
SPEECH REPAIRS: A PARSING PERSPECTIVE

Mark G. Core and Lenhart K. Schubert
mcore,schubert@cs.rochester.edu

http://www.cs.rochester.edu/u/mcore
Computer Science Department

University of Rochester
Rochester NY 14627

ABSTRACT

This paper presents a grammatical and processing framework for
handling speech repairs. The proposed framework has proved
adequate for a collection of human-human task-oriented dialogs,
both in a full manual examination of the corpus, and in tests with
a parser capable of parsing some of that corpus. This parser can
also correct a pre-parser speech repair identifier producing
increases in recall varying from 2% to 4.8%.

1. MOTIVATION
In the discussion below, we adopt the convention of using the
term speech repair to include hesitations. Many speech repairs
have associated editing terms (I mean, um), and abridged repairs
[6]) consist solely of editing terms (i.e. they have no corrections).

Speech-based dialog systems often attempt to identify
speech repairs in the speech recognition phase (prior to parsing)
so that speech repairs will not disrupt the speech recognizer's
language model ([6],[7],[8]). In such a system, it is then tempting
to remove conjectured reparanda (corrected material) and editing
terms from the input prior to further processing. There are two
issues that need to be addressed in such an approach, one
pertaining to dialog interpretation and the other to parsing. First,
how can the dialog manager of the system access and interpret
these editing terms and reparanda, if the need arises? Such a
situation could occur in an example such as take the oranges to
Elmira, um, I mean, take them to Corning; here reference
resolution requires processing of the reparandum. Also, the
system might want to access the reparanda and editing terms to
see the speaker's original thoughts and any hesitations, for
instance as indicators of uncertainty. For more details see [3].
Second, if speech repair identification occurs before parsing,
should the parser be made aware of reparanda?

We believe that the answer to the second question should be
yes. The parser has more information about the possible
grammatical structures in the input than a pre-parser repair
identifier and can possibly correct errors made by it. This point
applies not only to each speaker's contributions in isolation but
also to the interactions between contributions. An example is
provided by utterances 11-15 of TRAINS dialog [5] d91-6.1
(Figure 1) where the interleaving of speaker contributions can
help identify repairs.

(To fit the example on one line, we have abbreviated the
initial part of u’s contribution, move the engine at Avon engine E
to, to move engine E to.) Repair detection and correction
typically act on only one speaker’s stream of words at a time. If
for some reason, the corrections E one, en-, and engine E one
were not recognized by a pre-parser repair detector, the parser’s
knowledge of s’s correction might help find these repairs. If the
dialog parser treats the words of the two speakers as a single
stream of data (as ours in fact does), s’s correction appears right
after the phrase it corrects.

This paper presents a framework that addresses both sorts of
issues above. The framework allows for complete phrase
structure representations of utterances containing repairs without
removing reparanda from the input. Thus structural analyses of
repairs are made available to the dialog manager. The idea is to
create two or more interpretations for each repair; one
interpretation for the corrected utterance and one possibly partial
interpretation for what the speaker started to say. Editing terms
are considered separate utterances embedded in the main
utterance.

The focus of this paper is on the second issue, i.e., testing
the ability of a parser to improve pre-parser speech repair
identification. We show that by applying the parser's knowledge
of grammar and of the syntactic structure of the input to the
hypotheses made by the pre-parser repair identifier, we can
improve upon those hypotheses.

2. HOW THE PARSER ACCOMODATES REPAIRS
The parser deals with reparanda and editing terms via metarules.
The term metarule is used because these rules act not on words
but on grammatical structures. Consider the editing term
metarule. When an editing term is seen

1
, the metarule extends

copies of all phrase hypotheses ending at the editing term over
that term to allow utterances to be formed around it. This
metarule (and our other metarules) can be viewed declaratively as
specifying allowable patterns of phrase breakage and interleaving
[2]. This notion is different from the traditional linguistic
conception of metarules as rules for generating new PSRs from
given PSRs.

2
 Procedurally, we can think of metarules as creating

new (discontinuous) pathways for the parser’s traversal of the
input, and this view is readily implementable.

The repair metarule, when given the hypothetical start and
end of a reparandum (say from a language model such as [6]),

U: move engine E to E one en- engine E one to Bath
S: engine E one okay

Figure 1: Utterances 11-15 of TRAINS dialog d91-6.1

extends copies of phrase hypotheses over the reparandum
allowing the corrected utterance to be formed. In case the source
of the reparandum information gave a false alarm, the alternative
of not skipping the reparandum is still available.

For each utterance in the input, the parser needs to find an
interpretation that starts at the first word of the input and ends at
the last word. This interpretation may have been produced by
one or more applications of the repair metarule allowing the
interpretation to exclude one or more reparanda. For each
reparandum skipped, the parser needs to find an interpretation of
what the user started to say. In some cases, what the user started
to say is a complete constituent: take the oranges I mean take the
bananas. Otherwise, the parser needs to look for an incomplete
interpretation ending at the reparandum end. Typically, there will
be many such interpretations; the parser searches for the longest
interpretations and then ranks them based on their category: UTT
> S > VP > PP, and so on. The incomplete interpretation may not
extend all the way to the start of the utterance in which case the
process of searching for incomplete interpretations is repeated.
Of course the search process is restricted by the first incomplete
constituent. If, for example, an incomplete PP were found then
any additional incomplete constituent would have to expect a PP.

Figure 2 shows an example of this process on utterance 62
from TRAINS dialog d92a-1.2. Assuming perfect speech repair
identification, the repair metarule will be fired from position 0 to
position 5 meaning the parser needs to find an interpretation
starting at position 5 and ending at the last position in the input.
This interpretation (the corrected utterance) is shown under the
words in figure 2 The parser then needs to find an interpretation
of what the speaker started to say. There are no complete
constituents ending at position 5. The parser instead finds the
incomplete constituent ADVBL -> adv • ADVBL. Our
implementation is a chart parser and accordingly incomplete
constituents are represented as arcs. This arc only covers the
word through so another arc needs to be found. The arc
S -> S • ADVBL expects an ADVBL and covers the rest of the
input, completing the interpretation of what the user started to say
(as shown on the top of figure 2). The editing terms are treated as
separate utterances via the editing term metarule. For more
details including a discussion of second speaker interruptions see
[2],[4]

broken-S
S -> S ADVBL

s: we will take them through um let us see do we want to take them through to Dansville

VP

S

adv UTT UTT

ADVBL -> adv ADVBL S
broken-ADVBL

aux NP

Figure 2: Utterance 62 of d92a-1.2

3. RESCORING A PRE-PARSER SPEECH REPAIR
IDENTIFIER

Given that the parser can accept input containing reparanda and
editing terms, a pre-parser repair identifier does not have to
“clean up” input by removing hypothesized reparanda and editing
terms. It can instead give the parser its n-best hypotheses about
possible reparanda and editing terms. For this paper, we put
aside the question of how the parser determines when utterances
end. In the experiments below, the parser will always be given

utterance endpoints. For each utterance, the parser can try
various hypotheses from the repair identifier. Based on the
grammaticality of these hypotheses and any scores previously
assigned to them, the parser decides which one is correct.

To test whether such post-correction would improve recall,
the parser described in section 2 was connected to Heeman's
speech repair identifier [6]. The latter produced up to 100
hypotheses about the speech repairs, boundary tones, and parts of
speech associated with the words of each turn in the test corpus.
Each hypothesis was given an estimated probability.

Both the parser and Heeman’s speech repair identifier were
developed and tested on the TRAINS corpus [5]. However,
Heeman’s testing data was broken into two streams for the two
speakers while the test data for the parser merged the two
speakers' words into one data stream. The differences in
segmentation resulted in different speech repair annotations.

3.1 Experiment One
The first experiment used the parser’s speech repair annotations.
The version of Heeman’s module used is prior to the one reported
in [6]. Correspondingly, the recall and precision of
this module are lower than current versions. The recall and
precision of the model on the test corpus is shown in table 1. The
test corpus consisted of 541 repairs, 3797 utterances, and 20,069
words.

3

To correct Heeman’s output, the parser starts by trying his
module’s first choice. If this results in an interpretation covering
the input, that choice is selected as the correct answer. Otherwise
the process is repeated with the module’s next choice. If all the
choices are exhausted and no interpretations are found, then the
first choice is selected as correct. This approach is similar to an
experiment in [1] except that Bear et al. were more interested in
reducing false alarms. Thus, if a sentence parsed without the
repair then it was ruled a false alarm. Here the goal is to increase
recall by trying lower probability alternatives when no parse can
be found.

Repairs correctly guessed271

False alarms215

Missed270
Recall50.09%
Precision55.76%

Table 1: Heeman’s Speech Repair Results from Exp 1

Repairs correctly guessed284

False alarms371
Missed257
Recall52.50%
Precision43.36%

Table 2: Augmented Speech Repair Results from Exp 1

The results of such an approach on the test corpus are listed
in table 2. Recall increased by 4.8% (13 cases out of 541
repairs), showing promise in the technique of rescoring the output
of a pre-parser speech repair identifier.

One factor relating directly to the effectiveness of the parser
at correcting speech repair identification is the percent of fluent
or corrected utterances that the parser’s grammar covers. In a
random sample of 100 utterances from the corpus, 65 received

some interpretation. However, 37 of these utterances are one
word long (okay, yeah, etc.) and 5 utterances were question
answers (two hours, in Elmira); thus on interesting utterances,
likely to have repairs, accuracy is 39.7%. What happens when a
fluent or corrected utterance cannot be parsed is that the parser
may pick a low scoring repair hypothesis that eliminates the
unparsable material (this may be most of the utterance). This
situation results in a false alarm and actual repairs in the input
may be missed.

A question raised by this experiment was the effect of
knowing utterance boundaries in choosing a repair hypothesis.
All of Heeman’s repair hypotheses were truncated to fit within
utterance boundaries. However, this may have resulted in
obviously incorrect hypotheses that the parser could easily
eliminate. If Heeman’s module had known of utterance
boundaries at the outset it could have eliminated these
possibilities itself. The baseline measures of the second
experiment were adjusted to control for this advantage.

3.2 Experiment Two
In the second experiment, the most recent version of Heeman’s
repair identifier was used; a baseline measure considering the
effect of utterance boundaries was calculated; and Heeman’s
segmentation of the TRAINS corpus was used. Heeman’s
segmentation broke the input into two parts, one for each speaker,
and further divided those into turns. The author broke turns into
utterances as defined by the parser’s grammar. Heeman’s scoring
module worked on a per-turn basis, meaning if a turn had several
utterances the parser was not allowed to pick one hypothesis for
the first utterance and a different one for the second. The parser
scored the different hypotheses based on the number of words
that parsed for each hypothesis. So if one hypothesis allowed two
utterances to parse, one containing 5 words and another
containing 7 words, its score would be 12. The hypothesis with
the highest score was picked. In the case of ties, the hypothesis
with the higher probability (as assigned by Heeman) was chosen.

To construct a baseline measurement taking into account the
effect of utterance boundaries, hypotheses output by Heeman’s
module that crossed utterance boundaries were eliminated. The
top scoring hypothesis out of those remaining was selected for
each turn. The resulting recall and precision are shown in table 3.
The test corpus for this experiment includes one additional dialog
(d93-10.5) giving a total of 20,213 words. The additional dialog
and different segmentation and repair annotations result in a
corpus of 2295 turns, 3953 utterances and 695 speech repairs.
Involving the parser as described above produces the results
shown in table 4. Recall increases by 2% (9 repairs out of 695).
Actually, there are 30 cases where the parser corrected the output
of Heeman’s module, but there are also 21 cases where the parser
incorrectly rejected Heeman’s first choice creating a false alarm
and causing a repair to be missed. These instances occurred
when the parser’s grammar did not recognize the corrected
utterance.

Because three aspects of the experiment were changed
between experiments one and two, it is difficult to say whether
2% is a more valid measure of increase in recall than the 4.8%
measured in experiment one. As a preliminary test, we measured
the parsability of 60 turns randomly drawn from this corpus and
containing 100 utterances. 63.3% of the turns parsed but if we do
not consider turns consisting of one-word utterances and phrasal
question answers then only 31.3% of these non-trivial turns
parsed. Since experiment one was utterance-based and had a

parsing rate of 39.7% on non-trivial utterances, the change in
segmentation could have affected the recall rate. Clearly more
experiments need to be run to get the correct figure.

Repairs correctly guessed445

False alarms125

Missed250
Recall64.03%

Precision78.07%
Table 3 Heeman’s Speech Repair Results from Exp 2

Repairs correctly guessed454

False alarms749

Missed241
Recall65.32%

Precision37.74%
Table 4: Augmented Speech Repair Results from Exp 2

3.3 Discussion
The first question to be answered about these results is how to
address the drop in precision. Up to this point the probabilities
assigned by Heeman's module were only used to break ties.
Combining these probabilities with the percentage of words
parsed and using this score to rank hypotheses could offset the
effect of lower probability hypotheses that remove unparsable but
fluent material from the input.

A wider coverage grammar would also help, but the parser
would still be judging repairs solely on whether they occur in the
interpretation constructed by the parser. In addition to
grammatical disruption, the parser could also measure syntactic
parallelism between a potential reparandum and its correction.
This ability needs to be investigated in further detail. Phrase-
level parallelism will not likely be enough. An informal search of
the test corpus revealed that only 11% of repairs were corrections
of complete phrases or clauses. One could modify a statistical
parser to return the most likely incomplete and complete
constituents at every position in the input. Having incomplete
constituents for comparison might allow a useful syntactic
parallelism score to be constructed. Or perhaps the role of the
parser should merely be to decide whether a particular repair
hypothesis fits in the most highly probable parse of the input.

The results of these experiments are promising. Even with
low grammatical coverage the parser was able to increase the
recall. The remaining missing examples were not recovered
either because the parser’s grammar did not cover the corrected
utterance or Heeman’s repair module did not include the repair.
Post-hoc analysis is needed to determine whether the majority of
errors were the result of the parser or whether we also need to
consider how to find repairs not posited by a module such as
Heeman’s.

In the case of grammar failure, the parser cannot interpret
the utterance even if the correct repair hypothesis was chosen.
An experiment described in [4] measured utterance parsing
accuracy on a corpus of 495 repairs from the TRAINS dialogs.
Even though the parser was given perfect speech repair
information, only 144 of the 495 repairs appeared in utterances
having a complete parse. Thus, the 9 additional repairs (out of
695) found in experiment 2 and the 13 additional repairs (out of
541) in experiment 1 should be considered in light of the fact that

these repairs are in utterances that parse whereas even if the other
repairs in these corpora were corrected they might not parse. So
the effect of the 9 and 13 repairs on the comprehensibility of the
corpora is somewhat greater than the 2% and 4.8% increases in
repair recall measured above.

4. CONCLUSION
The dialog parsing framework and implementation presented in
this paper show how to extend standard parsers to handle speech
repairs. Such an approach allows the parser’s knowledge of the
possible grammatical structures of the input to impact speech
repair identification, resulting in increases in recall varying from
2% to 4.8%. This approach also provides a structural
representation of reparanda enabling a dialog system to track the
speaker’s “train of thought” (or as mentioned, to support
reference resolution).

ACKNOWLEDGMENTS
This work was supported in part by National Science Foundation grants
IRI-9503312 and 5-28789. Thanks to James Allen and Amon Seagull for
their help and comments on this work. Thanks to Peter Heeman for
providing data and guidance for the paper.

NOTES
1. The parser’s lexicon has a list of 35 editing terms that activate the
editing term metarule.
2. For instance, a traditional way to accommodate editing terms might be
via a metarule,
X -> Y Z ==>$ X -> Y editing-term Z, where X varies over categories
and Y and Z vary over sequences of categories. However, this would
produce phrases containing editing terms as constituents, whereas in our
approach editing terms are separate utterances.
3. Specifically the dialogs used were d92-1 through d92a-5.2;
d93-10.1 through d93-10.4; and d93-11.1 through d93-14.2. The
language model was never simultaneously trained and tested on the same
data.

REFERENCES
[1] Bear, J., Dowding, J., and Shriberg, E. 1992. Integrating multiple
knowledge sources for detection and correction of repairs in human-
computer dialog. In Proceedings of the 30

th
 Annual Meeting of the

Association for Computational Linguistics (ACL 92), 56-63.
[2] Core, M. and Schubert L. 1998. Implementing parser metarules that
handle speech repairs and other disruptions. In Cook. D. (ed.),
Proceedings of the 11

th
 International FLAIRS Conference. Sanibel Island.

[3] Core, M. and Schubert L. 1999. A model of speech repairs and other
disruptions. Working notes of the AAAI Fall Symposium on
Psychological Models of Communication in Collaborative Systems. Cape
Cod.
[4] Core, M. and Schubert L. 1999. A syntactic framework for speech
repairs and other disruptions. In Proceedings of the 37

th
 Annual Meeting

of the Association for Computational Linguistics (ACL 99). College Park.
[5] Heeman, P.A. and Allen, J. F. 1995. the TRAINS 93 dialogues.
TRAINS Technical Note 94-2, Department of Computer Science,
University of Rochester, Rochester NY 14627-0226.
[6] Heeman, P. A. and Allen, J. F. 1997. Intonational boundaries, speech
repairs, and discourse markers: modeling spoken dialog. In Proceedings
of the 35

th
 Annual Meeting of the Association for Computational

Linguistics (ACL 97). Madrid, 254-261.
[7] Siu, M.-h. and Ostendorf, M. 1996. Modeling disfluencies in
conversational speech. In Proceedings of the 4rd International
Conference on Spoken Language Processing (ICSLP-96), 386-389.

[8] Stolcke, A. and Shriberg, E. 1996. Statistical language modeling for
speech disfluencies. In Proceedings of the International Conference on
Audio, Speech, and Signal Processing (ICASSP).

