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ABSTRACT 

 
We introduce in this paper a hierarchical hybrid statistical lan-
guage model, represented as a collection of local models plus a 
general model that binds together the local ones. The model 
provides a unified framework for modelling language both 
above and below the word level, and we exemplify with models 
of both kinds for a large vocabulary task domain. To our knowl-
edge this is the first paper to report an extensive evaluation of 
the improvements achieved from the use of local models within 
a hierarchical framework in comparison with a conventional 
word-based trigram model. 

1. INTRODUCTION 

In recent years the idea that statistical language models for 
speech recognition would benefit from taking into account some 
of the linguistic structure of speech has started to catch on [1, 4, 
5, 10, 17]. As full-coverage probabilistic context-free grammars 
(PCFGs), which are inherently structural, are hard to obtain and 
inefficient to use, we would like to still use finite-state models, 
but whenever possible, to use local models of higher complex-
ity.  The rationale is that different parts of a sentence could be 
described more finely by such local models than by a conven-
tional n-gram model trained on a large corpus. For further bene-
fits of this approach, including portability of local models, we 
refer to the companion paper in these proceedings, [3]. 

The models we are concerned with, described in more detail in 
Section 2, can be thought of as a generalization of both class-
based models ([12, 18]) and phrase-based models ([12]). The 
overall language model is composed of a collection of sub-
models, including a sentence model and several local models 
that describe classes of words or phrases. The units of the sen-
tence model are either words, or class tags that stand for the 
local models. In most cases the classes are domain-specific, but 
there are a few examples of hierarchical models using more 
general syntactically-derived classes ([8, 9, 17]). 

Currently, all the similar models reported have a two-level over-
all structure. It may be useful that local models’ units also in-
clude class tags, allowing the model to develop into a true hier-
archical model. Also, the framework makes it possible to inte-
grate models for words, which can be structured in terms of 
smaller units ([7, 14]). We exemplify in this paper with a model 
for numbers (for text), but the same principle can be applied to 
other entities. One direction we would like to pursue is model-
ling of proper names at syllable level. General-purpose language 
models based on sub-word units have not proved as good as the 
word-based ones, so we would like to retain the rich statistical 
information present in the frequent words, and for the infrequent 
ones to include components based on smaller units. This would 
have the effect of increasing the coverage of the overall lan-

guage model with just a small size increase, and alleviating the 
data sparseness problem. 

We would expect the extra linguistic knowledge encoded in the 
local models to improve the quality of the overall model. Most 
of the similar models report some improvements over word-
based models. However, to our knowledge, none of them has 
been evaluated at a level of detail that would show where the 
improvements come from. We set ourselves to do it here for a 
couple of models, one that is a sub-word model, and two that are 
phrase models. The evaluation is carried on a large vocabulary 
domain (newspaper text), in contrast to the other similar models 
reported in the literature, which were all designed for small 
vocabulary applications with fairly constrained syntax. In Sec-
tion 3 we detail the evaluation measures and in Section 4 we 
describe our experiments and the results obtained. 

2. THE MODEL 

The model proposed here, which we call a hierarchical hybrid 
statistical model, can be thought of as a generalization of class-
based and phrase-based n-gram models. Word classes and lexi-
calized phrases provide rudimentary linguistic models ([14]), 
but they have already proved useful and are used in most state-
of-the-art models. We believe richer structure would provide 
additional benefits. Due to lack of space, we only highlight 
some important aspects that we want to improve on. For further 
details on the model, we refer to [3]. 

First, the class model can assume a more sophisticated architec-
ture than just a list of words. For example, it can be a PFSA, or 
even a PCFG if it is rather constrained ([5, 17]). Or else, they 
could be n-gram models, themselves. We call the model hybrid 
because we don’t require all components of a model to be based 
on the same architecture, but rather that each have the most 
appropriate structure given the sublanguage that it tries to model 
and the amount of training data available for it. For practical 
reasons, though, we ask that all sub-models return a probability 
for every word or word sequence they might cover, so that the 
overall model remains probabilistic. 

Second, as the top model includes class sub-models, these in 
their turn may include other sub-models, lending the overall 
model a hierarchical structure. 

Third, the modelling doesn’t have to be at the level of the word. 
There may be constructs for which better modelling can be done 
at sub-word level. In our model we integrate a character-based 
model, thus expanding the vocabulary to an infinite size. In such 
cases, it is impossible to gather good statistical information 
about the full set of words from any finite amount of training 
data. Also, as the test data is also going to be finite, some 
mechanism needs to be provided to adjust the probability model 
so that there is no loss of probability mass. We will explain our 
approach in Section 4.1.  



Although the models analysed in this paper are rather simple, 
they serve to illustrate some of the important issues in language 
modelling with hybrid hierarchical statistical models: 

• How to design sub-models at the sub-word level; 

• In case such sub-word models have a very wide cover-
age (in our example it is infinite), what is an effective 
probability model for it; and 

• How to assess the quality of each component, whether 
a sub-word model, or a phrase model, within the whole 
language model. 

3. EVALUATION MEASURES 

The only widely accepted measure for the quality of a statistical 
language model is test-set perplexity (PP) [13]. As this measure 
is based on averaging the probability of the words over a whole 
test set, it won’t tell much about the gains in improving the 
model of just a part of the overall model. For this we will look at 
the perplexity values computed on a subset of the test set, that 
on which the probabilities are calculated using the part of the 
language model that is modified. Occasionally, the perplexity 
results may not be comparable across models (e.g., because they 
have different vocabularies). In such cases, it may be useful to 
look not at the absolute value of the perplexity, but at how much 
of the total perplexity is caused by that particular subset of the 
test set.  

The log-total probability (LTP) of a subset T1 of the test set 
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The fraction of LTP caused by the subset T1 of the test set T is 
defined as: 
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This measure was introduced in [16] for the purpose of analys-
ing the “weaknesses” of a language model. A language model L 
can be improved by lowering fLTP(T1;T) for the part of the 
model used to compute the probabilities of the events in T1. 

As mentioned above, when the vocabularies of two models are 
different, we can’t compare the models by means of perplexity. 
For such cases we will use the adjusted perplexity (APP) meas-
ure introduced in [15], which adjusts the value of PP by a quan-
tity dependent on the number of unknown words in the test set, 
and the number of their occurrences: 
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where the test set T of length n contains s occurrences of r dif-
ferent unknown words. 

4. EXPERIMENTAL RESULTS 

We built models for newspaper text (WSJ) that combined a 
trigram sentence model with regular expression (RE) models for 
numbers (grapheme-based) and for two types of temporal 
phrases (word-based). These are representative for a number of 
classes of constructs that have an easily identifiable structure, 

and for which modelling either as single tokens or as mere se-
quences of tokens at the same level with the rest of the words in 
a sentence constitutes a particularly poor model. For these 
classes of constructs we should be able to extrapolate the statis-
tics from a small corpus to the whole class (which may even be 
infinite) and not need to limit the vocabulary to just what was 
found in the training data. In the case of longer phrases, we want 
to treat them as single tokens in order to allow for meaningful 
longer-distance dependencies. Both number and date phrase 
constructs appear relatively often in the WSJ corpus, and are 
responsible for a comparatively large amount of both perplexity 
and out-of-vocabulary words (in the case of numbers). 

For both numbers and date phrases, REs seem a good, intuitive 
model, able to represent succinctly a large, possibly infinite 
number of language constructs. Using such sub-models would 
have the advantage of both shrinking the size of the language 
model, and expanding its coverage far beyond the limits of the 
finite-state formalisms currently in use. 

For our experiments, we selected for training the first 200k sen-
tences (about 4.5M words) from the WSJ87 corpus and for test-
ing the last 20k sentences (about 460k words) from the same 
corpus. The baseline model is a word trigram with a vocabulary 
comprising the most frequent 20,000 words. The out-of-
vocabulary (OOV) rate is 4.8%. However, for the class of num-
bers the OOV rate is 24.5%. The OOV rate for the temporal 
phrases is insignificant. 

The baseline model is a word-based trigram model, with Witten-
Bell discounting, built with the CMU-SLM Toolkit ([2]). 

For building the hierarchical model, we first tokenized the train-
ing corpus with the appropriate RE, replacing each token with a 
class tag. A trigram model, of the same type as the baseline 
model, trained on this tagged corpus provided the top-layer 
model. Its vocabulary was restricted to that of the baseline, plus 
the class tag(s). A second layer was constituted by the local 
PFSA model(s). We performed experiments separately with the 
model for decimal numbers (the Dec model) and with two mod-
els for temporal phrases (the Temp model). 

4.1. Sub-Word Models: The Case of Deci-
mal Numbers 

We identified decimal numbers using the following RE: 

((0-9)+(,[0-9][0-9][0-9])*)(.[0-9]*)? 

for which we built an equivalent 7-state deterministic FSA. This 
automaton was turned into a PFSA; the probability model has 
six parameters, and was trained on the numbers found in the 
training data. 
 
Figure 1 shows the PP and APP values for two Dec models, 
compared to the baseline model. OOV words are excluded from 
the computation of PP. 

The Dec-20k model was trained and tested only on the same 
data available for the baseline model. However, the real value of 
this type of model is in increasing the size of the vocabulary, 
and thus providing additional coverage, at a minimal cost. Thus, 
we show results for the Dec-20k+ model, which benefitted from 
the additional numbers available in the training data, and in-
cluded all numbers found in the test data.  



The two sets of results for the Dec models correspond to two 
modes of assigning probabilities to words by the PFSA model. 
The Type I models assign to every number the probability given 
by the PFSA by multiplying the probabilities along the arcs 
traversed in accepting that number. With such a model, a large 
mass of probability is assigned to an infinity of numbers that 
cannot be ever seen in the test set, which is finite. As a conse-
quence, we notice that the PP and APP values are higher for 
these models than for the baseline.  

The Type II models assign to all numbers an estimate of what 
the probability of a random number should be; the estimate is 
normalized on the training data. Thus, this model takes into 
account the fact that for a finite amount of test data only a cer-
tain proportion of words will be numbers. Note that the prob-
ability depends only on the fact that the word seen in the test 
data is a number, and not on which number it is; in particular, 
numbers not encountered in the training data will receive the 
same probability as the ones encountered1. Expectedly, the Dec-
20k model performs just as well as the baseline (the small im-
provement is not significant). However, the Dec-20k+ model, 
although it recognizes a larger vocabulary (practically infinite), 
has a 4.2% lower APP than the baseline model. The PP for this 
model is not comparable to the PP for the baseline because of 
the difference in the non-OOV test data and vocabularies. 

Although numbers have a high OOV rate, in the corpus we 
worked with they account for a relatively small proportion of all 
words. That’s why looking at overall perplexity figures is not 
telling. We would have to look at how much better can numbers 
be predicted, and also how much the new models improve the 
contexts that include numbers. 

We did so by looking at the perplexity values for number words 
only. Moreover, we computed the same on the first and second 
words following those events, in order to assess the effect on 
context modelling. In all cases we also computed the fraction of 
total probability due to that particular subset of the test data. 
More formally, if the test set is T=w

1
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n
, the subsets of interest 

to us are: 

• T0 = {wi | 1 ����������wi is a number} 

• T1 = {wi | 1 ����������wi-1 is a number} 

• T2 = {wi | 1 ����������wi-2 is a number} 

• T3 = T0 ∪ T1 ∪ T2 

The results are depicted in Table 1 and show improvements 
ranging from small to two orders of magnitude. The largest 
perplexity improvement is in predicting the numbers (T0), where 
a very large reduction in fLTP is also obtained. Although there 

                                                 
1 This is justified intuitively by the fact that numbers are usually impos-
sible to predict from just the word history, without world knowledge. 

was a significant improvement in predicting the second next 
word after a number, there was almost no improvement in pre-
dicting the first word after a number. We believe this happened 
because the events in class T1 are already well modelled in the 
baseline (they have quite low PP); indeed, most words in that 
class have very high frequency: “,”, “.”, “to”, etc. Overall, these 
results show that, indeed, although the new model has a larger 
vocabulary, it has better predictive power, both because of the 
better context modelling, and because of the probabilistic model 
chosen for the local model. The contribution of the class of 
numbers to the log-total probability was reduced by about 40%. 

4.2. Phrase Models: The Case of Temporal 
Phrases 

We built the Temp model using a procedure similar to the one 
described in the previous section. We tokenized the training data 
using the following two REs: 

<month>(,? <year>)? 
<month> <day> (, <year>)? 

They define month and day phrases, respectively. <month> is 
any of the twelve months, plus their usual abbreviations, <day> 
is any number between 1 and 31, possibly with adjectival suf-
fixes, and <year> is any number between 1700 and 2199.  

The overall PP of the Temp model is 119.95, compared to 
121.87 for the baseline model. We expect the reduction would 
have been much larger had we applied a probabilistic model 
similar to the Type II model for decimals, but in the current 
experiment we only used a uniform distribution over the class of 
expressions covered by the above REs.  

Again, we looked at the perplexity values around the occur-
rences of temporal phrases in the test data, as we expect to see a 
marked improvement due to the longer and more meaningful 
context available in the HSLM. We considered the following 
subsets of the test set:  

• T1 = {wi | 1 ������n & wi-1 is the last word in 
a temporal phrase} 

• T2 = {wi | 1 ������n & wi-2 is the last word in 
a temporal phrase} 

• T3 = T1 ∪ T2 ∪  {wi | 1 �� ����n & wi be-
longs to a temporal phrase} 

Dec-20k Dec-20k+  baseline 
Type I Type II Type I Type II 

PP 121.87 126.99 121.52 135.4 124.15 
APP 188.52 196.44 187.98 196.96 180.60 

Figure 1: Overall PP (low) and APP (high) results for the Dec 
model, compared to the baseline model. 

  baseline Dec-20k Dec-20k+ 

T0 
PP 

fLTP 
1616.6 
2.732 

5.96 
0.674 

4.83 
0.596 

T1 
PP 

fLTP 
23.24 
1.140 

21.73 
1.139 

22.36 
1.152 

T2 
PP 

fLTP 
59.16 
1.452 

46.04 
1.392 

45.80 
1.393 

T3 
PP 

fLTP 
128.56 
5.195 

18.25 
3.173 

17.15 
3.112 

Table 1: Perplexity (PP) and fraction of total log-probability 
(fLTP) figures for the Type II Dec models. 



The results are displayed in Table 2, separately for each type of 
phrase (the Month and Day columns), and together. Although 
the fLTP values seem low, in fact there are just about 900 tem-
poral phrases in the test set; thus, the class of temporal phrases 
is responsible for a relatively large contribution to the overall 
PP. We again obtain very large PP reductions by using phrase 
class models, and an fLTP reduction of almost 50%. 

Since the amount of temporal phrase data was small, we wanted 
to know whether the above results were reliable. We plotted the 
evolution of PP in time for each case, and found that in the 
cases marked in gray in Table 2 the data was insufficient for PP 
to converge, but enough to give us a reasonable estimate for the 
order of the relative PP reductions. 

5. CONCLUSION 

We introduced a hierarchical statistical language model that 
generalizes over most of the previous variations of n-gram mod-
els. We exemplified with two local models, one that describes 
an infinite class of words using sub-word units (graphemes), and 
another one that describes a large class of phrases with simple 
regular expressions. Both use a trigram model as the general 
model. We then showed that these models compare favorably 
with a conventional word-based trigram. 

We plan to continue this work by building a model with more 
local models, and with more than two layers. For other types of 
constructs that can be easily tokenized with REs, see [6]. We 
would like to also try some automatic clustering techniques to 
define the classes to be modelled ([10, 12]). For the near future 
we also plan speech recognition experiments.  
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Month Day Month+ Day  
base Temp base Temp base Temp 

T1 
PP 
fLTP 

99.61 
0.160 

25.31 
0.113 

32.73 
0.088 

10.14 
0.059 

62.48 
0.248 

17.25 
0.172 

T2 
PP 
fLTP 

82.60 
0.154 

57.74 
0.142 

49.39 
0.098 

31.94 
0.088 

66.59 
0.252  

45.05 
0.230 

T3 
PP 
fLTP 

220.68 
0.593 

35.36 
0.369 

109.01 
0.517 

17.35 
0.215 

154.99 
1.110 

26.19 
0.584 

Table 2: Perplexity (PP) and fraction of total log-probability 
(fLTP) figures for the Temp model. 


