
TRAINS-95: Towards a Mixed-Initiative Planning Assistant

George Ferguson and James Allen and Brad Miller
Department of Computer Science

University of Rochester
Rochester, NY, USA, 14627-0226

{ferguson,james,miller}@cs.rochester.edu
http://www.cs.rochester.edu/research/trains/

Abstract

We have been examining mixed-initiative planning sys-
tems in the context of command and control or logis-
tical overview situations. In such environments, the
human and the computer must work together in a
very tightly coupled way to solve problems that nei-
ther alone could manage. In this paper, we describe
our implementation of a prototype version of such a
system, TRAINS-95, which helps a manager solve rout-
ing problems in a simple transportation domain. Inter-
estingly perhaps, traditional planning technology does
not play a major role in the system, and in fact it is
difficult to see how such components might fit into a
mixed-initiative system. We describe some of these is-
sues, and present our agenda for future research into
mixed-initiative plan reasoning. At this writing, the
TRAINS-95 system has been used by more than 100
people to solve simple problems at various conferences
and workshops, and in our experiments.

Introduction
In command and control situations and logistics plan-
ning, a human planner faces several difficult problems.
First, there is a surplus of data, only a small amount
of which is actually information relevant to the current
task. In fact, what data is relevant cannot be deter-
mined in advance and only becomes clear as the situ-
ation and the plan develop. Second, the plans being
considered are large and complex, and it is beyond hu-
man capabilities to manage all the details effectively.
Automated planning systems are better able in princi-
ple to handle the scale, but are hard to apply because of
the under-specified initial situations, and the fact that
many planning decisions are made on an intuitive basis
that cannot be effectively quantified. As a result, nei-
ther the human or the computer can effectively solve
such planning problems in isolation. This problem mo-
tivates an interest in mixed-initiative planning systems,
where the computer acts as a collaborating assistant to
the human, anticipating needs, performing the tasks it
is well suited for, and leaving the remaining tasks to the
human. By cooperating, the human-computer “team”

Copyright c� 1996, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

may be able to effectively deal with problems that nei-
ther could handle alone.

To explore these aspects of mixed-initiative planning,
we have built a prototype system, TRAINS-95, that
helps a manager solve routing problems in a simple
transportation domain. The manager is presented with
a map displaying cities and rail connections between
them, as shown in Figure 1. The system generates ran-
dom problems that require planning routes for a set of
engines to a set of destinations. Various environmen-
tal factors can arise during the interaction, which the
manager and system must then plan to accommodate.
The system can interact using both spoken and typed
English, as well as graphical displays and controls.

Our goal was a robust, modular, multi-modal, mixed-
initiative planning assistant. To be more specific, by
“robustness” we mean that no matter what occurs dur-
ing the interaction, the system not only doesn’t crash,
but does something to indicate its understanding of the
manager’s intentions and its own attempts to further
the plan. By “modular” we are taking seriously the idea
that there are, or will be shortly, a variety of knowledge
sources, reasoning agents, and display engines available
as resources that the system can employ. Examples
include weather information, newsfeeds, map servers,
and so on, as well as “off-the-shelf” technology such as
speech recognizers and generators. As we will describe,
many of the components of TRAINS-95 are themselves
autonomous modules connected by a general-purpose
message-passing process manager.

By “multi-modal” we mean that there are a multi-
tude of ways of communicating between humans and
computers, include speech input and output, written
text, and graphical displays such as maps, charts,
forms, and the like, for both input and output. From
the outset, we intended that TRAINS-95 should accom-
modate all of these, allowing the human to interact in
whatever way seems most natural to them. In some sit-
uations existing procedures may impose constraints on
what form communication can take (e.g., an operator
may be trained on a particular type of display). In other
cases determining the appropriate modality is an ongo-
ing process, and the subject of current research. By
treating all modalities as linguistic, that is, as a form

George Ferguson
Proceedings of the Third Conference on Artificial Intelligence Planning Systems (AIPS-96), Edinburgh, Scotland, 29-31 May 1996, pp. 70-77.
Reformatted May 26, 2010 (layout may have changed)

Albany

Atlanta

Baltimore

Buffalo

Burlington

Boston

Charleston

Charlotte

hicago

 Cincinnati

Cleveland

Columbus

Detroit

Indianapolis

Lexington

Milwaukee

Montreal

New York

PhiladelphiaPittsburgh

Raleigh

Richmond

Scranton

Syracuse

Toledo

Toronto

Washington

Figure 1: TRAINS-95 System Map Display

of language, we obtain a powerful unifying model of
the interaction as a form of dialogue. Of course, multi-
modal communication raises a new set of issues for all
aspects of the system, as we will discuss later.

Finally, by “mixed-initiative” we mean that both the
system and the human are on roughly equal ground as
participants in the dialogue. This is not to say that
they are equals, since clearly they are good at differ-
ent things. But in a truly mixed-initiative system, both
participants can do what they do best. The human typ-
ically has knowledge of the high-level goals and means
of achieving them, while of course, the computer is good
at managing the multitude of low-level details that go
into such plans. As well, in realistic situations, the
human may be guided by principles that are difficult
or impossible to quantify precisely, making it impossi-
ble to fully automate the task and replace them. Even
if this were possible in principle, the resulting master-
slave style of communication would hardly be natural
and probably wouldn’t be very efficient.

The next section describes our current implementa-
tion, TRAINS-95, including design goals, our approach
to the aspects outlined above, and lessons learned. The
key points are: (1) that dialogue provides the context
required for successful interaction independent of in-
put modality; and (2) that the plan reasoning require-
ments of mixed-initiative systems differ markedly from
the specifications of traditional planners. We elaborate
on these points in the following section. In the final sec-
tion we present some of the many research issues raised
by our work on TRAINS-95, and describe the directions
we are pursuing in addressing them.

The TRAINS-95 System
The TRAINS-95 system is implemented as a set of in-
dependent modules, as shown in Figure 2. The modules
shown in the dashed box are implemented within a sin-
gle Lisp program, otherwise each module is a separate

Post-Processor

Speech Recognition
(Sphinx-II)

Display Speech Generation
(TrueTalk)

Display Manager

Discourse Manager

Verbal
Reasoner

Reference

Generator

Chart Parser

Problem
Solver

Domain
Reasoner

Figure 2: TRAINS-95 System Architecture

Unix process, and modules communicate by exchanging
messages. We have developed a general-purpose Unix
process manager that manages the various processes
and their communication. It performs the mapping be-
tween logical module names and physical processes, and
provides services such as broadcast messages and com-
plete logging and replay of message exchanges. It is
itself controlled by messages, for example to create a
new process, restart or kill a module, register interest
in another module, and so on.

In building the current system, we have concentrated
on the interface and infrastructure components, in or-
der to get a system that naive users could interact with
as soon as possible. In this section we will describe
the various modules and their interactions, concentrat-
ing on those aspects central to the goal of a robust,
multi-modal application. The next section provides an
example of the system in action and discusses the im-
plications for mixed-initiative planning systems.

Speech and Display Modules
For speech input in TRAINS-95, we use the Sphinx-II
recognizer from CMU (Huang et al. 1992), trained on
the ATIS airline reservation corpus, with a vocabulary
of approximately 3000 words. We deliberately did not
build a special recognizer for our task or domain, since
we wanted to investigate using off-the-shelf components
directly as “black boxes” in our system. Of course, this
adversely impacts the rest of the system, since many of
the words in the ATIS corpus are meaningless in the
simple transportation domain we are dealing with in
TRAINS-95 (e.g., “DC3,” “Riyadh,” and “movie”). We
considered this an appropriate test of robustness, and
something which any system that intends to use such
“plug-and-play” components must ultimately address.
In this particular case, the output of the module is sim-
ple enough, namely a sequence of words (and control
messages for when a hypothesis needs to be revised),

that the semantics of its messages is obvious.
To compensate for the under-constrained speech rec-

ognizer, its output is post-processed by a domain-
and/or speaker-dependent module (Ringger 1995).
This module uses techniques from machine translation
to “correct” the output of the recognizer, based on a
statistical model derived from a corpus of previous runs
of the system.

The speech generation component of TRAINS-95 is
built on the TrueTalk generator from Entropics, Inc.
This program provides high-quality speech generation
and a wide range of intonational and inflectional con-
trols.

Although speech is the most exciting and challenging
modality, other modalities are provided by an object-
oriented display module. For input, it allows typed in-
put, menu selections, and direct mousing on display
elements, all of which are broadcast to other modules.
Output to the display is performed using a fairly rich
object-oriented language, allowing a variety of graph-
ical elements to be defined and displayed. The cur-
rent version of the display supports object types such
as “engine,” “track,” and “region;” in the immediate fu-
ture this will be generalized even further. Several types
of dialog box can be popped up (under the control of
the language components), allowing yet another input
modality.

Language and Dialogue Processing
The core of the TRAINS-95 system is the set of mod-
ules that perform language understanding and dialogue
processing tasks. The first of these is a robust parsing
system based on a bottom-up chart parser (Allen 1994).
The parser uses a fairly comprehensive lexicon of 1700
words and grammar of 275 rules, both built from the
TRAINS dialogue corpus (Heeman & Allen 1995). The
parser accepts input from all the input modules—we
treat spoken, typed, and moused input uniformly as
linguistic communication. The parser’s output is a set
of speech acts expressing the content of the utterance.
Since the majority of utterances in spoken dialogue are
not complete syntactic sentences, the traditional chart
parser is augmented with a set of monitors. If a com-
plete parse is not found, these monitors scan the chart
and attempt to piece together a partial representation
of what was said. This approach to natural language
understanding is crucial to meeting the goal of a ro-
bust system. It also means that the system can often
interact effectively even at very low speech recognition
rates.

After the parser has determined a set of possible
speech acts for the utterance, the reference module
deals with grounding any terms to the objects in the
domain (e.g., “to Chicago, ” “send it”), or turning in-
definite references into a query to be resolved later (e.g.,
“an engine”).

The verbal reasoner is then responsible for inter-
preting the speech acts in context, querying various
knowledge sources in order to understand or address

the speech act, formulating responses, and maintaining
the system’s idea of the state of the discourse. The
verbal reasoner architecture is based on a set of pri-
oritized rules that match patterns in the input speech
acts. These rules again allow robust processing the face
of partial or ill-formed input. The presence of an ele-
ment such as “from Avon” may allow it to determine
that the user is requesting a plan incorporation. These
rules rely heavily on the discourse context, that collec-
tion of knowledge and beliefs that describe the state of
the interaction. In fact, it is precisely this context that
makes dialogue-based interaction so much more flexible
and powerful than one-shot transaction-based commu-
nication.

Speech acts that appear to be requests to incorporate
a constraint on a prior system action or to extend the
current plan are passed on to the problem solver. This
module is also based on a prioritized set of rules, this
time for dealing with user responses to system ques-
tions or with plan corrections and extensions. These
rules turn the information into queries and updates to
a domain reasoner, e.g., for a path that fits the con-
straints “from Chicago to New York via Pittsburgh.”
If fragmentary information is supplied from the verbal
reasoner (which will generally try to fill it out with in-
formation from the discourse context), then the prob-
lem solver attempts to incorporate the fragment into
what it knows about the current state of the plan. For
instance, if the prior action had been to propose a route,
and the verbal reasoner did not indicate in its request
to the problem solver that the current request is part of
a rejection, then it will attempt to select another goal
the user may have informed it of, and incorporate the
fragment with respect to that goal (presuming the frag-
ment does not contain information that indicates a goal
shift).

The output of the verbal reasoner is a set of speech
acts that the system wants to communicate to the
user. The generation module decides how to actually
achieve the communication using either the display or
the speech generator, or both. This module also uses
prioritized rules to match requested speech acts to ap-
propriate means of expressing them. For instance, a
request to the generator to warn the user of track re-
pair along the route between Chicago and Toledo will
result in telling the display to flash the track segment
red, and simultaneously speak the phrase “the track
between Chicago and Toledo is currently undergoing
repair.” The generation module (along with reference)
maintains a representation of what the system believes
the user already knows, to prevent overly verbose or
confusing output.

The verbal reasoning components of TRAINS-95 at-
tempt to provide a robust agent that keeps the dialogue
going. The approach is generally to instantiate the cur-
rent plan as soon as possible, communicate the results,
and allow the user to correct or elaborate it. This “look
then leap” strategy will be further described in the next
section.

Domain Reasoning
The domain reasoner in TRAINS-95 maintains a knowl-
edge base describing the state of the world and provides
planning and plan recognition services to the language
modules. For the simple route-planning domain, of
course, it would be easy to build a perfect reasoner that
solved the problems as soon as the manager had stated
their goals. However, not only is it unlikely that we will
ever be able to build such a reasoner for a realistic do-
main, in the next section we claim that such a system
is not necessarily appropriate for mixed-initiative plan-
ning. We therefore deliberately weakened the TRAINS-
95 domain reasoner in order to force the manager to in-
teract in order to overcome its shortcomings. The route
planner can therefore only plan route segments less than
four hops long, and for those it chooses a random path.
The knowledge base maintains an accurate view of the
map, and allows various “natural” events such as bad
weather or track maintenance to arise during the inter-
action. These also force interaction in order to revise
plans to take account of them.

An important aspect of the type of domain reason-
ing that is performed in TRAINS-95 is that it is highly
incremental and incorporates aspects of both planning
and plan recognition in a tightly-coupled way. For ex-
ample, the domain reasoner may be asked to incorpo-
rate a new constraint on an existing plan, e.g., that it
go via a particular city. The domain reasoner must first
recognize how that constraint fits into the plan (a task
shared with the language modules, for example in deter-
mining which route is being modified). It then adds the
constraint to the plan, possibly removing other softer
constraints (such as to try an avoid cities known to be
congested). It must then plan a new route satisfying
the current constraints, preferably one that makes the
smallest possible change to the plan already under con-
sideration.

This model, it seems to us, is quite unlike the tradi-
tional view of planning, where a goal is specified (com-
pletely) and the planner goes off and produces a plan
to achieve it. This raises a question as to the role of
traditional planning in mixed-initiative systems. The
next section elaborates on this point.

Where’s the Planning in
Mixed-Initiative Planning?

Figure 3 presents a example of an actual dialogue be-
tween a user and the TRAINS-95 system, starting from
the situation shown in Figure 1. The task is admittedly
very simple and, as we noted previously, the system’s
planning abilities were deliberately limited in order to
encourage interaction. The point of the dialogue is to
emphasize that this is indeed a mixed-initiative plan-
ning system. The user and the system are construct-
ing, evaluating, and correcting plans, albeit simple ones.
The environment is dynamic, with problems such as
weather and traffic occurring independent of the plan-
ner. The human manager’s goals and preferences need

1. M: I need to get to Detroit, Syracuse,

and Montreal.

2. S: Ok. [highlights the three cities]

3. M: Let’s send the trains from Chicago to

Detroit.

4. S: Ok. [draws route from Chicago to Detroit

via Toledo] But the terminal at Toledo is

delaying traffic due to bad weather.

Trains will take an additional five hours

to move through there.

[highlight Toledo red]

5. M: That’s ok. Now let’s go from Atlanta

up to Syracuse.

6. S: Please tell me a route to use to get

from Atlanta to Syracuse. [highlight

engine at Atlanta and city Syracuse]

7. M: Go via Charleston and Pittsburgh.

8. S: Ok. [draws route via Cincinnati]

But traffic through Cincinnati is

being delayed due to construction.

9. M: Ok, let’s go via Charleston and Buffalo

instead.

10. S: No problem. [draws route]

11. M: That’s great.

12. S: I hope it was helpful.

13. M: Finally, I want to go to Montreal

from Philadelphia.

14. S: Ok. [draws route]

15. M: That’s great. I’m done.

Figure 3: Actual TRAINS-95 Dialogue

Evaluation/comparison of options 25%
Suggesting courses of action 23%
Establishing world state 13%
Clarifying/confirming communication 13%
Discussing problem solving strategy 10%
Summarizing courses of action 10%
Identifying problems/alternatives 7%

Figure 4: Analysis of one hour of human-human
problem-solving dialogues

not be explicit, as when they choose to ignore the prob-
lem at Toledo. The system has clear limitations, as it
would in any realistic domain, and it understands how
to deal with these by interacting with the manager.

Although it’s doing planning, however, a mixed-
initiative planning system isn’t doing what we might
recognize as “traditional” planning, that is, construct-
ing a sequence of operators from a fully-specified ini-
tial situation to a stated goal. In fact, in an informal
analysis of one hour of human-human problem-solving
dialogues (part of a larger eight hour study (Heeman
& Allen 1995)), we found that a relatively small per-
centage of the utterances, 23%, dealt with explicitly
adding or refining actions in the plan. Figure 4 sum-
marizes this analysis. Note the importance of being
able to explicitly evaluate and compare options, even
between humans of roughly equal ability. In human-

computer interactions, we would expect this number to
increase, as the computer can perform more and larger
analyses. Similarly, even in the very simple TRAINS
world, a significant portion of the communication was
concerned with establishing the state of the world, and
we would expect this to increase in a more realistic
environment. Similar conclusions about the nature of
interactive planning are presented in (Ferguson 1995;
Pollack 1992).

Why is it that mixed-initiative planning seems to in-
volve so little traditional planning (finding courses of
action from initial situation to goal)? In the first place,
it is because the initial situation is usually incompletely
specified, whether because of changing conditions as in
our simple example or in a more realistic setting be-
cause it is simply too huge to represent. Rather, the
determination of what aspects of the world are rele-
vant to the plan is a dynamic process that is intimately
connected with the exploration and elaboration of the
plan. It would be impossible in practice to extract such
criteria from the human manager offline.

Similarly, the goals of the plan in the mixed-initiative
setting are also poorly specified. Not only do they
change over time as the manager’s preferences and con-
cerns change, but they typically cannot be extracted
and that knowledge codified into the system’s opera-
tion. Of course, in our simple example the only goal
the manager can have is to get trains to their destina-
tions, so the system can make simplifying assumptions.
But even so, treating human-imposed constraints on the
plan as part of the “goals,” the reasons for rejecting a
particular plan may not be made explicit to the system.

The upshot of this is that even if we had implemented
a “perfect” route planner for the simple TRAINS-95
domain, we would still need all the other components of
the system. If the goal is a natural, interactive planning
assistant, the solution will not be found in the language
of traditional planning. The question becomes how to
incorporate traditional systems that are good at what
they do but relatively inflexible and brittle within the
context of a robust, mixed-initiative system.

We have developed a model of the mixed-initiative
planning process from analysis of the TRAINS di-
alogues and implemented a simple version of it in
TRAINS-95. This model consists of four steps:

A. Focus: Identify the goal/subgoal under considera-
tion.

B. Gather Constraints: Collect constraints on the solu-
tion, selecting resources, gathering background infor-
mation, and adding preferences.

C. Instantiate Solution: As soon as a solution can be
generated efficiently, one is generated.

D. Criticize, Correct or Accept: If the instantiation is
criticized and modifications are suggested, the pro-
cess continues at step (B). If the solution appears ac-
ceptable (given the current focus), then we continue
at step (A) by selecting a new focus.

Albany

Atlanta

Baltimore

Buffalo

Burlington

Boston

Charleston

Charlotte

hicago

 Cincinnati

Cleveland

Columbus

Detroit

Indianapolis

Lexington

Milwaukee

Montreal

New York

PhiladelphiaPittsburgh

Raleigh

Richmond

Scranton

Syracuse

Toledo

Toronto

Washington

Figure 5: TRAINS-95 System Map Display after (4)

At first glance, this model seems quite similar to
the expand-criticize cycle found in hierarchical plan-
ners since Sacerdoti (Sacerdoti 1977). The significant
difference is in step (C). Rather than pursuing a least
commitment strategy and incremental top-down refine-
ment, we “leap” to a solution as soon as possible. You
might call this a “look then leap” strategy rather than
the traditional “wait and see” strategy used in least-
commitment planning. As such, our strategy shares
similarities with Sussman’s original work with an em-
phasis on plan debugging and repair (Sussman 1974).
When the plan must be a result of a collaboration, it
seems that it is more efficient to throw out a solution
and criticize it, rather than to work abstractly as long
as possible. Notice that this is exactly why committees
often start with a “straw man” when trying to develop
new policies. This helps the committee focus its discus-
sion, just as the the plans under discussion in mixed-
initiative planning provide part of the context within
which the manager is exploring the problem.

To see how the “look then leap” model fits well with
the discourse strategies used in our dialogues, consider
the simple TRAINS-95 dialogue in Figure 3 again. In
(1), the manager clearly sets out a set of goals, limiting
but not fully specifying the focus (step A). Statement
(3) implicitly focuses on the goal of getting to Detroit,
and starts adding constraints (step B). With statement
(4), the route planner generates a “straw plan” (step
C), and then the system offers its own criticism (step
D). The display at this point is shown in Figure 5.
This self-criticism might seem strange at first glance,
but consider that the system has not been informed of
any evaluation criteria for the goals, so does not know
whether the time for the trip is a critical factor. In
(5), the manager indicates that the delay is not a prob-
lem by accepting the straw plan, and then moves on to
a new focus (implicitly) by adding constraints relevant
to the subgoal of getting to Syracuse (steps A and B).

Albany

Atlanta

Baltimore

Buffalo

Burlington

Boston

Charleston

Charlotte

hicago

 Cincinnati

Cleveland

Columbus

Detroit

Indianapolis

Lexington

Milwaukee

Montreal

New York

PhiladelphiaPittsburgh

Raleigh

Richmond

Scranton

Syracuse

Toledo

Toronto

Washington

Figure 6: Final TRAINS-95 System Map Display

Discourse

Problem Solving

Abstract Plan Reasoning

Domain Reasoners

Figure 7: Mixed-initiative planning architecture

The system does not have enough constraints to create
a straw plan solution, so (6) prompts for additional con-
straints. Statement (7) specifies these additional con-
straints (step B), and statement (8) proposes a straw
plan route (step C) and potential criticisms (step D).
In this case, the manager adds additional constraints
in (9) that address the problems the system mentioned
and a new solution is generated as part of interaction
(10). The rest of the dialogue continues in much the
same way and doesn’t raise any substantially new is-
sues. The final display is shown in Figure 6.

To support this model of mixed-initiative planning,
we are developing a four layer architecture that general-
izes the TRAINS-95 system architecture. This is shown
in Figure 7. The discourse level maintains information
important for reference identification and for speech act
interpretation and generation. It maintains what ob-
jects have been recently mentioned as well as the im-
mediate discourse situation including what speech act
was performed last and what discourse obligations each
agent has. While critical to the overall system, the
other three levels are more centrally concerned with the
planning process.

The problem solving level maintains meta-level infor-
mation about the problem solving tasks, similar to the

problem solving level actions described in (Litman &
Allen 1987) and (Lambert & Carberry 1991). Actions
at this level are problem solving actions such as “solve
goal directly,” “decompose goal into subproblems,” “re-
solve resource conflict,” and so on. Note that we need
explicit representations of such actions because they can
be discussed in the dialogue. Either agent might request
the other to do one of these actions, or discuss how one
might do the action, or assign general responsibility to
an agent to perform this type of action throughout the
interaction. This level supports processes such as iden-
tifying the task desired (e.g., distinguishing between an
elaboration of the plan for the current goal and shift-
ing to another goal). It does this by maintaining an
abstract tree of goals and information on which part of
the problem is currently in focus. It also supports the
process of determining the scope of problem solving ac-
tions such as cancelations and modifications. By main-
taining a history of previous problem solving states, it
supports intelligent “undo” commands and the explicit
discussion of the history of the problem solving inter-
action. Finally, it supports discussion of the problem
solving strategy to be used, and can maintain order-
ing constraints on when certain problem solving tasks
should be performed.

The problem solving level reasons at the meta-level
about the plans under consideration. These plans are
themselves represented in terms of an abstract plan rep-
resentation level. This representation captures aspects
of plans independent of the details of reasoning about
them. It can perform operations such as plan recogni-
tion in cases where deep domain reasoning is unneces-
sary, e.g., identifying which plan achieves a particular
goal. It provides a uniform representation of plans suit-
able for use by other components of the system, such
as the problem solving, discourse, and generation com-
ponents.

When more sophisticated domain-level reasoning is
required, we rely on the services of a set of domain rea-
soners. The abstract plan representation level manages
the interface between the mixed-initiative system and
these various domain specialists, matching open issues
with reasoners and coordinating the responses. These
reasoners might be, for example, a scheduler or an Inter-
net agent that can retrieve information. They are likely
to include traditional planning technologies that are in-
voked in a context that is sufficiently well-specified for
them to function effectively. We call these components
“specialists” to emphasize that they need to be quick
and effective in a well-defined domain, although they
definitely need not always produce “perfect” answers.

The key to the integration of such components is the
ability to specify and reason about their capabilities.
That is, the abstract plan reasoner needs to be able
to reason about which specialists might be suitable for
what tasks, and interpret their results. This is com-
plicated by the desire to use existing components “off
the shelf” as much as possible. We are currently look-
ing at using KQML (Finin et al. 1994) for part of this

purpose, as well as other work on specifying agent ca-
pabilities (Tate 1995).

Current and Future Directions

Our experiences with TRAINS-95 have opened up
many research directions that we are currently pur-
suing, and this paper has already discussed several of
them. In this section we provide a brief survey of some
additional issues for current and future work.

First, although we have argued strongly for an inter-
active, language-based approach to plan reasoning, this
is not in itself enough. In fact, our strategy of attempt-
ing to instantiate the plan and then discuss and correct
it will need to be generalized as the plans become larger
and more detailed. This problem of plan presentation is
pervasive, and requires work on many aspects of multi-
modal interaction, since clearly drawing a huge graph
with Lisp-like labels is not going to be sufficient. We
believe that the dialogue-based approach provides the
context in which presentation decisions can be made
effectively. The TRAINS-95 system provides the in-
frastructure for examining the multi-modal aspects of
such communication.

Second, and something of a corollary to this, is the
problem of the semantics of external displays or data
sources. That is, many systems are currently being pro-
posed to make use of existing resources, such as weather
servers or radar displays. However, while it’s one thing
to fetch the latest weather map via the Internet and dis-
play it, it’s quite another to be able to discuss what is
being displayed intelligently. We have emphasized how
context is the big benefit of dialogue-base systems—the
other side of the coin is that to make use of something
in a dialogue requires that it fit into the context. Part
of the solution to this lies in the type of capability de-
scriptions that we discussed in the previous section. We
are also moving towards use of a uniform display lan-
guage, via a translator if necessary, in order to be able
to understand exactly what is being displayed where.
The impact of this on the ability to “plug and play”
components has yet to be seen.

Third, concentrating on the type of planning that
goes on in mixed-initiative systems, it is clear that much
of it can be seen as replanning, in the sense of debugging
a plan ala Sussman (Sussman 1974). We are looking
at the various approaches to replanning (e.g.., (Kamb-
hampati 1989; Kambhampati & Hendler 1992)), but to
some extent these seem to be burdened by the same
constraints that make traditional planning systems un-
suitable for direct use in the mixed-initiative situation.

Fourth, we have been concerned from the outset with
the evaluation of our work, that is, how to know if
we are making progress. This has traditionally been
a problem for interactive systems, and to some extent
for planners. Our current system has built into it a sim-
ple set of task-related metrics that are recorded for each
interaction. As we refine those metrics, we can explore
whether particular strategies are better than others at

getting the task done, or whether the presence of cer-
tain components helps or hinders performance.

In recent work (Allen et al. 1996), we have evalu-
ated the effects of input mode (speech vs. keyboard) on
task performance and explored user input-mode prefer-
ences. Task performance was evaluated in terms of the
amount of time taken to arrive at a solution and the
quality of the solution was determined by the amount
of time needed to travel the planned routes. Sixteen
subjects for the experiment were recruited from under-
graduate computer science courses. None of them had
previous experience with the system, and in fact only
five reported that they had previously used a speech
recognition system. A preliminary analysis of the ex-
perimental results shows that the plans generated when
speech input was used were of similar quality to those
generated when keyboard input was used. However, the
time needed to develop the plan was significantly lower
when speech input was used. Averaging over five sce-
narios, problems were solved using speech in 68% of the
time using keyboard, despite speech recognition rates
averaging only about 75%! Although still rough, we
take these results to support our approach to building
robust interactive systems by treating the interaction
as a dialogue.

The point as far as mixed-initiative planning is con-
cerned is that with only a two-minute training video,
and despite low speech recognition rates and the pro-
totypical status of the system, 73 of the 80 sessions
resulted in successful completion of the route planning
task. We suspect that this is probably a record for naive
users of AI planning systems. Of course, the task was
very simple, and it remains to be seen whether we can
maintain this level of effectiveness as we move into a
more complex planning domain.

Finally, we are continually improving the TRAINS
system. The next version will include many of the ideas
presented in these last sections of the paper, as well as a
richer transportation domain involving cargoes and dif-
ferent vehicle types. This will increase the complexity
of the planning task, as we noted above was necessary
for further evaluation. Several parts of the TRAINS-
96 system have already been re-implemented, includ-
ing new infrastructure components, KQML message-
passing, and the separation of many of the functions of
the “discourse manager” into separate modules. Work
is currently proceeding on separating problem solver
and domain reasoner functionality, and increasing the
complexity of the domain. Our goal is to always have
the most recent version of the system running and avail-
able for demos, and we hope to have a version of it
running over the World-Wide Web.

Conclusion
The TRAINS-95 system is a concrete first step towards
a mixed-initiative planning assistant. We have demon-
strated the feasibility of the dialogue-based approach to
interactive planning, and have developed a substantial
infrastructure for future research.

The TRAINS-95 system is being developed as
part of the TRAINS Project (Allen et al. 1995),
a long-term research effort to develop intelligent
assistants that interact with their human man-
agers using natural language. More information
is available via the World-Wide Web at URL:
http://www.cs.rochester.edu/research/trains/.

Acknowledgements
This material is based upon work supported by ARPA –
Rome Laboratory under research contract no. F30602-
95-1-0025, the U.S. Air Force – Rome Laboratory un-
der research contract no. F30602-91-C-0010, and by
the Office of Naval Research under research grant no.
N00014-95-1-1088. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of the sponsors.

References
Allen, J. F.; Schubert, L. K.; Ferguson, G.; Heeman,
P.; Hwang, C. H.; Kato, T.; Light, M.; Martin, N. G.;
Miller, B. W.; Poesio, M.; and Traum, D. R. 1995. The
TRAINS project: A case study in building a conver-
sational planning agent. Journal of Experimental and
Theoretical AI 7:7–48. Also available as University of
Rochester, Dept. of Computer Science TRAINS Tech-
nical Note 94-3.
Allen, J. F.; Miller, B.; Ringger, E. K.; and Sikorski,
T. 1996. Robust understanding in a dialogue system.
Submitted for publication.
Allen, J. F. 1994. Natural Language Understanding.
Benjamin Cummings, 2nd edition edition.
Ferguson, G. 1995. Knowledge Representation and Rea-
soning for Mixed-Initiative Planning. Ph.D. Disserta-
tion, Department of Computer Science, University of
Rochester, Rochester, NY. Available as Technical Re-
port 562.
Finin, T.; Fritzson, R.; McKay, D.; and McEntire, R.
1994. KQML as an agent communication language. In
Proc. Third International Conference on Information
and Knowledge Management (CIKM-94). ACM Press.
Heeman, P. A., and Allen, J. F. 1995. The TRAINS-
93 dialogues. TRAINS Technical Note 94-2, Dept. of
Computer Science, University of Rochester, Rochester,
NY.
Huang, X.; Alleva, F.; Hon, H.-W.; Hwang, M.-Y.; and
Rosenfeld, R. 1992. The SPHINX-II speech recogni-
tion system: An overview. Technical Report CS-92-
112, Carnegie Mellon University, School of Computer
Science, Pittsburgh, PA.
Kambhampati, S., and Hendler, J. A. 1992. A
validation-structure-based theory of plan modification
and reuse. Artificial Intelligence 55:193–258.
Kambhampati, S. 1989. Flexible reuse and modification
in hierarchical planning: A validation structure based

approach. Ph.D. Dissertation, Department of Com-
puter Science, University of Maryland, College Park,
MD. Available as CS Technical Report 2334.
Lambert, L., and Carberry, S. 1991. A tripartite plan-
based model of dialogue. In Proc. Twenty-Ninth Annual
Meeting of the Association for Computational Linguis-
tics, 47–54. Berkeley, CA: University of California.
Litman, D., and Allen, J. F. 1987. A plan-recognition
model for subdialogues in conversations. Cognitive Sci-
ence 11(2).
Pollack, M. E. 1992. The uses of plans. Artificial
Intelligence 57.
Ringger, E. K. 1995. A robust loose coupling for speech
recognition and natural language understanding. Tech-
nical Report 592, Dept. of Computer Science, Univer-
sity of Rochester, Rochester, NY.
Sacerdoti, E. 1977. A Structure for Plans and Be-
haviour. New York, NY: Elsevier, North-Holland.
Sussman, G. J. 1974. The virtuous nature of bugs.
In Proc. First Conference of the Society for the Study
of AI and the Simulation of Behaviour. Brighton, UK:
Sussex University.
Tate, A. 1995. The O-Plan knowledge source frame-
work. ARPA/RL O-Plan TR 21, Artifical Intelligence
Applications Institute, University of Edinburgh, Edin-
burgh, UK.

