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ABSTRACT

In this paper, we describe an architecture for conversational
systems that enables human-like performance along several
important dimensions. First, interpretation is incremental,
multi-level, and involves both general and task- and domain-
specific knowledge. Second, generation is also incremental,
proceeds in parallel with interpretation, and accounts for
phenomena such as turn-taking, grounding and interrup-
tions. Finally, the overall behavior of the system in the
task at hand is determined by the (incremental) results of
interpretation, the persistent goals and obligations of the
system, and exogenous events of which it becomes aware. As
a practical matter, the architecture supports a separation of
responsibilities that enhances portability to new tasks and
domains.
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1. INTRODUCTION

Our goal is to design and build systems that approach
human performance in conversational interaction. We limit
our study to practical dialogues: dialogues in which the con-
versants are cooperatively pursuing specific goals or tasks.
Applications involving practical dialogues include planning
(e.g. designing a kitchen), information retrieval (e.g. finding
out the weather), customer service (e.g. booking an airline
flight), advice-giving (e.g. helping assemble modular furni-
ture) or crisis management (e.g. a 911 center). In fact, the
class of practical dialogues includes almost anything about
which people might want to interact with a computer.

TRIPS, The Rochester Interactive Planning System [6], is
an end-to-end system that can interact robustly and in near
real-time using spoken language and other modalities. It has

participated successfully in dialogues with untrained users
in several different simple problem solving domains. Our
experience building this system, however, revealed several
problems that motivated the current work.

1.1 Incrementality

Like most other dialogue systems that have been built,
TRIPS enforces strict turn taking between user and system,
and processes each utterance sequentially through three stages:
interpretation—dialogue management—generation. Unfortu-
nately, these restrictions make the interaction unnatural and
stilted, and will ultimately interfere with the user’s ability
to focus on the problem itself rather than on making the
interaction work. We want an architecture that allows a
more natural form of interaction; this requires incremental
understanding and generation with flexible turn-taking.

Here are several examples of human conversation that il-
lustrate some of the problems with processing in stages. All
examples are taken from a corpus collected in an emergency
management task set in Monroe County, NY [17]. Plus signs
(+) denote simultaneous speech, and “_” denotes silence.

First, in human-human conversation participants frequently
ground (confirm their understanding of) each other’s con-
tributions using utterances such as “okay” and “mm-hm”.
Clearly, incremental understanding and generation are re-
quired if we are to capture this behavior. In the following
example, A acknowledges each item in B’s answers about
locations where there are road outages.

Excerpt from Dialogue s16

: can you give me the first uh |, outage
okay

so Elmwood bridge

: okay

um ., Thurston road

: mm-hm

+ Three Eighty + Three at Brooks

: + okay +

: mm-hm
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and Four Ninety at the inner ., loop
okay
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Second, in human-human dialogues the responder frequently
acknowledges the initiator’s utterance immediately after it
is completed and before they have performed the tasks they



need to do to fully respond. In the next excerpt, A asks
for problems other than road outages. B responds with an
immediate acknowledgment. Evidence of problem solving
activity is revealed by B smacking their lips (“lipsmack”)
and silence, and then B starts to respond to the request.

Excerpt from Dialogue s16

A: and what are the , other um , did you have
just beside road +1 outages +1

B: +; okay +1 <lipsmack> , um Three Eighty
Three and Brooks +2 , is +2 a (, road out
L and an electric line down

A: +5 Brooks mm hm +»

A: okay

A sequential architecture, requiring interpretation and prob-
lem solving to be complete before generation begins, cannot
produce this behavior in any principled way.

A third example involves interruptions, where the initiator
starts to speak again after the responder has formulated a
response and possibly started to produce it. In the example
below, B starts to respond to A’s initial statement but then
A continues speaking.

Excerpt from Dialogue s6

: and he’s going to pull the tree
mm hm

and + there’s mm +

: + so y he’'ll be + done at |, um , he’s going
to be done at , in forty minutes

> ww e

We believe effective conversational systems are going to
have to be able to interact in these ways, which are perfectly
natural (in fact are the usual mode of operation) for humans.
It may be that machines will not duplicate human behavior
exactly, but they will realize the same conversational goals
using the communication modalities they have. Rather than
saying “uh-huh,” for instance, the system might ground a
referring expression by highlighting it on a display. Note
also that the interruption example requires much more than
a “barge-in” capability. B needs to interpret A’s second
utterance as a continuation of the first, and does not simply
abandon its goal of responding to the first. When B gets
the turn, B may decide to still respond in the same way, or
to modify its response to account for new information.

1.2 Initiative

Another reason TRIPS does not currently support com-
pletely natural dialogue is that, like most other dialogue
systems, it is quite limited in the form of mixed-initiative
interaction it supports. It supports taking discourse-level
initiative (cf. [3]) for clarifications and corrections, but does
not allow shifting of task-level initiative during the inter-
action. The reason is that system behavior is driven by
the dialogue manager, which focuses on interpreting user
input. This means that the system’s own independent goals
are deemphasized. The behavior of a conversational agent
should ideally be determined by three factors, not just one:
the interpretation of the last user utterance (if any), the
agent’s own persistent goals and obligations, and exogenous
events of which it becomes aware.

For instance, in the Monroe domain, one person often
chooses to ignore the other person’s last utterance and leads

the conversation to discuss some other issue. Sometimes

they explicitly acknowledge the other’s contribution and promise

to address it later, as in the following:

Excerpt from Dialogue s16

A: can you ,, +1 can +1 you go over the ., the
thing +2 for me again +2

B: +1i+1

B: 42 yeah in one +2 minute

B: i have to , clarify at the end here ....

In other cases, they simply address some issue they appar-
ently think is more important than following the other’s
lead, as in the following example where B does not address
A’s suggestion about using helicopters in any explicit way.

Excerpt from Dialogue s12

A: we can we , we can either uh
A : i guess we have to decide how to break up |,
this
A: we can _, make three trips with a helicopter
B: soiguess we should send one ambulance straight
off |, to , marketplace right ., now ., right

1.3 Portability

Finally, on a practical note, while TRIPS was designed
to separate discourse interpretation from task and domain
reasoning, in practice domain- and task-specific knowledge
ended up being used directly in the dialogue manager. This
made it more difficult to port the system to different do-
mains and also hid the difference between general domain-
independent discourse behavior and task-specific behavior
in a particular domain.

To address these problems, we have developed a new archi-
tecture for the “core” of our conversational system that in-
volves asynchronous interpretation, generation, and system
planning/acting processes. This design simplifies the incre-
mental development of new conversational behaviors. In ad-
dition, our architecture has a clean separation between dis-
course modeling and task/domain levels of reasoning, which
(a) enhances our ability to handle more complex domains,
(b) improves portability between domains; and (c) allows
for richer forms of task-level initiative.

The remainder of this paper describes our new architec-
ture in detail. The next section presents an overview of the
design and detailed descriptions of the major components.
A brief but detailed example illustrates the architecture in
action. We conclude with a discussion of related work on
conversational systems and the current status of our imple-
mentation.

2. ARCHITECTURE DESCRIPTION

As mentioned previously, we have been developing conver-
sational agents for some years as part of the TRAINS [7] and
TRIPS [6] projects. TRIPS is designed as a loosely-coupled
collection of components that exchange information by pass-
ing messages. There are components for speech processing
(both recognition and synthesis), language understanding,
dialogue management, problem solving, and so on.

In previous versions of the TRIPS system, the Dialogue
Manager component (DM) performed several functions:

e Interpretation of user input in context



e Maintenance of discourse context

e Planning the content (but not the form) of system re-
sponses

e Managing problem solving and planning

Having all these functions performed by one component led
to several disadvantages. The distinction between domain
planning and discourse planning was obscured. It became
difficult to improve interpretation and response planning,
because the two were so closely knit. Incremental process-
ing was difficult to achieve, because all input had to pass
through the DM (even if no domain reasoning was going to
occur, but only discourse planning). Finally, porting the sys-
tem to new tasks and domains was hampered by the inter-
connections between the various types of knowledge within
the DM.

The new core architecture of TRIPS is shown in Figure 1.
There are three main processing components. The Interpre-
tation Manager (IM) interprets user input as it arises. It
broadcasts the recognized speech acts and their interpreta-
tion as problem solving actions, and incrementally updates
the Discourse Context. The Behavioral Agent (BA) is most
closely related to the autonomous “heart” of the agent. It
plans system behavior based on its goals and obligations,
the user’s utterances and actions, and changes in the world
state. Actions that involve communication and collabora-
tion with the user are sent to the Generation Manager (GM).
The GM plans the specific content of utterances and dis-
play updates. Its behavior is driven by discourse obligations
(from the Discourse Context), and directives it receives from
the BA. The glue between the layers is an abstract model
of problem solving in which both user and system contribu-
tions to the collaborative task can be expressed.

All three components operate asynchronously. For in-
stance, the GM might be generating an acknowledgment
while the BA is still deciding what to do. And if the user
starts speaking again, the IM will start interpreting these
new actions. The Discourse Context maintains the shared
state needed to coordinate interpretation and generation.

In the remainder of this section, we describe the major
components in more detail, including descriptions of the Dis-
course Context, Problem Solving Model, and Task Manager.

2.1 Discourse Context

The TRIPS Discourse Context provides information to co-
ordinate the system’s conversational behavior. First, it sup-

plies sufficient information to generate and interpret anaphoric

expressions and to interpret forms of ellipsis. Given the real-
time nature of the interactions, and the fact that the system
may have its own goals and receive reports about external
events, the discourse context must also provide information
about the status of the turn (i.e. can I speak now or should
I wait?), and what discourse obligations are currently out-
standing (cf. [19]). The latter is especially important when
the system chooses to pursue some other goal (e.g. notifying
the user of an accident) rather than perform the expected di-
alogue act (e.g. answering a question); to be coherent and co-
operative, the system should usually still satisfy outstanding
discourse obligations, even if this is done simply by means of
an apology. Finally, as we move towards open-mike interac-
tive systems, we must also identify and generate appropriate
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Figure 1: New Core Architecture

grounding behaviors. To support these needs, the TRIPS
discourse context contains the following information:

1. A model of the current salient entities in the discourse,
to support interpretation and generation of anaphoric
expressions;

2. The structure and interpretation of the immediately
preceding utterance, to support ellipsis resolution and
clarification questions;

3. The current status of the turn—whether it is assigned
to one conversant or currently open.

4. A discourse history consisting of the speech-act inter-
pretations of the utterances in the conversation so far,
together with an indication of which utterances have
been grounded;

5. The current discourse obligations, typically to respond
to the other conversant’s last utterance. Obligations
may act as a stack during clarification subdialogues, or
short-term interruptions, but this stack never becomes
very large.

This is a richer discourse model than found in most sys-
tems (although see [12] for a model of similar richness).

2.2 Abstract Problem Solving Model

The core modules of the conversational agent, the IM, BA
and GM, use general models of collaborative problem solv-
ing, but these models remain at an abstract level, common
to all practical dialogues. This model is formalized as a set
of actions that can be performed on problem solving objects.
The problem solving objects include objectives (goals being
pursued), solutions (proposed courses of action or structures
that may achieve an objective), resources (objects used in
solutions, such as trucks for transportation, space in kitchen
design), and situations (settings in which solutions are used
to attain objectives).



In general, there are a number of different actions agents
can perform as they collaboratively solve problems. Many
of these can apply to any problem solving object. For exam-
ple, agents may create new objectives, new solutions, new
situations (for hypothetical reasoning) and new resources
(for resource planning). Other actions in our abstract prob-
lem solving model include select (e.g.focus on a particu-
lar objective), evaluate (e.g. determine how long a solution
might take), compare (e.g. compare two solutions to the
same objective), modify (e.g. change some aspect of a so-
lution, change what resources are available), repair (e.g. fix
an old solution so that it works) and abandon (e.g. give up
on an objective, throw out a possible solution)l. Because
we are dealing with collaborative problem solving, not all
of these actions can be accomplished by one agent alone.
Rather, one agent needs to propose an action (the agent is
said to snitiate the collaborative act), and the other accept
it (the other agent completes the collaborative act).

There are also explicit communication acts involved in
collaborative problem solving. Like all communicative acts,
these acts are performed by a single agent, but are only suc-
cessful if the other agent understands the communication.
The main communication acts for problem solving include
describe (e.g. elaborate on an objective, describe a particu-
lar solution), ezplain (e.g. provide a rationale for a solution
or decision), and identify (e.g. communicate the existence of
a resource, select a goal to work on). These communication
acts, of course, may be used to accomplish other problem
solving goals as well. For instance, one might initiate the
creation of an objective by describing it.

2.3 Task Manager

The behaviors of the IM, BA and GM are defined in terms
of the abstract problem solving model. The details of what
these objects are in a particular domain, and how operations
are performed, are specified in the Task Manager (TM). The
TM supports operations intended to assist in both the recog-
nition of what the user is doing with respect to the task at
hand and the execution of problem solving steps intended
to further progress on the task at hand.

Specifically, the Task Manager must be able to:

1. Answer queries about objects and their role in the
task/domain (e.g. is an ambulance a resource? Is load-
ing a truck an in-domain plannable/executable action?
Is “evacuating a city” a possible in-domain goal?)

2. Provide the interface between the generic problem solv-
ing acts used by the BA (e.g. create a solution) and
the actual task-specific agents that perform the tasks
(e.g. build a course of action to evacuate the city using
two trucks)

3. Provide intention recognition services to the IM (e.g.
can “going to Avon” plausibly be an extension of the
current course of action?)

In our architecture, the Task Manager maps abstract prob-
lem solving acts onto the capabilities of the knowledge-based
agents at its disposal. For example, in one of our planning

!This list is not meant to be exhaustive, although it has
been developed based on our experiences building systems
in several problem solving domains.

domains, the Task Manager uses a planner, router, sched-
uler, and temporal knowledge base to answer queries and
create or modify plans.

2.4 Interpretation Manager

The Interpretation Manager (IM) interprets incoming parsed

utterances and generates updates to the Discourse Context.
First, it produces turn-taking information. With a push-
to-talk interface this is simple. When the user presses the
button they have taken the turn; when they release it they
have released the turn. As we move to open-mike, identify-
ing turn-taking behavior will require more sophisticated in-
terpretation. TRIPS uses an incremental chart parser that
will assist in this process by broadcasting constituents as
they are recognized.

The principal task of the IM, however, is to identify the
intended speech act, the collaborative problem solving act
that it furthers, and the system’s obligations arising from
the interaction. For instance, the utterance “The bridge
over the Genesee is blocked” would be interpreted in some
circumstances as a problem statement, the intention being
to initiate replanning. The IM would broadcast a discourse-
level obligation to respond to a statement, and announce
that the user has initiated the collaborative problem solving
act of identifying a problem as a means of initiating replan-
ning (say, to change the route currently planned). In other
circumstances, the same utterance might be recognized as
the introduction of a new goal (i.e. to reopen the bridge).
The rules to construct these interpretations are based on
the abstract problem solving model and specific decisions
are made by querying the Task Manager. For instance, in
the above example, key questions might be “is there an exist-
ing plan using the bridge?” (an affirmative answer indicates
the replanning interpretation) and “is making the bridge
available a reasonable high-level goal in this domain?” (an
affirmative answer indicates the introduce-goal interpreta-
tion).

2.5 Generation Manager

The Generation Manager (GM), which performs content
planning, receives problem solving goals requiring genera-
tion from the Behavioral Agent (BA) and discourse obli-
gations from the Discourse Context. The GM'’s task is to
synthesize these input sources and produce plans (sequences
of discourse acts) for the system’s discourse contributions.

Because the GM operates asynchronously from the IM, it
can be continuously planning. For instance, it is informed
when the user’s turn ends and can plan simple take-turn and
keep-turn acts even in the absence of further information
from the IM or the BA, using timing information.

In the case of grounding behaviors and some conventional
interactions (e.g. greetings), the GM uses simple rules based
on adjacency pairs; no reference to the problem solving state
is necessary. In other cases, it may need information from
the BA in order to satisfy a discourse obligation. It may
also receive goals from the Behavioral Agent that it can
plan to satisfy even in the absence of a discourse obligation,
for instance when something important changes in the world
and the BA wants to notify the user.

The GM can also plan more extensive discourse contri-
butions using rhetorical relations expressed as schemas, for
instance to explain a fact or proposal or to motivatea pro-



posed action. It has access to the discourse context as well
as to sources for task- and domain-level knowledge.

When the GM has constructed a discourse act or set of
acts for production, it sends the act(s) and associated con-
tent to the Response Planner, which performs surface gen-
eration. The RP comprises several subcomponents; some
are template-based, some use a TAG-based grammar, and
one performs output selection and coordination. It can re-
alize turn-taking, grounding and speech acts in parallel and
in real-time, employing different modalities where useful. It
can produce incremental output at two levels: it can pro-
duce the output for one speech act before others in a plan
are realized; and where there is propositional content, it can
produce incremental output within the sentence (cf. [10]). If
a discourse act is realized and produced successfully, the GM
is informed and sends an update to the Discourse Context.

2.6 Behavioral Agent

As described above, the Behavioral Agent (BA) is respon-
sible for the overall problem solving behavior of the system.
This behavior is a function of three aspects of the BA’s
environment: (1) the interpretation of user utterances and
actions in terms of problem solving acts, as produced by the
Interpretation Manager; (2) the persistent goals and obliga-
tions of the system, in terms of furthering the problem solv-
ing task; (3) Exogenous events of which the BA becomes
aware, perhaps by means of other agents monitoring the
state of the world or performing actions on the BA’s behalf.

As we noted previously, most dialogue systems (including
previous versions of TRIPS) respond primarily to the first
of these sources of input, namely the user’s utterances. In
some systems (including previous versions of TRIPS) there
is some notion of the persistent goals and/or obligations of
the system. Often this is implicit and “hard-coded” into the
rules governing the behavior of the system. In realistic con-
versational systems, however, these would take on a much
more central role. Just as people do, the system must juggle
its various needs and obligations and be able to talk about
them explicitly.

Finally, we think it is crucial that conversational systems
get out into the world. Rather than simply looking up an-
swers in a database or even conducting web queries, a con-
versational system helping a user with a real-world task is
truly an agent embedded in the world. Events occur that
are both exogenous (beyond its control) and asynchronous
(occurring at unpredictable times). The system must take
account of these events and integrate them into the conver-
sation. Indeed in many real-world tasks, this “monitoring”
function constitutes a significant part of the system’s role.

The Behavioral Agent operates by reacting to incoming
events and managing its persistent goals and obligations. In
the case of user-initiated problem solving acts, the BA de-
termines whether to be cooperative and how much initiative
to take in solving the joint problem. For example, if the user
initiates creating a new objective, the system can complete
the act by adopting a new problem solving obligation to find
a solution. It could, however, take more initiative, get the
Task Manager to compute a solution (perhaps a partial or
tentative one), and further the problem solving by proposing
the solution to the user.

The BA also receives notification about events in the world
and chooses whether to communicate them to the user and/or
adopt problem solving obligations about them. For exam-

ple, if the system receives a report of a heart attack victim
needing attention, it can choose to simply inform the user
of this fact (and let them decide what to do about it). More
likely, it can decide that something should be done about the
situation, and so adopt the intention to solve the problem
(i.e. get the victim to a hospital).

Thus the system’s task-level initiative-taking behavior is
determined by the BA, based on the relative priorities of
its goals and obligations. These problem-solving obligations
determine how the system will respond to new events, in-
cluding interpretations of user input.

2.7 Infrastructure

The architecture described in this paper is built on an ex-
tensive infrastructure that we have developed to support
effective communication between the various components
making up the conversational system. Space precludes an
extended discussion of these facilities, but see [1] for further
details.

System components communicate using the Knowledge
Query and Manipulation Language (KQML [11]), which pro-
vides a syntax and high-level semantics for messages ex-
changed between agents. KQML message traffic is medi-
ated by a Facilitator that sits at the hub of a star topology
network of components. While a hub may seem to be a
bottleneck, in practice this has not been a problem. On
the contrary, the Facilitator provides a variety of services
that have proven indispensable to the design and develop-
ment of the overall system. These include: robust initial-
ization, KQML message validation, naming and lookup ser-
vices, broadcast facilities, subscription (clients can subscribe
in order to receive messages sent by other clients), and ad-
vertisement (clients may advertise their capabilities).

The bottom line is that an architecture for conversational
systems such as the one we are proposing in this paper would
be impractical, if not impossible, without extensive infras-
tructure support. While these may seem like “just imple-
mentation details,” in fact the power and flexibility of the
TRIPS infrastructure enables us to design the architecture
to meet the needs of realistic conversation and to make it
work.

3. EXAMPLE

An example will help clarify the relationships between the
various components of our architecture and the information
that flows between them, as well as the necessity for each.

Consider the situation in which the user asks “Where are
the ambulances?” First, the speech recognition components
notice that the user has started speaking. This is inter-
preted by the Interpretation Manager as taking the turn, so
it indicates that a TAKE-TURN event has occurred:

(tell (done (take-turn :who user)))

The Generation Manager might use this information to can-
cel or delay a planned response to a previous utterance. It
can also be used to generate various grounding behaviors
(e.g. changing a facial expression, if such a capability is sup-
ported). When the utterance is completed, the IM interprets
the user’s having stopped speaking as releasing the turn:

(tell (done (release-turn :who user)))

At this point, the GM may start planning (or executing) an
appropriate response.



The Interpretation Manager also receives a logical form
describing the surface structure of this request for infor-
mation. It performs interpretation in context, interacting
with the Task Manager. In this case, it asks the Task Man-
ager if ambulances are considered resources in this domain.
With an affirmative response, it interprets this question as
initiating the problem solving act of identifying relevant re-
sources. Note that contextual interpretation is critical—the
user wants to know where the usable ambulances are, not
where all known ambulances might be. The IM then gener-
ates:

1. A message to the Discourse Context recording the user’s
utterance in the discourse history together with its
structural analysis from the parser.

2. A message to the Discourse Context that the system
now has an obligation to respond to the question:

(tell
(introduce-obligation
:id OBLIG1
:who system
:what (respond-to
(wh-question
:id UTT1
:who user
:what (at-loc (the-set 7x
(type ?x ambulance))
(wh-term 71
(type 7?1 location)))
:why (initiate PS1)))))

This message includes the system’s obligation, a repre-
sentation of the content of the question, and a connec-
tion to the recognized problem solving act (defined in
the message described next). The IM does not specify
how the obligation to respond to the question should
be discharged.

3. A message to the Behavioral Agent that the user has
initiated a collaborative problem solving act, namely
attempting to identify a resource:

(tell
(done
(initiate
:who user
:what (identify-resource
:id PS1
:what (set-of ?x
(type ?x ambulance))))))

This message includes the problem solving act recog-
nized by the IM as the user’s intention, and a repre-
sentation of the content of the question.

When the Discourse Context receives notification of the
new discourse obligation, this fact is broadcast to any sub-
scribed components, including the Generation Manager. The
GM cannot answer the question without getting a response
from the Behavioral Agent. So it adopts the goal of answer-
ing, and waits for information from the BA. While waiting,
it may plan and produce an acknowledgment of the question.

When the Behavioral Agent receives notification that the
user has initiated a problem solving act, one of four things
can happen depending on the situation. We will consider
each one in sequence.

Do the Right Thing It may decide to “do its part” and
try to complete (or at least further) the problem solv-
ing. In this case, it would communicate with other
components to answer the query about the location of
the ambulances, and then send the GM a message like:

(request
(identify-resource
:who system
:what (and
(at-loc amb-1 rochester)
)
:why (complete :who system :what PS1)))

The BA expects that this will satisfy its problem solv-
ing goal of completing the identify-resources act ini-
tiated by the user, although it can’t be sure until it
hears back from the IM that the user understood the
response.

Clarification The BA may try to identify the resource but
fail to do so. If a specific problem can be identified as
having caused the failure, then it could decide to ini-
tiate a clarification to obtain the information needed.
For instance, say the dialogue has so far concerned a
particular subtask involving a particular type of am-
bulances. It might be that the BA cannot decide if
it should identify just the ambulances of the type for
this subtask, or whether the user wants to know where
all usable ambulances are. So it might choose to tell
the GM to request a clarification. In this case, the BA
retains its obligation to perform the identify-resources
act.

Failure On the other hand, the BA may simply fail to iden-
tify the resources that the user needs. For instance, the
agents that it uses to answer may not be responding,
or it may be that the question cannot be answered. In
this case, it requests the GM to notify the user of fail-
ure, and abandons (at least temporarily) its problem
solving obligation.

Ignoring the Question Finally, the BA might decide that
some other information is more important, and send
that information to the GM (e.g. if a report from the
world indicates a new and more urgent task for the user
and system to respond to). In this case, the BA retains
the obligation to work on the pending problem solv-
ing action, and will return to it when circumstances
permit.

Whatever the situation, the Generation Manager receives
some abstract problem solving act to perform. It then needs
to reconcile this act with its discourse obligation OBLIG1.
Of course, it can satisfy OBLIG1 by answering the ques-
tion. It can also satisfy OBLIG1 by generating a clarifica-
tion request, since the clarification request is a satisfactory
response to the question. (Note that the obligation to an-
swer the original question is maintained as a problem solv-
ing goal, not a discourse obligation). In the case of a failure,
OBLIGI1 could be satisfied by generating an apology and a
description of the reason the request could not be satisfied.
If the BA ignores the question, the GM might apologize
and add a promise to address the issue later, before produc-
ing the unrelated information. The apology would satisfy
OBLIGI1. For a very urgent message (e.g. a time critical



warning), it might generate the warning immediately, leav-
ing the discourse obligation OBLIG1 unsatisfied, at least
temporarily.

The GM sends discourse acts with associated content to

the Response Planner, which produces prosodically-annotated

text for speech synthesis together with multimodal display
commands. When these have been successfully (or partially
in the case of a user interruption) produced, the GM is in-
formed and notifies the Discourse Context as to which dis-
course obligations should have been met. It also gives the
Discourse Context any expected user obligations that result
from the system’s utterances.

The Interpretation Manager uses knowledge of these ex-
pectations to aid subsequent interpretation. For example,
if an answer to the user’s question is successfully produced,
then the user has an obligation to acknowledge the answer.
Upon receiving an acknowledgment (or inferring an implicit
acknowledge), the IM notifies the Discourse Context that
the obligation to respond to the question has truly been
discharged, and might notify the BA that the collaborative
“Identify-Resource” act PS1 has been completed.

4. |IMPLEMENTATION

The architecture described in this paper arose from a long-
term effort in building spoken dialogue systems. Because
we have been able to easily port most components from our
previous system into the new one, the system itself has a
wide range of capabilities that were already present in ear-
lier versions. Specifically, it handles robust, near real-time
spontaneous dialogue with untrained users as they solve sim-
ple tasks such as trying to find routes on a train map and
planning evacuation of personnel from an island (see [1] for
an overview of the different domains we have implemented).
The system supports cooperative, incremental development
of plans with clarifications, corrections, modifications and
comparison of different options, using unrestricted, natural
language (as long as the user stays focussed on the task at
hand). The new architecture extends our capabilities to bet-
ter handle the incremental nature of interpretation, the fact
that interpretation and generation must be interleaved, and
the fact that realistic dialogue systems must also be part
of a broader outside world that is not static. The new ar-
chitecture further clarifies the separation between linguistic
and discourse knowledge on one hand, and task and domain
knowledge on the other.

We demonstrated an initial implementation of our new
architecture in August 2000, providing the dialogue capa-
bilities for an emergency relief planning domain which used
simulation, scheduling, and planning components built by
research groups at other institutions. Current work involves
extending the capabilities of individual components (the BA
and GM in particular) and porting the system to a more
complex emergency-handling domain [17].

5. RELATED WORK

Dialogue systems are now in use in many applications.
Due to space constraints, we have selected only some of these
for comparison to our work. They cover a range of domains,
modalities and dialogue management types:

e Information-seeking systems [2, 5, 8, 9, 13, 15, 16] and
planning systems [4, 14, 18];

e Speech systems [13, 14, 15, 16], multi-modal systems
[5, 8, 18] and embodied conversational agents [2, 9];

e Systems that use schemas or frames to manage the
dialogue [9, 13, 14, 16], ones that use planning [4],
ones that use models of rational interaction [15], and

ones that use dialogue grammars or finite state models
[5, 8, 18].

Most of the systems we looked at use a standard interpretation—

dialogue management—generation core, with the architec-
ture being either a pipeline or organized around a message-
passing hub with a pipeline-like information flow. Our ar-
chitecture uses a more fluid processing model, which enables
the differences we outline below.

5.1 Separation of domain/task reasoning from
discourse reasoning

Since many dialogue systems are information-retrieval sys-
tems, there may be fairly little task reasoning to perform.
For that reason, although many of these systems have do-
main models or databases separate from the dialogue man-
ager [5, 8, 9, 13, 15, 16|, they do not have separate task
models. By contrast, our system is designed to be used in
domains such as planning, monitoring, and design, where
task-level reasoning is crucial not just for performing the
task but also for interpreting the user’s utterances. Separa-
tion of domain knowledge and task reasoning from discourse
reasoning — through the use of our Task Manager, various
world models, the abstract problem solving model and the
Behavioral Agent — allows us access to this information with-
out compromising portability and flexibility.

CommandTalk [18], because it is a thin layer over a stand-
alone planner-simulator, has little direct involvement in task
reasoning. However, the dialogue manager incorporates some
domain-dependent task reasoning, e.g. in the discourse states
for certain structured form-filling dialogues.

In the work of Cassell et al [2], the response planner per-
forms deliberative task and discourse reasoning to achieve
communicative and task-related goals. In our architecture,
there is a separation between task- and discourse-level plan-
ning, with the Behavioral Agent handling the first type of
goal and the Generation Manager the other.

Chu-Carroll and Carberry’s CORE [4] is not a complete
system, but does have a specification for input to the re-
sponse planner that presumably would come from a dialogue
manager. The input specification allows for domain, prob-
lem solving, belief and discourse-level intentions. Our Inter-
pretation and Generation Managers reason over discourse-
level intentions; they obtain information about domain, prob-
lem solving and belief intentions from other modules.

The CMU Communicator system has a dialogue manager,
but uses a set of domain agents to “handle all domain-
specific information access and interpretation, with the goal
of excluding such computation from the dialogue manage-
ment component” [14]. However, the dialogue manager uses
task- or domain-dependent schemas to determine its behav-
ior.

5.2 Separation of interpretation from response-
planning
Almost all the systems we examined combine interpreta-
tion with response planning in the dialogue manager. The
architecture outlined by Cassell et al [2], however, separates



the two. It includes an understanding module (performing
the same kinds of processing performed by our Interpreta-
tion Manager); a response planner (performing deliberative
reasoning); and a reaction module (which performs action
coordination and handles reactive behaviors such as turn-
taking). We do not have a separate component to process
reactive behaviors; we get reactive behaviors because dif-
ferent types of goals take different paths through our sys-
tem. Cassell et al’s “interactional” goals (e.g. turn-taking,
grounding) are handled completely by the discourse com-
ponents of our system (the Interpretation and Generation
Managers); the handling of their “propositional” goals may
involve domain or task reasoning and therefore will involve
our Behavioral Agent and problem-solving modules.
Fujisaki et al [8] divide discourse processing into a user
model and a system model. As in other work [4, 15], this is
an attempt to model the beliefs and knowledge of the agents
participating in the discourse, rather than the discourse it-
self. However, interpretation must still be completed be-
fore response planning begins. Furthermore, the models of
user and system are finite-state models; for general conver-
sational agents more flexible models may be necessary.

6. CONCLUSIONS

We have described an architecture for the design and im-
plementation of conversational systems that participate ef-
fectively in realistic practical dialogues. We have empha-
sized the fact that interpretation and generation must be
interleaved and the fact that dialogue systems in realistic
settings must be part of and respond to a broader “world
outside.” These considerations have led us to an architecture
in which interpretation, generation, and system behavior are
functions of autonomous components that exchange infor-
mation about both the discourse and the task at hand. A
clean separation between linguistic and discourse knowledge
on the one hand, and task- and domain-specific information
on the other hand, both clarifies the roles of the individ-
ual components and improves portability to new tasks and
domains.
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