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ABSTRACT
Language models for speech recognition tend to concentrate
solely on recognizing the words that were spoken. In this paper,
we redefine the speech recognition problem so that its goal is
to find both the best sequence of wordsand their syntactic role
(part-of-speech) in the utterance. This is a necessary first step
towards tightening the interaction between speech recognition
and natural language understanding.

1 INTRODUCTION
For recognizing spontaneous speech, the acoustic signal is
to weak to narrow down the number of word candidates.
Hence, speech recognizers employ a language model that
prunes out acoustic alternatives by taking into account the
previous words that were recognized. In doing this, the
speech recognition problem is viewed as finding the most
likely word sequencêW given the acoustic signal [11].

Ŵ = arg max
W

Pr(W jA)

= arg max
W

Pr(AjW )Pr(W )

Pr(A)

= arg max
W

Pr(AjW )Pr(W )

The last line involves two probabilities that need to be
estimated—the first due to the acoustic modelPr(AjW )
and the second due to the language modelPr(W ). The
probability due to the language model can be expressed as
the following, where we rewrite the sequenceW explicitly
as the sequence ofN wordsW1;N .

Pr(W1;N ) =

NY

i=1

Pr(WijW1;i-1)

To estimate the probability distribution, a training corpus
is typically used from which the probabilities can be esti-
mated by relative frequencies. Due to sparseness of data,
one must define equivalence classes amongst the contexts
W1;i-1 , which can be done by limiting the context to an
n-gram language model [11] and also by grouping words
into words classes [4].

Several attempts have been made to incorporate shallow
syntactic information to give better equivalence classes,
where the shallow syntactic information is expressed as
part-of-speech (POS) tags (e.g. [11], [13]). A POS tag

�This researchwork was completed while the first author was
at the University of Rochester. The authors would like to thank
Geraldine Damnati, Kyung-ho Loken-Kim, Tsuyoshi Morimoto,
Eric Ringger and Ramesh Sarukkai. This material is based upon
work supported by the NSF under grant IRI-9623665 and by
ONR under grant N00014-95-1-1088.

indicates the syntactic role that a particular word is playing
in the utterance, e.g. whether it is a noun or a verb, etc. The
approach is to use the POS tags of the prior few words to
define the equivalence classes. This is done by summing
over all POS possibilities as shown below.

Pr(WijW1;i-1)

=
X

P1;i

Pr(WijP1;iW1;i-1) Pr(P1;ijW1;i-1)

=
X

P1;i

Pr(WijP1;iW1;i-1)Pr(PijP1;i-1W1;i-1)Pr(P1;i-1jW1;i-1)

Furthermore, the following two assumptions are made to
simplify the context.

Pr(WijP1;iW1;i-1) � Pr(WijPi)

Pr(PijP1;i-1W1;i-1) � Pr(PijP1;i-1)

However, this approach does not lead to an improvement
in the performance of the speech recognizer. For instance,
Srinivas [15] reports that such a model results in a 24.5%
increase in perplexity over a word-based model on the
Wall Street Journal, and Niesler and Woodland [13] report
an 11.3% increase (but a 22-fold decrease in the number
of parameters of such a model). Only by interpolating in
a word-based model is an improvement seen [11].

A more major problem with the above approach is that
in a spoken dialogue system, speech recognition is only
the first step in understanding a speaker’s contribution.
One also needs to determine the syntactic structure of the
words involved, its semantic meaning, and the speaker’s
intention in making the utterance. This information is
needed to help the speech recognizer constrain the alter-
native hypotheses. Hence, we need a tighter coupling be-
tween speech recognition and the rest of the interpretation
process.

2 REDEFINING THE PROBLEM
As a starting point, we re-examine the approach of using
POS tags in the speech recognition process. Rather than
view POS tags as intermediate objects solely to find the
best word assignment, we redefine the goal of the speech
recognition process so that it finds the best word sequence
and the best POS interpretation given the acoustic signal.

Ŵ P̂ = argmax
WP

Pr(WP jA)

= argmax
WP

Pr(AjWP ) Pr(WP )

The first termPr(AjWP ) is the acoustic model, which tra-
ditionally excludes the category assignment. The second
termPr(WP ) is the POS-based language model. Just as



before, we rewrite the probabilityofPr(WP ) as a product
of probabilitiesof the word and POS tag given the previous
context.

Pr(W1;NP1;N )

=
Y

i=1;j

Pr(WiPijW1;i-1P1;i-1)

=
Y

i=1;j

Pr(WijW1;i-1P1;i)Pr(PijW1;i-1P1;i-1)

The final probability distributions are similar to those used
for POS tagging of written text [5, 6, 7]. However, these
approaches simplify the probability distributions as is done
by previous attempts to use POS tags in speech recognition
language models.1 As we will show in Section 4.1, such
simplifications lead to poorer language models.

3 ESTIMATING THE PROBABILITIES
The probability distributions that we now need to esti-
mate are more complicated then the traditional ones. Our
approach is to use the decision tree learning algorithm
[1, 2, 3], which uses information theoretic measures to
construct equivalence classes of the context in order to
cope with sparseness of data. The decision tree algorithm
starts with all of the training data in a single leaf node.
For each leaf node, it looks for the question to ask of the
context such that splitting the node into two leaf nodes
results in the biggest decrease inimpurity, where the im-
purity measures how well each leaf predicts the events in
the node. Heldout data is used to decide when to stop
growing the tree: a split is rejected if the split does not
result in a decrease in impurity with respect to the heldout
data. After the tree is grown, the heldout dataset is used to
smooth the probabilities of each node with its parent [1].

3.1 Word and POS Classification Trees
To allow the decision tree to ask about the words and POS
tags in the context, we cluster the words and POS tags using
the algorithmof Brownet al. [4] into a binary classification
tree. The algorithm starts with each word (or POS tag)
in a separate class, and successively merges classes that
result in the smallest lost in mutual information in terms
of the co-occurrences of these classes. By keeping track
of the order that classes were merged, we can construct a
hierarchical classification of the words. Figure 1 shows
a classification tree that we grew for the POS tags. The
binary classification tree gives an implicit binary encoding
for each word and POS tag, which we show after each POS
tag in the figure. The decision tree algorithm can then ask
questions about the binary encoding of the words, such as
‘is the third bit of the POS tag encoding equal to one?’,
and hence can ask about which partition a word is in.

Unlike other work that uses classification trees as the
basis for the questions used by a decision tree (e.g. [2]),
we treat the word identities as a further refinement of the
POS tags. This approach has the advantage of avoiding
unnecessary data fragmentation, since the POS tags and
word identities will not be viewed as separate sources of
information. We grow the classification tree by starting
with a unique class for each word and each POS tag that

1A notable exception is the work of Blacket al. [2], who
use a decision tree to learn the probability distributions for POS
tagging.
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Figure 1: POS Classification Tree
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Figure 2: A Word Classification Tree

it takes on. When we merge classes to form the hierarchy,
we only allow merges if all of the words in both classes
have the same POS tag. The result is a word classification
tree for each POS tag. This approach to growing the word
trees simplifies the task, since we can take advantage of
the hand-coded linguistic knowledge (as represented by the
POS tags). Furthermore, we can better deal with words
that can take on multiple senses, such as the word “loads”,
which can be a plural noun (NNS) or a present tense third-
person verb (PRP).2

In Figure 2, we give the classification tree for the per-
sonal pronouns (PRP). It is interesting to note that the
clustering algorithm distinguished between the subjective
pronouns ‘I’, ‘we’, and ‘they’, and the objective pronouns
‘me’, ‘us’, and ‘them’. The pronouns ‘you’ and ‘it’ can
take either case, and the algorithm partitioned them ac-
cording to their most common usage in the training cor-
pus. Although distinct POS tags could have been added to
distinguishbetween these two cases, it seems that the clus-
tering algorithm can make up for some of the shortcomings

2Words-POS combinations that occur only once in the train-
ing corpusare grouped together in the class<unknown>, which
is unique for each POS tag.



of the tagset.3

3.2 Composite Questions
In the previous section, we discussed the elementary ques-
tions that can be asked of the words and POS tags in the
context. However, there might be a relevant partitioning
of the data that can not be expressed in that form. For in-
stance, a good partitioning of a node might involve asking
whether questionsq1 andq2 are both true. Using elemen-
tary questions, the decision tree would need to first ask
questionq1 and then askq2 in the true subnode created
by q1. This means that the false case has been split into
two separate nodes, which could cause unnecessary data
fragmentation.

Unnecessary data fragmentation can be avoided by al-
lowing composite questions. Bahlet al. [1] introduced a
simple but effective approach for constructing composite
questions. Rather than allowing any boolean combination
of elementary questions, they restrict the typology of the
combinations topylons, which have the following form
(true maps all data into the true subset).

pylon ) true

pylon ) (pylon ^ elementary)

pylon ) (pylon _ elementary)

The effect of any binary question is to divide the data
into true and false subsets. The advantage of pylons is
that each successive elementary question has the effect
of swapping data from the true subnode into the false
or vice versa. Hence, one can compute the change in
node impurity that results from each successive elementary
question that is added. This allows one to use a greedy
algorithm to build the pylon by successively choosing the
elementary question that results in the largest decrease in
node impurity.

We actually employ a beam search and explore the best
10 alternatives at each level of the pylon. Again we make
use of the heldout data to help pick the best pylon, but
we must be careful not to make too much use of it for
otherwise it will become as biased as the training data. If
the last question added to a candidate pylon results in an
increase in node impurity with respect to the heldout data,
we remove that question and stop growing that alternative.
When there are no further candidates that can be grown,
we choose the winning pylon as the one with the best
decrease in node impurity with respect to the training data.
The effect of using composite questions is explored in
Section 4.3.

4 RESULTS
To demonstrate our model, we have tested it on the Trains
corpus [9], a collection of human-human task-oriented
spoken dialogues consisting of 6 and half hours worth of
speech, 34 different speakers, 58,000 words of transcribed
speech, with a vocabulary size of 860 words. To make
the best use of the limited amount of data, we use a 6-fold
cross validation procedure, in which we use each sixth of
the corpus for testing data, and the rest for training data.

3The words included in the<unknown> class are the re-
flexive pronouns ‘themselves’, and ‘itself’, which each occurred
once in the training corpus.

A way to measure a language model is to compute the
perplexity it assigns to a test corpus, which is an estimate
of how well the language model is able to predict the next
word. The perplexity of a test set ofN wordsw1;N is
calculated as follows,

2
�

1

N

P
N

i=1
log

2
P̂r(w

i
jw1;i�1)

whereP̂r is the probability distribution supplied by the
language model. Full details of how we compute the word-
based perplexity are given in [8]. We also measure the
error rate in assigning the POS tags. Here, as in measuring
the perplexity, we run the language model on the hand-
transcribed word annotations.

4.1 Effect of Richer Context
Table 1 gives the perplexity and POS tagging error rate
(expressed as a percent). To show the effect of the richer
modeling of the context, we vary the amount of context
given to the decision tree. As shown by the perplexity
results, the context used for traditional POS-based lan-
guage models (second column) is very impoverished. As
we remove the simplifications to the context, we see the
perplexity and POS tagging rates improve. By using both
the previous words and previous POS tags as the con-
text, we achieve a 43% reduction in perplexity and a 5.4%
reduction in the POS error rate.

Context forWi Pi Pi-3,i Pi-3,iWi-3,i-1 Pi-3,iWi-3,i-1

Content forPi Pi-3,i-1 Pi-3,i-1 Pi-3,i-1 Pi-3,i-1Wi-3,i-1

POS Error Rate 3.13 3.10 3.03 2.97
Perplexity 42.32 32.11 29.49 24.17

Table 1: Using Richer Contexts

4.2 Constraining the Decision Tree
As we mentioned earlier, the word identity information
W

i�j is viewed as further refining the POS tag of the
word P

i�j
. Hence, questions about the word encoding

are only allowed if the POS tag is uniquely defined. Fur-
thermore, for both POS and word questions, we restrict
the algorithm so that it only asks about more specific bits
of the POS tag and word encodings only if it has already
uniquely identified the less specific bits. In Table 2, we
contrast the effectiveness of adding further constraints.
The second column gives the results of adding no further
constraints, the third column only allows questions about
a POS tagP

i�j�1 only if P
i�j is uniquely determined,

and the fourth column adds the constraint that the word
W

i�j must also be uniquely identified before questions
are allowed ofP

i�j�1.
From the table, we see that it is worthwhile to force the

decision tree to fully explore a POS tag for a word in the
context before asking about previous words. Hence, we
see that the decision tree algorithm needs help in learning
that it is better to fully explore the POS tags. However,

None POS Full
POS Error Rate 3.19 2.97 3.00
Perplexity 25.64 24.17 24.39

Table 2: Adding Additional Constraints



we see that adding the further constraint that the word
identity should also be fully explored results in a decrease
in performance of the model. Hence, we see that it is not
worthwhile for the decision tree to fully explore the word
information (which is the basis of class-based approaches
to language modeling), and it is able to learn this on its
own.

4.3 Effect of Composites
The next area we explore is the benefit of composite ques-
tions in estimating the probability distributions. The sec-
ond column of Table 3 gives the results if composite ques-
tions are not employed, the third column gives the results
if composite questions are employed, and the fourth gives
the results if we employ a beam search in finding the best
pylon (with up to 10 alternatives). From the results, we
see that the use of pylons reduces the word perplexity rate
by 4.7%, and the POS error rate by 2.3%. Furthermore,
we see that using a beam search, rather than an entirely
greedy algorithm accounts for some of the improvement.

Not Used Single 10
POS Error Rate 3.04 3.04 2.97
Perplexity 25.36 24.36 24.17

Table 3: Effect of Composite Questions

4.4 Effect of Larger Context
In Table 4, we look at the effect of the size of the context,
and compare the results to a word-based backoff language
model [12] built using the CMU toolkit [14]. For a bigram
model, it has a perplexity of 29.3, in comparison to our
word perplexity of 27.4. For a trigram model, the word-
based model has a perplexity of 26.1, in comparison to
our perplexity of 24.2. Hence we see that our POS-based
model results in a 7.2% improvement in perplexity.

Bigram Trigram 4-gram
POS Error Rate 3.19 2.97 2.97
Perplexity 27.37 24.26 24.17
Word-based Model 29.30 26.13

Table 4: Using Larger Contexts

5 CONCLUSION
In this paper, we presented a new way of incorporating
POS information into a language model. Rather than treat-
ing POS tags as intermediate objects solely for recognizing
the words, we redefine the speech recognition problem so
that its goal is to find the best word sequenceand their
best POS assignment. This approach allows us to use the
POS tags as part of the context for estimating the proba-
bility distributions. In fact, we view the word identities
in the context as a refinement of the POS tags rather than
viewing the POS tags and word identities as two separate
sources of information. To deal with this rich context,
we make use of decision trees, which can use information
theoretic measures to automatically determine how to par-
tition the contexts into equivalence classes. We find that
this model results in a 7.2% reduction in perplexity over a

trigram word-based model for the Trains corpus of spon-
taneous speech. Currently, we are exploring the effect of
this model in reducing the word error rate.

Incorporating shallow syntactic information into the
speech recognition process is just the first step. In other
work [8, 10], this syntactic information, as well as the tech-
niques introduced in this paper, are used to help model the
occurrence of dysfluencies and intonational phrasing in a
speech recognition language model. Our use of decision
trees to estimate the probability distributionsproves effec-
tive in dealing with the richer context provided by mod-
eling these spontaneous speech events. Modeling these
events improves the perplexity to 22.5, a 14% improve-
ment over the word-based trigram backoff model, and re-
duces the POS error rate by 9%.
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