in-band diagnosis. In the short term, however, our goal is to
design our tools to mimic application traffic as closely as possible.

5.2 Path Verification
Tulip would like to detect when the path to the router changes.

In our architecture, routers along the path insert their identity in a
Bloom filter field to provide an efficient mechanism for end points
to verify the path taken by the packet. There is no equivalent fa-
cility in the Internet. We propose that one be implemented as an
IP option. If routers do not implement IP option processing in the
fast path, this path recording packet may travel through the network
more slowly. But it would be much cheaper than traceroute in terms
of the number of probes. And unlike traceroute, it can measure the
entire path atomically, and in the presence of flow-based multi-path
routing, probes would take the same network path as application
packets. One detail is that routers must insert their interface address
rather than their loopback address to be robust against cases where
multiple IP-level links exist between two routers. This mechanism
is still vulnerable to path variations below the IP-layer, however. It
is an open research question how best to measure and diagnose the
impact of these changes on application performance.

5.3 IP Identifiers
Forward path loss detection in tulip is less effective in the pres-

ence of competing users of the IP-ID counter. The ideal solution

6Apparently, when a small packet arrives immediately after a large
packet at a router (or link) that reorders packets, the smaller packet
is placed in a shorter queue and finishes transmission earlier than
the large packet [6].

to this problem is a per-flow counter, but this may be prohibitive
for high-speed routers. We propose a light-weight mechanism to
approximate a per-flow counter, analogous to the way stochastic
fairness queuing [26] approximates fair queuing [11]. Let routers
keep a fixed number (N) of counters, where N depends on the
router’s ability. The router selects which counter to use for the re-
sponse IP-ID by hashing the source address in the probe. In the
absence of collisions, this is like a per-flow counter for the probing
host. But since source addresses are hashed, any collision would be
deterministic. To avoid this, both the source address and first 8 bits
of the IP-ID in the probe packet can be hashed, allowing the source
to choose a different counter if consecutive IP-IDs are not received.
Our proposed scheme is completely backward compatible. Routers
in the current Internet are a special case with N = 1.

Even in the absence of the modification proposed above, it is pos-
sible to minimize interference among multiple simultaneous mea-
surements. This involves enhancing tulip with a back-off scheme,
similar to that used in media access protocols, to coordinate access
to the IP-ID counter. On observing a failure to evoke consecutive
IP-IDs, the source waits for a random time interval and tries again.
The average waiting time increases exponentially with each fail-
ure, and the source stops measuring to the router when the back-off
delay goes above a threshold.

5.4 Router Timestamps
In this section we propose three simple changes to the ICMP

timestamp implementation in routers. ICMP timestamps are useful
in estimating queuing delays, but their poor resolution restricts us to
measuring only coarse-grained latency variations. Finer resolution
timestamps would not only allow measuring fine-grained queuing
behavior but would also simplify inferring other properties such as
link capacity [33] and available bandwidth [19].

ICMP timestamp requests have the further problem that the path
to the router may not be a prefix of the path to the destination. This
can be easily overcome if routers embed a timestamp in each TTL-
expired response.

Our final recommendation is simply that ICMP timestamp re-
sponses follow the specification [39] and include times for both
when the request is received and when the response is transmitted,
so that the processing delay can be measured. Currently, routers
insert just one timestamp, usually the latter. The presence of both
timestamps would enable an accurate inference of one-way delays
with fewer measurements as no outlier filtering would be required.

6. RELATED WORK
Our work draws on that of several others. We divide the related

work into three categories.

6.1 Diagnosis Approaches
Two basic approaches for performance diagnosis using system

support are logging and message-marking. In the former, an ac-
tivity log is either maintained by the system elements or is pas-
sively recorded. These logs are then processed to infer the relevant
properties. Examples of this approach are Magpie for performance
modeling in clusters [5], Aguilera et al.’s trace analysis for perfor-
mance debugging in distributed systems [1], and SPIE for identify-
ing the source of a packet in the Internet [46]. Summary logs such
as those collected using Cisco’s NetFlow [9] have proven useful
for network operators to diagnose problems within an administra-
tive domain.

In message-marking approaches, performance parameters are rec-
orded in the messages as they travel through the system. Examples
of this approach are ProfileMe for profiling on out-of-order proces-

sors [10] and IP traceback for tracing the packet source [45]. In
Section 2.3 we argued that message-marking approaches are more
suitable for unprivileged diagnosis in Internet-like environments.
Our proposed architecture follows this approach but differs from
the systems above in both its goals and its mechanisms.

Tomography is yet another approach to diagnosing performance,
but one that requires little system support [8, 13, 31, 50]. It lo-
calizes performance faults by correlating information from multi-
ple overlapping paths. To diagnose a given Internet path, it re-
quires support from cooperating hosts deployed across the network.
We have shown that router support in the current Internet provides
for effective diagnosis, implying that distributed coordinated mea-
surements are not essential to enable users to diagnose their paths.
Future research may show synergies from combining tomography
with direct measurement techniques such as ours.

6.2 Measurement Primitives
Just as we explore minimal network support required for user-

level path diagnosis, Lakshminarayanan et al. present overlay prim-
itives to enable a node to efficiently measure delay, loss, and avail-
able bandwidth on a path between two arbitrary overlay nodes [22].
They propose two primitives – path selection to select the path
through the overlay, and packet replication to replicate packets in-
side the overlay. Although the context of our work is considerably
different from theirs, our use of TTL-expired responses containing
the original packet to localize illegal transformations can be consid-
ered an instance of a more general packet replication mechanism.

IPMP is a proposal to measure one-way delays along Internet
paths [23]. It is similar to our reduced embedding of Section 2.3.2;
routers insert their identity and timestamp as they forward an IPMP
packet (out-of-band). If routers were to process such packets in the
fast path, IPMP would collect meaningful timestamps (representa-
tive of data packets) of all routers in the path using just one packet.
We believe that such a mechanism would be even more useful if
routers also inserted per-flow counters (Section: 5.3) to facilitate
loss inference.

6.3 Measurement Tools
Some diagnosis tools such as ping, traceroute, and pathchar [18]

use round trip measurements; these present a design point different
from tulip’s. The only support they require from the network is that
routers reflect packets back to the source. In theory this allows per-
formance limiting symptoms to be traced to a particular router or
link. In practice there are shortcomings. Such tools cannot separate
the properties of the forward and reverse path to a router, and the
presence of asymmetric routes impairs their diagnostic capability.

Tulip is closely related to tools that measure one-way path prop-
erties using only one end point. Sting measures one-way loss and
reordering to end points running TCP-based servers [6, 43]. Our
reordering measurement methodology is an adaptation of the dual-
connection test of sting. To our knowledge cing was the first tool to
use ICMP timestamps for measuring queuing delays [2]. We solve
two additional practical issues with their use.

7. CONCLUSIONS
In this paper we addressed the problem of letting unprivileged

users diagnose communication path problems in a large, heteroge-
nous, distributed system such as the Internet. We built tulip, a prac-
tical tool to diagnose reordering, loss, and significant queuing de-
lay – three properties that impact application performance. Tulip
leverages ICMP timestamps and IP identifiers to diagnose paths
from the source to arbitrary destinations. We found that even with
today’s partial deployment of these features, tulip can localize re-

ordering and loss within three hops and queuing within four hops
on most paths we measured. This diagnosis granularity is compa-
rable to that of an ideal, hypothetical network tomography tool that
uses 65 diverse hosts to localize faults on a given path.

To explore how the Internet should evolve to provide support
for path diagnosis, we presented a practical, in-band diagnosis ar-
chitecture. This architecture is nearly as powerful as a complete
packet trace at all routers along the path but lightweight enough to
be implemented using current technology. The features exploited
by tulip can be considered approximations of this architecture in
the current Internet.

The Internet approximations used by tulip have their limitations.
We discussed these limitations and proposed simple changes to the
Internet that would facilitate better diagnosis. A key limitation of
tulip, common to all active measurement tools, is that out-of-band
measurements may not agree with the application’s experience if
the network treats measurement packets differently. As complex
network elements such as traffic shapers and load balancers are be-
coming more common, we believe that it would be worthwhile to
evolve the Internet towards an in-band diagnosis architecture.

There are several avenues for extending our work. The most im-
portant one is gathering operational data with tulip; having made
the tool publicly available [51], we hope that users will use it to
diagnose their problems. Second, we would like to extend tulip to
diagnose other path properties and integrate it with passive mea-
surement techniques. Finally, we intend to explore the synergy be-
tween tulip and the multiple vantage point approach: can a practical
tool combine these to further improve the efficacy of diagnosis?

8. ACKNOWLEDGEMENTS
We are grateful to David Andersen for access to the RON nodes,

Kostas Anagnostakis and Raphael Ryger for fixclock, John Bel-
lardo for sting, and CAIDA for the Skitter data. We also thank the
SOSP reviewers for their constructive criticism, and Steve Capell
and Tammy VanDeGrift for their feedback on earlier versions of
this paper. This work was supported in part by Intel Corporation,
Microsoft Research, and DARPA grant F30602-00-2-0565.

9. REFERENCES
[1] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and A. Muthi-

tacharoen. Performance debugging for distributed systems of
black boxes. In SOSP, Oct. 2003.

[2] K. Anagnostakis, M. Greenwald, and R. Ryger. cing: Measur-
ing network-internal delays using only existing infrastructure.
In IEEE INFOCOM, Apr. 2003.

[3] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris.
Resilient overlay networks. In SOSP, Oct. 2001.

[4] P. Barford and M. Crovella. Critical path analysis of TCP
transactions. IEEE/ACM Transactions on Networking, 9(3),
June 2001.

[5] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie:
Online modelling and performance-aware systems. In HotOS-
IX, May 2003.

[6] J. Bellardo and S. Savage. Measuring packet reordering.
In ACM SIGCOMM Internet Measurement Workshop, Nov.
2002.

[7] A. Broido. Ping Record Route stats. http://www.caida.
org/∼broido/png/pingR.html.

[8] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic systems.
In Int’l Conference on Dependable Systems and Networks
(DSN), IPDS track, June 2002.

[9] Cisco IOS NetFlow. http://www.cisco.com/warp/
public/732/Tech/nmp/netflow/index.shtml.

[10] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G. Chrysos.
ProfileMe : Hardware support for instruction-level profiling
on out-of-order processors. In IEEE Micro, Dec. 1997.

[11] A. Demers, S. Keshav, and S. Shenker. Analysis and simula-
tion of a fair queueing algorithm. In ACM SIGCOMM, Aug.
1989.

[12] N. Duffield and M. Grossglauser. Trajectory sampling for di-
rect traffic observation. IEEE/ACM Transactions on Network-
ing, 9(3), June 2001.

[13] N. Duffield, F. Presti, V. Paxson, and D. Towsley. Inferring
link loss using striped unicast probes. In IEEE INFOCOM,
Apr. 2001.

[14] C. Estan and G. Varghese. New directions in traffic measure-
ment and accounting. In ACM SIGCOMM, Aug. 2002.

[15] S. Floyd. Questions about the Internet. http://www.icir.
org/floyd/questions.html, May 2002.

[16] R. Govindan and V. Paxson. Estimating router ICMP gener-
ation delays. In Passive & Active Measurement (PAM), Mar.
2002.

[17] B. Huffaker, D. Plummer, D. Moore, and k. claffy. Topology
discovery by active probing. In Symp. on Applications and the
Internet (SAINT), Jan. 2002.

[18] V. Jacobson. Pathchar. ftp://ftp.ee.lbl.gov/pathchar.
[19] M. Jain and C. Dovrolis. End-to-end available bandwidth:

measurement methodology, dynamics, and relation with TCP
throughput. In ACM SIGCOMM, Aug. 2002.

[20] C. Kent and J. Mogul. Fragmentation considered harmful. In
ACM SIGCOMM, Aug. 1987.

[21] K. Lai and M. Baker. Nettimer: A tool for measuring bottle-
neck link bandwidth. In USITS, Mar. 2001.

[22] K. Lakshminarayanan, I. Stoica, and S. Shenker. Building a
flexible and efficient routing infrastructure: Need and chal-
lenges. Technical Report CSD-03-1254, University of Cali-
fornia, Berkeley, 2003.

[23] M. Luckie, A. McGregor, and H. Braun. Towards improving
packet probing techniques. In ACM SIGCOMM Internet Mea-
surement Workshop, Nov. 2001.

[24] Z. Mao, J. Rexford, J. Wang, and R. Katz. Towards an accu-
rate AS-level traceroute tool. In ACM SIGCOMM, Aug. 2003.

[25] J. McClave and F. Dietrich. Statistics. Macmillan Publishing
Company, 6th edition, 1994.

[26] P. McKenney. Stochastic fairness queuing. In IEEE INFO-
COM, June 1990.

[27] S. Moon, P. Skelly, and D. Towsley. Estimation and removal
of clock skew from network delay measurements. In IEEE
INFOCOM, Mar. 1999.

[28] S. Ostermann. tcptrace. http://jarok.cs.ohiou.edu/
software/tcptrace/index.html.

[29] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical validation.
In ACM SIGCOMM, Aug. 1998.

[30] J. Padhye and S. Floyd. Identifying the TCP behavior of Web
servers. In ACM SIGCOMM, Aug. 2001.

[31] V. Padmanabhan, L. Qiu, and H. Wang. Server-based infer-
ence of Internet performance. In IEEE INFOCOM, Apr. 2003.

[32] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi,
and C. Diot. Analysis of measured single-hop delay from
an operational backbone network. In IEEE INFOCOM, June
2002.

[33] A. Pásztor and D. Veitch. Active probing using packet quar-
tets. In ACM SIGCOMM Internet Measurement Workshop,
Nov. 2002.

[34] A. Pásztor and D. Veitch. PC based precision timing without
GPS. In ACM SIGMETRICS, June 2002.

[35] V. Paxson. End-to-end routing behavior in the Internet. In
ACM SIGCOMM, Sept. 1997.

[36] V. Paxson. On calibrating measurements of packet transit
times. In ACM SIGMETRICS, June 1998.

[37] R. Perlman. Network Layer Protocols with Byzantine Robust-
ness. PhD thesis, MIT, 1988.

[38] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the In-
ternet. In HotNets-I, Oct. 2002.

[39] J. Postel. Internet control message protocol. IETF RFC 792,
Sept. 1981.

[40] J. Postel. Internet protocol specification. IETF RFC 791, Sept.
1981.

[41] RouteScience. http://www.routescience.com/.
[42] R. Ryger. fixclock: removing clock artifacts from communica-

tion timestamps. Technical Report DCS/TR-1243, Yale Uni-
versity, March 2003.

[43] S. Savage. Sting: A TCP-based network measurement tool. In
USITS, Oct. 1999.

[44] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Ander-
son. The end-to-end effects of Internet path selection. In ACM
SIGCOMM, Aug. 1999.

[45] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical
network support for IP traceback. In ACM SIGCOMM, Aug.
2000.

[46] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakoun-
tio, S. Kent, and T. Strayer. Hash-based IP traceback. In ACM
SIGCOMM, Aug. 2001.

[47] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP
topologies with Rocketfuel. In ACM SIGCOMM, Aug. 2002.

[48] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A pub-
lic Internet measurement facility. In USITS, Mar. 2003.

[49] W. Stevens. TCP slow start, congestion avoidance, fast re-
transmit, and fast recovery algorithms. IETF RFC 2001, Jan.
1997.

[50] Y. Tsang, M. Coates, and R. Nowak. Passive network to-
mography using EM algorithms. In IEEE Int’l Conference on
Acoustics, Speech, and Signal Processing, May 2001.

[51] Tulip. http://www.cs.washington.edu/research/
networking/tulip/.

[52] A. Whitaker and D. Wetherall. Forwarding without loops in
Icarus. In IEEE OPENARCH, June 2002.

[53] L. Zhang, Z. Liu, and C. Xia. Clock synchronization algo-
rithms for network measurements. In IEEE INFOCOM, June
2002.

[54] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the char-
acteristics and origins of Internet flow rates. In ACM SIG-
COMM, 2002.

[55] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the con-
stancy of Internet path properties. In ACM SIGCOMM Inter-
net Measurement Workshop, Nov. 2001.

