
Finding the balance between generic and domain-specific knowledge: a parser
customization strategy

Myroslava O. Dzikovska, James F. Allen, Mary D. Swift

Computer Science Department
University of Rochester

Rochester, NY, USA, 14627�
myros, james, swift � @cs.rochester.edu

Abstract
Adapting spoken dialogue systems across domains presents a challenge of finding the balance between wide-coverage parsers which can
be easily ported but are slow and inaccurate, and domain-specific parsers which are fast and accurate but lack portability. We propose a
method for customizing a wide-coverage, domain-independent parser to specific domains. We maintain a domain-independent ontology
and define a set of mappings from it into a domain-specific knowledge representation. With this method, we customize the semantic
representations output by the parser for reasoning, and we specialize the lexicon for the domain, resulting in substantial improvement in
parsing speed and accuracy.

1. Introduction

Developers of spoken dialogue systems for multiple do-
mains are faced with the challenge of finding the optimal
balance between domain-independent and domain-specific
parsers. There are wide-coverage parsers (e.g., XTag (Do-
ran et al., 1994), LINGO (Copestake and Flickinger, 2000)
) that are domain-independent and therefore easy to port
to new domains, but they are often not efficient or accu-
rate enough. The typical approach is to hand-craft parsers
specifically for each domain (see for example (Goddeau
et al., 1994)), but the performance gains in accuracy and
efficiency are offset by their lack of portability, requir-
ing additional effort to adapt them to new domains. We
propose an alternative approach to address this challenge
with a method for customizing a wide-coverage, domain-
independent parser developed for spoken dialogue appli-
cations to specific domains. We maintain two ontologies:
domain-independent for the parser, and domain-specific for
the knowledge representation, and define a set of mappings
between domain-specific knowledge sources and the se-
mantic representations output by the parser. This method
improves upon the generic parser output by specifically tai-
loring the semantic representations output by the parser for
use by the reasoning components in the system. We also
use the mappings to specialize the lexicon to the domain,
resulting in substantial improvement in parsing speed and
accuracy.

The customization method described here was devel-
oped in the process of adapting the TRIPS dialogue system
(Allen et al., 2001) to several different domains, such as
a transportation routing system (Allen et al., 1996) and a
medication scheduling adviser. We assume a generic dia-
logue system architecture (Allen et al., 2000) that includes
a speech module, a parser, an interpretation manager (re-
sponsible for contextual processing and dialogue manage-
ment), and a back-end application responsible for the gen-
eral problem-solving behavior of the system.

Adapting the spoken dialogue system across domains
results in tension between the representation of generic vs.
specific information in the ontology. To facilitate develop-

ment when porting the parser to new domains, we want to
retain the syntactic and semantic information that is con-
sistent across domains. However, each domain comes with
its own semantic information relevant to the application.
For example, the representation of physical objects for the
transportation domain requires specifying whether an ob-
ject is suitable cargo for transport, such as different types of
food or supplies. In this respect, the distinctions between,
say, oranges and potatoes are irrelevant, since they are
equally good as cargo. These distinctions become highly
relevant in the medical domain, where food-medicine inter-
actions are important. Ideally, we want to customize the on-
tology to the domain for the most efficient reasoning. This
becomes ever more important when using specialized rea-
soners with pre-defined input representations, for example,
a database query system that must have specific template
slots filled. Thus our goal is to preserve the language in-
formation that is similar across domains, while addressing
specialization issues unique to each domain as much as pos-
sible, and keeping the development time for custom domain
adaptation to a minimum.

The AUTOSEM system (Rosé, 2000) uses a syntactic
lexicon COMLEX (Macleod et al., 1994) as a source of
reusable syntactic information, and manually links subcat-
egorization frames in the lexicon to the domain-specific
knowledge representation. The linking is performed di-
rectly from syntactic arguments (e.g., subject, object ...) to
the slots in a frame-like domain representation output by
the parser and used by the reasoners. Rosé shows that her
approach speeds up the development process for develop-
ing tutoring systems in multiple domains.

Our approach introduces an intermediate layer of ab-
straction, a generic ontology for the parser (the LF On-
tology) that is linked to the lexicon and preserved across
domains. The parser uses this ontology to supply mean-
ing representations of the input speech to the interpreta-
tion manager, which handles contextual processing and di-
alogue management and interfaces with the back-end ap-
plication. The domain-specific ontology used for reason-
ing (the KR ontology) is localized in the back-end appli-

cation. We then customize the communication between the
parser/interpretation manager and the back-end application
via a set of mappings between the LF and KR ontologies.
At the same time, the domain-independent ontology pre-
serves semantic information consistent across domains that
can be used by the Interpretation Manager for reasoning or
reference resolution.

This separation between domain-specific and domain-
independent ontologies allows us to write mappings in se-
mantic terms without addressing the details of the gram-
mar and subcategorization frames, using a higher level of
abstraction. The developers writing the mappings do not
need to understand syntactic details such as those in COM-
LEX subcategorization frames, and can instead use descrip-
tive labels assigned to semantic arguments (e.g., AGENT,
THEME, etc.). They can also take advantage of the hier-
archical structure in the domain-independent ontology and
write mappings that cover large classes of words. Finally,
the mappings are used to convert the generic representation
into the particular form utilized by the back-end applica-
tion, either a frame-like structure or a predicate logic repre-
sentation.

2. The Generic Lexicon
The LF ontology is close in structure to linguistic form,

so it can be easily mapped to natural language and used in
multiple domains. It classifies entities (i.e., objects, events
or properties) primarily in terms of argument structure.
Every LF type declares a set of linguistically motivated
thematic arguments, a structure inspired by FRAMENET
(Johnson and Fillmore, 2000), but which covers a number
of areas where FRAMENET is incomplete, such as plan-
ning. We use the LF ontology in conjunction with a generic
grammar covering a wide range of syntactic structures and
requiring minimal changes between domains. For example,
adapting the parser from the transportation to the medical
domain required adding LF types for medical terms (our
generic hierarchy was incomplete in this area) and corre-
sponding vocabulary entries, but we did not need to change
the grammar or existing lexical entries, and we continue to
use the same lexicon in both domains.

The LF types in the LF ontology are organized in a
single-inheritance hierarchy. Obviously, some sort of mul-
tiple inheritance is required, because, for example, a per-
son is a living being, but also a solid physical object (as
opposed to a formless substance such as water). We im-
plement multiple inheritance via semantic feature vectors
associated with each LF type. The features correspond
to basic meaning components and are based on the Eu-
roWordNet (Vossen, 1997) feature system with some addi-
tional features we have found useful across domains. While
the same distinctions can be represented in a multiple in-
heritance hierarchy, a feature-based representation makes
it easy to implement an efficient type-matching algorithm
based on (Miller and Schubert, 1988). More importantly,
using feature vectors allows us to easily change semantic
information associated with a lexical entry, a property uti-
lized during the customization process described below.

Word senses are treated as leaves of the semantic hier-
archy. For every word sense in the lexicon, we specify the

following information:

� Syntactic features such as agreement, morphology,
etc.;

� LF type;

� The subcategorization frame and syntax-semantics
mappings.

To illustrate, consider the verb load in the sense to
fill the container. The LF type definition for LF LOAD
is shown in Figure 1. It specifies generic type restric-
tions on the arguments which are then propagated in the
lexical entries. Intuitively, it defines a loading event in
which an intentional being (AGENT) loads a movable ob-
ject (THEME) into another physical object that can serve as
a container (TO-LOC). The lexicon entry for load is linked
to LF Load and contains two possible mappings from the
syntax to the LF: one in which the THEME is realized
as direct object, corresponding to load the oranges into
the truck, and another in which the THEME is realized as
prepositional complement, corresponding to load the truck
with oranges. The restrictions from the THEME argument
are propagated into the lexicon, and the parser makes use
of them as follows: only objects marked as (mobility mov-
able) are accepted as a direct object or prepositional with
complement of load.

(define-type LF_LOAD
:sem (situation (aspect dynamic)

(cause agentive))
:arguments
(AGENT (phys-obj (intentional +)))
(THEME (phys-obj (mobility movable)))
(TO-LOC (phys-obj (container +)))

)

Figure 1: The LF type definition for LF LOAD. In the lexi-
con, feature vectors from LF arguments are used to generate
selectional restrictions based on mappings between subcat-
egorization frames and LF arguments

The parser produces a flattened and unscoped logical
form using reified events (Davidson, 1967). A simplified
representation showing the semantic content of Load the
oranges into the truck is shown in Figure 21. For every
entity, the full type is written as LF-parent*LF-form, where
the LF-parent is the type defined in the LF ontology, and the
LF-form is the canonical form associated with the word, for
example, LF VEHICLE*truck.

3. The KR customization
To produce domain-specific KR representations from

the generic LF representations, we developed a method to
customize parser output. The current system supports two
knowledge representation formalisms often used by rea-
soners: a frame-like formalism where types have named

1For simplicity, we ignore speech act information in our rep-
resentations.

(TYPE e LF LOAD*load)
(AGENT e *YOU*) (THEME e v1) (TO-LOC e v2)
(TYPE v1 LF FOOD*orange)
(TYPE v2 LF VEHICLE*truck)

Figure 2: The LF representation of the sentence load the
oranges into the truck.

(a)
(LF-to-frame-transform load-transform

:pattern (LF_LOAD LOAD)
:arguments (AGENT :ACTOR)

(THEME :CARGO)
(TO-LOC :VEHICLE))

(b) (define-class LOAD
:isa ACTION
:slots
(:ACTOR AGENT)
(:CARGO COMMODITY)
(:VEHICLE (OR TRUCK HELICOPTER)))

(c) [LOAD
:ACTOR [PERSON +YOU+]
:CARGO [ORANGE V1]
:VEHICLE [TRUCK V2]]

Figure 3: LF-to-frame-transform. (a) The transform for
LF LOAD type; (b) the definition of LOAD class that the
transform maps into; (c) The KR frame that results from
applying this transform to the load event representation in
Figure 2.

slots, and a representation that has predicates with posi-
tional arguments. The KR ontology must have subtype sup-
port, and for the lexicon specialization process described
in the next section, type restrictions on the arguments of
frames/predicates, though it need not be so in the most gen-
eral case.

We use two basic transform types to map generic repre-
sentations produced by the parser into the KR representa-
tion: LF-to-frame-transforms, shown in Figure 3, and LF-
to-predicate-transforms, shown in Figure 4.

The LF-to-frame transforms convert LF types into KR
frame structures by specifying the KR frame that the LF
type maps into, and how the arguments are transformed into
the frame slots. These transforms can be simple and name
the slot into which the value is placed, or more elaborate
and specify the operator expression that is applied to the
value. The LF-to-predicate transforms are used to convert
the frame-like LF structures into predicates with positional
arguments. They specify a KR predicate that an LF type
maps into and the expression that is formed.

After the parser produces the logical form, the Interpre-
tation Manager decides which transform to apply to a given
LF with the following algorithm:

� Find all transforms that are consistent with the LF or
its ancestors;

(a)
(LF-to-pred-transform load-transform
:pattern (LF_LOAD

(LOAD *AGENT *THEME *TO-LOC)
))

(b) (define-predicate LOAD
:isa ACTION
:arguments
(1:AGENT 2:COMMODITY
3:(OR TRUCK HELICOPTER)))

(c) (AND (LOAD +YOU+ V1 V2)
(COMMODITY V1) (TRUCK V2))

Figure 4: LF-to-predicate-transform. (a) The transform for
LF LOAD type; (b) the definition of LOAD predicate that
the transform maps into; (c) The KR formula that results
from applying this transform to the load event representa-
tion in Figure 2.

� Select the most specific transform that applies, that
is, the transform that uses only the roles realized in
this particular LF representation, that has all obliga-
tory mappings filled, and for which the types of the
LF arguments are consistent with the type restrictions
on the class arguments;

� If there are several candidates, choose the transform
that uses the most specific LF, and, if there are several
for the same LF, the transform that maps into the most
specific KR class;

� Apply the transform to the LF type and all its argu-
ments to produce the new representation.

For example, the parser produces the logical form in
Figure 2 for load the oranges into the truck. The Interpre-
tation Manager determines that the most specific transform
consistent with the arguments is the load-transform.
If the back-end reasoners use the frame representation, then
we use an LF-to-frame transform and obtain the frame
shown in Figure 3. Alternatively, a system using predi-
cates with positional arguments as its representation uses
an LF-to-predicate transform and obtains the (simplified)
representation shown in Figure 4.

Our examples show the simplest versions of the trans-
forms for exposition purposes. The actual implementa-
tion permits a variety of constructs that we cannot illustrate
due to space limitations, including the application of op-
erators to arguments, default transforms that apply to LF
arguments if no mapping is specified in LF-to-frame trans-
form, and the use of the lexical forms in transforms when
the KR uses similar terms. For example, from the point of
view of the language ontology, medication names have sim-
ilar distributions across syntactic contexts, and therefore
are represented as leaves under the LF DRUG type, e.g.,
LF DRUG*prozac, LF DRUG*aspirin. The KR ontology
makes pragmatic distinctions between them (e.g., prescrip-
tion vs. over-the-counter medicines), but uses the names as

leaf types in the hierarchy. We can write a single template
mapping for all LF DRUG children that does the conver-
sion based on the lexical form specified in the entry. This
allows us to convert the generic representation produced by
the parser to a representation that uses the concepts and for-
malism suited to the domain.

4. Specializing the lexicon
We use the mappings described above in a post-

processing stage to customize the generic parser output for
the reasoners. We also use the mappings in a pre-processing
stage to specialize the lexicon, which speeds up parsing and
improves semantic disambiguation accuracy by integrating
the domain-specific semantic information into the lexicon
and grammar.

We pre-process every entry in the lexicon by determin-
ing all possible transforms that apply to its LF. For each
transform, we create a new sense definition identical to the
old generic definition plus a new feature KR-TYPE in the
semantic vector. The value of KR-type is the KR ontology
class that results from applying this transform to the en-
try. Thus, we obtain a (possibly larger) set of entries which
specify the KR class to which they belong. We then propa-
gate type information into the syntactic arguments, making
tighter selectional restrictions in the lexicon. We also in-
crease the preference values for the senses for which map-
pings were found.2 This allows us to control the parser
search space better and obtain greater parsing speed and
accuracy.

Consider the following example. Given the definition of
the verb load and LF Load in Figure 1, and the definitions
in Figure 3, the algorithm proceeds as follows:

� As part of generating the lexical entry for the verb
load, the system fetches the definition of LF load and
the semantic vectors for it and its arguments;

� Next, the system determines the applicable LF-to-
frame-transform, load-transform;

� Based on the transform, KR-type load is added to the
feature vector of load;

� Since the mapping specifies that the LF argument
THEME maps to KR slot CARGO, and the class def-
inition contains the restriction that cargo should be of
class COMMODITY, KR-type commodity is added to
the feature vector of the THEME argument. Similar
transforms are applied to the rest of the arguments.

As a result, in the lexicon we obtain a new definition of
load with 2 entries corresponding to the same two usages
described in section 2, but with stricter selectional restric-
tions. Now suitable objects or prepositional complements
of load must be not only movable, but also identified as be-
longing to class COMMODITY in our domain. Since sim-
ilar transforms were applied to nouns, oranges, people and

2We keep unspecialized entries with a lower preference, so
parses for out of domain utterances can be found if no domain-
specific interpretation exists.

other cargoes will have a KR-type value that is a subtype of
COMMODITY inserted in their semantic feature vectors.

As a result of the specialization process, the number of
distinct lexical entries will increase because there is no one-
to-one correspondence between the LF and KR ontologies,
so several transforms may apply to the same LF depend-
ing on the semantic arguments that are filled. A new entry
is created for every possible transform, but during parsing
the selectional restrictions propagated into the entries will
effectively select the correct definitions. The Interpretation
Manager thus knows the correct KR types assigned to all
entities in the logical form output by the parser and the
corresponding transforms, and only needs to apply them to
convert the LF expression into the form used by the back-
end reasoners.

Generic Transportation Medical
of senses 1947 2028 1954
of KR classes - 228 182
of mappings - 113 95

Table 1: Some lexicon statistics in our system

Transportation Medical
of sentences 200 34
Time with KR (sec) 4.35 (870) 2.5 (84)
Time with no KR (sec) 9.7(1944) 4.3 (146)
Errors with KR 24%(47) 24% (8)
Errors with no KR 32% (65) 47% (16)

Table 2: Average parsing time per lattice in seconds and
sentence error rate for our specialized grammar compared
to our generic grammar. Numbers in parentheses denote
total time and error counts for the test set.

Lexicon specialization considerably speeds up the pars-
ing process. We conducted an evaluation comparing pars-
ing speed and accuracy on two sets of 50-best speech lat-
tices produced by our speech recognizer: 34 sentences in
the medical domain and 200 sentences in the transporta-
tion domain. Table 1 describes the ontologies used in these
domains. The results presented in Table 2 show that lexi-
con specialization considerably increases parsing speed and
improves disambiguation accuracy. The times represent the
average parsing time per lattice, and the errors are the num-
ber of cases in which the parser selected the incorrect word
sequence out of the alternatives in the lattice.3

At the same time, the amount of work involved in do-
main customization is relatively small. The generic lexi-
con and grammar stay essentially the same across domains,
and a KR ontology must be defined for the use of back-
end reasoners anyway. We need to write the transforms to

3For the purpose of this evaluation, we considered correct
choices in which a different pronoun, article or tense form were
substituted, e.g., can I tell my doctor and could I tell my doctor
were considered equivalent. However, equally grammatical sub-
stitutions of a different word sense, e.g., drive the people vs. get
the people were counted as errors.

connect the LF and KR ontologies, but as their number is
small compared to the total number of sense entries in the
lexicon and the number of words needed in every domain,
this represents an improvement over hand-crafting custom
lexicons for every domain.

5. Conclusion
The customization method presented here allows the

use of a lexicon and grammar with generic syntactic and se-
mantic representations for improved domain coverage and
portability, while facilitating the specialization of the lex-
icon and the representation produced by the parser to the
needs of a particular domain. With this method we can pro-
duce specialized grammars for more efficient and accurate
parsing, and allow the parser, in cooperation with Interpre-
tation Manager, to produce semantic representations opti-
mally suited for specific reasoners within the domain.

6. Acknowledgments
We would like to thank Carolyn Rosé for her feedback

on this article. This material is based upon work sup-
ported by the Office of Naval Research under grant number
N00014-01-1-1015 and the Defense Advanced Research
Projects Agency under grant number F30602-98-2-0133.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of ONR or DARPA.

7. References
James F. Allen, Bradford W. Miller, Eric K. Ringger, and

Teresa Sikorski. 1996. A robust system for natural spo-
ken dialogue. In Proceedings of the 1996 Annual Meet-
ing of the Association for Computational Linguistics
(ACL’96).

James Allen, Donna Byron, Myroslava Dzikovska, George
Ferguson, Lucian Galescu, and Amanda Stent. 2000. An
architecture for a generic dialogue shell. NLENG: Natu-
ral Language Engineering, Cambridge University Press,
6(3):1–16.

James Allen, Donna Byron, Myroslava Dzikovska, George
Ferguson, Lucian Galescu, and Amanda Stent. 2001.
Towards conversational human-computer interaction. AI
Magazine, 22(4):27–38.

Ann Copestake and Dan Flickinger. 2000. An open source
grammar development environment and broad-coverage
English grammar using HPSG. In Proceedings of the
2nd International Conference on Language Resources
and Evaluation, Athens, Greece.

Donald Davidson. 1967. The logical form of action sen-
tences. In Nicholas Rescher, editor, The Logic of Deci-
sion and Action, pages 81–95. University of Pittsburgh
Press, Pittsburgh. Republished in Donald Davidson, Es-
says on Actions and Events, Oxford University Press,
Oxford, 1980.

Christy Doran, Dania Egedi, Beth Ann Hockey, B. Srinivas,
and Martin Zaidel. 1994. XTAG system – a wide cover-
age grammar for English. In Proceedings of the 15th.
International Conference on Computational Linguistics
(COLING 94), volume II, pages 922–928, Kyoto, Japan.

D. Goddeau, E. Brill, J. Glass, C. Pao, M. Phillips,
J. Polifroni, S. Seneff, and V. Zue. 1994.
Galaxy: A human-language interface to on-line
travel information. In Proc. ICSLP ’94, pages
707–710, Yokohama, Japan, September. URL
http://www.sls.lcs.mit.edu/ps/SLSps/icslp94/galaxy.ps.

Christopher Johnson and Charles J Fillmore. 2000. The
framenet tagset for frame-semantic and syntactic coding
of predicate-argument structure. In Proceedings ANLP-
NAACL 2000, Seattle, WA.

Catherine Macleod, Ralph Grishman, and Adam Meyers.
1994. Creating a common syntactic dictionary of En-
glish. In SNLR: International Workshop on Sharable
Natural Language Resources, Nara, August.

Stephanie A. Miller and Lenhart K. Schubert. 1988. Using
specialists to accelerate general reasoning. In Tom M.
Smith, Reid G.; Mitchell, editor, Proceedings of the
7th National Conference on Artificial Intelligence, pages
161–165, St. Paul, MN, August. Morgan Kaufmann.

Carolyn Rosé. 2000. A framework for robust semantic in-
terpretation. In Proceedings 1st Meeting of the North
American Chapter of the Association for Computational
Linguistics.

Piek Vossen. 1997. Eurowordnet: a multilingual database
for information retrieval. In Proceedings of the De-
los workshop on Cross-language Information Retrieval,
March.

