Towards Tractable Agent-based Dialogue

by

Nathan James Blaylock

Submitted in Partial Fulfillment
of the
Requirements for the Degree
Doctor of Philosophy

Supervised by
Professor James F. Allen
Department of Computer Science

The College
Arts and Sciences

University of Rochester
Rochester, New York

2005



Curriculum Vitae

Nate Blaylock was born in Provo, Utah on June 8, 1975, and grein the neigh-
boring city of Orem. He attended Brigham Young University (BMtdbm 1993 to 1994
and then took two years off to serve as a missionary for the €@hofr Jesus Christ of
Latter-day Saints in the Japan Tokyo North Mission. While asimainary, Nate learned
Japanese, which, as an agglutinating language, was sarepal often thought that

verb conjugations could be done by a computer.

Upon completing his mission in 1996, he reentered BYU and @adlnguistics
class “on a whim.” It was in this class that he was first intrcelili to Computational
Linguistics, which prompted him to add a Linguistics majohis Computer Science
major. He graduated from BYU in 1999 with a BS in Computer Sciearaa BA in
Linguistics.

Nate entered the PhD program at the University of Rocheddefmrtment of Com-
puter Science in the Fall of 1999 and actively worked in theA®Riesearch group (with
advisor James Allen) during his time in Rochester. He wastgdsan MS in Computer
Science in 2001.

In the Spring of 2004, Nate accepted a position as a reseasdtiate in the De-

partment of Computational Linguistics, Saarland Univgrait Saarbiacken, Germany,

where he currently working on the EU-funded TALK project.



Acknowledgments

| would first like to thank my advisor, James Allen. He gave ine freedom to
work on what interested me and at the same time guidancedprateresearch in the
right direction. |1 would also like to thank my thesis commétmembers, Greg Carlson,

Henry Kyburg, and Len Schubert for their comments and sugyes

| have done this work in two very rich research environmeft&arking with the
people in the TRIPS group at Rochester — including James AB&orge Ferguson,
Amanda Stent, Donna Byron, Lucian Galescu, Myrosia Dzikayskel Tetreault, Scott
Stoness, Ellen Campana, Greg Aist, Mary Swift, Carl@@z-Gallo, Phil Michalak,
and Nate Chambers — was a great experience. They were a goegt @rpeople to

work with, both personally and professionally.

For the last year, | have been also working with the SamHien TALK group
— Manfred Pinkal, Ivana Kruijff-Korbaya&, Ciprian Gerstenberger, Verena Rieser,
Tilman Becker, Peter Poller, Jan Schehl, Michael Kail3erd&diedner, Daniel Bob-
bert and Diana Steffen — which has been equally rewarding dgrbup has always

been willing to listen to and comment on my ideas.

| also had the opportunity to do several summer internshybgre | was able to
work with great people and expand my horizons. I'd like toezsally thank Manfred
Pinkal, Steve Richardson, and John Dowding for making thatsenships possible, as

well as all the people | was able to work with.

| am deeply indebted to the Rochester staff, who were alwagre tto pull me out

of last-minute problems, and were still nice enough to ch#t me when | didn't have



crises. | would especially like to thank Elaine Heberle, & uenther, Peg Meeker,

Jill Forster, Eileen Pullara, and JoMarie Carpenter.

My parents, Nan and Giff Blaylock have always supported mycatianal goals
and were always there to encourage me when | needed it. | vataddike to thank my

brother Seth Blaylock who proof-read this thesis for me.

Finally, and most importantly, | would like to thank my wifekcita, without whom
| may have never finished. She was always there to tell me &italasy when | needed
it, to nudge me when | needed extra motivation, and to makeamnghl, even when |

didn't feel like it. Gracias, mi perla.

This thesis is based upon work supported by a grant from DARA#F30602-
98-2-0133); a grant from the Department of Energy (no. #82000306); two grants
from The National Science Foundation (award #11S-03288ilaavard #E1A-0080124);
and the EU-funded TALK Project (no. IST-507802). Any opimso findings, conclu-
sions or recommendations expressed in this thesis are tfidee author and do not

necessarily reflect the views of the above-named orgaairsti



Abstract

This thesis describes research which attempts to remove gbthe barriers to cre-
ating true conversational agents — autonomous agents vehiclcommunicate with
humans in natural language. First, in order to help bridgegtp between research in
the natural language and agents communities, we define al mbdgent-agent col-
laborative problem solving which formalizes agent comrmation at the granularity
of human communication. We then augment the model to defimgant-based model
of dialogue, which is able to describe a much wider range @bdue phenomena than
plan-based models. The model also defines a declarativesetation of communica-

tive intentions for individual utterances.

Recognition of these intentions from utterances will reguan augmentation of
already intractable plan and intention recognition aliyons. The second half of the
thesis describes research in applying statistical cobpaised methods to goal recogni-

tion, a special case of plan recognition.

Because of the paucity of data in the plan recognition comtywwe have gener-
ated two corpora in distinct domains. We also define an algorivhich can stochas-
tically generate artificial corpora to be used in learningg ien describe and evaluate
fast statistical algorithms for both flat and hierarchi@agnition of goal schemas and
their parameter values. The recognition algorithms areensoalable than previous

work and are able to recognize goal parameter values as svetleemas.



Vi

Table of Contents

Curriculum Vitae i

Acknowledgments ii
Abstract %
List of Tables IX
List of Figures Xi
1 Introduction 1

1.1 Agent-based Dialogue Modeling . . . .. .. ... .......... 3

1.2 Requirements for Agent-based Dialogue . . . . .. ... ... ... 4

1.3 ThesisOverview . . . . . . . . . v i e

2 Dialogue Modeling: Background 13
2.1 Fixed-TaskModels . . . ... ... . ... .. .. . .. .. .. ...

2.2 Plan-basedModels . . . . . . . . .. ..

3 A Model of Collaborative Problem Solving 31

3.1 The Collaborative Problem-Solving Process . . . . . ... ....... 32



Vil

3.2 ACollaborative Problem-Solving Model . . . . . . ... ... ... 36

3.3 Single-agentProblem Solving . . . ... ... .. ......... 37

3.4 Collaborative Problem Solving . . . . .. ... ... ... ...... 63

3.5 Conclusionsand FutureWork . . . . . ... ... ... ... ...... 73
Modeling Dialogue as Collaborative Problem Solving 75
4.1 Collaborative Problem Solving and Communicative Intengi . . . . . 76
42 Grounding . . . ... e 78
4.3 Coverage of the CPS Dialogue Model . . . . ... ... ... ..... 89
4.4 Conclusionsand FutureWork . . . . . . ... ... ... . ... 98
Plan Recognition: Background 100

5.1 Intention Recognition and Plan Recognition . . . . ... .. ...... 101
5.2 Requirements for Plan Recognition. . . . . . ... .. ... .. .. 102

5.3 Previous Work in Plan Recognition . . . . . . ... ... ... ... 103

54 GoalRecognition . . . . . . .. ... 108
5.5 Towards Statistical Goal Recognition. . . . .. ... ........114
Obtaining Corpora for Statistical Goal Recognition 116
6.1 Definitions. . . . . . .. 117
6.2 ExistingPlanCorpora. . . . . . . . . . . . .. . e 117
6.3 TheLinuxCorpus . . . . . . . . o v i i it 119
6.4 General Challenges for Plan Corpora Collection . . . . . .. ... 125
6.5 Generating Artificial Corpora . . . . . . ... ... ... ... ... 128

6.6 TheMonroeCorpus . . . . . . . . . . i it 133

6.7 Plan Corpora: Human vs. Artificial . . . . ... ... ... ..... 136

6.8 Conclusionsand FutureWork . . . . . . . . .. ... ... ... 813



7 Flat Goal Recognition

7.1 Problem Formulation . . . . . . . . ... . ... ... ..

7.2 Goal SchemaRecognition . . .. ... ... ... .........

7.3 Goal Parameter Recognition . . . .. ... ... .. ........

7.4 Instantiated Goal Recognition . . . .. ... .. ... ... .. ..

7.5 Conclusion . . . . . . . ..

8 Hierarchical Goal Recognition

8.1 Goal Schema Recognition . .. ... ... ... ..........

8.2 Goal Parameter Recognition . . . . . ... ... .. ........

8.3 Instantiated Goal Recognition . . . . . ... ... ... ......

8.4 Conclusion . . . . . ...

9 Conclusion
9.1 Future Work in Dialogue Modeling . . . . . ... ... ... ....
9.2 Future Work in Goal Recognition. . . . . .. ... ... ......

9.3 Future Work in Agent-based Dialogue Systems

Bibliography

A Instructions Given to Users in the Linux Corpus Collection

B Goal Schemas in the Linux Corpus

C Action Schemas in the Linux Corpus
C.1 Generallssuesfor Conversion . ... .. .............

C.2 The Action Schemas . . . . . . . . . . . . . . . ..

D Goal Schemas in the Monroe Corpus

viii



3.1

4.1

6.1
6.2

7.1
7.2
7.3
7.4
7.5

7.6

8.1
8.2

8.3

8.4

List of Tables

Abbreviations for Type and Feature Names . . ... ... .. .. .68
Conversation Act Types [Traum and Hinkelman1992] . . . ...... . 80
Contentsofthe LinuxCorpus . . . . . .. .. .. ... ... ...... 124
Comparison of the Linux and Monroe Corpora . . . . . .. .. .. 341
Goal Schema Recognition Results on the Monroe Corpus . . .....150
Goal Schema Recognition Results on the Linux Corpus . . . . . . 151
Goal Parameter Recognition Results on the Monroe Corpus.. .. ... 161
Goal Parameter Recognition Results on the Linux Corpus . . . . . 162
Instantiated Goal Recognition Results for the Monroe Corpu. . . . 166
Instantiated Goal Recognition Results for the Linux Corpus . . . . 167
Results of Schema Recognition usingthe CHMM . . . . . ... .. 851
Results of Flat Schema Recognition on the Monroe Corpus @ap-

Results of Schema Recognition using the CHMM and Observétio

formation . . . . . . .. 188

Results of Parameter Recognition . . . . ... ... ... ... .. 924 1



8.5

8.6
8.7

B.1

D.1

Results of Flat Parameter Recognition on the Monroe Corfpois (
Chapter7) . . . . . . . 195
Results of Instantiated Recognition . . . . . . . . . ... ... ... 201
Results of Flat Instantiated Recognition on the Monroe @Gofrom
Chapter7) . . . . . . . 202
Goal SchemasintheLinuxCorpus . . . . . . .. ... ... ...... 231
Goal Schemas inthe Monroe Corpus . . . . . . . .. . ... ..... 7. 23



11
1.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

Xi

List of Figures

Example Dialogue . . . .. ... ... ... ...

Possible Architecture of an Agent-based Dialogue 8yste. . . . . . 4

Type Description foobject. . . . . . . .. ... ... ... ...... 39
Type Description fops-object . . . . . . .. ... ... ... ..... 41
Type Descriptionfoslot . . . . .. .. ... ... ... ........ 43
Type Description fosingle-slot . . . . . . ... .. ... ....... 43
Type Description fofiller . . . . . . .. ... ... ... ....... 44
Type Description fofiller(e) . . . . . . . . . . .. ... .. ... ... 44
Type Description fosingle-slot¢) . . . . . . ... .. ... ...... 45
Type Description fomultiple-slot . . . . . . ... ... ... ..... 45
Type Description foconstraints-slot. . . . . . ... ... ... .... 45
Type Description foevaluations-slot . . . . . . .. .. ... ..... 46
Type Description foobjectives-slot . . . . . . ... .. ... ..... 47
Type Description foobjective . . . . . . . .. ... .. ... ..... 47
Full Type Description foobjective. . . . . . . .. .. ... ... ... 48
Type Description forecipe . . . . . . . . . . . ... .. 48
Type Description foconstraint. . . . . . . .. ... ... ....... 49



3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29

4.1

4.2

4.3
4.4
4.5
4.6

4.7

Xii

Type Description faresource . . . . . . . .. . ... ... .. ... 49
Type Description foevaluation . . . . . .. ... ... ........ 50
Type Description fosituation . . . . . . ... ... ... ....... 50
Type Descriptionfosong. . . . . . . . .. .. ... ... .. ..... 53
Type Description fdisten-song . . . . . . . .. . ... ... ..... 53
A Simple InitialPSState . . . .. ...................715
The PS State after Executiigntify-objective(actual-situatiom) . . . 60
Type Description foc-situation . . . . . . ... ... ... ...... 66
listen-songObjective . . . . . . . .. .. ... .. 69
The CPS State after AsFirstTurn . . ... ............. 170
The Abbreviated Version of Figure3.25 . . .. ... ........ 71
The CPS State after B'sFirstTurn . . . . . .. ... ... . ..... 2 7
songResourcé] — “Yesterday” by the Beatles . . . . .. .. .. ... 72
The CPS State after AsSecond Turn . . . . . . .. ... ... ... 73.
Example of Conversation Acts: Grounding Acts [Traum arikel-

mManl992] . . . . .. 82

Example of Conversation Acts: Core Speech Acts [Traum ankieH
mManl992] . . . . .. 82

The TRAINS Example Interpreted with the Agent-based Mode . . 85

Contents obbjectiveld . . . . . . .. .. .. ... ... 87
Contentsofecipe2l . . . . . . . . . . e 88
Contents ofonstrainta . . . . . ... ... ... ... ... ... 88
A Planning Dialogue from [Traum and Hinkelman1992] (Qmumtion

of Figure 4.3) . . . . . . 91



Xiii

4.8 Execution Dialogue from [Grosz and Sidner1986]: Part.1... . . . . 93
4.9 Execution Dialogue from [Grosz and Sidner1986]: Part2... . . . . 94
4.10 A Planning and Execution Dialogue (from Figure 1.1) ...... . . . . 97
7.1 Schema Recognition Example=0.8 . ... ... ... .. ... .. 145
7.2 Evaluation Metrics for Example in Figure 7.1 . . . .. .. .....149
8.1 AnExamplePlanTree . . .. .. .. ... . .. .. .. .. .. .... 171
8.2 A Cascading Hidden Markov Model (CHMM) . . . . . ... ... ... 173
8.3 Algorithm for Calculating Forward Algorithm for CHMMs . . ... . . 176
8.4 The Sequence of Goal Chains Corresponding to the Plan T ieig-

ure 8.1 . . . . . e e e 178
8.5 APIan Tree with VaryingDepth . . . . .. ... ... ... ...... 917
8.6 The Expanded Version of the Plan Tree in Figure85 . . . . .. . 180
8.7 The Sequence of Goal Chains Corresponding to the Exparidad P

TreeinFigure 8.6 . . . . . . . . . . . ... 180



1 Introduction

Language is typically used as a means to an end. People upeanto help them

achieve their goals by soliciting help from and coordingttheir efforts with those
with whom they talk.

The range of activities that can be accomplished (or sup@bthrough language is

vast. The following are just a few examples:

1. Obtaining (and providing) information
A: where is the bathroom?
B: up the stairs to your left.
2. Getting someone to perform some action (and report thatyes

A: turn off the sprinklers.
B: [turns off sprinklers]
done.

3. Getting someone to suggest a course of action
A: how can | open this door?

B: push the red button, wait 30 seconds, and then twist the.knob
The above are short dialogue exchanges illustrating sonmbeoindividual uses
of language. However, dialogue exchanges can be much lamgkfreely mix the

different individual uses as dialogue partners work togetb achieve a goal.



1.1 A:let’s go to the park today.
2.1 B:okay.
2.2 B:should we walk or drive?
3.1 A:what’s the weather going to be like?
4.1 B:l1don’t know.
4.2 B: let’s watch the weather report.
5.1 A:no, it's not on until noon.
5.2 A:justlook on the internet.
6.1 B: okay. [looks on internet]
6.2 B:it's supposed to be sunny.
7.1 A:then let’s walk.
8.1 B: okay.
9.1 A:doyouwantto go now?
10.1 B:sure.

Figure 1.1: Example Dialogue

Consider the dialogue in Figure 1.1. Here the dialogue ppaints use language
to agree on a common goal (going to the park); to decide onrafptaaccomplishing
the goal (walking); to coordinate execution of the plan (wheleave the house); and
finally, to plan and execute a separate goal in order to hamttecide on a plan

(looking up weather on the internet).

Although this type of dialogue is fairly common, we are unesvaf any dialogue
system that could handle it in a general way. Current modetsaddgue do not han-
dle the level of complexity shown in Figure 1.1. Most dialegystems use dialogue
models tailored to a specific application. Other, more garsrstems model dialogue
as coordination in joint execution of predetermined plamg.( [Cohen et al.1991;
Ardissono, Boella, and Lesmo01996; Rich, Sidner, and Lesh2@dXoordination in
building joint plans, but not their execution (e.g., [Gresa Sidner1990; Ferguson and
Allen1998; Chu-Carroll and Carberry2000]). Both of these galrsgsproaches are typ-
ically referred to as “plan-based” dialogue models, as tis®ygeneralized mechanisms

which work on a planning representation of actions and goatse domain.

Although they are domain-independent, these plan-basdoigdie models still can-



not cover the type of dialogue in Figure 1.1, primarily besmii consists of both plan-
ning and execution. Also, most models would also not be able to hahaléeginning
interchange of the sample dialogue, when the participagreeson a goal. Most plan-
based models assume that a goal is already mutually knowagiedd-upobeforethe

dialogue begins.

Our goal is to build dialogue systems capable of engagindnénvihat Allen et
al. callpractical dialogue— “dialogue focused on accomplishing some specific task,”
[Allen et al.2000]. We, as they, believe that this “genre’didlogue is what humans

will most want to use with machines (as opposed to, say, hausoor social dialogue).

1.1 Agent-based Dialogue Modeling

In this thesis, we present agent-basedpproach to dialogue systems, in which we
model dialogue asollaborative problem solvingpetween agents. Before we go any

further, we will define what we mean by some of these terms.

First, problem solvings the general process used by agents of formulating and
pursuing goals. It can include activities such as goal sele¢or abandonment); the
selection of plans as courses of action for accomplishingad; ghe execution and
monitoring of plans; replanning (when errors occur); areldbgnitive processes (such
as goal evaluation) used for making these decisions. RrobtEving is closely re-
lated to the concept of “rational behavior” (cf. [Cohen andésuel1990a; Rao and
Georgeff1995]), and can be described as the driving coran @gent. Collaborative

problem solvings the coordinated problem solving of two or more agents.

There are several things which make collaborative problelvirgy an attractive
model for dialogue. First, it subsumes previous plan-basedels of dialogue, since
it includes both planning and execution. However, as deedrabove, collaborative
problem solving goes beyond just planning and executioatté@mpts to describe the

full set of agent activities. We believe that humans are éls@ome approximation)



Language Languag

Generation

Communicative
Intentions

Communicative
Intentions,

Behavior

Actions

Figure 1.2: Possible Architecture of an Agent-based Diado§ystem

collaborative problem-solving agents, and that most praladialogue can be modeled

by collaborative problem solving.

1.2 Requirements for Agent-based Dialogue

A dialogue model is just the first step to building a dialogystesm. Making gen-
eralized, agent-based dialogue systems a reality willirequogress in many areas of
artificial intelligence, including natural language prssieag and autonomous agents. In
this section we first describe a generalized architecturarf@agent-based dialogue sys-
tem based on the TRIPS dialogue system architecture [Allerguson, and Stent2001;
Blaylock, Allen, and Ferguson2002]. Then, using that aectitre as a reference point,

we describe some requirements of an agent-based dialogtesrsy

The architecture shown in Figure 1.2 divides the dialogwesy into three subsys-

tems: interpretation behavior andgeneration In interpretation, the system must be



able tounderstandwhat is meant by a user’s utterance. This goes much deeper tha
just what the utterance means on the surface. The systembaadile to understand
much more. Why did the user utter what he did? What was he trgiag¢omplish by

uttering it? These conversational “ends” are cattethmunicative intentions

The behavioral subsystem is essentially an intelligenhtitiet is able to reason
with the user's communicative intentions, (as well as othérgs such as the world
state, its own goals and intentions, etc.) and decide whairecto take (either in the
world or cognitively). It also needs to be able to form its owmwtentions for communi-

cation with the user.

In the generation subsystem, the system’s communicatiggtions are transformed

into natural language and uttered to the user.

As mentioned above, there are many aspects to our ideal-bgsatl system that
the current state-of-the-art does not support. We disasal of the most prominent

by subsystem.

1.2.1 Interpretation

The task of interpretation is typically divided into manyedés of analysis (speech
recognition/synthesis, morphology, syntax, semanticagmatics, etc.), and an enor-
mous body of research has been done at all of them. The masttdavel, however,
for agent-based dialogue is at the “topmost” level, whickcaktheintention/language
interface where communicative intentions are recognized from a-léghl semantic
form (i.e., communicative acts). This process of inferrc@nmunicative intentions

from communicative acts is calledtention recognition

There are several barriers to using current intention neitiog techniques in an
agent-based system. First, we need a representation obthegnicative intentions

to be recognized. Second, we need algorithms that can reeogrentions for the



full range of collaborative problem solving. Lastly, sudhgaithms need to be fast, as

dialogue happens in real time. We discuss each of these below

Representation of Communicative Intentions Very little work has been done on
descriptive representations of communicative intentidhsst dialogue systems do not
use intention recognition — the domains covered are ussatiple and the exchanges
circumscribed, so that intentions are transparent fronuttezance semantics. In sys-
tems which do perform intention recognition (typically plbased systems), commu-
nicative intentions are not explicitly represented, buhea are tied to the intention

algorithm which updates some sort of dialogue state.

In Chapter 4, we present a descriptive language of commuwedatentions based

on the model of collaborative problem solving.

Intention Recognizer for Collaborative Problem Solving As mentioned above, in
most dialogue systems, explicit intention recognitionas meeded, as the domain and
exchanges are simple and transparent. Plan-based diadggteans, however — es-
pecially those that model dialogue as joint planning — oftienperform intention
recognition. However, these intention recognition altjons are specifically tied to
the dialogue model (typically planning), and would not beedily applicable to an
agent-based dialogue model. It is possible (and indeed Vievbet to be the case),
that these algorithms can be extended to cover the rangdlaborative problem solv-

ing, but such a question is left to future research.

Real-time Intention Recognition Another problem with intention recognition is speed.
Dialogue happens in real time, and the system is expectes$pmnd to the user within

a reasonable amount of time (on the order of several secondis)ever, all inten-
tion recognizers of which we are aware are based on the maergegrocess gblan

recognition— the recognition of an agent’s plan from observed actiomsthé gen-



eral case, plan recognition is known to be exponential imtimaber of possible goals
[Kautz1991], thus for any reasonable-sized domain, irdantcognition will be too
slow to support real-time dialogue. Although more recentikmas improved on this

(e.g., [Vilain1990]), it has done so at the expense of exgivesess and flexibility.

Unless alternative methods of intention recognition cafobed, faster, more scal-
able methods of plan recognition will be essential to sufipgreal-time dialogue for

agent-based systems.

In the second half of this thesis, we present a goal recogriza special type of
plan recognizer — which preserves scalability without géasacrifice of expressive-
ness, which could be used as the main engine for a real-titagtian recognizer for

agent-based dialogue.

1.2.2 Behavior

Once an utterance has been successfully interpreted, tlagibeal subsystem must be
able to act on it. The behavioral system must be an intelliggent that is not only
able to reason and act in the world (i.e., do problem solyiitghust also be able to
communicate and coordinate its activities with a (humamy (se., do collaborative

problem solving).

Much work has been done on building autonomous agents, bulittkee on human-
agent collaboration. In fact, most agent-agent collalbmmatvork makes explicit as-
sumptions that both agents are artificial (assuming, fomgte, than the two collabo-
rating agents are running the same code). This assumpterever, cannot be made

when one of those agents is a human!

In Chapter 3, we present a model of collaborative problemisgiwhich is based
on human communication, and show how this can be used to rhodehn-agent or
agent-agent communication. This is a first step to buildigenas that can collaborate

with humans in a human-like way.



Work still remains, however, to actually build an autonomagent that uses and

reasons with the collaborative problem-solving model.

1.2.3 Generation

Parallel to interpretation, work on generation has beer@many levels (phonology,
syntax, etc.) The most important for agent-based dialoghiepurse, is that of con-
verting communicative intentions to some high-level setiadorm (a process we will

termcontent planniny

This is perhaps the most open of the areas mentioned heret gdosration sys-
tems for dialogue assume that the behavioral componenal{ystalled thedialogue
managej has already transformed intentions to a semantic formvandre unaware
of any system that generates directly from communicatitenitions (probably because

most systems do not have an explicit representation foetimesntions).

1.3 Thesis Overview

As noted in the preceding section, building an agent-bagddglie system requires a
lot of work in many areas. Unfortunately, the required amafrresearch is outside

the scope of a single thesis, and we do not attempt it hereddsas the title suggests,
this thesis represents our efforts to provide several ohftessary foundational pieces

required for further work on agent-based dialogue systems.

The remainder of this thesis can be divided into two parfa®enting its two main
areas of contributions. The first part (Chapters 2 to 4) dessra domain-independent
model of dialogue based on agent collaborative problemirsplv The second part
(Chapters 5 to 8) presents a fast algorithm for goal recagnit- a special type of
plan recognition. Chapter 9 then concludes the thesis amdisiies areas of future

work.



We now discuss each of these main contributions in moreldetai

1.3.1 An Agent-based Dialogue Model

As stated above, the most vital foundation to supportinghebased dialogue is a di-
alogue model. In Chapter 2, we introduce the field of dialogoeeting and discuss

previous work.

In Chapter 3, we present a model of collaborative problemisglior agents. In this
model an agent (individually) or group of agents (collabiwedy) perform problem-

solving activities in three general areas.

e Determining Objectivedn this area, agents manage their objectives, deciding to

which they are committed, which will drive their current lagtor, etc.

e Determining and Instantiating Recipes for Objectiviesthis area, agents choose
recipes to use towards attaining their objectives. Ageray aither choose and
instantiate recipes from a recipe library, or they may clkedosreatenew recipes

via planning.

e Acting In this area, agents follow a recipe and execute atomior&tiThis area

also includes monitoring the execution to check for success

It is important to note that these areas need not proceedler and may be freely
interleaved. Decisions made at one level can also be redisit any point. Collab-
orative decisions are negotiated among the agents, andentyme valid when both
agents agree to a proposal.

This model is able to describe a large range of collaboraiient activity, includ-

ing not only (interleaved) planning and execution, but @eal selection, replanning,

evaluations, etc. This general collaborative problenviagimodel contributes not only



10

to the study of human-agent dialogue, but is also generalgmto be applied to gen-
eral collaboration among heterogeneous agents, whetmearnor artificial, through

natural language or by other means.

In Chapter 4, we use this collaborative problem-solving nhegdethe basis for an
agent-based model of dialogue. In particular, we modebdia participants as collab-
orative agents, and the dialogue itself as the collabaratimout their problem-solving
activities. Because this dialogue model is based on a richeimafdagent collabora-
tion, it is able to describe a much wider range of dialoguesyihan previous models,

including dialogues similar to that shown in Figure 1.1.

An additional contribution described in Chapter 4 is a domadependent, de-
scriptive language for communicative intentions. The camitative intentions of an
utterance are modeled as attempts to negotiate collab®mtblem-solving decisions.
As discussed above, most dialogue systems treat commirrigaentions only implic-
itly in language understanding and intention recognititgoathms. This description
language supports the labeling of an utterance with itsxaed meaning and lays the
foundation for future work in agent-based intention redbgn algorithms (see Chap-

ter 9).

1.3.2 Fast Goal Recognition

The other major area of contribution of this thesis is thatsihg machine learning
techniques to build fast goal recognition algorithms. Ascdssed in Section 1.2.1, fast
goal recognition is important part of building a real-timéantion recognizer to support

agent-based dialogue.

Plan recognition is the general process of inferring an ggjearrent plan based on
observed actions. Goal recognition is a special case ofrplaygnition where only the
agent's current goals are inferred. In Chapter 5, we intregili@n and goal recognition

and previous work in this area.



11

In order to support machine learning, one must have corpoithere is a paucity
of such for plan recognition. In Chapter 6, we describe metivoel used in collecting

two labeledplan corpora

The first corpus, the Linux corpus, was gathered by giving druninux users a
goal and then recording their commands used to achievemilasito the collection
done for the Unix corpus [Lesh1998]. This data collectiosuteed in the contribution
of a corpus of more than 400 goal-labeled action sequencesre than an order of

magnitude larger than the Unix corpus.

However, in many domains, labeled corpora are difficult tthgga especially cor-
pora that include hierarchical goal structure (see beldvdr the second corpus, we
introduce a novel technique for automatically generataigeled plan corpora. We use
an Al planner to stochastically generate plan sequencegeioerated goals and start
states. This provides a way to rapidly generate data for madbarning in plan recog-
nition in domains where human data is difficult or imposstol®btain. The resulting
Monroe corpus contains 5000 hierarchical plans for an thsasanagement domain.
Together with the Linux corpus, this contributes two ladet®rpora as a resource
for researchers in plan recognition (something that wadrgcbefore, as observed in
[Lesh1998]). In addition, the stochastic plan corpus gatiem techniques can be used

to quickly generate corpora in other domains as well.

In Chapter 7, we describeflat goal recognizer (a recognizer which only recog-
nizes a current top-level goal, but no subgoals). The rezegrs able to perform fast
recognition of both goal schemas and their parameter vallieschieves reasonable
results on both the Linux and Monroe corpora and its time derily is only linear in
the number of goal schemas and observed actions, makingh fagter than previous

systems.

In Chapter 8, we augment the flat recognizer to perform hibreatgoal recogni-
tion — recognizing both the top-level goal as well as actikegoals. The recognizer

uses cascading Hidden Markov Models to compute the mody l&abgoal at each



12

level of the hierarchy. It is fast, with a time complexity giatic in the number of goal
schemas and linear in the number of subgoal levels, and givesuraging results on
test cases in the Monroe domain. This contributes a fastbféeRierarchical goal rec-
ognizer which can be rapidly ported to new domains. We exjeease this recognizer

as the principal component of an intention recognizer iareiivork (see Chapter 9).



13

2 Dialogue Modeling: Background

The goal ofdialogue modelings to provide a representation of dialogue processes
which can be used to build systems that act as dialogue pamits. Such a repre-
sentation is an important first step towards building a djaéosystem, especially for
performingdialogue managemenrt- the process of controlling the overall dialogue

behavior of the system.

In this chapter we discuss previous work in dialogue modeliwe first discuss

fixed-task dialogue models and then plan-based models.

2.1 Fixed-Task Models

In this section, we group together three classes of dialagodels which make the
(explicit or implicit) assumption that the form of trdomain task(the non-linguistic
task which is the focus of the dialogue) is known (and encpdéthe design time of
the dialogue system. As we discuss below, this dm¢secessarily mean that the form

of the dialogue itself (theliscourse taskneed be fixed.

For fixed-task systems, a prototypical dialogue task is dhatatabase lookup for
such information as flight or train schedules [Rudnicky €1399; Lamel et al.2000]

or weather reports [Zue et al.2000]. Here, the form of the aionask (the database



14

lookup) is fixed, and the system only needs to query the usereidain information,
such as the user’s preferences or personal details, in tyder able to perform the

task.

We will see in the section below that this constraint is reetbly plan-based mod-
els, which allows (to varying degrees) the user and systdramig to discussnforma-
tion needed for the task, but also to decide onftiten of the task itself. As we discuss

in Chapter 4, this is a vital feature of supporting agent-tasalogue.

We discuss here finite state models and form-filling models.

2.1.1 Finite State

Finite state dialogue models (e.g., [Hansen, Novick, aniio8Lu996]) are the most
constrained models we discuss here. In this approach,@ydialdesigner must encode
not only the domain task, but alsdl possible dialogue sequences. Typically, a finite
state automaton is encoded, with each state representipstens utterance (e.g., a
prompt) and each transition arc representing a user utteraccepting states typically
signify successful completion of the domain task (or attiéssccessful” completion

of the dialogue, e.g., the system said goodbye properly).

There are many arguments against finite state models ofgtial¢(see [Bohlin et
al.1999] for some of them). We will only mention a few here gfhare most relevant

to agent-based dialogue.

First, not only do finite state models require a fixed domask ttructure (which
we will discuss more below with the other models), they alsguire a fixed, or at
least fully-enumerated discourse task structure. Thisns\daat a user is restricted to
making utterances which correspond to outgoing transtfoom the current state, and
more generally, must follow one of the predefined paths tjinailhe automaton. In
practice, this means that the user must talk about tasknrztion in the order that the

system designer envisioned.



15

Another shortcoming of finite state models is their inhetank of memory. The
system only has knowledge of what state it is in, but not of ltayet there. Long-term
dependencies, such as an agreed-upon decision, wouldficeltif not impossible to

represent in a general way.

2.1.2 Form-filling

In form-filling dialogue (e.g., [Seneff and Polifroni20a0&mel et al.2000; Chu-Carroll2000]),
a frame listsslots which represent information needed for the system to perfar

(fixed) domain task. Dialogue is modeled as the process oiffiih those slots.

This results in a much more free exchange at the discous&dew®el, as users can
now give information (fill slots) in any order they wish witha single form. Later work
[Rudnicky et al.1999; Bohus and Rudnicky2003] added the gitdisupport the filling
of several forms each representing different parts of tmeaio task. When the form is

filled, then the system performs the domain task.

Although form-filling frees one from a fixed discourse tastusture, domain task
structure remains fixed. A designer must know the domaingdaskture beforehand in

order to design forms that contain the necessary slots &bitaisk.

Arguments against fixed domain task structure are similéinase with fixed dis-
course task structure mentioned above. Agents often dawé fixed plans for accom-
plishing goals, and often there may be many possible wayadoomplishing a goal,
one of which must be created (planned) by the agent, ofterherily based on the
current state of the world. Specifying all possible taskd gneir structure beforehand
seriously constrains the ability of the agent to adapt toanging world, and limits the
ability of a dialogue system to cover many desirable domgush as interaction with

an autonomous robot).



16

2.2 Plan-based Models

Plan-based models of dialogughare the view that the purpose of dialogue is to pursue
domain goals — either by planning a course of action (joiahping) or by executing
such a plan (joint execution). In this section, we first descthe foundations of plan-
based dialogue modeling. We then discuss various threadsedrch using plan-based
dialogue models. Finally, we discuss common shortcomirigbese approaches for

modeling agent-based dialogue.

2.2.1 Foundations

Austin [1962], Grice [1957; 1969; 1975], and Searle [197bhated that human utter-
ances can actually causbangesn the world. The utterance “I pronounce you man
and wife,” said by the right person in the right context alljueauses two people to
be married. More subtly, the utterance of “John is in thehett’ may have effect of

causing the hearer to believe that John is in the kitchen.

Utterances can have preconditions and effects, the santbersnon-linguistic ac-
tions. We can also build plans that contain utterances alsasealther actions. A full
discussion of speech acts is beyond the scope of this tHessimportant to realize,
however, that treating utterances like actions (speed) albbws us to link it to general

theories of planning, execution, and plan recognition itifisral Intelligence.

Allen, Cohen, and Perrault [1982] were the first to computetize a theory of
speech acts. Cohen [1978][Cohen and Perrault1979] contsshiva using plan syn-
thesis together with speech acts for content planning fogdage generation. Allen
[1979; 1983][Allen and Perrault1980], on the other handduplan recognition and
speech act theory for intention recognition in languagesustdnding. We concentrate

here only on Allen’s work.

1This section contains material from [Blaylock2002] andg@bck, Allen, and Ferguson2003].



17

Allen studied transcripts of actual interactions at aniimfation booth in a Toronto

train station. A typical exchange was something like thikgA1983]:

Patron: When does the Montreal train leave?
Clerk: 3:15 atgate 7.

Note that although the patron only requested the depaiituee the clerk also vol-
unteered information about the departure gate as welluRrakly, the clerkecognized
the plan of the patron (to board the train), and realizedttit@patron would also need
to know where the train departed and volunteered that irdtion as well. Allen called

this behavioobstacle detectian

Allen’s system took the direct speech act of the utteranod, asing certain in-
ference rules and heuristics to apply them, performed bakwhaining in order to
infer the user’s plan. Heuristics included things suchfas person wants P, and P is a
precondition of action ACT, then the person may want to penféCT; or if a person

wants to know if P is true, they may want P to be true (or false).

Using these inference rules, the system was able to remguitz only indirect
speech acts, but also the user's domain plan. Plan-baskedukamodels have built

upon this foundational work.

Sidner and Israel [1981] extended Allen’s work to multipkterance dialogues
about execution. Their work takes previous discourse gbiried account in interpret-
ing a new utterance. Each utterance causes the system tteugsdbeliefs about the
user’s beliefs, wants, goals, and plans, based on Griceté¢tical work [Gricel957;

Gricel969] as well as plan recognition similar to Allen’s.



18

2.2.2 Domain-level Plans
Carberry

Carberry [1987; 1990b] models dialogue as joint planning.r sistem uses a plan
decomposition hierarchy similar to Kautz’ [1991] (see Cleafi) which holds infor-

mation about decomposition and parameters of plan schentas domain. Based on
this hierarchy, dialogue utterances build a hierarchita py filling in parameters and
decomposing subgoals. The system supports planning insblotiitom-up (talk about

actions first) and top-down (talk about goals first) fashion.

Although Carberry’s system is able to account for dialogured build complex
plans, it only works for utterances that talk directly abagtions and goals in the
domain. Other dialogue phenomena (such as correction anficdtion subdialogues)
were not addressed. Also, this system is unable to handtegdies that support actual

plan execution.

Lemon, Gruenstein and Peters

Lemon, Gruenstein and Peters [2002] describe a model sitoiléhat of Carberry,
except they model dialogue as joint executtoim their system, dialogue progresses
about (possibly) several concurrent execution tasks destasdialogue threadsIn
dialogue, the user can give the system new tasks to exedate,constraints on the
execution process, query current execution, abort exatudind so forth. The system
not only executes plans, but also uses dialogue to repogrgse and problems as

execution progresses.

In this system, the system and user discuss execution ohpok plans, but it does

not support dialogue for building new plans. Also, coortima of roles— or which

2In [Lemon, Gruenstein, and Peters2002], it is stated theartbdel also includes planning, although

it is unclear how and to what extent it is supported.



19

agent performs which action — appear to be hard-coded irs@ad not negotiable

during dialogue.

2.2.3 Meta-Plans

In order to support dialogue-level phenomena such as dmmneand clarification sub-

dialogues, several dialogue models also include a metalgla!.

Litman and Allen

Litman and Allen [1987; 1990][Litman1985; Litman1986] ertled Carberry’s earlier
work to better account for various dialogue phenomena.odigih a dialogue’s focus is
on the domain, there seems to be a meta-layer which helpsearthust communica-

tion.

Essentially, Litman and Allen added a new layer to the diaéoghodel — meta-
plans, which are domain-independent plans that take other pasgaments. Litman
and Allen’s model is able to account for a number of dialoghenq@mena, including
that of clarification subdialogues. For example, consiterfollowing dialogue [Lit-

man and Allen1990]:

teacher: OK the next thing you do is add one egg to the blender,
to the shrimp in the blender.

student: The whole egg?

teacher: Yeah, the whole egg. Not the shells.

student: Gotcha. Done.

The domain-level plan here is one of cooking. The students @itterance (“The
whole egg?”), however is uttered because of confusion ath@uprevious utterance.

Instead of replying directly to the teacher’s instructitre student asks a clarification

SLitman and Allen actually called theskiscourseplans. In light of subsequent work, however, these

are better characterized as meta-plans.



20

guestion about one of the objects (the egg) to be used in #re phlitman and Allen
model this as an IDENTIFY-PARAMETER meta-plan, as the egg loarseen as a
parameter for the plan. The teacher responds to this queatid then the student
completes the IDENTIFY-PARAMETER plan, and continues witle domain-level

plan.

Litman and Allen model meta-plans in a stack-like structurieere new meta-plans
can be pushed on the stack in relation to current ones. Otherges of meta-plans in-
clude: CORRECT-PLAN (changes a plan when unexpected eventsemappuntime),
INTRODUCE-PLAN (shifts focus to a new plan), and MODIFY-PLABhanges some

part of a plan).

The addition of meta-level plans allows fuller coverage afious dialogue phe-
nomena, especially correction and clarification subdiaésg While we see this work
as an early foundation for our own, we note that the metd-[@a@ library was some-
what ad hoc and never fully developed. There was also no btezary of the relations

between meta-plans and the over all dialogue strategy giaheipants.

Ardissono, Boella and Lesmo

Ardissono, Boella and Lesmo [1996] also introduce a meta;pdaproblem-solving

plans for decomposing and executing a subgoal.

The problem-solving level consists of two high-level pla8atisfyand Try-execute
which model a single-agent execution model. In order for gena to Try-execute
an action, it first checks constraints aBdtisfiesthem if necessary; it then verifies
preconditions, does the action and checks the resultsrddttes are explained based
on some step in this execution model. For example, condefallowing dialogue

[Ardissono, Boella, and Lesmo01996].

Mark: Sell me a bottle of whiskey.
Lucy: Areyou over 18?



21

Here, Lucy’'s response can be seen as her performify-@xecuteof selling the

whiskey. She needs to know if Mark is over 18 in order to veaifiyexecution constraint.

This dialogue model can also be seen as a predecessor of autaithere are
several key differences. First, the model only accountgxkecution, but not planning.
Also, the single-agent execution model is used for a diaqggarticipant to recognize
the coherence of the other participant’s utterance durkeguion, but it does not di-
rectly supportjoint execution, where both dialogue participants coordinatéaa’p

execution.

Rayner, Hockey and James

Rayner, Hockey and James [2000] don’t use meta-plans peutsatber what they call
meta-output In their system, as a user’s utterance is interpreted tiaissformed into
two signals: ascript, which is an executable representation the user’s comnuatickt
system, ananeta-outputwhich contains information about the interpretation s
The meta-output is used to report information such as earmtpresupposition failures.
This meta-output information is used to support dialogueEngimena such as correction

and clarification subdialogues.

The dialogue model is again one of execution. The user isigallg giving com-
mands to the system, which the system then executes whenatloaigh information to
do so. The information is necessary to execute a script, evis computed on the fly,
which distinguishes this from a form-filling approach. Sanito the model of Ardis-
sono, Boella, and Lesmo (above), this model only supportegli@ about single-agent

execution, and not joint execution, or joint planning.

2.2.4 Other Plan Levels in Dialogue

There have been several efforts to extend the work on matssppecifically that of

Litman and Allen, creating other levels of plans to supptineo dialogue phenomena.



22

We mention several here.

Lambert

Lambert [1993][Lambert and Carberry1991] proposes a tlees-model of dialogue,
consisting of the domain and meta levels of Litman and Allsnall as a level of
discourse plans, which specifically handles recognitiomolti-utterance speech acts.
The following utterances, for example, constitute a wagr(a discourse plan) only if

taken together [Lambert and Carberry1991].

Ul: The city of xxx is considering filing for bankruptcy.
U2: One of your mutual funds owns xxx bonds.

The separation of discourse plans allows the recognitiospetch-act-like phe-

nomena such as warnings and surprise at a multi-utteranek le

Ramshaw

At the same time as Lambert, Ramshaw [1989; 1989; 1991] peapasdifferently
separated three-level model. Instead of a discourse |B&hshaw proposed aex-

ploration level. The intuition is that some utterances are made sinmptize attempt
to explorea possible course of action, whereas others are explicigettio attempt to

executea plan.

Ramshaw’s model allows the system to distinguish betweetwitbeases, He uses
a stack-based approach, with exploration-level plansguisin lower-level plans. Un-
fortunately, this approach means that exploration-lemdldomain-level plans must be
separate. Once one starts exploring, one cannot talk afplan-execution level un-
til done exploring. As observed in [Carberry, Kazi, and Lamb@92], this prevents
understanding of contingent commitments when one is atxp®rtion level. One

cannot build two complex, competing plans and compare ti#dsa, the model could



23

not handle bottom-up dialogues (dialogues which start awitimic actions and build

their way up).

Although Ramshaw’s model allows for some problem-solvingawgor, including
comparisons of different plans, it does not model this @atatively. Instead, individ-

ual comparisons can only be detected, but they do not affegtlanning state.

Carberry, Kazi and Lambert

Carberry, Kazi an Lambert [1992] incorporate Ramshaw’s wotd the previous work
by Lambert (see above). They overcome the problem with egatit commitments and
also modeling the building and comparing of complex planseifmodel also allows

for the handling of both top-down (goal first) and bottom-aptions first) dialogues.

However, the problem-solving level was fairly undevelopegentioning only ex-
ploring different recipes, choosing the best, and doingstree at lower levels. There

are also several other shortcomings of this approach.

First, the plan structure requires that these meta plangdmiged linearly. In other
words, one must first explore all recipes, and once this Ig fidne, choose the best,
etc. The model does not appear to support the revisiting efipus decisions by an

agent.

Second, there is no execution in the model. It only providesdfalogues about
planning. Also, although there is a limited problem-sofyimodel, there is no notion
of collaboration. It is not clear how each participant coatthtribute separately to
the plan being built. Sample dialogues are all of the madtare type [Grosz and
Sidner1990], where one participant is proactive in plagramd the other basically

serves as an information source.



24

Chu-Carroll and Carberry

Chu-Carroll and Carberry [1994; 1995; 1996; 2000] extend tiheetttevel model of
Lambert and add a fourth level, belief. They also changedrtbdel so that it dis-
tinguished between proposed and accepted plans and béelieis extends coverage
to includenegotiation dialoguesvhere participants have conflicting views and collab-
orate to resolve them. The model is based on Lambert's wortt,shares the same

shortcomings as we mentioned above.

2.2.5 SharedPlans

Another thread of plan-based dialogue modeling has bedm®iSharedPlans approach.
One of the shortcomings of many of the plan-based system$ioned above is that,
although they model dialogue on plans, they do not explicitbdel the collaborative

nature of dialogue.

The SharedPlan formalism [Grosz and Kraus1996; Grosz aad©999] was cre-
ated in part to explain the intentional structure of disseufGrosz and Sidner1986;
Grosz and Sidner1990; Lochbaum, Grosz, and Sidner200@lesktribes how agents
collaborate together to form a joint plan. The model has tperators which are used

by agents in building SharedPlans.

e SelectRec An individual agent selects a recipe to be used to attaivengsub-

goal.

e Elaboratelndividual: An individual agent decomposes a recipe into (eventually)

completely specified atomic actions.

¢ SelectRecGR Intuitively, the same as SeleRec, only at the multi-agent levél.

A group of agents select a recipe for a subgoal.

4Individual and group operators entail different constison individual intentions and beliefs. How-

ever, this is not important for understanding the formal&sya model of collaborative planning.



25

e Elaborate Group The multi-agent equivalent of Elaboraltedividual — a group

of agents decompose a recipe.

Using these four operators, a group of agents collaboratgisitihas completely
specified &ull SharedPlan(which they will presumably execute at some time in the

future).

Based on the theoretical formalism, Lochbaum [1998] deesl@m intention recog-
nition algorithm that works on the processmén augmentationin her algorithm, an
utterance causes the hearer to ascribe certain intentt@hbeliefs to the speaker. If
willing, the hearer also adopts those intentions and kzligfs a result of the new
beliefs and intentions, the SharedPlan is augmented,breught one step closer to

completion.

At a more concrete level, the algorithm attempts to segmiaidglie into a stack of
discourse segmentahich roughly correspond to the SharedPlan operatorsioresd
above. At each new utterance, the algorithm decides if a€¢mpleting a discourse
segment, (b) continuing the current discourse segmenpyshing a new discourse
segment on to the stack, or (d) some combination of thesdifunrsc The algorithm

was specified at a very high level, and appears to have negarfblly implemented.

The main focus of the SharedPlan model has been to formaiest antentions
and beliefs in forming and sharing joint plans, somethingcviis weak in our model.
However, for our purposes — supporting agent-based dialeguthere are several

shortcomings in the SharedPlans model.

First, SharedPlans only models collaboration for joinhpiag between agents. It
does not model the collaboration that occurs when agentsyang to executea joint

plan?

SAlthough the formalism does specify the needed intentiorts kzeliefs for agents executing joint

plans.



26

Second, the SharedPlans formalism models the formulafigirg plans with the
four operators previously discussetelectRe¢ ElaborateIndividual, SelectRecGR,
and Elaborate Group. Although these operators were sufficient to allow the fdrma
ization of group intentions and beliefs about joint plaigyt do not provide enough
detail for us to model collaboration at an utterance-bgrattice level (which is needed,
among other things, to represent communicative intentioks an example, consider
the Elaborate Groupoperator, which has the function of decomposing a recigtam
tiating the parameters (including which agent or subgroiligperform which action at
what time and which resources will be used), and making $eredst of the group has
similar intentions and beliefs about the plan. Bilaborate Groupcan (and often does)
consist of many individual utterances. In order to build @atjue system, we need to

be able to model the communicative intentions behind a sintierance.

We actually believe that our model may be compatible with$haredPlans for-

malism and can be seen as specifying the details of the Shlaredperators.

COLLAGEN

COLLAGEN [Rich and Sidner1998; Rich, Sidner, and Lesh2001] ¢gemeral toolkit
for building collaborative interface systems (naturalgaage or otherwise) in which
user interaction with an application is modeled with a stibgthe SharedPlans model.
In order to “port” COLLAGEN to a new application, a developeeals just to model
domain plans and provide an agent to interact with both COLEAGnd the appli-
cation to be interfaced. The actual interaction modeling @ranagement is handled
automatically by COLLAGEN, thus simplifying the developetask as well as provid-

ing consistency across applications.

The COLLAGEN interaction manager models dialogue using geémentation of

Grosz and Sidner’s tripartite structure of dialogue [Grasd Sidner1986]. Utterances

8This is actually mentioned in [Grosz and Kraus1996] as aa af@eeded future work.



27

(and other actions) are grouped into segments (linguistiel), which have pointers

into a plan-tree structure (intentional level), as well dsaus stack (attentional level).

Utterances themselves are modeled with a subset of Sicaréifisial negotiation
language [Sidner1994; Sidner1994], although to our kndgde the content language
was never fully specified. The most common examples in patios have haéro-
poseForAccep{PFA) and AcceptProposalAP) at a top level, withSHOULD and
RECIPEnnested within them. The actidAFA(RECIPE)means that the agent (artifi-
cial or human) is proposing to use the given recipe. The a&lA(SHOULD)seems
to roughly correspond to the agent (or human) either voknmg to perform an ac-
tion, or assigning the other agent to perform it. Howeverethbr this proposal is
to add the action to the plan or to actually begin executi@mseambiguous. Ex-
amples in the literature have only dealt with execution aotdofanning. COLLAGEN
uses an implementation of the principles in Lochbaum’sitida recognition algorithm
[Lochbaum1998] to update discourse structures based orthewewly observed ac-

tion/utterance fits into the understood recipe library.

Using the operators above, COLLAGEN seétascover dialogue about goal selec-
tion and plan execution (including hierarchical decompasiof predefined recipes).
However, as the intentional structure does not distingbetiveen whether a node was
only planned or actually executed, it does not appear thatl@IEN covers dialogue
supporting both planning and execution. Also, althoughlavwes for mixed-initiative
collaboration through the use of proposals and acceptajeetion, it does not appear

to include a mechanism of revising previous decisions (&ngeplanning).

’Again, it is in some ways difficult to make an assessment of CEEEN's representational capa-

bilities, as the utterance representation language was fighly specified.



28

2.2.6 Rational-Behavior Models

Several researchers [Cohen and Levesquel1990c; Cohen &lald&hen1994; Sadek
and De Mori1998] have suggested that dialogue should silglynodeled asatio-

nal behaviorof agents (cf. [Cohen and Levesquel990a; Cohen and Leve2fil®19
Levesque, Cohen, and Nunes1990]). In a nutshell, these mpdetliict that agents

communicate because they are committed to by the prinogblegional behavior.

As an example, agents, in order to achieve goals, form jotentions. These joint
intentions commit rational agents to certain behavior sgchelping their fellow agents
achieve their part of the plan and letting the other agentsvkif, for example, they
believe the goal is achieved, or they decide to drop the@nition. These commitments

and rationality can be seen as what causes agents to engdigiogue.

On the surface, these models may seem to be what is needeg@porsagent-
based dialogue, since they are modeled as agent collalrarétowever, we see several

shortcomings in these models.

First and foremost, rational behavior models have only rezbidialogue support-

ing joint execution of plans and do not handle dialogue tbapsrts joint planning.

Also, although the single-agent levels of formal represgons of individual and
joint agent rationality are very thorough, the levels oflajue modeling and agent

interaction were never fully developed as far as we are aware

2.2.7 General Shortcomings of the Plan-based Approach

Here we mention two of the general shortcomings in the pteshjementioned systems,

which motivate our own work: the limitations of their probiesolving models and

8This likely stems from the fact that the theoretical modédlsationality upon which these systems
are based (e.g., [Cohen and Levesque1990a]) focus on famgehgent execution, and not planning. In
a way, work on rational behavior models can be seen as a kindroplement to work on SharedPlans

— which focuses on planning, but not execution.



29

collaboration paradigms.

Problem-Solving Models As discussed in Chapter 1, we would like to model a wide
range of dialogue, especially dialogue which supportsesfiit types of tasks. Most
previous plan-based dialogue models have only suppor@dgilie which supports
planningor dialogue which supports execution, but not both. Howevertha ex-
ample dialogue in Figure 1.1 illustrates, dialogue canrofie used to support both
planning and execution. In fact, dialogue can support jostibany facet of collabora-
tive activity. This includes not only just planning and extian, but also goal selection,
plan evaluation, execution monitoring, replanning, andst lof others. In addition,
conditions often change, requiring dialogue participaatgo back and revisit previ-
ous decisions, reevaluate and possibly even abort goalpland. Previous models
have sometimes handled a few of these activities, but n@fay as we are aware, has

handled them all.

Collaboration Paradigms A collaboration paradigndescribes the respective roles
and authority each participant has during collaboratia@rti€ipants may, for example,
have different social statuses, giving rise to differertatmration paradigms. If two
participants are on equal social footing, then they may betfree to make and reject
proposals as they see fit. Decisions are discussed and matlg johis paradigm is

often referred to amixed-initiative[Chu-Caroll and Brown1997].

At the other extreme is thmaster-slavecollaboration paradigm [Grosz and Sid-
ner1990], in which one participant completely controls tloev of the collaboration
as well as the decisions made. There is a whole spectrum labooation paradigms
between the extremes of mixed-initiative and master-slewvaboss-workeparadigm,
for example, the socially higher (boss) participant likebntrols most of the discus-
sion, but the worker participant may be expected to makeriboions at certain levels

but not be allowed to disagree with the boss.



30

With the exception of [Chu-Carroll and Carberry2000], pregiatork in intention
recognition has only modeled master-slave collaboratMost previous research was
restricted to information-seeking dialogues (e.g., [Cagd®90b]), where collabora-
tion consists of the user (the master) getting informatremfthe system (the slave).
Although the system may possibly ask clarification questig@rcannot take task-level
initiative [Chu-Caroll and Brown1997] and is not party to thersplanning decisions.
Expert-apprentice dialogues (e.g., [Grosz1981]) alsdistiinodel. In these, the expert

is the master, and the apprentice only follows the plan tipeputs forth.

This master-slave assumption limits the types of collatimmavhich can be mod-
eled. We are interested in modeling the entire spectrum kdlmaration paradigms,

from master-slave to mixed-initiative.



31

3 A Model of Collaborative Problem

Solving

As we discussed in Chapter 2, current dialogue models ardaeuttegupport the kind of
agent-based dialogue that we are interested in. This islyrduie to two shortcomings:
(1) the models cover dialogue about very narrow set of agehawor — typically
either planning or execution; and (2) most models do not asupe range of collab-
oration paradigms, especially mixed-initiative — wheré¢hparties have an equal say

in the decision-making.

In this chapter, we present a model of agent-agent colléilserproblem solving
which will serve as the foundation of our agent-based diadomodel presented in
Chapter 4. The collaborative problem-solving model serges model of agent-agent
communication which takes into account a range of agentvweahand allows for a
range of collaborative paradigms. This then allows us innet chapter to build an

agent-based dialogue model that overcomes the two shartgerdescribed above.

Although much work has been done on language specificatiofaftficial) agent
communication, most (e.g., [DARPA Knowledge Sharing Itii@ External Interfaces
Working Group1993]) has focused on the meaning of indivichessages artterances

and not on how those utterances contribute to ongoing anidion between the agents.

Because they only deal with collaboration among artificigrag, most multi-agent

systems define and use ad hoc interaction protocols (oftee-fitate based as in [The



32

Foundation for Intelligent Physical Agents2002]) whicloal agents to understand
utterances in the context of the current “dialogue”. As dssed in Chapter 2, such
fixed-dialogue representations are only able to accounafemall range of human

dialogue behavior.

On the other hand, work on general agent collaboration, (ECg@hen et al.1991;
Grosz and Kraus1996; Wooldridge and Jennings1999]) tilpitt@malizes collabora-
tion in alogic of individual agent mental state. Howeveeg, fitocesses described are too
high-level to describe interaction at the granularity ofrfain utterances (as described

in Chapter 2).

In this chapter, we present a model of collaborative proldeiaing which repre-
sents a kind of “middle ground” of the work mentioned above Mbdel collaboration
at a level suitable to represent individual utterancesoutiplacing restrictions on the
form of collaboration itself. Although we do not provide arftal model in terms of in-
dividual agent mental state, we believe our model may be atitvlp with other work
on general agent collaboration. In Section 3.4.4, we desqubssible compatibility
with the SharedPlans model [Grosz and Kraus1996]. We altothat we make the
simplifying assumption here, that there are only two ageoliaborating. We are hope-
ful, however, that the model discussed here can be extendbd general case of many

agents. We leave this as an area of future research.

In the remainder of the chapter, we first provide an intuitiéscription of what
we mean by problem solving and collaborative problem sglvie then describe the
collaborative problem-solving model and its applicapiéis a general model of agent-

agent communication.

3.1 The Collaborative Problem-Solving Process

Before we describe our model, it is first important to descnhat we mean by problem

solving and collaborative problem solving, as these temasaadely used but seldom



33

defined in the literature. We first describe (single-agenbplem solving and then

extend the description to collaborative problem solvingveen two agents.

3.1.1 Single-Agent Problem Solving

We define problem solving (PS) to be the process by which antafp@oses and pur-
sues goals oobjectives Specifically, we model it as consisting of the followingedér

general phases:

e Determining Objectivesin this phase an agent manages objectives, deciding to

which it is committed, which will drive its current behavj@atc.

e Determining and Instantiating Recipes for Objectivés this phase, an agent
determines and instantiates a recipe to use to work towardsbgective. An
agent may either choose a recipe from its recipe libraryt ondy choose to

createa new recipe via planning.

e Executing Recipes and Monitoring Succebsthis phase, an agent executes a

recipe and monitors the process to check for success.

There are several things to note about this general desceripFirst, we do not
impose any strict ordering on the phases above. For examaplagent may begin
executing a partially-instantiated recipe and do moreaimstion later as necessary.
An agent may also adopt and pursue an objective in order fihel deciding what
recipe to use for another objective. In the section belowpreeide several examples

of behavior that we consider to be problem solving.
It is also important to note that our purpose here is not toi§pa specifigoroblem-
solving strategyor prescriptive model of how an agestiouldperform problem solv-

ing. Instead, we want to provide a general descriptive mibd¢lencompasses the many

IActually, both of these activities (instantiating a reciy@sus creating a new one) have been called

planning in the literature.



34

possible problem-solving strategies agents may have.Xaongle, an agent which sim-
ply executes recipes and reasons little about them will betre= but brittle, whereas
an agent that constantly re-evaluates its objectives amgagwill be flexible, but slow.
This reflects the variance of problem-solving strategidsuimans: some of us are cau-
tious and slower to react, while others make decisions amtg@nd then stick to them.
In fact, an individual may use different strategies in difet situations. In the human
world, people with problem-solving strategies from one@xte can still collaborate
with people from the other extreme. Our model needs to altmvwedllaboration among

heterogeneous agents as well.

Examples of Problem-Solving Behavior

In order to better illustrate the possible range of probleimisg, we give several simple

examples of problem-solving behavior. This is not meanitai exhaustive list.

e Prototypical Agent Q decides to go to the park (objective). It decideske the
10:00 bus (recipe). It goes to the bus stop, gets on the buthandgets off at
the park (execution). It notices that it has accomplishealgjective, and stops

pursuing it (monitoring).

e Subordinate ObjectiveAgent Q decides to go to the park (objectivel). In order
to decide which recipe to use, it decides to see what the weathike (objec-
tive2) by looking outside (recipe for objective2). It goeshie window and looks
outside (execution) and notices that it is sunny. It decidesalk to the park

(recipe for objectivel)....

¢ Interleaved Planning and Executiogent Q decides to to go to the park. It
decides to take a bus (partial recipe) and starts walkinigedtis stop (partial ex-

ecution) as it decides which bus it should take (continuessiantiate recipe)....



35

¢ Replanning Agent Q decides to go to the park. It decides to walk (obyegtand
goes outside of the house (begins execution). It noticesttizaraining and that
it can’t successfully walk to the patkmonitoring). It decides instead to take the

10:00 bus (replanning)....

e Abandoning ObjectiveAgent Q decides to go to the park by taking the 10:00
bus. As it walks outside, it notices that it is snowing andidies it doesn’t want
to go to the park (abandons objective). It decides to watchifiStead (new

objective)....

3.1.2 Collaborative Problem Solving

Collaborative problem solving (CPS) follows a similar pracassingle-agent problem
solving. Here two agents jointly choose and pursue objesiiv the same stages (listed

above) as single agents.

There are several things to note here. First, the level dhlgotation in the prob-
lem solving may vary greatly. In some cases, for examplectiaboration may be
primarily in the planning phase, but one agent will actuabgcute the plan alone. In
other cases, the collaboration may be active in all stagekjding the planning and
execution of a joint plan, where both agents execute actioascoordinated fashion.

Again, we want a model that will cover the range of possibkel of collaboration.

Another thing to note is that, as discussed in Chapter 2, we todge able to handle
the range of collaboration paradigms (the respective aotesauthorities of each agent)
— from master-slave to mixed-initiative. In some cases,eimple, one agent may
have the authority to make all decisions while the other mayprovide suggestions (a
kind of boss-worker paradigm). In others, both agents matptadly autonomous and

need to negotiate to agree on decisions.

2At least, it can’t walk there and still maintain its objeetito stay dry (cf. [Wilensky1983]).



36

3.2 A Collaborative Problem-Solving Model

We now describe our collaborative problem-solving (CPS) ehod/e will first give a

brief overview of the model and then describe the indivichats in detail.

We believe that the general collaborative problem-solpirggess remains the same,
regardless of the task and domain (cf. [Allen et al.2000eAlet al.2001]). Thus the
CPS model is built to be domain-independefask modelare used as a type of “plug-
in” to specialize the model to a particular domain. Objentthie task model are spe-
cializations of abstract objects in the (single-agent avithlborative) problem-solving
models. The PS and CPS models are comprised of a set of acts exesution updates
the (single-agent or collaborativejoblem-solving stateActs at this level include such

things as evaluating and adopting objectives and recipesuéing plans, and so forth.

At the CPS level, it is impossible for an agent to single-hahdehange the col-
laborative problem-solving state. Doing so involves thepmration of both agents
involved (cf. [Traum1994]). This means that CPS actsratadirectly executable by a
single agents. How is a single agent to affect the CPS stan?tlit is done through

negotiation with the other collaborating agent.

Interaction actsare single-agent actions used to negotiate changes in thet@es
If the agents are amenable to the change and cooperate aaagimbination of in-
teraction acts will result in the generation of a CPS act, glhmgnthe CPS state. In
collaborative problem solving between artificial agent&se interaction acts can be
used directly in a communication language. However, innaianguage, they must
be encoded in (and decoded from) (natural language)municative acts(This con-
nection to natural language is actually outside of the CPSemnmaper, and will be

discussed in more detail in Chapter 4.)

At this point, we describe a single-agent model of problefuisg. After that, we

show how it is extended to the collaborative case.



37

3.3 Single-agent Problem Solving

This section describes a model of single-agent problemreplwe should note from
the outset that the single-agent problem solving modelrdest here is not meant
to compete with other, well-known models of mental statesaistonomous agents
(e.g., [Cohen and Levesquel990a; Rao and Georgeff1991]). r&Vaa proposing
that this be the basis of an implementation of an actual ageather, we present this
as a kind of abstraction of single-agent mental models. Wéhofor two reasons:
first and foremost, it is instructive to look at single-agprablem-solving behavior to
compare and contrast what is done in collaboration. Sectithugh not mentioned
further in this thesis, it is important for collaboratingeengs to have a model of the other
agent’s current mental state (cf. [Cohen and Levesquel®@@sz and Kraus1996]).
We believe that the model presented here may be at the righit ¢é¢ abstraction to
provide such other-agent modeling, although we must lelageass a topic of future

research.

Central to the single-agent model is thblem-solving statewhich is an agent’s
mental model of its current state of the problem-solvingcpss. The PS state is com-
posed of a number gbroblem-solving objectand their status within the problem-
solving process. An agent can change its PS state by exgoartain mental operators

calledproblem-solving acts

In this section, we first discuss PS objects, then how theybawerto form the PS

state. We then discuss how an agent can use PS acts to chariRfe state.

3.3.1 PS Objects

The basic building blocks of the PS state are PS objects,hwherepresent as typed
feature-value structures. PS object types form a sindieritance hierarchy, where
children inherit or specialize features from parents. dnsés of these types are then

used in problem solving.



38

In our PS model, we define types for the upper level of an ogtolaf PS ob-
jects, which we ternabstract PS objectsThese abstract PS objects are used to model

problem-solving at a domain-independent level.

We first explain in more detail the representation of PS dbjegnd afterwards
define and explain each of the abstract PS objects. We theasgifiow these objects

can be specialized to model a particular domain.

Representation of PS Objects

We represent all objects (PS as well as other auxiliary tdjexs typed feature struc-
tures. For our own representation and the explanation exdgorrow heavily from
[Pollard and Sag1994], although we use terminology morelii@mn the planning
field.

Types An object typé declares which features an instance of that type must have, a
well as the allowable types for the values of those featuFesmally, an object type

declaration is of the following form:

o< p
Fon
F,

whereo, p, 7, ..., T, are types and-, ..., F, are feature labels. Hereis the type
currently being defined ang is its immediate parent in the inheritance hierarchy.

1,...,T, define the allowed type of value for each corresponding fedabelF,, . . ., F,,.

A type inherits all of its parent’s feature labels and theiresponding type restric-

tions. A type may change a type restriction from an inherieedure labelF’ from 7

3[Pollard and Sag1994] use the teswrtinstead of type.



39

object — ¢
[|D id]

Figure 3.1: Type Description farbject

to ry iff 75 is a descendant of. Usually, we will not list unchanged, inherited features
in new type declarations, although we do occasionally whemakes the explanation

more clear.

In order to ensure that all objects in our problem-solvingdel@re labeled with a
unique ID, we introduce in Figure 3.1 a basic tyggectwhich has a single attribute

ID.* We then require that all objects in our hierarchy be desastsazobject

We use the following atomic types, which are not defined Hareare taken to have
their typical meaningstringandnumber We also use the atomic tyjé which we do

not define, but it is something which allows each object terexa unique ID.

We define several type templatet(), list(o), andstack¢), where the set, list or
stack is restricted to elements of typeWhen displaying a set in a token, we will use
curly brackets {}); for a list, we use we use angle bracketsx); and for a stack, we

use parens (()).

Finally, atomic types may also be defined by enumerating tefset of elements
(like anenumin C). For the abstract model, we define the enumerdiooiean=

{true,falsg.

Tokens Feature-value tokens can be fully or partially instantd&tand we will dis-
play them in this text as attribute-value matrices (AVMs)olléwing [Pollard and

Sag1994], we also use paths of the fosxB | C to easily refer to embedded content

“Note that the linebject « ¢ signifies thabbjectis a root in the hierarchy.
S[Pollard and Sag1994] require a token to be fully instaatiat



40

(in this case, the contents of thdeature embedded in tieefeature ofa). We also use

boxed numbers (e.d1)) to refer to entire tokens and to signify structure sharing.

An example of an instantiated token is shown later in Figu283

Abstract PS Objects

The following are the six abstract PS objects from which #ikeo domain-specific PS

objects inherit:

Objective A goal, subgoal or action. For example, in a rescue domajecties could
include rescuing a person, evacuating a city, and so forthcoMsider objectives
to be actions rather than states, allowing us to unify thecepts of action and

goal.

Recipe An agent’s beliefs of how to attain an objective. Although deenot adhere
to any specialized definition of recipe, one example is Caytsedomain plan
library [Carberry1990b] which has action decompositioroiniation about ob-
jectives. An agent’s recipe library can be expanded or medlifirough (collab-

orative or single-agent) planning.

Constraint A restriction on an object. Constraints are used to restossible solu-

tions in the problem-solving process as well as possiblereets in object iden-

tification.

Evaluation Anagent’s assessment of an object’s value within a certainlem-solving
context. Agents will often evaluate several competing fbssolutions before

choosing one.

Situation The state of the world (or a possible world). In all but thegiest domains,

an agent may only have partial knowledge about a given siuat



41

ps-object« object

CONSTRAINTS constraints-slo}l

Figure 3.2: Type Description fgs-object

Resource All other objects in the domain. These include include reatld objects

(airplanes, ambulances, ...) as well as concepts (soag,téttist names, . ..)

Each of the abstract PS objects share a set of common featMegsut these com-
mon features in a new typps-objectwhich is the common parent of all of the abstract
PS objects. The type description fas-objectis shown in Figure 3.2. We briefly de-
scribe its features here and then continue by giving the dygotarations for each of the

abstract PS objects in turn.

ps-objectinherits fromobjectand therefore contains ap attribute (not shown
in the figure). It also has one additional attributBNSTRAINTS The CONSTRAINTS
attribute provides a way of describing tbg-objectwith a set ofconstraintswhich may
not be particularly useful for single-agent problem sadvibut which is frequently used
in a collaborative setting, when agents try to refer to theesabject. This is described

in more detail when we introduce tlgenstrainttype below.

It is important to note that the type of tltNSTRAINTSattribute is not simply a
set of typeconstraint Rather, it is one of a special class of middleman types we call
slots As slots are a vital part of the PS model, we take a brief alsete to discuss

them before continuing with the abstract PS objects.

Slots and Fillers Problem solving can be seen as an agent’s decision-makiog 5
with respect to choosing and pursuing objectives. In madetiroblem solving, we
need to model more than just the decisions made. We need telriwl decision-

makingprocesstself.



42

Within our model, decisions can be seen as the choosing oésdbbjects) or sets
of values for certain roles. For example, an agent decidea set of objectives to
pursue. For each objective it has, an agent must decide dngde(srecipe to use in
pursuing it, and so forth. A straightforward way of modelthgse decisions would be
to include, for example, a featurECIPEIN an objective which takes a recipe value,
and represents the current recipe the agent is using togthsuobjective. Similarly,
we could define a featureBJECTIVESat the top level which would hold the set of

objectives the agent is currently committed to.

However, doing this would only model the agernticision but not theprocesshe
agent followed in making that decision. In deciding on apedp use for an objective,
an agent may identify several possible recipes as pos&biind evaluate each one. It
may similarly narrow down the space of possible recipes agiph constraints on what
it is willing to consider. These kinds of meta-decisionsrarely explicitly modeled in
agents, and it may seem like overkill to do so. However, as Vlesee below, these
kind of meta-decisions are what a large bulk of collaboeatemmunication is used

for!

To be able to model these and other kinds of decisions-makiogesses, we add
two levels of indirection at each decision point in the modéie first is what we call
aslot, which contains information about the possible filler val¢e.g., recipes) which
have been/are under consideration in that context. A skt ebntains information
about possible constraints which have been put on whatdtautonsidered (e.g., not
all valid recipes, but just those which take less than 30 mirtotegecute). A slot also

records which (if anyjiller has been chosen by the agent.

A filler is the second layer of indirection. It is used to wrap an dotale with
a set of evaluations the agent has made/might make aboubie tNat this wrapping
is necessary, as evaluations will always be context-degpgn@e., dependent on the

current slot) and not attached in general to the value itself

Using these two levels of indirection, slots and fillers,egiws a rich model of not



43

slot «— object

IDENTIFIED set(filler(ps-object)})

Figure 3.3: Type Description falot

single-slot« slot
CONSTRAINTS constraints-slot
IDENTIFIED set(filler(ps-object)

ADOPTED filler(ps-object)

Figure 3.4: Type Description faingle-slot

only the decisions (to be) made, but also the decision-nggkiacess itself.

In Figure 3.3, we define an abstragtot type, which is the parent dafingle-slot
(Figure 3.4) andnultiple-slot(Figure 3.8). These types differentiate decision points
where just one filler is needed (e.g., a single recipe for aeatilse), or where a set of
values can be chosen (e.g., objectives that the agent wisipessue). We first discuss

the single case, and then the multiple case.

Slots for Single Values The most typical case is where a single value can be used to
fill a slot. single-slotis an abstract class for handling this. It has three fealloesdes

the ID inherited fromobjec): IDENTIFIED is the set of all values (wrapped fitlers)

that an agent has considered/is considering to fill this sSDOPTEDrecords the single
value which the agent has committed to for this slot. (Thisieanay also be empty

in the case that the agent has not yet decided, or has revargeglious decision.)
ThecoNsTRAINTSfeature describes possible constraints the agent has matssible

slot fillers (such that the chosen recipe have 5 or fewer st&ste that this is itself a

type of slot,constraints-slatwhich inherits frommultiple-slotas it can contain a set of



44

filler — object

EVALUATIONS evaluations-slo

VALUE ps-object

Figure 3.5: Type Description fdiller

filler( o) « filler
EVALUATIONS evaluations-slo

VALUE o

Figure 3.6: Type Description fdiller(o)

constraints. We will describe tlemnstraints-slotype shortly.

Note also that the types of theeENTIFIED andADOPTED features contain &ller
type. Figure 3.5 shows the base definition dflar. It contains both aALUE which it
wraps, as well aEVALUATIONS attribute, which represents any evaluations the agent
may make/have made about the value in the local context. EVREUATIONS attribute
is also a type of slot which inherits fromultiple-slotwhich we will also come to

shortly.)

The abstractiller type in Figure 3.5 only restricts itsALUE to be aps-object In
most cases, we want to restrict this further to be the typaetkpected value (e.g., a
recipe). In Figure 3.6, we define a type schdither(o) which allows us to easily refer

to a subtype ofiller which specializes theaLUE to typeos.®

Similarly, we usually need to specifysangle-slotto allow only a certain type of

filler. Figure 3.7 defines a type schema which, similar to whatlid withfiller above,

SFor reasons of clarity, we have also used this notation irdéimition ofsingle-slotin Figure 3.4,
even thouglr is ps-objecthere and therefore the instantiated schema simply restltbe abstract type

filler.



45

single-slotg) < single-slot
CONSTRAINTS constraints-slo
IDENTIFIED set(filler())

ADOPTED filler(o)

Figure 3.7: Type Description faingle-slotf)

multiple-slot « slot

IDENTIFIED set(filler(ps-object)

ADOPTED  sef(filler(ps-object)

Figure 3.8: Type Description fanultiple-slot

refers to a subtype dfingle-slotwhich only allows identified and adopted values of

typefiller(o).

Slots for Sets of Values Figure 3.8 defines an abstract slot for decisions which allow
more than one simultaneous value. In our model, we use thasees which inherit
from multiple-slot constraints-slgevaluations-slgtandobjectives-slat We describe

each in turn.

Previously-discussed typgxs-objectand single-slothave already introduced the

constraints-slotype. Its definition is shown in Figure 3.9. As discussed abalis

constraints-slot<— multiple-slot

IDENTIFIED set(filler(constraint)

ADOPTED  sef(filler(constraint)

Figure 3.9: Type Description faonstraints-slot



46

evaluations-slot< multiple-slot

CONSTRAINTS constraints-slot
IDENTIFIED set(filler(evaluation)

ADOPTED set(filler(evaluation)

Figure 3.10: Type Description f@valuations-slot

type allows a set of constraints to be identified and adopteddontext. HereDEN-
TIFIED and ADOPTED have a similar meaning to those single-slof with the only
exception being thatDOPTED takes a set dfillers, instead of a single value. We dis-
cuss constraints in more detail when we come to their dedmitvithin the PS model

below.

Note that, unlike all the other PS slot typegnstraints-slotdoes not contain a
CONSTRAINTS attribute. Theoretically, we believe it is possible for ayeat to set
constraints on which constraints it would consider adaptiout practically, nesting
a constraints-slothere would create an infinite regress of constraints-sidis. have
therefore chosen instead to exclude this from the model starids, and leave it as a

subject of future research.

The second slot for multiple values is tegaluations-slgtwhich we used above
in the definition offiller. An evaluation-slotdefined in Figure 3.10) provides a space
for determining a set odvaluations Its attributes are used in the same way to those of

single-slotandconstraints-slgtand do not merit further comment here.

The final slot type for multiple values is thabjectives-slgtwhich is defined in
Figure 3.11. It too has the feature®NSTRAINTS IDENTIFIED andADOPTED which
are used as they are avaluations-slot The reason that objectives use a multiple slot
and not a single slot will be discussed below in the varioustrabt PS objects where
the objectives-slots used. For now, it is just important to understand that gaaive

being adopted means that the agent is committed to thattolgjedithin the local PS



a7

objectives-slot«— multiple-slot

CONSTRAINTS constraints-slot

IDENTIFIED set(filler(objective)

ADOPTED set(filler(objective)
SELECTED set(filler(objective)
RELEASED set(filler(objective)

Figure 3.11: Type Description fabjectives-slot

objective < ps-object

RECIPE single-slot(recipe})

Figure 3.12: Type Description fabjective

context.

Objectives are not only committed to, but can also be execuBbjectives in the
SELECTEDSet are those which the agent is currently executing (mdeelslbelow), as

opposed to just intending to execute.

Finally, as discussed above, an agent must monitor thetisituiz order to notice
when an objective has been fulfilled (so that it stops pugsit)n Objectives which the

agent believes have been fulfilled are put intoriEe EASED Set.

Objective Now that we have described the various slot and filler typeshvhare
used in the model, we are ready to get on with the definitionth@fabstract PS ob-
ject types. The definition obbjectiveis shown in Figure 3.12. This object, like all
six abstract PS objects, inherits directly fr@srobjectand thus contains its attributes
(shown in Figure 3.2). In additiomgbjectivehas arRECIPE attribute which is of type

single-slot(recipe) This slot provides a place to record all problem-solvingviy



CONSTRAINTS

RECIPE

constraints-slot

single-slot(recipel.

objective «+ ps-object
id
ID id
IDENTIFIED set(filler(constraint)

ADOPTED  sef(filler(constraint)

ID id

ID id

CONSTRAINTS [ IDENTIFIED set(filler(constraint)

ADOPTED  sef(filler(constraint)

constraints-slot

IDENTIFIED set(filler(recipe))

ADOPTED filler(recipe)

Figure 3.13: Full Type Description fabjective

ACTIONS

recipe <+ ps-object

objectives-slot

ACTION-CONSTRAINTS constraints-slo

Figure 3.14: Type Description foecipe

related to choosing a singtecipeto use to pursue thebjective

48

The fully-expandedbjectivetype description is shown in Figure 3.13. This in-

cludes features inherited frops-object(and indirectly fromobjec) as well as the

result of expanding theingle-slotandconstraints-slotemplates.



49

constraint < ps-object

[EXPRESSION boolean-expressi%n

Figure 3.15: Type Description faonstraint

resource+« ps-object

{ACTUAL-OBJECT id]

Figure 3.16: Type Description feesource

Recipe Recipes are represented as a set of subobjectives (actimhg) set of con-
straints on those subobjectives. The attributeeoipeare shown in Figure 3.14. The
ACTIONS attribute is aobjectives-slotvhich allows a set obbjectivesassociated with
therecipe as discussed above. The attribateErION-CONSTRAINTSCONtaiNs theon-

straintsplaced on th@bjectives

Constraint Constraints(Figure 3.15) are represented lasolean-expressionsWe
do not define the form of these expressions here, but we envésitypical kind of
expression involving boolean connectivesd or, etc.) as well as (possibly domain-

specific) predicates.

Resource ResourceqFigure 3.16) are used to represent what would typically be
thought of as “objects” in a domain. This includes real-waobjects, but can also
include any sort of object used in problem solving that doetsfall into one of the

other categories of abstract PS objects.

In addition to the attributes inherited frops-objectresourcesontain the attribute
ACTUAL -0OBJECT, which holds a link to the “actual” object as representethéndgent’s

mental state.



50

evaluation < ps-object

ASSESSMENT unstructure%

Figure 3.17: Type Description favaluation

situation < ps-object
PS-OBJECTS set(ps-object)
PS-HISTORY list(ps-act)

FOCUS stack(object)

OBJECTIVES objectives-sIOJt

Figure 3.18: Type Description faituation

Evaluation Before making decisions in problem solving, an agent typicalaluates
each of the options that have been identified.e&aluation(Figure 3.17) represents an
agent’s assessment of a particular PS object within a péaticontext. Thevaluation
is therefore always associated with a PS object and a cof@ext which PS object to

choose to fill a slot).

A theory of evaluations and their representation is beytmdsicope of this the-
sis, although they present an interesting challenge faréutesearch. We believe, for
example, that this is where argumentation could be reptedemithin our model, as
identified evaluationsare wrapped itillers and therefore also are associated with an

evaluations-slot

As we are not sure how best to represent the evaluations éhegsswe leave the
type of theaAssEsSMENTattribute unstructured. Analyses we provide that inveival-

uationswill be given as natural language descriptions of the assess(e.g.good.



51

Situation A situation(Figure 3.18), describes the state of a possible world, aemo
precisely, an agent’s beliefs about that possible world.h&athan just packing all
state information into a general world-state attribute searate out information about
problem-solving in the situation, and then have a sepafdatepo store other world

beliefs.

The ps-oBJECTSattribute holds a set of all PS objects known to the agenten th
situation. This includes domain-specific PS objects (sicblgectives, recipes and

resources) which the agent can use in problem solving.

The Ps-HISTORY attribute records the history of the agent’s problem sgjvifihis

is a list of problem-solving acts the agent has performed.

TheoBJECTIVESattribute encapsulates the problem-solving state of teatag the

situation. This link betweenituationsand the PS state is described in Section 3.3.2.

Focus is a known attribute of human communication and is mallked in human
communication to make interpretation easier for the hefdensz and Sidner1986;
Carberry1990b]. We include this in our single-agent modetlel§ as we hypothesize
that focus is also a feature of single rational agents. Thikely due to resource-
boundedness and the need to concentrate resources on ashnadibossibilities. Here
we model therocusattribute as a stack of genexabjects following [Grosz and Sid-
ner1986], although, we, as they, admit that a stack is anrieqterepresentation of
focus’ Focus can be placed on any typeotifect includingslots fillers, or ps-objects
depending on whether the focus is finding a value for a sl@luating an object, or
identifying an object, respectively.

All other agent beliefs about the world are stored in d@NSTRAINTS attribute
(inherited fromps-object. We originally modeled this as a separate attribute with a
set of beliefs, but noticed that this information can be niedlenore appropriately

with constraintsand aconstraints-slat This turns out to be consistent with our use of

’Other proposals for focus structure exist [Lemon, Gruensand Peters2002], but we leave the

guestion of how to best represent focus to future research.



52

constraints associated with a PS object to identify it. Ifbad the simplest of domains,
an agent will only have partial information about the staftehe world and cannot,
therefore, model it completely. Instead, an agent can amept ofconstraintson what
the current situation is, meaning that it believes that theason it is trying to model

at least conform to theonstraintsthat it has adopted towards it. Note, that the use
of aconstraints-sloallows us to model the agent’s process of actually decidihghv

constraints to adopt.

In our model, we only use a singdguationwhich describes the current state of the
world. However, in future work, we would like to use multipdéuationsto support

what-if, possible-world reasoning.

Domain Specialization

The PS model can be specialized to a domain by creating ness tyyat inherit from
the abstract PS objects and/or creating instantiatiorfeeoft We describe each of these

cases separately.

Specialization through Inheritance As described above, inheritance is basically the
process of adding new attributes to a previously existimg tyand/or specializing the
types of preexisting attributes. In our PS model, inhedéais only used foobjectives

andresources The other abstract PS objects are specialized througdmitistion.

Inheriting fromresourceis done to specify domain-specific resource type. As an

example, in the MP3 domain, we need to represent songs agceso

We define a new typsong shown in Figure 3.19, which inherits fromesource
Here we add three new attribut@sTLE, ARTIST andALBUM so that this information
can be recorded in individuabnginstantiations. (Note that the resource typesst
andalbumalso need to be created for the domain, although we do not gteowhere.)

Each of these is aingle-slot so that the values of these may be reasoned about in the



53

song+« resource
TITLE  single-slot(string)
ARTIST single-slot(artist)

ALBUM single-slot(album

Figure 3.19: Type Description faong

listen-song« objective

SONG single-slot(song%)

Figure 3.20: Type Description fdisten-song

problem-solving process (e.g., in trying to decide who thisteof a particular song is

and considering several choices).

Note that it would be also possible to simply use t®NSTRAINTS attribute to
store this information for dong however we choose to make these fields explicit, as

we want to model them as being in some way an inherent propéthe resource.

Inheriting fromobjectiveis done to specify a particular domain goal, for example,
the goal of listing to a song. Typically, additional attribs aresingle-slotof some sort

of resourceswhich are used to model parameters of the objective.

We define a new typésten-songwhich represents the goal of listening to a par-
ticular song, shown in Figure 3.20. Here we add just one ehdit attributeSONG,
which is asingle-slotfor a song This is a placeholder for deliberation about which

song should be listened to.

Specialization through Instantiation All PS object types (including new types cre-
ated by inheritance) can be further specialized by insd#ioti, i.e., by assigning values

to some set of their attributes. This can be done both at dése (by the domain



54

modeler) and (as we discuss below) it happens at runtimeresfpghe problem-solving
process itself. For example, we would want to populate ouBM&main with instan-
tiations of resources: songs, artists, and so forth, asagelecipes: e.g., a recipe for
playing a song with an MP3 player. We also instantiate theainsituation with the

current state of the world and the agent’s beliefs, as adlin the next section.

3.3.2 The PS State

The PS state models an agent’s current problem-solvinggbrit is represented with
a special instance of typstuationcalled theactual-situation As the name implies,
theactual-situationis a model of the agent’s beliefs about the current situadimhthe

actual problem-solving context.

The cONSTRAINTSattribute describes the agent’s general beliefs aboututrerat
state of the world and theess-oBJECTSattribute contains all of the PS objects which the
agent currently knows about — including possible objestivecipes, resources, etc.
The PSHISTORY attribute is a list of all PS acts the agent has executed FambUs

describes the agent’s current stack of focus.

The oBJECTIVESattribute contains all of the top-levebjectivesassociated with
the agent’s problem solving process. In the same way &xipes each of theseb-
jectivesis assigned a status, which we discussed below in more dekakeobjectives
form the roots of individual problem-solving contexts agated with reasoning with,
and/or trying to accomplish thosijectivesand can include all types of other PS ob-

jects.

Note that theactual-situatiorcontains not only information discovered during prob-

lem solving, but also the agent’s a priori knowledge.



55

3.3.3 PSActs

An agent changes its PS state through the execution of PS Hutse are two broad
categories of PS acts: those used in reasoning and thosdarssmmmitment. We

describe severdamiliesof PS act types within those categories:

Reasoning Act Families

e Focus Used to focus problem solving on a particutdnject
e Defocus Removes the focus on a particutasject

¢ Identify. Used to identify gps-objectas a possible option in a certain context.

Commitment Act Families

e Adopt Commits the agent to avbjectin a certain context.

Abandon Removes an existing commitment to @nject

Select Moves anobjectiveinto active execution.

Defer. Removes amwbjectivefrom active execution (but does not remove a com-

mitment to it).

Release Removes the agent’s commitment to @njectivewhich it believes it
has fulfilled.

Each of these families encompasses a set of actual PS acttheF@mainder of
this section, we discuss each of the PS act families anddbaesponding acts as well

as their effects on the PS state.



56

Focus/Defocus

As we described above, focus has been shown to be an imppggrdaf human com-
munication. We model focus as a stack within #utual-situation The stack can hold
pointers to any type obbject including slots fillers, and ps-objects depending on
whether the focus is finding a value for a slot, evaluating bbjea, or identifying an

object, respectively.

Focus is controlled with the following PS acts:

focus(situation-id,object-id)

defocus(situation-id,object-id)

The semantics of these are simplecuspushes the giveabject-idonto the focus
stack in thesituationrepresented bgituation-id® defocuspops theobject-id off the

stack as well as angbject-idsabove it.

As an example, consider the beginning PS state shown ind-g@1 Note that,
as PS objects tend to become complex quite quickly, we widrobmit attributes that
are not relevant to the current discussion. We will alsorae$, when it is not vital
to the discussion, give a description of the contents of aiibate value instead of the
formal representation. When this is the case, we will endbsealescription in single
guotes. Here we have done this fotdDNSTRAINTSandPs-OBJECTS Note that within

CONSTRAINTS we usefi] to signify structure sharing.

This initial PS state has the actual-situationto uniquely identify it as the root of
the PS state. It also contains the agent’s current beliefOmSTRAINTSand knowl-

edge about PS objects "i&-OBJECTS

8Note that we explicitly include aituation-idhere even though the current CPS model only contains
theactual-situation As mentioned above, we hope in future work to extend the irtod®low multiple

situations for possible-world reasoning.



57

ID actual-situation

ID world-state

CONSTRAINTS |IDENTIFIED {’general beliefs}

ADOPTED

constraints-slot+ -

PS-OBJECTS '’known PS objects}
PSHISTORY  (
FOCUS (actual-situatior>
_ID top-objectives |

ID cslotl

CONSTRAINTS |IDENTIFIED {}

ADOPTED {}

OBJECTIVES constraints-slot
IDENTIFIED {}

ADOPTED {}
SELECTED {}
RELEASED {}

situationL objectives-slo¥ =]

Figure 3.21: A Simple Initial PS State

As no problem solving has yet taken plaeg;HISTORY is an empty set, aneocus
is simply on theactual-situationitself. There are also nobjectivesassociated with the
actual situation — meaning the agent currently has no algscand has considered no

objectives to pursue.

At this point, our agent decides it needs to set some obgcfwr itself, and there-
fore decides to focus on thabjectives-slot top-objectivds/ executing the following

PS act:



58

focus(actual-situation,top-objectives)

This has two effects. The first is to put the executed PS act thet (previously

empty)PS-HISTORY list. The second is to pugbp-objective®nto the focus stack.

Identify

PS acts in thadentify family are used to introduce PS objects into the realm of a
problem-solving context. This could either be in identikyipreviously unknown ob-
jects (i.e., objects not listed iRs-OBJECTSwithin the situatior), or it could be in

identifying a known object as a possible option for fillingextain slot.

All objects must be identified before they can be used furthéhe PS process.
For this reason, PS acts in tidentify family exist for all PS object8. They are as
follows: identify-objective identify-recipe identify-constraint identify-resource and

identify-evaluation

The basic syntax of identify acts is

identify{type} (slot-id,ps-object)

wheretyperefers to any of the PS objects in the acts listed above p§kabjecparam-

eter is the PS object instance which is being introduced laaslot-id parameter gives
theid of the problem-solving context for which it is being idergdi Note thatdentify

acts take an actugis-objectas an argument, whereas the remaining PS acts take only

anobject-id(pointer to an object). The reasons for this will be discddssow.

The effect of andentify is that theps-objectis inserted into thees-OBJECTSSet
in the actual-situation(if not already there). It is also wrapped in an appropridier
type and inserted into th®@ENTIFIED set of theslot identified byslot-id. If slot-id is

empty, theps-objects only inserted into thes-OBJECTSset in theactual-situation

9Exceptsituationfor reasons described above.



59

Let us assume that at this point, our agent decides it wartsrisider an objective

of listening to a song and executes

identify-objective(top-objectives),)

where 2] abbreviates the followingbjective!®

listen-song

-

ID objvl

ID

SONG IDENTIFIED

S

sslot(song

ID

RECIPE |IDENTIFIED

sslot(recipe}-

ADOPTED

ADOPTED

sslotl

{}

sslot2

{}

This adds thidisten-songnstance to thes-oBJECTSattribute ofactual-situation

and add it as well to thedENTIFIED set of theobjectives-slot

These changes, along with those from the focus section aversim Figure 3.22.

Otheridentifyacts have similar effects.

Adopt/Abandon

We treat the PS act familiegloptandabandortogether here, as one essentially undoes

the other. The syntax of the two is as follows:

adopt{type} (slot-id,filler-id)

abandon{type}(slot-id,filler-id)

0again here, we have omitted certain features ofdbgctivewhich are not relevant to the current

discussion.



situation

CONSTRAINTS

actual-situation

ID

IDENTIFIED {’general beliefs}

world-state

ADOPTED
constraints-slot -
PS-OBJECTS {’known PS Objectsﬂ}
focus(actual-situation,top-objectives)
PS-HISTORY
identify-objective(actual-situation)
FOCUS (top-objectives actual-situatit)-\
ID top-objectives
ID cslotl
CONSTRAINTS | IDENTIFIED {}
ADOPTED {}
constraints-slot
(r _
ID objvl
ID sslotl]
SONG IDENTIFIED {}
OBJECTIVES
IDENTIFIED VAL ADOPTED
sslot(songh .
ID sslot2
RECIPE [IDENTIFIED {}
- | ADOPTED
fller(objectile)l listen-song- sslot(recipe}- A

objectives-slo

L

ADOPTED

SELECTED

RELEASED

{}
{}
{}

Figure 3.22: The PS State after Executidgntify-objective(actual-situatiom)

60




61

As with identify, these two families have types corresponding to most aftstra
PS objects:adopt-objective adopt-recipe adopt-resource adopt-constraint adopt-
evaluation abandon-objectiveabandon-recipeabandon-resourc@bandon-constraint

andabandon-evaluation

An adopthas the effect of adding tHéler referred to byfiller-id to the ADOPTED
attribute of theslot referred to byslot-id (either by assigning the value, in the case of a
single-slotor adding the value to the set ohaultiple-slot Note that this requires that
the PS object referred to Bler-id actually be identified and in th@ENTIFIED set in

that context.

An abandorbasically has the opposite effect. It deletes the objeat tfeeADOPTED
attribute. Thusbandorrequires that the object actually be adopted when the agt is e

ecuted.

When a PS object is adopted with respect to a slot, it meangtd & committed
to that object in that context. For example, faraipe this means the agent is commit-
ted to using thatecipefor the associatedbjective The other PS objects are similarly

treated.

Adopting objectives and Intention Although we do not commit here to any spe-
cific theory of commitment or intention (e.g., [Cohen and lsyue1990a; Grosz and

Kraus1996]), we need to comment here at least on the meahadpptedobjectives

At the top level (i.e., in thactual-situatior), adoptedbjectivesare thos@bjectives
which the agent has an intention to achiévét also follows that if arecipeis adopted
for one of thes®bjectivesand if thatrecipeitself has adopted subbjectivesthen the

agent also intends to achieve those objectives, and so itk is not novel.

However, in our model, nothing precludes the agent from adgpecipesfor ob-

jectiveswhich it has not adopted at the top level (e.g., those thab@alyeIDENTIFIED.

LAgain, for this thesis, we try to remain neutral as to exaafthat an intention is.



62

In this case, the agent is committedusingan adopted subbjectivein thatrecipe
but not to actually achieving the subbjective Of course, if the agent later decides
to adoptthe top-levelobjective it then automatically intends not only to achieve the

top-levelobjective but also all adopted subbjectives

This allows us to model what [Carberry, Kazi, and Lambert]138@n contingent
commitmentswhere an agent may do planning as part of deciding whethaoto

actually decide to achieve the goal itself.

Select/Defer

The act familieselectanddeferare only used foobjectives Their syntax is as follows:

select-objective(slot-id,filler-id)

defer-objective(slot-id,filler-id)

Executing aselect-objectivadds arobjectiveto theseLECTEDSet in the given slot

context.Defer-objectivecan then be used to delete an object from3BeECTEDSet.

Although an agent may have any number of adopmibpkctives there is only a
small subset that is actually being executed at any givemtp®dhese are thebjectives
in the SELECTEDsSet. Anobjectivedoes not need to be an atomic action to be selected.
Higher-levelobjectivesan be marked as selected if the agent believes that it israilyr

executing some action as part of executing the higher-tajeictive

Release

The final PS act we discuss hererédease As with selectand defer, this is only

applicable taobjectives The syntax is as follows:

release-objective(slot-id,filler-id)



63

This act has the effect of moving ajectivefiller from the ADOPTED set to the
RELEASEDsSet. Note that thebjectivemust first be in theDOPTED set for this act to

be executed.

A rational agent should notice when abjectivehas been successfully achieved
and then stop intending to achieve it (cf. [Cohen and Levek@@@a]). TheRELEASED
set contains thosebjectivesvhich the agent believes have successfully been achieved.
Note that this is different thaabjectiveswhich are simply in theDENTIFIED list, as
these were never successfully achieved, at least whilegiwet dtad them adopted. An-
other thing to note is that, in principle, it does not mattehé objective was achieved
through the agent’s own actions, or by some exogenous elvertuitous achievement

is achievement nonetheless.

Releasing not only applies to top-lewdjectivesut toobjectivesn recipesas well.
As an agent executesecipefor example, it marks off completed actions by releasing

them.

3.4 Collaborative Problem Solving

In the last section we described a problem-solving modehfesingle agent. In this
section, we extend that model to tbellaborativecase, where two agents do problem

solving together.

As mentioned above, we have modeled single-agent probleingat a finer gran-
ularity of acts than is typically done. This was to suppo# tranularity at which
collaboration occurs between agents (i.e., the contentstefances). These acts are
often more overt in collaborative problem solving sincerdagenust communicate and
coordinate their reasoning and commitments in maintaiaiogllaborative problem-
solving (CPS) statbetween them. At the collaborative level, we have CPS actstwhi

operate on PS objects.



64

We first discuss CPS acts and then the CPS state itself. We teeamgexample of
collaborative problem solving and finish with a discussibpassible compatibilities

between our model and the SharedPlans model.

3.4.1 CPSActs

At the CPS level are CPS acts which apply to the PS objects,|@arglthe single-
agent PS model. In order to distinguish acts at the two levedsappend &- before
CPS acts, creating-adopt-resourcec-select-objectivec-identify-constraint and so
forth. CPS acts have the similar syntax and effects as thake &S level and we will
not redefine them heré.Later we do discuss slight changes to $iteationobject and

the semantics of thielentify act.

As we move to the collaborative level, however, we encouateimportant differ-
ence. Whereas at the PS level, an agent could change its owateSas the collabo-
rative level, an agent cannot single-handedly make chaogég CPS state. Doing so
requires the cooperation and coordination of both agetis. Means that no agent can
directly execute a CPS act. Instead, CPS acts are generathd mdividualinterac-
tion acts(IntActs) of each agent. An IntAct is a single-agent actidrick takes a CPS

act as an argument. These are used by the agents to negbtatges to the CPS state.

The IntActs arebegin continug completeandreject'® These are defined by their
effects and are similar in spirit to the actions in the modejrounding proposed in

[Traum1994].

125everal formal models of intention [Levesque, Cohen, andesi990; Grosz and Kraus1996] have
explored intentional differences between single-agesmipbnd group plans. This is beyond the scope

of this thesis.
BIn earlier papers [Allen, Blaylock, and Ferguson2002; Riak, Allen, and Ferguson2003], we

usedinitiate instead obegin However, we had to change this because of a naming clasipuaitiof the

dialogue model in Chapter 4.



65

An agent beginning a new CPS act proposal perfortresggn For successful gener-
ation of the CPS act, the proposal is possibly passed bacloaihdoetween the agents,
being revised witltontinuesuntil both agents finally agree on it, which is signified by
an agennotadding any new information to the proposal but simply adoggt with a

complete This generates the proposed CPS act resulting in a chanige @RS state.

At any point in this exchange, either agent can perforreject which causes the
proposed CPS act — and thus the proposed change to the CPS statéai— This
ability of either agent to negotiate and/or reject propesatbws our model to represent
not just the master-slave collaboration paradigm, but thelevrange of collaboration
paradigms (including mixed-initiative}.

Sidner’s negotiation language [Sidner1994; Sidner19@4] $imilar goals to our
interaction acts. However, as pointed out in [Larsson2008 language conflates
proposal acceptance (similar to our interaction level) emchmunicative grounding,
i.e., coordination of the reliability of a communicativeysal (which the CPS model
assumes to be handled by lower-level communicative behawdch is outside the
model). In addition, several actions in Sidner’s languageli asProposeActwhich
proposes that the other agent perform an action) includectspf acts that we model
as CPS acts.

3.4.2 CPS State

In the single-agent case, we modeled the PS state as pae af#nt’'s mental state.
This is not possible in the collaborative case. Instead, wdehthe CPS state as an
emergent property of the mental states of the collaboragents. In this way, the

CPS state can be seen as part of the agent®mon groundClark1996]. Thus each

Y¥again it is important to note that our purpose is not to spepifoblem-solving behavior for a
particular agent, but rather to provide a model which alloolfaboration between agents with (possibly)
very different behavior. In the master-slave paradigmstaee agent will simply not use threjectact.

The fact that rejections do not occur in that interactionngnportant to the CPS model.



66

c-situation < ps-object

PENDING-PS-OBJECTS set(ps-object)
PS-OBJECTS set(ps-object)
PS-HISTORY list(interaction-act
FOCUS stack(object)
OBJECTIVES objectives-slot

Figure 3.23: Type Description farsituation

agent has a mental model of what they believe the CPS state td/ite this model,

it is possible that agents’ CPS states get “out of sync” bexafisnisunderstanding
or miscommunication. We leave the issue of how such probemsesolved to fu-
ture research, although the reader is referred to [Clarklf@®@& good discussion of
possible solutions based on human communication. In teudsion, we assume that
communicative signals are always received and properlgrstolod — a restriction we

remove in the next chapter.

In the CPS model, we are able to reuse all of the PS objects nsathe except
one. In order to accommodate a collaborative version of tBestate, we introduce
a collaborative situatior-situationto replacesituation The definition is shown in

Figure 3.23.

This differs fromsituationin two ways. First, we have changed the typerst
HISTORY to be a list ofinteraction-actsinstead ofps-acts as this is the new atomic
level of communication. Now, each time an IntAct is executiéds automatically

added to the@S-HISTORY list.

Second, we have introduced a new featBEANDING-PS-OBJECTS This is used
to storeps-objectswhich are objects under negotiation viecadentify act. This is

necessary singas-objectsare not officially added to thes-oBJECTSattribute of thec-



67

SITUATION until the c-identifyact has been successfully generated. TH&SBJIECTS

under negotiation can be accessed and changed without aféiriglly identified.

All newly mentionedps-objectsare added to theENDING-PS-OBJECTSSet when
an IntAct introduces them. WhencantinuelntAct makes a change to a pendipg-

object it is changed in this set.

Finally, we slightly change the semantics of twentifyacts. When a&-identify
act is successfully generated, we move all of the pswobjectsrom thePENDING-PS

OBJECTSSet to thers-OBJECTSset (before we added themps-oBJECTSdirectly).

With these slight changes, we can now represent the codiibeproblem-solving

state.

3.4.3 An Example

We show here one short example of the CPS model in an agentreyehé/e then show
more examples in the next chapter, where we tie the modettwaléanguage dialogue.

Examples are much easier to follow when shown in naturaldagg dialogue.

As displayed feature structures tend to become large fquilgkly, we will use a
set of abbreviations for type and feature names for this @l@as well as in examples

in Chapter 4. The abbreviations are shown in Table 3.1.

In this example, we will stay in the MP3 player domain mengéidabove. Here two

agents (A and B) are collaborating on use of an MP3 player.

At the beginning of the exchange, Agent A decides it wantsdien to a song

(although it does not yet know which). It executes the follapinteraction acts®

begin (c-identify-objective{ TATE | OBJVS| ID, [2]))

begin(c-adopt-objectivefTATE | 0BJVS| ID, [2] | ID))

5Note, for reasons of clarity, we ignore issues of focus iis #ample. We revisit focus in the

collaborative setting in the next chapter.



68

types features
full abbr. | full abbr.
c-situation csit | action-constraints  acons
constraint con | actions acts
constraints-slot  cslot actual-object aobj
evaluation eval | adopted aptd
evaluations-slot eslot constraints cons
filler fill evaluations evals
object obj | expression exp
ps-object psobj identified ided
single-slot Ss objectives objvs
objective objv | pending-ps-objects pend
objectives-slot  oslot| ps-history pshist
recipe rec | ps-objects psobjs
resource res | recipe rec
situation sit released reld
selected seld
value val

Table 3.1: Abbreviations for Type and Feature Names

Note that here, instead of using the idsp-objectivesandobjvl) for the context
parameters of the acts, we use absolute patlsTE|oBJvs|ID and 2 |ID). We
introduce a constardTATE, which always identifies the root of the CPS state. Here,
abbreviates an emptisten-songobjective, shown in Figure 3.24. We also subindex
the IntActs here to allow us to easily match them up with l&tekcts operating on the

same CPS acts (see below).

The CPS state resulting from the two IntActs is shown in Figu&5. In order to
show feature structures more compactly, we will often oimitse features which are
empty or unimportant for discussion purposes. An abbredigérsion of the CPS State

from Figure 3.25 is shown in Figure 3.26.

There are several things to note here. First, we use a patfetao theapTD feature
within cons. In the full version, this set is actually structure-shangith CONS| IDED.

However, as we note earlier, for an object to be adopted, st imelidentified. Thus this



69

ID objvl
]D ssi
SONG |IDED {}
ss(song LAPTD -
ID Ss2
REC IDED {}
APTD
ss(rec) _

listen-song-

Figure 3.24listen-songObjectivef2]

is a common phenomenon that we omit as redundant information

Also note that we still display thesJvsfeature, even though it is empty. This is

of course because we will need it soon in our example.

Now, back to our example. Notice that only theND andPsHISTattributes are set
at this point. Although other parts of the CPS can only be chdnigrough negotiation,
a successful communication (execution of an IntAld@schange the state to represent

that that communication has occurred — without any negotigtf. [Clark1996]).

Agent B now decides to accept these proposals and execetésltwing interac-

tion acts!®

complete

complete

which complete and therefore generate the correspondinggCRBS

16\We will usually omit the act arguments and use coindexintpas.



ID actual-situation

ID world-state

CONS IDED {’general beliefs}

APTD
cslot!

PEND }

PSOBJS ¢ ’'known PS objects}

PSHIST
begin(c-adopt-objective{TATE | 0BJVS| ID,2]| ID))

FOCUS actual-situatior)

<begin(c-identify-objective(TATE| 0BJVS| ID,2))) >

ID top-objectives

ID cslotl
CONS [IDED {}

APTD {}
OBJVS cslot

IDED {}
APTD {}

SELD {}

RELD {}

csit oslot

Figure 3.25: The CPS State after A's First Turn




71

CONS|APTD {’general beliefs}
PEND {}
PSOBJS {’known PS objects}
<begin(c-identiw-objectivaTATE\ OBJVS|ID,2)) >
PSHIST
begin(c-adopt-objective{TATE | 0BJVS| ID 2]| ID))
FOCUS (STATE| ID)
IDED {}
APTD {}
OBJVS
SELD {}
RELD {}
csitL oslot- - .

Figure 3.26: The Abbreviated Version of Figure 3.25

c-identify-objective§TATE | OBJVS| ID, [2])

c-adopt-objective{TATE | OBJVS| ID, 2 | ID)

This results in the CPS state shown in Figure 3.27.

Note that here the items IPEND have been moved tesoBJsas they have now
been identified. Also note that has been wrapped infdler ((3]) and is both in the

IDED andAPTD sets ofoBJvsas a result of being both identified and adopted.

At this point, B has a suggestion for a song — “Yesterday” leyBreatles:

begin;(c-identify-resourcefl | 1D, [4]))
begin,(c-adopt-resourcegl | 1D, [4 | 1D))

The structure corresponding f@ is shown in Figure 3.28.



72

PEND {}

PSOBJS {’known PS objectszl}

<begin(c-identify-objectivezTATE| OBJVS| D ,2])) >
PSHIST

begin(c-adopt-objective{TATE | 0BJVS| ID,2]| ID))

IDED {}

IDED VAL SONG
APTD

fin L listen-son Ssl
OBJVS

APTD

SELD {}

RELD {}

oslot

csitL - . i

Figure 3.27: The CPS State after B’s First Turn

TITLE | APTD| VAL  'Yesterday

ARTIST|APTD|VAL ’'Beatles’
song

Figure 3.28:songResourcel] — “Yesterday” by the Beatles

Note that 4] already has several of its slots filletitle andartist). As a short-
cut, human communication often ussempound objecta/hich already have several
decisions premade, in this case the identification and amopf the songriTLE and
ARTIST. Also note that we have omitted the definition of a raist type here and just

gloss the artist name with a string.

At this point, Agent A decides it likes the idea and completesCPS acts:

completg

complete



73

PEND {}

PSOBJS {’known PS objectsif,],}

listen-son

OBJVS|APTD {[VAL lSONG|APTD|VAL }
Il

}_

Figure 3.29: The CPS State after A's Second Turn

csitk

producing the CPS state shown in Figure 3.29.

Note that the changes here were made withinli$ten-songobjective itself (21),
where thesongwas wrapped in &ller, and put in theDED set and was assigned as the

APTD value.

3.4.4 Possible Compatibility with SharedPlans

As we mentioned in Chapter 2, we believe that at a high levelpmdel is compatible
with the SharedPlan formalism [Grosz and Kraus1996]. Ih, face way of looking at
our model is an elaboration of SharedPlan operators. Adilopévaluation, etc. adb-
jectivesactually resides at a level higher than the SharedPlan msidek SharedPlans
assumes that a high-level goal has already been chosen.ddp#amn, evaluation, etc.
of recipes can be seen as a further elaboration of the SRETGR operator. Most
other acts, such as adopting resources, evaluating acetmsprovide the details of
the ElaborateéGroup operator. We leave it as a topic of future research ¢afsthe

approaches can indeed be unified.

3.5 Conclusions and Future Work

In this chapter, we have presented a model of collaboratwkl@m solving for agents

which (1) covers collaboration about a wide range of agehabier and (2) allows col-



74

laboration using a wide variety of collaborative paradigmsluding mixed-initiative

where agents may freely negotiate their decisions.

The model is novel in that it models agent problem solvinghat granularity of
communication and can be used for general heterogeneousagent communica-
tion/collaboration. Agents can be heterogeneous in theestitat they implement dif-
ferent behavioral cores, as long as they are able to cobébdarithin the bounds of the
model. As we show in the next chapter, the model is also geramugh to support

human-agent collaboration.

The model is also able to represent a number of problem gppirenomena at
the granularity of the decision-makirmgocessand not just the decisions made. We
model the identifications of possible alternatives for a&giwle, as well as the possible
constraining of values to consider for the role. We also rhtdgecontextual evaluation
of values for a given role. In addition, since we model thentdieation of objects
without attaching commitment to them, we model contingdahping, where agents

may plan before actually intending to execute the plan.

Important future work includes formalization of the modehdevel of single-agent
beliefs, intentions and desires, possibly within the Stialens model. We would also
like to expand the CPS process to include the steparh formatiorfWooldridge and
Jennings1999], when agents decide to collaborate in thepfase. This would allow

the model to cover such things as requests for help.

Another item that seems to be lacking in the model is a reptasen of which
agent (or group of agents) is assigned to plan/execute wibjelttives. Right now, such
decisions for execution could be modeled with/aToR attribute on each objective,

although it may make sense to treat it somehow specially.

Finally, another interesting direction is exploring theeusf the single-agent PS

model in (keyhole) agent modeling.



75

4 Modeling Dialogue as

Collaborative Problem Solving

In this chaptet, we present a dialogue model based on the collaborative grebl
solving model presented in the last chapter. The model, @septed in Chapter 3,
can be used as a language for communication between altig=ats, with interaction
acts serving as “utterances”. There are several thinganibat be done, however, to

make the CPS model usable for modellngnancommunication.

First, we must provide a link from interaction acts to naklmaguage utterances.
Second, the CPS model makes the assumption that interact®ara always success-
fully received and understood by the other agent. This, ofs® is not the case for
human dialogué,where mishearing and misunderstanding is more of a rule dnan
exception. In this chapter, we provide these necessary fmattirn the CPS model into

a dialogue model.

The rest of this chapter is as follows: in Section 4.1, we de#l the first problem
by forming a link between the CPS model and natural languaigeamices through a
definition ofcommunicative intentiongn Section 4.2, we deal with the second problem
by tying the model together with a theorygrbunding In order to show the coverage of

the model, we show several examples of the model appliedatoglies in Section 4.3.

1Some contents of this chapter were reported in [Blaylock/lieh2005a].
2|t also really is not realistically the case for artificialeay communication either.



76

In Section 4.4 we conclude and mention future work.

4.1 Collaborative Problem Solving and Communicative

Intentions

Communicative intentiondescribe what a speaker wants a hearemierstandrom
an utterance [Grice1969]. In this sense, communicatieniiins can be very different
from a speaker’s actual intentions, or what a speaker wardasdomplishby making
an utterance. This can include things such as manipulatidrdaception, which are

not intended to be perceived by the hearer.

When a speaker has decided on his communicative intentiemapist then encode
them in language (e.g., words and sounds) with which theyransfered to the hearer,
who then must decode them and (hopefully) recover the aigiommunicative inten-
tions associated with the utterance. No matter what théwshmtentions are, speakers
will alway try to encode their communicative intentions imch a way that they are
easily decodable by hearers. This is why communication syaken when one party

wants to deceive the other.

In our agent-based dialogue mode, we represent commuwm@gatentions with in-
teraction acts. In other words, each utterance is associated with a set Attsit In
this way, we are basically modeling dialogue as negotialmout changes to a collabo-
rative problem-solving state. Each utterance is a moveigrtigotiation, as described

with IntActs in the last chapter.

As an example, consider the following utterance with itsegponding interpreta-

tion (in a typical context)

3This definition will be expanded in the next section.



77

1 A:Let’slisten to a song.
begin (c-identify-objectiveTATE | 0BJVS| ID, [ [blank listen-song]))
begin(c-adopt-objectivefTATE | 0BJVS| ID, [ | ID))
beginy(c-focus6TATE| ID, [ | ID))

where 1] abbreviates an emptigten-songbjective like the one shown in Figure 3.24.

By assigning these IntActs, we claim that, in the right copteterance (1) has

three communicative intentions (corresponding to theethméActs):

1. To propose that listening to a song be considered as ayo&sd-level objective.
2. To propose that this objective be adopted as a top-leyettine.

3. To propose that problem-solving activity be focused anligten-song objective

(e.g., in order to specify a song, to find a recipe to accormpijs. .).

That these are present can be demonstrated by showing lpoesponses to (1)
which reject some or all of the proposed CPS acts. Consideroffeving possible

responses to (1), tagged with corresponding communicatigations:

2.1 B:OK.
complete
complete
completg

This is a prototypical response, which completes all thote. a

2.2 B:No.
complete
reject,
reject
This utterance rejects the last two CPS actadopt-objectiveandc-focug, but actu-
ally completes the first CPS aat-{dentify-objective This means that B is actually

accepting the fact that this ispssibleobjective, even though B rejeatesmmittingto



78

it. The next possible response shows this contrast:

2.3 B:ldon'listen to songs with clients.
reject
reject,
reject
Here all three CPS acts are rejected. Thdentify-objectivas rejected by claiming
that the proposed class of objectives is situationally issgae, or inappropriate. Note

that it is usually quite hard to reject acts from thaentifyfamily.*

2.4 B: OK, but let’s talk about where to eat first.
complete
complete
reject
This example helps show the existence of idhentify(c-focusact. Here B completes
the first two CPS acts, accepting the objective as a posgiaiid also committing itself
to it. However, here the focus move is rejected, and a diftfoeus is proposed (IntAct

not shown).

This method of finding responses to reject certain CPS acteprim be a useful
way of helping annotate utterances with their communieaitiventions, and we have

used it in annotating the examples shown in this chapter.

4.2 Grounding

The account of communicative intentions given in the lastisa is not quite correct.

It makes the simplifying assumption that utterances areydveorrectly heard by the

4In our current CPS model, whencaidentifyis rejected, the corresponding object then only exists
in the PS-HISTORY attribute of theactual-situation It is likely that it would be beneficial to record this
somewhere within the corresponding slot as well (e.g., tekeraure the same suggestion isn’'t made

twice). We leave this question to future research.



79

hearer and that he also correctly interprets them (i.epeytp recovers the commu-
nicative intentions). In human communication, misheaandg misunderstanding can
be the rule, rather than the exception. Because of this, Ipethker and hearer need to
collaborativelydetermine the meaning of an utterance (i.e., the commuveceten-

tions). This occurs through a process caligdunding[Clark1996].

In this section, we expand our definition of communicativiemions to handle
grounding. To do this, we merge our CPS model with a theory teramce meaning
based on Clark’s work calle@onversation Acts TheoryVe first introduce Conversa-

tion Acts Theory and then use it to expand our definition of camicative intentions.

4.2.1 Conversation Acts Theory

Traum and Hinkelman [1992] proposed Conversation Acts asxeamgion to speech
act theory. Similar to our provisional model of communieatacts, theories based
on speech acts typically made the assumption that utteseareealways heard and
understood. To overcome this, Traum and Hinkelman defined/€sation Acts on

several levels, which describe different levels of the camirative process. Table 4.1
shows the different levels and acts, which we briefly deschibre and then show an

example using Conversation Acts.

Core Speech Acts

A major contribution of Conversation Acts is that it takegditemnal speech acts and
changes them into Core Speech Acts, which are multiagerdresctequiring efforts
from the speaker and hearer to succeed. To do this, they defliseourse Unit(DU)

to be the utterances which contribute to the grounding of & Speech Act. These are

similar to Clark’scontributions[Clark1996].



80

Discourse Level Act Type Sample Acts

Sub UU Turn-taking take-turn keep-turn

release-turn assign-turn

uu Grounding Initiate Continue Ack
Repair RegRepair RegAck

Cancel

DU Core Speech Acts  Inform WHQ YNQ Accept
Request Reject Suggest
Eval RegPerm Offer

Promise

Multiple DUs Argumentation Elaborate Summarize
Clarify Q&A

Convince Find-Plan

Table 4.1: Conversation Act Types [Traum and Hinkelman1992]

Argumentation Acts

Conversation Acts also provides a place for higher-léwglumentation Actsvhich
span multiple DUs. As far as we are aware, this level was needrdefined. Traum
and Hinkelman give examples of possible Argumentation Aaotduding such things
as rhetorical relations (e.g., [Mann and Thompson1987]@ad construction plans
(e.g., [Litman and Allen1990]).

Grounding Acts

The most important part of Conversation Acts for our purpbses arésrounding Acts
(GAs). These are single-agent actions attheerance Unit(UU) level, used for the

grounding process. The GAs are as follows:



81

Initiate The initial part of a DU.

Continue Used when the initiating agent has a turn of several utt@sn&n utterance

which further expands the meaning of the DU.

Acknowledge Signals understanding of the DU (although not necessagitgement

which is at the Core Speech Act level).
Repair Changes some part of the DU.
RegRepair A request that the other agent repair the DU.
ReqgAck An explicit request for an acknowledgment by the other agent

Cancel Declares the DU as 'dead’ and ungrounded.

These form part of Traum’s computational theory of grougdifraum1994], which

uses finite state automata to track the state of groundingsin a dialogue.

Turn-taking Acts

At the lowest level ar@urn-taking Acts These are concerned with the coordination of
speaking turns in a dialogue. A UU can possibly be composegwdral Turn-taking
Acts (for example, to take the turn at the start, hold the winile speaking, and then

release it when finished).

Example

As an example, Traum and Hinkelman annotate part of a dialbgm the TRAINS-91
corpus [Gross, Allen, and Traum1992] to illustrate ConviargaActs. In Figures 4.1
and 4.2, we show a section of their example of GA and Core Sp&eicinnotations.

SThe original used S for the system and M for ‘'manager’. We fenanged this to the more typical

U for 'user’.



82

GApyyx UU#  : Utterance
inity 1.1 U: okay, the problem is we better ship a boxcar of oranges to Bath .8 A
ack 2.1 S:okay.
inity 3.1 U:now...umm ... so we need to get a boxcar to Corning, where
: there are oranges.
inits 3.2 : there are oranges at Corning
regack 3.3 > right?
acks inity 4.1  S:right.
ack, inits 5.1 M: so we need an engine to move the boxcar
reqack 5.2  U:right?
ack; initg 6.1 S:right.

Figure 4.1: Example of Conversation Acts: Grounding Actsafim and Hinkel-
manl1992]

DU# Core Speech Act types Included UUs
1 inform" suggest(goaly accept 1.11.2
2 inform™ suggesYt 3.1
3 check’ ?suggest 3.23.34.1
4 inform-if® ?accept 415.1
5 check! 515.26.1

Figure 4.2: Example of Conversation Acts: Core Speech Actauifr and Hinkel-
manl1992]

Figure 4.1 shows the GAs associated with each UU (subsdnpté the number of
the DU they contribute to). Figure 4.2 shows the Core Speets performed in each
DU (superscripted with the initiating party).

Discussion

One main contribution of Conversation Acts Theory is that ddels dialogue with
utterances making simultaneous contributions at seveffereht levels. While we
believe that dialogue should be modeled as several levelsseg several difficulties

with the theory as it now stands.

First, the theory only specifies atyfpesat the various levels, but not their content.

This is true even at the interface between levels. For exan@pAs are modeled as



83

negotiation about the meaning of a DU, but it is unclear dyadbich part the meaning

of DU 1 (if theinit; in the example is initializingigform, suggestaccepy).

Also, although this model improves on speech act theory bgetiag speech acts
as multiagent actions, it still suffers from some of the diffty of speech acts. In par-
ticular, Conversation Acts Theory does not attempt to defifobosed) set of allowable
Core Speech Acts. It is in fact unclear if such a closed set afale-independent
speech acts exist (cf. [Clark1996; Di Eugenio et al.1997#) .prdactice, this fact has
lead to many different proposed taxonomies of speech coglie acts, many of which
are domain dependent (e.g., [Allen and Corel1997; Alexasdaret al.1998] — also

cf. [Traum2000]).

Finally, as mentioned above, the Argumentation Acts leas wever well defined.
In [Traum and Hinkelman1992], Argumentation Acts are diésdt vaguely at a level
higher than Core Speech Acts which can be anything from ricedoelations to oper-

ations to change a joint plan.

4.2.2 Defining the Dialogue Model

In constructing our agent-based dialogue model, we firg @Génversation Acts as a
base. In particular, we model communicative intentionseaérl simultaneous levels,
which more or less correspond to those used in Conversatits1 Ataddition to this,

we expand and concretize several of the levels using thalmihtive problem-solving
model discussed in the previous chapter and above. Thigsalle to overcome several

of the difficulties of Conversation Acts mentioned above.

The levels we model are: Turn-taking Acts, Grounding Aatgetaction Act, and
CPS Acts. We discuss each in turn and then reinterpret théopieexample with our

model.



84

Turn-taking Acts

At the sub-utterance level, we use the turn-taking model @sim Conversation Acts.

We will not refer to it further in our examples, as it is not fleeus of this thesis.

Grounding Acts

At the utterance unit level (UU), we use the Grounding Agtesas they are defined
in Conversation Acts. We extend this and defamatentsfor these acts, namely an

Interaction Act®

Interaction Acts

At the discourse unit level (DU), we depart from Conversa#aits. Instead of using
Core Speech Acts, we use IntActs, as described in SectionUhlike Core Speech

Acts, these are not just labels, but also contain contestatiated CPS acts).

CPS Acts

Finally, we propose the use of CPS acts at the level of Arguatiemt Acts. These are
a natural fit, as a number of IntActs need to be executed bgréift agents in order to
generate a CPS act, which then makes changes to the CPS siatgivéh us a natural

segmentation of discourse units.

TRAINS Example Revisited

To show concretely, how these (last three) levels fit togetive revisit Traum and

Hinkelman’s example from above, interpreting it in the agemsed model. Figure 4.3

6A Grounding Act could also theoretically take another Giding Act as an argument, as in meta-
repairs and so forth [Traum1994]. For simplicity, we haveided to avoid these cases at this stage. We

plan to add support for meta-grounding in the future.



85

1.1 U: okay, the problem is we better ship a boxcar of orang®&sath by 8 AM.
init; (begin (c-identify-objective TATE| OBJVS| ID, [1])))
inito(begin:(c-adopt-objectivefTATE | 0BJVS| ID, [ | ID)))
inits(begin(c-focus6TATE| ID, [1] | ID)))

2.1 S:okay.
ack
acky
acks
inity(completg)
inits(complete)
initg(completg)

3.1 U:now...umm ... so we need to get a boxcar to Corning, wihere are oranges.
acky
acks
ack;
init7(beginy(c-identify-recipe(d | REC| ID, [21)))
initg(begin;(c-adopt-recipe(d | REC| ID, [2] | ID)))
initg(begin;(c-focus6TATE| ID, [2] | ID)))

3.2 U: there are oranges at Corning
inityo(beginy(c-identify-constraint§ TATE | CONS| 1D, [3])))
init1; (beginy(c-adopt-constrain§TATE| CONS| 1D, [3] | ID)))

3.3 U:right?
reqackg
regack |

4.1 S:right.
ack
a.Ck11
init;o(complete)
init 3(completg)

Figure 4.3: The TRAINS Example Interpreted with the AgergdzaModel

shows the dialogue marked up with instantiated grounding. &é/e first discuss the

dialogue at the grounding level, and then at the problemisplevel.

Grounding Our analysis at the grounding level is basically unchangesh fthat of
Traum and Hinkelman as shown in Figure 4.1. We therefore bnbfly describe it.

The main difference between the two accounts is that we mteog GA with each



86

individual IntAct, and therefore have more instances iresahcases.

In UU 1.1, the user initiates three IntActs, which the systaknowledges in UU
2.1. Note that, only at this point are the effects of the IngXas described in Chapter 3)
valid. This means that, only after UU 2.1 are, for exampl&Adts 1, 2 and 3 placed in
the PS-HISTORY list of the CPS state.

UU 2.1 also initiates the correspondingmpletelntActs to those initiated in UU

1.1; these are acknowledged in UU 3.1.

UU 3.1 also inits three IntActs (7, 8, and 9), which are neveugded’, and thus do

not result in any successfully executed IntActs, and thushamges to the CPS state.

In UU 3.2, the user inits new IntActs for which he explicitigquests an acknowl-
edgment in UU 3.3. Finally, UU 4.1 inits two completes, whate acknowledged by
the subsequent utterance by the user (not shown). Noteatieit), these completes are
not valid until grounded. Thus the CPS state after UU 4.1 willect the state as if

those completes did not yet occur.

Problem Solving At the problem-solving level, the user proposes the adopnd

identification) of an objective of shipping oranges in UU.1(Again, these do not
become active until grounded in UU 2.1). He also proposegtizdlem-solving focus
be placed on that objective (i.e., in order to work on accashpig it). The proposed

objective is shown in Figure 4.4, and deserves some ex|enat

The type of the objective iship-by-train which we have just invented for this
examplée® It introduces two new attributes to tiebjectiveclass: an item to be shipped
and a destination. As the abbreviated form of the objectisvs, there are three main
components to the objective as it has been introduced bydde @irst of all, it has

a pre-adopted destination — Bath (modeled as a location withne). Second, the

Although see discussion in [Traum and Hinkelman1992].
8In all examples, we invent simple-minded domain-specifiecitypes as we need them.



87

CONS|APTD {{VAL | EXPR ’'completion before 8 a.n}.}
fll

ITEM | CONS| APTD {[VAL | EXPR ‘type: oranges}}
fll

DEST| APTD {VAL | NAME ’Bath’}

ship-by-train- fill -

Figure 4.4: Contents aibjective]

item to be shipped has not yet been determined, but a camdies been put on possible

values for that slot — they must be of typeanges

Recall from the previous chapter that this was one of the mttis for introducing
slots in the model. Notice here that the constraint is noiopua particular instance of
oranges, rather it is put on trengle-slotitself. Constraints on a slot are adopted to

restrict the values considered (e.g., identified) as ptesSiters.

Finally, a constraint has also been placed on the objedtedf i— that it be com-
pleted by 8 a.m. Note the difference here between placinghati@nt on gos-object
versus placing it on alot, as just discussed. As mentioned in the previous chapter,
objectives and resources are usually extended by the addifiadditional resources
(as we did here with the item and destination). However, @$® possible to further
define an objective or resource by placing a constraint drhis seems to work well in
cases like this from natural language, where, for exampledaerb is used. Of course,
it would also possible to add an extra attribute to the typeconpletion time. This

decision must be made by the domain designer.

UU 2.1 completes the CPS acts, and after 3.1, when the corm@etegrounded,
the CPS acts are generated, resulting in the correspondamgeh to the CPS state.

In UU 3.1, the user proposes the adoption of a (partial) e2égp shipping the
oranges, as well as that focus be placed on it. These IntAetsever grounded, and
thus never result in a change in the CPS state. However, asttbiance gives a good

example of the introduction of a recipe, however, we willl siscuss it. The recipe



88

ITEM | CONS| APTD { VAL | EXPR 'type: boxcar]}
fll

ACTS|APTD VAL
DEST|APTD| VAL | NAME ’Corning’

f{l mov
recL .

Figure 4.5: Contents okcipe[2]

EXPR at(
loc

con

NAME ’Corning;MAo BJ oranges3ﬂ

oran

Figure 4.6: Contents afonstraints]

that the user attempts to introduce is shown in Figure 4.5.

This recipe consists of a single adopted objective — that ofing a boxcar to
Corning. Similar to theship-by-trainobjective above, this also has an adopted value
(the destination is Corning), and a constraint on the slohefdther (that the only
resources to be considered for the move should be ofliggear). At this point, the

recipe has Nn@CTION-CONSTRAINTS

However, this recipe never makes it into the CPS state (eveoragthing men-
tioned). Instead, the user decides he wants to adopt (cqrthenoint belief that there
are oranges at Corning, as reflected in UU 3.2. Note that nsfoleange is proposed
by UU 3.2. We model this in this way, as it appears that the digenot intend for fur-
ther work (beyond adoption) to be done on this constraimbndinding out the state of
the world. Instead, it was intended as a quick check, butdegs intended to remain

on theship-by-trainobjective.

As discussed in the previous chapter, we model beliefs ghewvorld state as con-
straints on the situation. The mentioned constraint is shiaWrigure 4.6. In this thesis,
we do not present a theory of constraint representatios,wiethave been glossing con-
straints until now. The only specification we have made i tiEXPRESSIONbe of
type boolean In the case of this constraint, however, a simple glosst€nough, as

this constraint actually introduces a new embeddstdurce— the instance of the or-



89

anges that are at Corning. For this reason, we show this eamséis a domain-specific
predicate &t) that takes a location and an item. It is obvious that worldsee be done
on the general specification of constraints, but the reptaten here is sufficient for

our purposes.

It is important to point out that when theeginc-identify-constrains grounded in
UU 4.1, the oranges instance from the constraint is alscedlatthers-OBJECTSset

within the CPS state, making it available for use in furtheijem solving.

Discussion

Our CPS dialogue model overcomes several of the difficultiéis @onversation Acts
we mentioned above. First, it defines act types as well asdhéentof those acts.
Second, it defines a closed set of domain-independent adiscaurse unit level (i.e.,
IntActs with CPS acts as arguments). Although the acts areageimdependent, they
can be used with domain-specific content through PS objeeritance and instantia-
tion). Finally, the model introduces CPS acts at the levelmguinentation Acts, which

define intentions for larger chunks of discourse.

As promised above, we are now able expand our definition ofncoenicative in-
tention — this time to a fully-instantiated grounding act lustrated in the example
above, we use these to represent the intended meaning ofeaange — both to do
work at the grounding level (e.g., acknowledging previoo\tts) and to introduce
new IntActs to be grounded. This is similar to Clark’s prombsemmunicatioriracks
[Clark1996].

4.3 Coverage of the CPS Dialogue Model

To further illustrate the use of the CPS dialogue model, arad@sof-of-concept eval-

uation, we explore several dialogue fragments in this sectvhich demonstrate dif-



90

ferent aspects of the dialogue model’s coverage.

4.3.1 Planning and Execution

As discussed in Chapter 2, one of the things lacking in mosoglie models is the
ability to distinguish between dialogue about planning dradogue about execution.
Because of this, these systems are not able to handle dialaghieh include both
planningand execution. We first show examples of the CPS dialogue moddien t
context of planning, then in execution, and finally in a diggale which includes both

planning and execution.

Planning

To demonstrate coverage for planning dialogue, we continei@xample from Traum
and Hinkelman begun in Figure 4.3. In the interest of spadeckarity, we have skipped
part of the dialogue (Utterance Units 5.1-13.1) which ideld mostly grounding inter-
action which has been adequately addressed by Traum anelrtiak. We have also
at times combined multiple-UU turns into a single UU, whdre UUs were tagged
ascontsat the grounding level. Although modeling this is importahthe grounding
level, aninit followed bycontsare just gathered up into a single (group of) IntActs that

are proposed, so at the problem-solving level, this is natrgoortant difference.

The remainder of the dialogue is shown in Figure 4.7. With WBJ2]the user
user identifies a possible (partial) recipe for objective(shipping oranges to Bath,
from above). The recipe includes a single objective (agtadmmoving engine E1 to

Dansville? Note that the user does not propose to adopt this recipe éooltfective,

SWe will gloss PS objects with a boxed numbé&i, in this case, and some description of their con-

tents.



91

13.2 U: or, we could actually move it [Engine E1] to Dansyitie pick up
the boxcar there.
init; (begin (c-identify-recipe(d | REC| ID, [4] [move(E1,Dansville)]))
inito(begin(c-focus6TATE| ID, [4] | ID)))

14.1 S: okay.
ack o
inits_4(complete_»)

15.1 U:um and hook up the boxcar to the engine, move it fromsila to Corning,
load up some oranges into the boxcar, and then move it on to Bath
acks_y4
init; (begin (c-identify-objectivef@ | ACTs| 1D, [5] [hook(boxcarl,enginel)]))
initg(begin,(c-adopt-objective | ACTS| 1D, [5] | ID)))
init7(begin; (c-identify-constraint{@ | ACONS| 1D, [6] [before(, 21)])))
initg(begin;(c-adopt-constraint@ | ACONS| D, [6] | ID))
initg_14(beginy_14) [2 other actions and 2 other ordering constraints]

16.1 S: okay.
acks_16
inity7_og(completg_14)

17.1 U: how does THAT sound?
acki7_og
initog(begin s (c-identify-evaluatiorfILLER( [4] ) | EVALS | ID, [7] [blank evaluation])))

18.1 S:that gets us to Bath at 7 AM, and (inc) so that’s no proble
ackyg
initsp(continugs(c-identify-evaluatiorILLER([4]) | EVALS | ID, [7] [sufficient]) ))
inits; (beging(c-adopt-evaluatiorfILLER([4] ) | EVALS | ID, [7] | ID)))

19.1 U: good.
acksp_31
initsz—s3(completes 1)
init34(begin7(c-adopt-recipe(d | REC| 1D, 4] | D))
init3s(beging(c-defocus§ TATE | ID, [4] | ID)))

20.1 S: okay.
acksy_3s
initss—s7(completer—_1s)

Figure 4.7: A Planning Dialogue from [Traum and Hinkelma®2P(Continuation of
Figure 4.3)



92

yet; he only proposes considering it as a candidfatele also proposes moving the

problem-solving focus to that recipe (in order to work onaxging it).

In 14.1, the system acknowledges these grounding acts andrals IntActs to
complete them. (Note that, for compactness, we use subsgripnges to refer to
series of GAs and IntActsack; _» expands tack andack,, andinit;_s(complete_»)

expands tonits(complete) andinit,(complete).)

In 15.1, the user proposes several new actions to add toc¢heeras well as order-
ing constraints among them. In UU 17.1, the user then askbéosystem’s evaluation
of the recipe, which is provided in UU 18.1. The surface fofi®.1 is a bit mislead-
ing. With this “good”, the user is acking the system'’s lasergnce, and accepting the
evaluation. He is also, based on this evaluation, propdkeighe recipe be adopted for
the objective and proposing that the focus be taken off tbipee The system accepts

these proposals in 20%%.

Execution

We now give an example of a well-known execution dialogueictvlwve have taken

from [Grosz and Sidner1986]. This is a so-called expertamce dialogue, where an
expert (E) guides an apprentice (A) in performing a task. &tample is in Figures 4.8
and 4.9.

The context at the start of this segment is that the expepdsifying a reciperea
to the apprentice for removing a pump. In UU 1.1, she tellaftyentice to remove the

flywheel, which is modeled as not onlycadentify-objectiveand ac-adopt-objectivas

OHowever, as mentioned above, the objective within it (mgviine engine)s adopted in theac-
TIONS set of the recipe. This is an example of contingent planngndiscussed in [Carberry, Kazi, and

Lambert1992].
Iagain here we have modeled the final utterance as an initjwhin theoretically needs to be acked

by the user. We assume within the model that, if after a sn@alkp, if there is no evidence of the user

not having heard or understood, the inits (36—37) are autoalbticonsidered acked.



1.1

2.1

3.1

4.1

18.1

18.2

19.1

19.2

20.1

93

E: first you have to remove the flywheel.
init; (begin (c-identify-objectivegea | ACTS| 1D, [ [remove(flywheel)]))
inity(beginy(c-adopt-objectivegea | ACTS| D, [T | ID)))
inits(begin(c-select-objectivetes | ACTS| 1D, [d] | ID)))

A: how do | remove the flywheel?
ack_3
inity_g(complete_s)
init7(beginy(c-focus6TATE| ID, 1] | REC|ID)))
inits(begins (c-identify-recipe(d] | REC| ID, [2] [blank recipe])))
initg(begin;(c-adopt-recipe(ll | REC| 1D, [2] | ID)))

E: first, loosen the two allen head setscrews holdingthiecshaft, then pull it off.
acks_g
inityo(completg)
init; (continue (c-identify-recipe(d] | REC| ID, [2] [loosen(screwsets),pull-off(wheel)])))
init12(continue(c-adopt-recipef(ll | REC| 1D, [2] | ID)))

A: OK.
ackip—11
init1o_13(completg_g)

A: the two screws are loose,
init14(beginy(c-release-objectivetes | ACTS| D, | 1D))

A: but I'm having trouble getting the wheel off.
init5(begin(c-select-objectivefea | ACTS| 1D, | 1D)))
init1(begin(c-focus6TATE | ID, | REC| ID)))
inity7(begin(c-identify-recipe(pull—off] | REC| ID, [3] [blank recipe])))
init;g(begin | (c-adopt-recipefpuili—off] | REC| D, 3 | ID)))

E: use the wheelpuller.
ackis—1s
inity9_o1 (complete_g)
initao(continugg (c-identify-recipe(puii—off] | REC| 1D, 3] [recipe using wheelpuller])))
initoz(continue (c-adopt-recipefruil-off] | REC| ID, 3] | ID)))

E: do you know how to use it?
regacks_o3

A: no.
ackig_o1
reqrepaika—o3

Figure 4.8: Execution Dialogue from [Grosz and Sidner1986ijt 1



94

21.1 E:doyou know what it looks like?
cancebs_o3
inito4 (begin 2 (c-identify-resourcefTATE| ID, [4] [wheelpuller])))
221 A:yes.
acky
inites (continugs)
23.1 E:show it to me please.
acks
initog(continugs)
inito7 (begin s (c-identify-objectivef TATE | 0BJVS| ID, 5] [show(A,E[4])])))
initag(begin 4(c-adopt-objectiveTATE | 0BJVS| ID, [5] | ID)))
initag (begin ;(c-select-objective(TATE | 0BJVS| ID, [5] | ID)))
24.1 A:OK.
ackyg_29
initsg(continugs)
init3; —s3(completes ;)
25.1 E:good.
acksp_33
inits4(completgs)
initss(begin ¢ (c-release-objective(tATE | 0BJVS| 1D, [5] | ID)))

25.2 E:loosen the screw in the center and place the jaws dtberhub of the wheel. ..

initss(continugo (c-identify-recipe(puli-off] | REC| ID, [3] [loosen(screw),. . . )))
inits7(continueg (c-adopt-recipefpuli—of7] | REC| 1D, 3] | ID)))

Figure 4.9: Execution Dialogue from [Grosz and Sidner198@ijt 2

in the planning case, but also as-aelect-objectiveas the expectation is that the action
should be executed immediately. In 2.1, the apprenticeeagrith these changes to the
CPS state, but does not know a recipe for removing the flywfdes. is modeled as a
c-identify-recipehat contains a blank recipe. The apprentice also seemag\iti take
whichever recipe the expert gives him, which is why theredsaalopt-recipeas well!?

The recipe content is given in 3.1 and the apprentice acddptd.1.

For brevity, we have skipped part of the dialogue to UU 18 liere the apprentice

has been working for a bit and now announces that the obgeafiloosing the screws

12Note that this does not bind the apprentice to whatever edsigiven him, as he can always reject

the recipe once it is given content.



95

has been successfully completeer¢lease-objective In 18.2, the apprentice notes that
he is having problems with the second objective in the reetpgulling the wheel off.
This is modeled as four proposed CPS acts. First, this presegghat the apprentice
is actively trying to execute the objective, hence thselect-objectivelt is important
to note here that the execution of the CPS act (and thus thdeuptithe CPS state)
need not, and usually does not, correspond to the point mfttiat the execution of the
domain action actually begins. Instead, this act can be ae@me agent keeping the
other agent (or actually, the CPS state) up to date about thentistate of affairs (cf.
[Levesque, Cohen, and Nunes1990]). The remaining threecantsr around finding

an appropriate recipe for the objective.

In 19.1, the expert intends to adds content to the (blank)gsed recipe, by refer-
ring to a (specific) recipe using a wheelpuller. This introglsian interesting phenomena
seen when using the CPS dialogue model. Often, expressidok vefier to PS objects
are found — not just to resources, but also to objectivesptsitaints, and as is the
case here, to recipes. Note that this is a much more opageremek to a recipe than
was given in UU 3.1, where (many of) the steps and constramete made explicit.
This kind of problem-solving reference resolution preseant interesting area of fu-
ture work for the interpretation and generation subsysteinas agent-based dialogue

system.

In 19.2, the expert shows she is not sure if the expert witijuely identify the recipe
she refers to, and thus requests an acknowledgment. On tfaeesuthis exchange
seems that it could be modeled as a question about knowledgeh indeed it is.
However, at a deeper level, this can really be seen as asierapiprentice if he knows
arecipethat uses a wheelpuller that is appropriate for the objecthand — which is

presupposed by the recipe reference in 19.1.

Similarly, the negative response in 20.1 is modeled as aestdor repair of the
IntActs in 19.1. However, the expert cancels those comnadinie intentions, and starts

establishing more basic common ground. Notice that, in titg the recipe that was



96

(presumably) meant in 19.1 is eventually given in 25.2. Wendbbelieve, however,
that this should be modeled as a 6+ turn repair at the grogréwel. Instead, we
model it as abandoned communicative intentions at the gliagdevel, but a continued
proposed act at the CPS level. Note that the acts in 25.2 etketCPS acts originally
proposed by the apprentice in 18.2. These CPS acts were mgseted, and thus we
have continuity at the CPS level, although we do not at thergimg level.

At this point, the expert proceeds to try to collaborativelentify (in general)
the wheelpuller and only when this is established, does #ieenpt to specify the
recipe again. In this process, note the execution of anmadtebjective (showing the
wheelpuller to the expert), in order to aid the completiom&PS act (the identifica-
tion).

Also note the use of-release-objectivén 25.1 to propose that the objective be

considered accomplished and should no longer be pursued.

Interleaved Planning and Execution

The above examples showed how the model handles planningauition sepa-
rately. We have annotated in a like manner the dialogue fragnré 1.1 (shown in
Figure 4.10). This dialogue is much richer in that it consaimerleaved planning and

execution.

In this example, the speakers decide to jointly pursue aectibg of going to the
park (UU 1.1). In 2.2, B introduces 2 possible recipes fondao — driving or walk-
ing. To be able to plan for this objective, the participards@ and execute another
objective (looking at the weather on the internet) in orderelp them in their planning
decision. Finally, in 9.1 and 10.1, A and B decide to begincatieg their high-level

objective of going to the park.



1.1

2.1

2.2

3.1

4.1

4.2

5.1

5.2

6.1

6.2

7.1

8.1

9.1

10.1

97

A: let’s go to the park today.
init; (begin (c-identify-objective§ TART | 0BJVS| ID, [1] [goto(park)] ))
inity(begin:(c-adopt-objectivefTART | OBJVS| ID, 1 | ID))
inits(begin(c-focus6TART| ID, (1] | ID)))

B: okay
ack s inity_g(complete_s)
B: should we walk or drive?

init7(begin(c-focus6TART| ID, ] | REC| ID)))
initg(begins (c-identify-recipe(d | REC| 1D, [2] [walk]))))
initg(begin;(c-identify-recipe(ll | REC| D, [3] [drive])))

A: what'’s the weather going to be like?
acks_g inityo_11(completg_g)
init12(beginy(c-identify-constraint§ TART | CONS| 1D, [4] [weather(today, X)])))

B: I don’t know.
ackip_12 init;3(reject,)

B: let's watch the weather report.
inity4(beging(c-identify-objective§ TART | 0BJVS| ID, [5] [watch(report)])))
init;5(begin(c-adopt-objective{TART | 0BJVS| ID, [5] | ID)))
init,5(begino(c-select-objectiveTART | OBJVS| ID, [5] | ID)))

A: no, it's not on until noon.
ackiz_16 inity7(completg)
init;g(begin ; (c-identify-evaluatior§ TART | FILLER([5]) | EVALS | ID, [6] [bad idea])))
inity9(begin 2 (c-adopt-evaluatior§TART | FILLER([5] ) | EVALS | ID, [6] | ID)))
initag o1 (rejecy 1)

A: just look on the internet.
initoo(begin s (c-identify-objectivef TART | 0BJVS| 1D, [7] [look(internet)])))
inita3(begin 4 (c-adopt-objective{TART | OBJVS| ID, [7] | ID)))
inita4(begin 5 (c-select-objectivefTART | OBJVS| ID, [7] | ID)))

B: okay. [looks on internet]
ackiz_o4 initas _og(Complete; —15)

B: it's supposed to be sunny.
initso(beging(c-release-objective(TART | 0BJVS| ID, [T | ID)))
inits; (begin 7(c-identify-constraint§ TART | CONS| ID, [8] [weather(today,sunny)])))
init3o(begin g(c-adopt-constrain§TART | CONS| 1D, [8] | ID)))

A: then let's walk.

ackys 32 init33—3s(completes—1s)
initsg(beging(c-adopt-recipe(d |REC|ID, [2]id.)))
B: okay.
ackss_s3g initg7(completgy)
A: do you want to go now?
acks; initsg(beging(c-select-objective{TART| 0BJVS| ID, [1] | ID)))
B: sure.
ackss initsg(completgg)

Figure 4.10: A Planning and Execution Dialogue (from Figiu®)



98

4.3.2 Collaboration Paradigms

We also mentioned in Chapter 2 that most dialogue systemsatrabte to handle
the full range of collaboration paradigms, or the respeatoles and authority of each
participant during the dialogue. In fact, most dialogue elednly handle one type
of collaboration paradigm — master-slave, where one ppait has all authority for
decision-making.

The CPS dialogue model does not explicitly model the collation paradigm in
use — this needs to be part of the dialogue manager, whiche®erhat to do and say
at each point of the dialogue. However, the CPS model is gearoaigh to be able
to describe dialogues from most collaboration paradigrast @epresents dialogue as

negotiation of changes to the CPS state.

A good example of a mixed-initiative dialogue is the dialegn Figure 4.10, in
which A and B are more or less equal. For example, in UU 5.1,jécte B’s proposal

to find out the weather by watching TV and gives a reason forgfeztion.

At the same time, agents are metjuiredby the model to usesject The expert-
apprentice dialogue in Figures 4.8 and 4.9 is a good exanf@el@logue that is not

mixed-initiative, as the expert has quite a bit more autiiori

4.4 Conclusions and Future Work

In this chapter, we have presented a novel dialogue modalhaikiable to account
for a wide range of phenomena needed for agent-based dekygtems. The model
uses interaction acts from the collaborative problemiaghmodel, together with a

well-known theory of grounding to describe communicativientions for utterances.

As was discussed in the chapter, there is still much work tddsee in this area.
First, we have mentioned several areas in which the modelseebe expanded. For

example, we are still lacking a good theory of descriptiohgwaluations and con-



99

straints. Also, the model does not take misunderstandidgecovery into account —
where participants must recognize and then repair conitidtgeir private understand-
ing of the dialogue model (cf. [McRoy1998]).

Another interesting area of future work is the possible esp@n of this model to
be compatible with that proposed by Grosz and Sidner [1986¢gir dialogue model
contains three separate but interrelated componentsuisitig structure, intentional
structure, and attentional structure. Linguistic stroetsegments utterances into dis-
course segments, while intentional structure describegthposes of segments and
their relations to one another. Finally, attentional dinte keeps track of entities of

various salience in the discourse.

We believe our model may be compatible with that of Grosz addes. Linguistic
structure can be patrtially derived from which utterancedrdoute to a CPS act. Inten-
tional structure is partially recorded in the CPS state (@.gecipe being subordinate
to its objective). We also keep track of attentional streestat the problem-solving
level through focus (although it remains to be seen how thisesponds to linguistic

attention and salience).

Another direction of needed future work is annotation amgdascale evaluation.
Our evaluation of the model has thus far been limited to aatirag dialogues in order
to show the model’s range of coverage. Itis an open questibisikind of information

can be reliably annotated by humans on a large corpus.

Another big challenge will be to create a recognizer thataaomatically recog-
nize communicative intentions (instantiated GAs) fronunaitlanguage. As mentioned
in Chapter 1, intention recognition algorithms use, at tbefe, plan recognition. In the
following chapters, we discuss work on speeding up plangeition in order to quickly

support the type of recognition we will need to support the @R®gue model.



100

5 Plan Recognition: Background

In Chapter 1, we outlined several key areas in which progress be to support agent-
based dialogue systems. First we mentioned that we needaldguke model as well as
a way of describing the communicative intentions assodiafiéh utterances. We have
presented solutions to both of these in Chapter 4. Once we dagpresentation of
communicative intentions for utterances, we need a way dpring intention recog-

nition: the recognition of communicative intentions based onedrand the speaker’s

utterance.

Unfortunately, a full model for intention recognition ineg-based dialogue is be-
yond the scope of this thesis. Instead, in the remainingtengpwe make several
contributions to the more general field of plan recognitidmcl we believe are the

first steps towards creating a practical intention recagriar agent-based dialogue.

Although much work has been done in intention recognitiae (arberry1990b;
Lochbaum, Grosz, and Sidner2000]) these methods assuna@-dased model of di-
alogue and are not directly applicable to our agent-basatemdVe do believe, how-
ever, they can be extended to our model, so we do not discoamt tinstead, we focus
on several problems with intention recognition and the ngmeeral problem of plan
recognition. As plan recognition is a more general form aéimion recognition, solu-

tions in the general domain will be applicable to currengiriion recognizers as well



101

as future work on intention recognition for agent-basetbdiae.

In this chapter, we first discuss the relationship betwetmition recognition and
plan recognition. We then outline some general requiresiemtplan recognition and
discuss previous work in this field. Finally, we conclude amdoduce the solutions

presented in the coming chapters.

5.1 Intention Recognition and Plan Recognition

Intention recognition is a special casepddin recognition the general task of inferring
an agent’s goals and plans based on observed actions. htiagmeecognition, observed

actions are speaker utterances and the goals are the speakemunicative intentions.

Plan recognition is typically divided into two types. keyhole recognitionthe
agent being observed is unaware of (or does not care abeutptervation. limtended
recognition on the other hand, the agent knows it is being observed anosels its
actions in a way such to make its plan clear to the obsérvetention recognition is
a type ofintended recognitionas the speaker forms his actions (utterances) in such a

way to make his communicative intentions clear to the hefarer

Despite the fact that intention recognition is a type ofmoled recognition, and that
the speaker forms his utterances intentions so as to makemmisiunicative intentions
“easy” to recognize, intention recognition remains a haabf@m for the community,
both in terms of domain-independence, as well as runtimeieficy. All intention

recognizers that we are aware of use at their core a planmemsgThus any problems

1A third type of plan recognition occurs when the agent isnigyio thwart recognition of its plans.
Pollack [1986] calls this aactively non-cooperating actoiery little research has been done for this
third type of recognition (although cf. [Azarewicz et algB)), which may be why it is frequently not

included in the typology.
°Note, that this is the case even in deceptive conversatiotheaspeaker forms his utterances so as

to make his feigned intentions clear.



102

with plan recognizers in general have been inherited alsateyntion recognizers. We

now turn our attention to plan recognition in general.

5.2 Requirements for Plan Recognition

Plan recognition has not only been used in dialogue systeatslso in a number of
other applications, including including intelligent ussterfaces [Bauer and Paul1993;
Horvitz and Paek1999; Rich, Sidner, and Lesh2001], traffiaitoong [Pynadath and
Wellman1995], and hacker intrusion detection [Geib andd@@n2001]. All of these
applications (including dialogue) have a common set of irequents they place on a

plan recognizer:

1. Speed:Most applications use plan recognition “online,” meaningytuse recog-
nition results before the observed agent has completedtitstg. Ideally, plan
recognition should take a fraction of the time it takes far tbserved agent to

execute its next action.

2. Early prediction: In a similar vein, applications need accurate plan preaficti
as early as possible in the observed agent’s task execuli@n if a recognizer
is fast computationally, if it is unable to predict the plartibafter it has seen the
last action in the agent’s task, it will not be suitable folioa applications, which

need recognition resultturing task execution.

3. Partial prediction: If full recognition is not immediately available, applicats
can often make use of partial information. For example, éf parameter values
are not known, just knowing the goal schema may be enougmfapalication

to notice that a hacker is trying to break into a network.

As we discuss below, previous work in plan recognition doesprovide these

needed features. Typically, systems will sacrifice onébaite for another.



103

5.3 Previous Work in Plan Recognition

In this section, we discuss previous work in plan recognitid’his can be divided
into two different types. The first is plan recognition basedogic, while the second

includes probabilities.

5.3.1 Logic-based Plan Recognition

Most plan recognizers use a plan library, which represeo#sgn the domain, and
the (typically hierarchical) plans associated with therogic-based recognizers can be
characterized by the use of logical methods to exclude goalgplans in the hierarchy

made impossible given the observed actions.

There have been several types of logic-based plan recagnix®e first discuss
work that bases plan recognition on chaining. Then we ds@lsn recognition as

circumscription, and finally, plan recognition based orspay algorithms.

Plan Recognition as Chaining

Allen and Perrault [1980] created one of the earliest pl@ogeizers. Given a single
observed action, the recognizer used various rules tordah&ard chain from the ac-
tion to a goal, or backwards chain from an expected goal ta¢kien. Rules supported
not only chaining on preconditions and effects, but alsoan@hically to higher levels

of recipes. Heuristics were used to control and focus rutdiegtion for chaining.

Carberry [1983; 1990b] extended Allen and Perrault’s workdeer multiple suc-
cessive action observations. Each new action is indepégdgwards chained until
further chaining would create ambiguity. Then, the newaacis merged into the plan
recognized so far based on previous observations. Amyigtnthere a plan “attaches”
is resolved by the use of focusing heuristics, which assinategiction observations are

often coherently clustered together.



104

Plan Recognition as Circumscription

The seminal work on plan recognition was done by Kautz [198B0; 1991][Kautz
and Allen1986], who casts plan recognition as the logidarence process of circum-
scription. This provided a rich plan representation — esakiythat of first order logic

and a temporal logic to represent actions and time.

Kautz represented the space of possible plans as a planylibatied the event
hierarchy, which included both abstraction and decompusitsubaction) relations.
Goals and actions were represented as complex schemancheated parameter val-
ues. Certain actions were labeledeasl actions, meaning that they were an end unto

themselves, or a possible ultimate goal of an agent.

Kautz showed that by assuming that the event hierarchy ipaenand that all
events are disjoint, plan recognition becomes a problenogitél circumscription.
Given a certain set of observations (also representediofoter logic) a set afovering
modelds computed which are somewhat like possible worlds in wtietobservations

are true, and each contains a separate possible goal anhpthe agent.

Runtime of the recognizer is exponential in the size of thexekieerarchy (e.qg., all
goals and subgoals), which means it is not scalable to langere realistic domains.
However, it does have several other features, includingltanepresentational power
(including interleaved plans, partially-ordered recipgsd goal and action parameters,
to name a few). It also supports partial prediction throughdbility to predict just a
goal schema as well as to predict an abstract goal. As disduseow, it also suffered

from the general inability of logic-based systems to de#hwambiguity.

Plan Recognition as Parsing

To make plan recognition more tractable, Vilain [1990] ddésxs a method of con-
verting a subset of Kautz’s plan hierarchy into a grammaanREecognition is then

performed by running a chart parser over observed actionsusByg this approach,



105

runtime complexity become9(|H|*n?) where H is the set of goals and subgoals in

the plan library and: is the number of observed actions.

This vast improvement over exponential runtime comes as# tloe grammar ap-
proach decreases the representational power substgniiakquires totally-ordered
recipes; and does not handle goal and action parametetain(8uggests that param-
eters could be handled as a feature grammar, although thiklwwake the algorithm
NP-Complete.) The lack of goal parameters means a possipleséan in the number
of goals in certain domains, since each instance of a goahsaimust be modeled as a

separate goal.

In addition, it is not entirely clear if online predictionarm be made by the recog-
nizer. Vilain suggests that this could be done by lookingaitadi rules on the chart,

but it is not clear how much predictive power this would gikie tecognizer.

General Shortcomings of Logic-based Recognizers

A general problem with logic-based recognizers (as notefChmarniak and Gold-
manl1993)) is their inability to deal with ambiguity. Thisroes from the fact that,
upon each new observed action, they prune away only thegbi@us which become
logically impossible. Unfortunately, this impacts earhggiction substantially, as most
plan recognition domains are highly ambiguous, especiahgn only the first few
actions from a plan have been observed. In order to disaratadurther, uncertain

reasoning is often used.

5.3.2 Probabilistic Plan Recognition

Several lines of probabilistic plan recognition have beqgriered. We discuss here the

use of Dempster-Shafer theory, probabilistic abductiahlzlief networks.



106

Dempster-Shafer Theory

Two systems use Dempster-Shafer theory (DST) to add priidtabreasoning to plan
recognition. Carberry [1990a] used DST to her logic-basedgrizer (see above) to

do default inferencing when further upwards chaining wabigoous.

Bauer [1995] uses DST to represent and combine the prolyabfligoals given
observed actions. He uses a subset of Kautz’ plan librarghwimicludes an abstrac-
tion hierarchy and a single level partially ordered recipgs uses results of previous
recognition sessions to learn a D&dsic probability assignmeifbpa) which roughly
corresponds to the a priori goal probability (an abstraet godefined a the set of its

base goals).

In addition, he uses the plan library itself (and a corpusidilable [Bauer1994]) to
train another set of bpas which roughly correspond to thbaisiity of a goal given an
observed action. A bpa is defined for each action in the donaaich gives probability

mass to each goal in which it is part of a recipe.

The recognition algorithm is as follows: the prediction bpanitialized to the a
priori goal probabilities. Then, for each observed actithrg precomputed bpa for
that action is retrieved, and then each of the possible geddgyically checked with
respect to constraints (e.g., ordering constraints). | I€@hstraints for all goals hold,
the bpa remains the same. Otherwise, probability mass éntaway from logically
impossible goals and redistributed. Then, this bpa is coetbwith the prediction bpa

by Dempster’s rule of combination resulting in the new pcadn bpa.

It is unclear if this algorithm is scalable, however. DST motn to be exponential
in the general case, and although Bauer mentions some possittions (like restrict-
ing bpa subsets to be only abstract goals) it is unclear hawdstriction would be
handled by Dempster’s rule of combination and what the effacrecognition would
be. Also, the approach does not support a decompositioarbhgr, and thus is unable

to make predictions about intermediate subgoals and plans.



107

Probabilistic Abduction

Appelt and Pollack [1991] designed a framework in which placognitiort could be

modeled as weighted abduction. The framework allows imigge to be encoded as
prolog-like rules with a weight attached to them. If the camgent of the rule can be
logically proven, there is no cost. However, if it is assupntéen the algorithm incurs
the cost of the weight of that step. Out of all possible sohsi the one with the lowest

weight is then chosen.

Appelt and Pollack mention several drawbacks to their wdiikst, in the general
case, the algorithm is intractable (NP-hard). Also, wesgigsigned to abduction rules
are not probabilities and must be assigned by hand. Theytréyad local changes in

these rules can affect global recognition in subtle ways.

Goldman et al. [1999] also model plan recognition as an damluproblem. They
model the process of plan execution, and then reverse thea®sto make an abduc-
tive model. In addition, three parts of the execution preca® made probabilistic:
the agent’s choice of a top goal, the agent’s choice betweerpeting recipes for a
goal (or subgoal), and the agent’s choice of what action ¢zate next (from the set of

currently executable actions).

This framework is the first of which we are aware to model pkrognition with
the fact in mind that the agent is executing the action, a®sgg to other work which
just works on a plan library data structure. Because of thes; &ire able to model many
things with other systems could not, including multipléeneaved plans and evidence

from failure to observe an action.

Like Appelt and Pollack, however, Goldman et al. define atbiecal framework,

but do not deal with the problem of tractability. Althougleyhdo not analyze complex-

3Actually, they do what they capllan ascription which is the (more difficult) process of attributing
mental states to an agent, the combination of which can tigealsthat the agent has a mental plan of
the form described in [Pollack1986].



108

ity, it is likely that this framework suffers from the samerarctability problems that

Appelt and Pollack’s abduction framework had.

Belief Networks

Charniak and Goldman [1993] use a belief network (BN) to entlee@lan recognition

problem. Nodes in their BN include propositions such as thstexce of an object or

event, its type, and its role within some plan. As actionoéserved, they are added to
the network in this kind of encoding (with the appropriatessvetween them), and new
nodes are generated which explain possible connectiongbetthem and the possible
plans encoded in the network. After these nodes (and caonstthave been added,
the posteriori probabilities of other nodes (especiallglgpcan be computed to predict

the plan.

Huber et al. [1994] propose a method to automatically cdaregslan execution
library into a BN, albeit one with a different structure. ThBNs include only events
(not parameters) and directly encode the links between therthrough intermediary

role nodes like Charniak and Goldman).

Unfortunately, reasoning with BNs is exponential in the szeéhe network. To
attempt to deal with this, Charniak and Goldman use a megsaggng algorithm to
keep the number of nodes restricted, although the size ofdtveork grows with each
new observation (and the likely goals chained from it). Tystesm of Huber et al. has

a static BN and is likely not scalable to large plan libraries.

5.4 Goal Recognition

In the last section, we discussed previous work in plan neitog. We now discuss

work on a special case of plan recognitigmal recognition Whereas the task of plan



109

recognition is the recognition of an agent’s goal and plaral gecognition attempts

only to recognize the goal.

Although not as informative as full plan recognition, goatognition has been an
active research area of late, partially because it has betered that many applications
simply do not need full plan recognition results. For examplorvitz and Paek [1999]
built an Al receptionist which observed actions (includivgural language utterances)
to determine the user’s goal, which the receptionist thenfal them. Here, the goal
was something only the receptionist itself could accorhplibus the users typically

did not have a plan.

Additionally, goal recognition naturally removes some leé ambiguity present in
plan recognition. It is still the case that a set of observdtas could be accounted
for by any number of goals, but plan recognition has the audit ambiguity that,
even if the agent’s goal can be unambiguously identifiedyuia be associated with a
large number of plans, all consistent with the observeaastiFor this reason, in fact,
most of the plan recognizers mentioned above do not predigtyaspecified, fully-
disambiguated plan at each timestep, but rathgaréial plan that includes only those
parts which are disambiguated. We believe that a fast goafrezer could be used in
a hybrid system to focus the search in a slower plan recog(a#eéough we leave this

to future work).

Goal recognizers can be classified by the goal structurettiigyg recognize Flat
goal recognizers attempt to recognize goals at just oné tgpécally the top-level goal.
Hierarchical goal recognizers, on the other hand, attempt to recogniaeaubgoals
in addition to the top-level goal. Note that hierarchicahlycecognition is different
from general plan recognition in that in plan recognitidme attempt is to recognize
the entire plan tree, whereas with hierarchical goal rettimgn one only attempts to
recognize the chain of the active subgoals, i.e., the liribfoals which trace the last

observed action to the top-level goal.

We first discuss previous work on flat goal recognizers, aed thierarchical goal



110

recognizers.

5.4.1 Flat Goal Recognizers
Logic-based Systems

Following recent successful work on using graph analysaoing planning synthesis
[Blum and Furst1997], Hong [2001] uses graph analysis fol geeognition. His
system incrementally constructsgaal graphconsisting of nodes representing state
predicates and observed actions. Each observed actiond¢@sing edges from state
predicates that fulfill its preconditions, and outgoing eslgo predicates that are its
effects. Predicates which remain true across actions smecahnected. Predicates also
connect to goal nodes whose goal state they contribute te prbvides a list of all
goal states partially or fully fulfilled by the actions up iinhe last observation. The
algorithm then uses the graph to compute which goals wersatigdinked to which
actions. If a majority of observed actions contributed t@dain goal, it is reported as

a recognized goal.

The algorithm does not require a hand-built plan libraryrather just uses descrip-
tions of base-level actions and high-level goal states. é&sgoints out, however, this
algorithm is only appropriate for post hoc goal analysig] aat online goal recogni-
tion, as it does not quickly converge on a single goal. Theaedor this is that the
effects of an action may contribute to any number of goald,itanly becomes clear

near the end of the agent’s execution which of these is reallyg focused on.

Lesh’s RIGS-L system [Lesh and Etzionil995b; Lesh and Etzf8ba; Lesh and
Etzioni1996; Lesh1998] uses analysis of a different kingjrafph to do goal recogni-
tion. RIGS is initialized with a fully-connectecbnsistency graplf action and goal
schemas and instantiated actions observed thus far. Edtyesdn action schema nodes
are used to signifgupportbetween them, and edges to goal schema nodes spify

pletion Given this graph, the algorithm uses rules to remove grag@ments while



111

still keeping the graph correct. For example, thatchingrule removes an edgs, ,
where no effect of matches a precontidion gf(and thus does not directly support it).
The goal connectiorrule deletes goal schemas which are no longer connectee to th
graph. After the algorithm has run, any goal schema thatti€manected is no longer
consistent with the evidence, and any remaining goal scherainstantiated by the

algorithm and predicted as possible goals.

The runtime complexity of RIGS-L i©(|G| + (|A| + |L|)®) whereG is the set of
goal schemas is the set of action schemas, ahdk the set of observed actions. Note
that, although this is linear in the number of goal schent@spnly polynomial overall,

unless/G| >> |A|, which we do not believe is the case in most domains.

Lesh then uses RIGS-L as a component of the BOCES goal recognlizeh uses
version spacefrom the machine learning field to represent the set of ptesgjbals
and mark which are consistent (without, however, actuatlymeratinghe goals). The
set of goals are defined and then based on this definition,dhkrgcognizer keeps
track of boundaries between those goals which are consesteilwhich are not. Lesh
shows that BOCES has a runtime complexitytifog(|G|)) for a certain subclass of
goals calleddecomposable goalgoals in which adding a conjunct makes them more
specific (like searching for an item with a set of features)ntitae for other classes of

goals is the same as that of RIGS-L.

For decomposable goals, BOCES has been shown to run quiclkdydorhundreds
of thousands of goals. However, these goals are defined inarcevay, namely the
combination of conjuncted domain predicates, which isdslty the case in decom-
posable goals such as constrained searching. However, typical goal recogni-
tion domains do not exclusively include decomposable géalsdecomposable goals,

however, BOCES is probably unbeatable.

Logic-based goal recognizers in general also have the seeméodcks mentioned
for logical plan recognizers above, namely, that they asblento distinguish between

logically consistent goals, which leads us to probabdifiit goal recognizers.



112

Probabilistic Systems

Horvitz and Paek [1999] use a 3-layered Belief Network to gaize users’ goals in a
secretarial setting. The system not only uses observeahaadt the network, but also
other factors like world state. The top layer network tresdcognize an abstract goal.
When confidence in a single goal at this level is high enougfitrobpasses to the next
level, which attempts to recognize a more concrete goalsarah. The system is able
to perform partial recognition because it can return jusalstract goal when it is not
certain enough about a more specific version. As the systemauBelief Network, its

worst-case complexity is exponential in the size of the netwAlso, as is the case for
probabilistic systems, probability distributions mustrehow be estimated for each of

the nodes and it is unclear this would be done.

Albrecht et al. [1998] use a dynamic belief network (DBN) tedict the top-level
goal and next action in a multi-user dungeon (MUD) game. Tastiynate probabilities
from logs of actual game sessions, where a user attemptsrtplete one of 20 quests
(goals). Although not reported, the runtime complexity loé recognizer appears to
be linear in the number of goals, and is quite similar to ttagistical goal schema
recognizer we present in Chapter 7 (although see Sectiofh #bR.a discussion of
differences). Their recognizer, however only recognizes& goals and is not able to
handle parameters. It also does not support partial predidtiowever, it was the first
goal recognizer of which we are aware which used a large sdiplearn probabilities

as well as to evaluate the recognizer.

5.4.2 Hierarchical Goal Recognizers

The last section discussed flat goal recognizers, which @aggnize the agent’s top-
level goal. In this section, we report on several recentgeizers which recognize all

of an agent’s active subgoals, as well as the top-level goal.

Pynadath [1999][Pynadath and Wellman2000] uses prok#bilstate-dependent



113

grammars (PSDGSs) to do plan recognition. PSDGs are prostabdontext-free gram-
mars (PCFGs) in which the probability of a production is a tiorcof the current state.
This allows, for example, the probability of a recipe (protion) to become zero if one
of its preconditions does not hold. Subgoals are modeledagarminals in the gram-
mar, and recipes are productions which map those non-talsnimo an ordered list of
non-terminals or terminals. During recognition, the retagr keeps track of only the
current productions and the state variables as a DBN with @apgdate algorithm.
The most likely string of current productions is predictexdtlae current hierarchical

goal structure.

If the total state is observable, Pynadath claims the caxitplef the update algo-
rithm to be linear in the size of the plan hierarchy (numbeproiductionsy. However,
if the state is only partially observable, the runtime coemgl is quadratic in the num-
ber of states consistent with observation, which grows egptally with the number

of unobservable state nodes.

Additionally, the recognizer only recognizes atomic g@ald does not take param-
eters into account. Finally, although the PSDG allows fir@bpbility differences for
productions depending on the state, it is unclear how suabatmility functions could

be learned from a corpus, as the state space can be quite large

Bui [2002][Bui, Venkatesh, and West2002] performs hierazahrecognition of
Markov Decision Processes. He models these using an Abbligden Markov Model
(AHMM) which are multi-level Hidden Markov Models where alpy at a higher
level transfers control to a lower level until the lower Ieiterminates.” The addition
of memory to these models [Bui2003] makes them very similah®&oPSDGs used
by Pynadath in that each policy invokes a 'recipe’ of lowardl policy and does not

continue until the lower level terminates.

Recognition is done using a DBN, but because this is intraet&hli uses a method

called Rao-Blackwellization (RB) to split network variablesoitwo groups. The first

4This claim is disputed in [Bui2002].



114

group (which includes the state variables as well as a erahich describes the high-
est terminating state in the hierarchy) is estimated usangpting methods. Then, using
those estimates, exact inference is performed on the sgayh(the policy variables).

The separation is such that exact inference on the secomg drecomes tractable,

given that the first group is known.

The recognizer was used in a system which tracked human ioehavan office
building at three abstract levels, representing indivichfices at the bottom level,
then office groups, then finally the entire building. Polkcat each level were defined
specific to each region (for example the policy (behaviorusihg the printer in the
printer room). In this model, only certain policies are gah a given state (location),
which helps reduce the ambiguity. Typically, the domain mdeled such that lower-
level policies become impossible as the agent moves to anatbm, which makes it

fairly clear when they then terminate.

Although the algorithm was successful for this trackingfaisis unclear, however,
how effective estimation of policy termination would be iargral (e.g., when most
policies are valid in most states). Also, similar to Pynagttis method only recognizes

atomic goals and does not support parameters.

5.5 Towards Statistical Goal Recognition

As mentioned above, we need goal recognizers which aredadtmake early (and
possibly partial) predictions. However, most current grapers are either not scalable

or severely limit the representation of the domain.

In the following chapters, we presenstatistical goal recognizewhich uses ma-
chine learning techniques to train the recognizer on aqadaii domain given a corpus.
As it learns domain behavior from the corpus, it does noizeti plan library and does
not therefore limit plan representation in that respectaddition, it supports parame-

terized goal and action schemas and can make partial poedidt not all parameter



115

values are known. We will show that it is scalable and can nupkek and early pre-

dictions.

The remainder of the thesis is as follows. As the recognieeds a corpus to be
trained on, in Chapter 6 we present the two corpora which wenuger experiments.
The first was gathered from human users in the Linux domainweder, as many
domains do not lend themselves to easy observation, wergraggeneral method for
stochastically producing artificial corpora for plan recitign and use this method to

produce a corpus in the emergency planning domain.

In Chapter 7, we present a flat goal recognizer which is lineahé number of
goals and present its performance on the two corpora descebove. Finally, in
Chapter 8, we extend this flat recognizer into a hierarchical gecognizer and present

experimental results for it as well.

Finally, in Chapter 9, we conclude the thesis and discusstibres of future work.



116

6 Obtaining Corpora for Statistical

Goal Recognition

Over the past 10+ years, many fields in Al have started to engaipus-based machine
learning techniques. Plan recognition, however, seemsave kagged behind. We
are only aware of a few plan/goal recognizers [Bauer1996areght, Zukerman, and
Nicholson1998; Blaylock and Allen2003; Blaylock and Allel@2( (one of which is
our own) that are trained on corpora. We believe a major re&sahis is the lack of

appropriate corpora for plan recognition (which we willntgplan corporg.

It is not that the field could not make use of plan corpora. Besithe machine-
learning based systems mentioned above, many of the plnm&mognizers described
in Chapter 5 make use of probabilities, but only briefly mamtfid at all) how such
probabilities could be learnédIn addition to providing training data, corpora could
also be used to evaluate the performance of recognizers/eor & benchmarks to
compare performance across recognizers (something wasdhr as we are aware, has

never been done).

In this chaptef, we describe our efforts in creating two plan corpora — theukin
corpus and the Monroe corpus — which are used in later chaptetrain and test

our goal recognizer. Associated with the latter, we alswohice a novel method for

1A notable exception is Bauer [1994].
2Some contents of this chapter were reported in [Blaylock/Alteh2005b].



117

artificially creating plan corpora.

The remainder of the chapter is as follows: In Section 6.1jntr@duce a termi-
nology for describing plan corpora. In Section 6.2, we déscprevious work in the
creation of plan corpora. Then in Section 6.3, we describectkation of the Linux
corpus from human users. In many domains, data collectmm frumans may be dif-
ficult. Section 6.4 describes several challenges for gaitpgrian corpora based on
human data. As an alternative to data collection from hum8astion 6.5 introduces
a general method for stochastically creating artificiahptarpora. In Section 6.6, we
describe our use of this method in creating the Monroe corpuSection 6.7, we dis-
cuss the advantages and disadvantages of human and artifipara and finally, in

Section 6.8, we conclude and mention future work.

6.1 Definitions

We briefly present a few definitions that will be used in thethew chapters. We define
aplan sessiorto be a single session in which an agent is observeplaA corpuss a
collection of plan sessions which are minimally annotaté&tl the sequence of actions
observed. Agoal-labeled plan corpug a plan corpus in which action sequences are
labeled with the agent’s top-level goal(s), angdlan-labeled plan corpuss addition-
ally labeled with the agent’s plan(s). Note that a corpuglkd with hierarchical goal
information is nearly equivalent to a plan-labeled cormasye do not include it in our

taxonomy.

6.2 Existing Plan Corpora

In this section, we mention some previously gathered plapara. We first present

corpora that are unlabeled, and then goal-labeled corpdfa.are not aware of the



118

existence of any plan-labeled corpblesides the Monroe corpus which we introduce

in Section 6.6.

6.2.1 Unlabeled Data

Several projects in ubiquitous computing [Ashbrook andr&e?003; Patterson et
al.2003] have gathered raw data of a user’s state over tiovat{bn and speed from
GPS data) which they use to predict user activity. HoweVes, data is not directly

usable by most plan/goal recognizers which expect a sequdractions as input.

Davison and Hirsh [1997; 1998] collected a corpus of over,Q88 Unix com-
mands from 77 users over a period of 2-6 months. The corpussterf timestamped
sequences of commands (stripped of arguments) as recoydkd bistory mechanism
of tcsh. They then use this for training and testing algangHor next command pre-

diction.

It is unclear how useful such data would be by itself for placognition (although

Bauer [1998] has done work on using such to automaticallytooctsrecipe libraries).

6.2.2 Goal-labeled Data
The MUD Corpus

Albrecht et al. [1998] extracted a plan corpus from logs framlulti-User Dungeon

(MUD) game (which we will term th&1UD corpug. A single log includes a sequence
of both player location (within the game world) as well as skguence of commands
executed in the session. In addition, the MUD records eacbessful quest comple-

tion, which is used to automatically tag plan sessions withpalevel goal. The corpus

3Although Bauer [1996b; 1996a] introduces a method for angaguch. This is described in more
detail in Section 6.4.2.



119

consists of 20 quests, 4,700 locations, and 7,200 obsectexhs. This corpus was

used to train and test the flat goal recognizer describedahd®es.4.1.

Albrecht et al. report that the corpus data is quite noisystFdecause of player
errors and typos, and also because players in MUDs ofteriaate social interaction
and other activities. It is also important to note that thalgan the corpus are atomic,

as opposed to being parameterized goal schemas.

The Unix Corpus

Lesh [1998] created a goal-labeled corpus in a more coattalktting. He gathered the
Unix corpus using test subjects (users) at the Universitywashington Department of
Computer Science. Users were given an English descriptientask (goal) (such as
“Find a file that contains the word ‘motivating™) which thefien attempted to com-
plete using a subset of Unix commarfd3he users then indicated success or failure
by a special command which terminated the plan session. tbeshpost-processed
the corpus by converting raw command strings into a parametkaction representa-
tion for Unix commands. The corpus is rather small and castanly 59 successful

sessions with 11 distinct godls.

6.3 The Linux Corpus

In Chapter 7, we will present a flat goal recognizer that cawgeize both a goal
schema and its parameter values, which is trained on a gbaldd corpus. Because
the MUD corpus does not include parameterized goal scheinass not ideal for

training and testing the recognizer. The Unix corpus, onatiher hand, does include

4Subjects were not allowed to use a number of constructs spipas or scripting languages like

awk.
SAlthough Lesh used these as parameterized goal schemasrtteeparameters were used for each

goal each time, so these could be thought of as simply 1hdisitomic goals as well.



120

goal schemas and parameters, but was very small. We créatddntux corpus as an

extension to the Unix corpus.

The goals of the Linux corpus collection were threefold.s&iwe wanted to in-
crease the size (i.e., number of plan sessions) of the Umpuso Second, we wanted
to increase the complexity of the recognition task by addnoge goal schemas. And fi-
nally, we wanted to increase the variety of goals by allowmgtiple parameter values

for each goal schema.

We first describe how the Linux corpus was gathered and thenithevas post-

processed. We then make some general observations on tténgesorpus.

6.3.1 Data Collection

Data for the Linux corpus was gathered from volunteer sttgjéaculty and staff in the
University of Rochester’'s Department of Computer Sciencéunteers were instructed
to run a program installed on the local network, which ledriiterough a collection
session. This was advantageous, as it required no humanvsipe and could be
run by users at their own convenience. Multiple concurreetsiwere also supported.
Users were able to run the script as many times as they wishedger to contribute

more plan sessions.

User-Specific Data

On afirstrun by a user, the program gathered general data laino(as detailed below)
and created an account for him. The user was then shown a gehefal instructions
about what the experiment was about and how the plan sedstridsproceed. In
particular, users were told that they would be given a tagkriox to perform, and that
they should perform it using only the command line of the Idhely were currently in.

In addition, they were asked to avoid using certain consdrsiach as pipes or scripting



121

languages, as we wanted to keep the mapping of one commamngl &trone actual

domain action. The actual instructions given can be fourfsopendix A.

Goal and Start State Generation

At the start of each session, a goal and start state weresstiocdly created. Each goal
schema in the domain was given an a priori probability, aedottogram used these to
stochastically choose a goal schema for the session. Eatlsgema had associated
with it a list of possible parameter values for each paranpsition, and one of these

was chosen randomly for each parameter position, givinghussaantiated goal.

Goals were similar to those used in the Unix corpus, inclgdioals like “find a file
that ends in “.txt™ and “find out how much filespace is free dadystem /users.” A list

the goal schemas found in the Linux corpus can be found in AgigeB.

For each session, we generated a new start state — a newodjretiicture and
the files within it® A particular challenge was to ensure that the generatedvgas
achievable. Instead of trying to do this on a case-by-cases gaven a generated goal,

we decided to guarantee that any generated goal would bibjgoissany start state.

To do this, we first settled on a static set of files and dirgch@mes from which
all start states were generated. The set was carefully cwted with the set of goal
schemas and possible parameters. For example, one of thidlpaastantiated goals
was “delete all files which contain more than 40,000 bytes.'miake this achievable,

our static file set included several files which were largant0,000 bytes.

For a given session, we first created a small subset of thetdiyetree which en-

sured that all goals were possible. The remaining part ofrdeewas then generated

6t appears that the Unix corpus used a static start stateaftin session. We chose to generate
random start states to avoid a possible learning effectdrctinpus. Users who participated in multiple
plan sessions may have learned the directory structurehvdoiuld have made certain tasks e.g., finding
files, much easier. Eventually, one may want to model a ukadsvledge of the environment, but we

chose to leave this to future research.



122

randomly given the set of remaining directory names and files

The Plan Session

Once the goal and start state were generated, the user waspi@$ented with the
goal. We followed Lesh in presenting the goal as naturaldageg text to the user. We
associated a template with each goal schema which was tiaééghby substituting

variables with the values of the corresponding schema peteamalues. Appendix B

shows the Linux goal schemas and their corresponding Enigiaplates.

The goal was displayed to the user and he was given a shelpdmpt in which to
input commands. The user's commands as well as their r§tudt®utput tast dout
andst der r ) were recorded and stored in the corpus. In addition, thesysupported

several meta-commands which were not directly recordelddrcorpus:

e success — used to indicate that the user believes that they have ssitdly
completed the task.

e fail — used to end the session without successful task completion

e t ask — used to redisplay the session goal at any time.

i nstruct — used to redisplay the general instructions at any time.

hel p — used to display general help with the system.

The system continued recording commands and results lnatiider used theuccess

or thef ai | command.

Data Recorded

For each plan session, the following data was recorded aaslagable in the raw

version of the corpus:

e Time date and time the session began.



123

e User ID: a unique number that identifies the user.

e Linux level the user’s reported proficiency in Linux between 1 (lowest)l 5
(highest).

e User statuswhether the user was an undergraduate student, gradudenstor
other.

e Goal the instantiated goal schema for the session.
e Goal text the actual text that was presented to the user.
e Reported resultwhether the user reported success or failure for the sessio

e Directory structure the directory tree generated for the session (actual fded u
were static for each session and are also available).

e Commands and resultsach issued command along with its result (from a merged
st dout andst derr stream).

6.3.2 Corpus Post-processing

After the experiments, we performed various operationgdeioto transform the raw

corpus into something we could use for training and testumggoal recognizer.

First, we excluded all sessions which were reported asré&slwas well as sessions
with no valid commands. Although such data could possiblyigeful for training a
recognizer to recognize goals which will not be accomplishg the user alone, we

decided to leave such research for future work.

We also converted issued Linux commands into parameteaziéons. Unlike ac-
tions in many domains used in plan recognition, Linux comdsatio not nicely map
onto a simple set of schemas and parameters. To do the map@ndefined action
schemas for the 43 valid Linux command types appearing icdhngus. This allowed
us to discard mistyped commands as well as many commandeethdted in errors.
More details about this conversion process as well as theflaction schemas them-

selves can be found in Appendix C.



124

Original | Post-processed
Total Sessions 547 457
Failed Sessions 86 0
Goal Schemas 19 19
Command Types 122 43
Command Instances 3530 2799
Ave Commands/Session 6.5 6.1

Table 6.1: Contents of the Linux Corpus

Table 6.1 gives a comparison of the original and post-pseEgyersions of the

corpus.

The post-processed corpus had 90 less plan sessions bdaill 4 where the user
reported success but did not execute any successful constharte drastic reduction
in command types (from 122 to 43) is mostly due to mistypedroamds which either
did not exist or which were not the intended command (ancetbes not used with the
right parameters). The removal of unsuccessful commands was the main cordgribut

to the drop in average commands per session.

6.3.3 General Comments

As discussed above, the Linux corpus was gathered senmratit@ally from humans.
As a consequence, it contains mistakes. A frequent mistalsetypographical errors.
The post-processing step described above helped amelithiat somewhat — as it
was able to detect incorrectly typed commands (at leastsescahere the mistyped
command wasn'’t also a successful command). However, itadrdgked the command
itself, and not its parameters. This lead to cases of theusseg unintended parameters

(e.g.,ls flieinsteadofl s file).

A frequent example was using the commantiinstead of the (supposedly) intendesl.



125

Another phenomenon that we were not able to automaticatlyctievas the user’s
lack of knowledge about commands. For example, one usen getiing the task of
finding a file with a certain name tried several times in vainge the commangr ep

to do so, where the command he was likely looking for waad.®

Finally, another source of noise in the corpus is that thesusemselves reported
whether they had accomplished the task successfully. Wedeen several cases in the
corpus where a user apparently misunderstood the task poded success where he

had actually failed. Overall, however, this does not appehave happened very often.

6.4 General Challenges for Plan Corpora Collection

As discussed above, several plan corpora have been creAtedie discuss in this
section, however, there remain significant challenges tamganore corpora available.
To highlight these, we first present a basic model of corpliean, using natural

language corpora as an example.

A corpus can be seen as consisting of two general parts: €lpiomore sequences
of base dataand (2)annotationson that data. The firstis what is required for a minimal
unlabeled corpus, while the annotations can provide labelf various sorts. Prototyp-
ically, a natural language corpus has base data which isuseq of words. Many dif-
ferent annotations can then be built on top of this (usingatbeds as building blocks),
including parse trees, dialogue acts, and so forth. Sitpjlamplan corpus can be seen
as having base data which is a sequence of actions which earbthannotated, e.g.,

with plans and high-level goals.

It is important to note that the base data is often not diyesttservable. For natural
language texts, base words are often directly availaliet this is not the case for

speech. In this case the raw data (the speech signal) musiierted into the base

8The commandr ep is used to find text in a file or set of files, not to find a file in aediory tree.
9Although this is not the case for languages such as Japarkési o not break words in text.



126

data (typically done by human transcription, although spheecognition can be used
as well).

Based on this classification, we can now divide the challefgegathering new
plan corpora into two categories: getting the base data faeyunlabeled corpus) and

then getting various labels for it. We discuss each of thba#langes in turn.

6.4.1 Getting Base Data

We have now discussed several types of existing plan corpmtading our own contri-
bution: the Linux corpus. Itis interesting to note that mafshese are in the computer
domain. We do not believe that this is a coincidence. Theselamains were the raw
observed data is very close to the form of the desired base(daj., the action rep-
resentation). Although some processing is usually necg$say., our conversion of
command strings to a parameterized actions in the Linuxus)rt can be typically be
automated.

In many plan recognition domains, however, this is not treecdake for example
Kautz’ famous cooking domain which includes actions B | andvakeNoodl es.
Unless these are asserted in language (e.qg., talking d®odomain), they would likely
need to be observed visually. Of course, if actions are rgityeabservable in corpus
collection, it also means they are likely not easily obskledy the plan recognizer
itself, which then begs the question of why we would need slath in the first place.

We believe that it is at least important to keep this point inanhowever.

6.4.2 Getting Labeled Data

Oftentimes, base data is not enough, especially for doipgrsised machine learning.
Often, some sort of labels on the data are needed: e.g., ptahs, and so forth.
In the labeled corpora discussed above, the MUD corpus waslomain with the

special property that the system could notice when a tog-igoal had been reached



127

and record it (although it was not apparent at which poinpthger began pursuing that

goal). In many domains, however, the agent’s goal is notysweadily observable.

For the Unix and Linux corpora, subjects were given a togll@wal and had to
report their own success or failure in achieving it. Thiscofirse, made the top-level
goal labeling easy, but it was also prone to errors in suaegssting, as are described
above. This kind corpus gathering is also potentially esp&n as subjects must be

recruited to perform tasks.

Probably a bigger challenge is getting plan-labeled datais 1§ likely the most
valuable type of corpus for plan recognizers, yet as meatd@bove, we are not aware

of the existence of such a corpus.

An obvious, yet expensive way of obtaining labeled data iaumbannotation. In
natural language processing, this is done frequently wioesutomatic algorithm can
be found for the task. However, manual annotation is timesaming and can be
prone to human errors. Special care must also be taken, veeainhotation task is
divided among annotators, that things are annotated inathme svay (cf. [Carletta et
al.1997]). We are not aware of any such human annotatiomteffahe field of plan
recognition and it is difficult to predict how difficult thedta of plan corpus annotation
would be. We would venture that top-level goal annotatioghbe fairly simple, but
that hierarchical plan annotation would be much more timesaming and error prone.

However, such a hypothesis would have to be tested.

An alternative solution for plan annotation has been preddsy Bauer [1996b;
1996a], who gathered recorded user action sequences aegmanding system state)
from an email program and then used a plan recognizer to tabsl with the appro-
priate goal and plan post hoc. This post hoc recognition @mbch more accurate
than online prediction, because it is able to look at the wledecution sequence and
needs only to make one prediction per session. Bauer usedppisach to tailor the
recognizer to particular users, but it could serve as théirsgigpoint for some sort of

(semi)automatic labeling. Of course, the success of su@dpproach depends on the



128

quality of the recognizer used to produce the labels. A gtgoroblem with this kind
of automatic labeling, of course, is that recognition esriorthe labeling plan recog-

nizer will be propagated in the corpus.

6.5 Generating Artificial Corpora

In contrast to human data collection, we propose the use i @anner and Monte-
Carlo simulation to stochastically generatsificial plan corpora. This method can
potentially be used for any domain and can provide a corpasrately labeled with
goal and hierarchical plan structure. It also provides apheay to produce the kind

of large corpora needed for machine learning. The genertilades as follows:

1. We modify an Al planner to search for valid plans non-detaistically.
2. We model the desired domain for the planner.
3. The algorithm does the following to generate each iterhéxcbrpus:

(a) Stochastically generates a goal.
(b) Stochastically generates a start state.

(c) Uses the planner to find a valid plan for generated goaktartl state.

We first describe our modifications to an Al planner. Then wseuks issues of
domain modeling. We then discuss stochastic generatioheofoal and then of the

start state. Finally, we discuss the characteristics gf@ar generated by this process.

6.5.1 Planner Modification

For plan recognition, we want to create corpora which motglassible plans in the

domain a user may have. Typical Al planners do not suppcst #8 most return the



129

same plan for a given goal and start state. Many plannersrglsmoptimize some plan
property (like length or cost) and therefore would seldortpatilonger, less optimal
plans. We want to include all valid plans for a goal in our e@s0 that we have

broader coverage of the domain.

We, therefore, modified the SHOP2 planner [Nau et al.2008tdomly generate
one of the set of all possible plans for a given goal and state¥ We did this by
identifying key decisions points in the planner and randmng the order that they

were searched.

SHOP2 [Nau et al.2003] is a sound and complete hierarchiaasition network
(HTN) planner. SHOPZ is novel in that it searches plan stejisa order they will be
executed, which allows it to handle complex reasoning ciéipab like axiomatic infer-
ence and calls to external programs. It also allows paytatiered subtasks. The plan-
ning model in SHOP2 consists afethodgdecomposable goalspperators(atomic

actions), anédxioms(facts about the state).

In searching the state space, there are three types of alplglidecisions points,

which represent branches in the search space:

e Which (sub)goal to work on next.
e Which method to use for a goal.

e Which value to bind to a parameter.

In order to provide for completeness, SHOP2 keeps listslgiassibilities for a

decision point so that it may backtrack if necessary. We fremlthe planner so that

101 principle, the corpus generation technique describee isepossible using any planner. The only
caveat is that the planner must be randomized, which may gmuoibe a straightforward thing to do.
One of the reasons we chose SHOP2 was its small code base amtitandesign that was amenable to

randomization.
"There is also a fourth which deals with mmedi at e tasks, but that is beyond the scope of this

discussion.



130

these lists are randomized after they are populated butd#iey are used. This one-
time randomization guarantees that we search in a randoer bud also allows us to
preserve the soundness and completeness of the algoritbrbeNgve our randomized

version is equivalent to computing all valid plans and rantyochoosing one.

6.5.2 Domain Modeling

Each new domain must be modeled for the planner, just as ildabthe intent were
to use the planner for its usual purpose. As opposed to nmar plan generation,
however, care should be taken to model the domain such thlainitencompass all

anticipated user plans.

Usually the planning model must be written by hand, althowghk has been done
on (semi-)automating the process (e.g., [Bauer1998]). Nuwg in addition to the
model of the plan library, which is also used in many plan gegzers, it is also neces-

sary to model state information for the planner.

6.5.3 Goal Generation

With a randomized planner and a domain model, the corpusrgemecan generate a
random plan sessions given a goal and start state. We stweliggenerate both of
these. In this section, we discuss both the process of gamggoals and the addi-
tional domain information that is needed for it. The follogisession gives a parallel

discussion about start states.

We separate goal generation into two steps: generatingodlesghema and gener-

ating parameter values for the schetha.

2Note, these steps are very similar to how we stochasticaihetated goals for users in the Linux

corpus, as discussed above.



131

Goal Schema Generation

In addition to the domain model for the planner, the domaimeher needs to provide
a list of possible top-level goals in the domain, togethehwheir a priori probability.

A priori probabilities of goals are usually not known, bueyhcould be estimated by
the domain modeler’s intuitions (or perhaps by a small hup@pus). The algorithm

uses this list to stochastically pick one of the goal schemas

Goal Parameter Value Generation

In domains where goals are modeled with parameters, thevaltithe parameters
must also be generated. Goal parameter values can be gehbyatising one of two
techniques. For goal schemas where the parameter valuemeg®r less independent,
the domain modeler can give a list of possible parameteesgdhr each slot, along with
their a priori probabilities. For schemas where paramet&res are not independent,

each possible set of parameters is given, along with thelraiilities.

Once the goal schema has been chosen, the algorithm usedisite$o stochasti-
cally generate values for each parameter in the schemaisAtdint, a fully-instantiated

goal has been generated.

6.5.4 Start State Generation

In addition to a top-level goal, planners also need to knosvatate of the world —
the start state. In order to model agent behavior correstiyneed to stochastically

generate start states, as these can have a big effect oratharphgent chooses.

Generating the start state is not as straightforward as ggraération for several
reasons. First, in all but the simplest domains, it will netfbasible to enumerate all
possible start states (let alone assign them a priori pibiied). Second, in order to

make the planning fast, we need to generate a start statedhich the generated goal



132

is achievable. Practically, most planners (including SR>&tevery slow when given
an impossible goal, as they must search through the entaretsspace before they

notice that the goal is impossible.

For these reasons, only a start state which makes the getiegaal achievable
should be generated. Unfortunately, we know of no generglofdoing this'® We do
believe, however, that some general techniques can be assthft state generation.

We discuss these here.

The approach we have chosen is to separate the state mad@laparts: fixed and
variable. In thefixedpart, we represent all facts about the state that should rtaat
across sessions. This includes such things as fixed prepeftobjects and fixed facts
about the state (for example, the existence of certain tshjdee location of cities, and

SO on).

Thevariable part of the state contains facts which should be stochdigtiganer-
ated. Even with the fixed/variable separation, this part gribbably not be a set of
independent stochastically generated facts. Insteadlaimain modeler must come up
with code to do this, taking into account, among other thirdgsmain objects, their
attributes, and other facts in the state. It is likely thdtiga of sets of facts will need to
be fixed simultaneously, especially in cases where they ataatty exclusive, or one
implies another, etc. This process will also likely needealosely linked to the actual
goal which has been generated to ensure achievability. ¢tidde6.6, we describe in

more detail how we generated goals and start states for tmeddaorpus.

6.5.5 The Resulting Corpus

A corpus generated by the process described above will iocomtomplex distribution
of plan sessions. This distribution results from the intBom between (a) the a priori

probabilities of top-level goals, (b) the probabilitiestop-level goal parameter values,

130ne possibility might be backchaining from the goal staltboaigh we have not explored this.



133

(c) the algorithm for generating start states, and (d) m&gton encoded in the plan
library itself. Thus, although it cannot be used to comphted priori probabilities of
top-level goals and parameter values (which are given ad toghe generator), it can
be used to e.g., model the probabilities of subgoals andiatactions in the domain.
This is information which cannot be learned directly frone fhlan library, since the

recipes and variable fillers used are also dependent ortteecstart state.

6.5.6 Related Corpus Generation Work

Conceptually, this method for artificial corpus generatisrbased on work in NLP
which uses grammars to stochastically generate artifioigdara for training language
models for speech recognition [Kellner1998]. Of courserghare many differences in
methodology. Surface string generation from a stochastimgar typically assumes
no context (state), whereas state is very important in gaognition. Also, in surface

string generation, there is no “goal” which restricts a¢abfe output.

Probably the closest work to this from the plan recognitietdfivas done by Lesh
[1998], who used the Toast reactive planer [Agre and Hot$@812] to generate action
sequences given a goal. However, none of the generatiomgsagas stochastic. It
appears that goals were hand-generated, the state waartpasid the planner was not
modified to make decisions non-deterministically, mearinag it always produced the

same action sequence given the same set of goals.

6.6 The Monroe Corpus

The Monroe corpus is in an emergency response domain setmadddCounty, New
York, based roughly on the domain described in [Stent200U¢ created a plan li-
brary with top-level goals such as setting up a temporaritestend providing medical

attention to victims — all top-level goal schemas can be tbimnAppendix D.



134

Linux | Monroe
Total Sessions 457 5000
Goal Schemas 19 10
Action Schemas 43 30
Ave Actions/Session 6.1 9.5
Subgoal Schemas N/A 28
Ave Subgoal Depth N/A 3.8
Max Subgoal Depth| N/A 9

Table 6.2: Comparison of the Linux and Monroe Corpora

Table 6.2 shows a comparison of the contents of the Monrgqausaand the (post-
processed) Linux corpus. The Monroe corpus consists of pfi) sessions with an
average of 9.5 actions per session. The number of totalosesssias, of course, artifi-
cially set and could have easily been changed. The 5000ssssere generated on a

high-end desktop computer in under 10 minutes.

In addition to the information we gave earlier about Linuxg¢al-labeled corpus),
we add several fields here particular to hierarchical cap®dhe Monroe corpus has, in
addition to the 10 top-level goal schemas, 38 subgoal schiefee plans in the corpus
were on average 3.8 subgoals deep. This measures how maey awwey each atomic
action is from the top-level goal. The deepest atomic adgtidhe corpus was 9 levels

away from the top-level goal.

In the rest of this section, we discuss the generation ofsgarad start states in order

to illustrate what may be needed in moving to a new domaindditeon to the creation

of a plan library).



135

6.6.1 Goal and Start State Generation

As mentioned above, the plan library includes 10 goal sclsewtdch are specially
marked as top-level goals (the difference is not specifi@HOP2 itself). In addition,

we added a priori probabilities to each of the goal schemas.

The goal schema was chosen based on those probabilitiescassid above. The
schema is then passed to a function which generates the @@ravalues and the start
state simultaneously. In particular, we start with the figdt state, then stochastically
generate locations for movable objects, and then genetiae domain facts based on

goal schema specific code. We mention these in order here.

Fixed State

The fixed state consists mostly of fixed locations (such asmsomnd hospitals), ob-
jects and their properties. It also includes inferencesrslgpported in SHOP2 which

represent things like object types and properties (e.glf@d = can-drive(x)).

Object Locations

As part of the variable state, we define a setmivableobjects. They are movable in
the sense that we can randomly choose where they were |loateltl as ambulances
and workers). We define a list gsktsof objects, for which it is not importarwhere

they are located, but only that all objects in the set are éensdime location (such as
a vehicle and its driver). We also define a list of possiblatimns, which is used to
generate a random location for each object set. (Note, warems the fixed state that
locations are fully connected so we do not have to worry algoal impossibility at

this step.)



136

Goal Schema Specific

The rest of the state is created, together with parameteesain goal schema specific
functions. In the emergency domain these were typically wémple, usually just

determining which object to use for parameter values.

An example of a more complicated example is that of the gdadsa of clearing
a road wreck, which takes a wrecked car as a parameter. As wetdmodel the
set of all possible cars in the world, we automatically gateea unique car object as
well as its necessary properties (e.g., that it's wrecksdopcation). Note that in cases
where extra properties are generated, these are also sticalig generated from a

priori probabilities (e.g., whether or not the roads arensrjo

6.7 Plan Corpora: Human vs. Artificial

In this section, we raise several issues about the utilitgroficial generation of plan
corpora versus the collection of human plan corpora. As we hest begun to generate
and use such corpora, we do not believe we are in a positicefirti/ely answer these
guestions. Rather, we raise the questions and give sonad thibughts, which we hope
can lead to a discussion in the plan recognition communihe questions treat three
general areas: The effort needed to generate artificialocarghe accuracy of such

corpora; and the general power of the technique.

Effort Obviously, the technique we describe above requires aicamnaount of work.
Minimally, one needs to create a plan library as well as aaralgm for generating start
states. Plan library creation is known to be difficult and gablem for the planning
community in general (cf. [Bauer1998]). This may not be a uaigroblem to artificial
corpora, however, as a plan library would likely be necgsaayway in hand-labeling
human corpora (at least for plan-labeled corpora). State gjeneration is also not

trivial, although in our experience, it was much less wosthuilding the plan library.



137

The main question which needs to be answered here is how fibxe tef create
the machinery for generating an artificial plan corpus camp#o the effort needed to
gather and annotate a human corpus. Before we can answevéhist only need more
experience in generating artificial corpora, but also egpee in producing human

corpora — especially plan-labeled corpora.

Accuracy Another point is how accurately an artificial corpus can nibdenan be-
havior. Ideally, to test this, one would want to gather a hae@pus and independently
generate an artificial corpus in the same domain and then swake sort of compari-
son. Of course, care must be taken here, as we suspect tlzatctimacy of an artificial
corpus will be highly-dependent on the plan library as welttee algorithm for gener-
ating start states. Another, more practical, evaluationld/be the comparison of the
performance of a plan recognizer on human data when it hastb&iaed on artificial

data versus human data.

Power Another question is in which situations an artificial corgasild be success-
fully used to approximate human behavior. The techniquegmied here makes the
simplifying assumption (which is also present in most plecognizers) that an agent
first creates an entire plan and then executes it, and thlataetion is successfully exe-
cuted. This obviously will not work well in domains whereiacis fail and replanning
is necessary. In future work, we would like to adapt this teghe to use an artificial
agent, instead of a planner, to plan and simulate execufidheoplan in creating a
corpus. This would allow us to simulate such phenomena @ndetilure, replanning,
and so forth. In general, we believe that the techniquesrtegpdere can build on ex-
isting work in agents in modeling human behavior and can leéubg most domains

of interest in plan recognition.



138

6.8 Conclusions and Future Work

There is a shortage of corpora which could be used for plaogrétion. However, such
corpora could be used both to train probabilistic recogsias well as to evaluate and

compare performance of different recognizers.

We first described a human corpus we created: the Linux cofffus corpus was

gathered from real users and contains action sequencésdaki¢h a top-level goal.

As human data can be expensive and difficult to collect, we jptesented a new
technique for generating plan-labeled plan corpora usirmgndomized Al planner and
stochastically generated world states. We also presemedddnroe corpus, which was

generated using this technique.

In future work, we want to move beyond just plans, and modea@nal agent.
We believe this would allow us to more closely model agends e would want to
perform plan recognition on, and would include phenomerth s1$ plan failure and
replanning. This corpus generation method would allow uUsakee access to this addi-
tional information (when an action failed, when replannotgurs), which would not

be readily available from human collection.



139

7 Flat Goal Recognition

In this chaptet, we describe our statistical flat goal recognizer and regsmeérfor-
mance on the Linux and Monroe corpora. In Section 7.1, wesételproblem of flat
goal recognition mathematically. We split the problem afagnition into two prob-
lems: recognition of the goal schema (Section 7.2), andgmition of its parameter
values (Section 7.3). We then put the two parts together ati®@e7.4 to form arin-
stantiatedgoal recognizer — which recognizes a goal schema along tgitbeirameter

values. We give some concluding comments in Section 7.5.

7.1 Problem Formulation

In this section, we set up the problem of flat goal recognisitatistically. Before we

do that, however, we need to make a few preliminary definstion

7.1.1 Preliminary Definitions

For a given domain, we define a set of goal schemas, each takiagppmeters, and a

set of action schemas, each takingarameters. If actual goal and action schemas do

1Some contents of this chapter were reported in [Blaylock/Alleh2003; Blaylock and Allen2004;
Blaylock and Allen2005c].



140

not have the same number of parameters as the others, westigrpad with 'dummy’

parameters which always take the same value.

Given an instantiated goal or action, it is convenient teré& the schema of which
itis an instance as well as each of its individual paramedtres. We define a function
Schema that, for any instantiated action or goal, returns the gpoading schema. As

a shorthand, we us&® = Schema(X ), whereX is an instantiated action or goal.

To refer to parameter values, we define a funckanam which returns the value
of the kth parameter value of an instantiated goal or action. As atlshiod we use

X* = param(X, k), whereX is again an instantiated action or goal.

As another shorthand, we refer to number sequences by tigpoats:
I,n=1,2,...,n
This allows us to shorten definitions in the following ways:
Ay = A1, Ay A,

1Lr — A1 g2 r Al A2 r 1 r
A= AL AR AL AL AL AL AL LAY

n—1

7.1.2 Statistical Goal Recognition

We define flat goal recognition as a classification task: gaewbserved sequence of

n instantiated actions observed thus fdy ), find the most likely instantiated goai

g = argmax; P(G|Ai ) (7.1)

2The requirement that goal and action schemas have the samigenof parameters is for conve-
nience in the mathematical analysis. Below we report how ihicircumstance is handled within the

recognizer itself.



141

Using the notation introduced above for referencing sclsesna parameter values,

we can expand goal and actions into their schema and panacoet@onents:

g = argmaxs g1. P(G%, GV AT, A7) (7.2)

1,n

Here G° refers to the goal schema 6f andG' ... G refer toG’s ¢ parameter
values. Each action is similarly decomposed into an actabhrema and- parameter
values. Note that, for now, we assume that each goal haslexaptrameters, and

each action has parameters.

Independence Assumptions

We make two simplifying assumptions at this point, in orademiake recognition more
tractable. First, we assume that goal parameters are indeptof one another, and
second, that goal schemas are independent from action ptaen{igiven their action

schemas). We now discuss each in more detail.

Goal Parameter Independence We make the simplifying assumption that all goal
parameters are independent of one another. This allowenisepharate the probability
of each parameter value into independent terms in Equatirirhis is, of course, not
always the case — an obvious example from the Linux domainasthe source and
destination parameters for a copy goal should not have time salue. However, in

many cases it appears that they are fairly independent.

Goal Schema and Action Parameter IndependenceWe also assume that a goal
schema is independent from an action’s parameter valuesn ghe action schema,
which allows us to simplify the first term in Equation 7.3. e also admittedly not

always the case. In the Monroe domain, tted | action describes a telephone call,

3From now on we drop the argmax subscript when context makdsious.



142

with one parameter: the recipient of the call. This is usethexdomain to turn off
power to a particular location or to declare a curfew, as aglbther things. The first
use always has a power company as a parameter value whezesgstind use includes

a call to the local police chief.

Although conditioning on parameter values could be infdiveait is likely that it
would introduce sparsity problems because of the large rumibpossible parameter

values.

Given these two assumptions, Equation 7.2 can be rewriten a

AP (7.3)

1,n

q
g =argmaxP(G°| A7) [ P(¢7|G7, AT
7j=1

Here, the first term describes the probability of the goakswhG, which we use
for goal schema recognition (Section 7.2). The other teressdbe the probability of
each individual goal parameté¥, which we estimate with our goal parameter recog-

nizer (Section 7.3).

7.2 Goal Schema Recognition

We model goal schema recognition on the first term from Equati3 above:

q° = argmaxP(GS\Af,n) (7.4)

This gives us a goal schema recognizer, which predicts deigd-goal schema given
a list of observed action schemas. In the remainder of ttasose we first describe
the algorithm used for goal schema recognition and therrtéporesults on test cases

from the Monroe and Linux.



143

7.2.1 Algorithm

Using Bayes’ Rule, Equation 7.4 becomes:

P(A7,|G%)P(G®)

s
g~ = argmax (7.5)
P(Af,)
SinceP(AY ) is constant in the argmax, we can drop it:
g° = argmaxP (47, |G*)P(G®) (7.6)

Using the Chain Rule, we can rewrite this as:
g° = argmax P(Aj|A7, _,G%)P(AY_|AY, ,.G%) ... P(AY|G®)P(G®) (7.7)

These conditional distributions are very large and diffitalestimate, therefore,
we make an n-gram assumption, i.e., we assume that an actiemsaA? is only

dependent on the goal sche@a and the;j action schemas preceding h;‘(jﬂ._l).

For example, if we assume thaf' is independent of everything bat* and A7 |,

we get a bigram model:

g° = argmaxP(G%) | | P(A7|AL,, G%) (7.8)

=2
We use data from a plan corpus to estimate the a priori goahsalprobabilities as

well as the n-gram action probabilities.

We have created a goal schema recognizer based on this nygydet. We describe
it here in three phases: First the setup phase, which is rilne atart of the recognition

session. The update and prediction phases are then ruratteiaction observation.

Setup Phase At the beginning of a recognition session, we create a plibtyathis-
tribution for each of the possible goal schemas in the domgimch goal schema is
assigned its a priori probabilityq(G*)), as computed learned from the training cor-

pus.



144

Update Phase Upon each action observation, we calculate the correspgrimgram

probability for each goal schema (for the bigram mabigh? | A7 |, G*)). For smooth-
ing, we use an n-gram backoff strategy when the n-gram waseawst in the training
data. If an n-gram probability is not found in the model, we tleen, — 1-gram proba-
bility multiplied by some discount factoy. This process is recursive: if the— 1-gram

probability is not found, then we back off to tme— 2-gram probability, with an ad-
ditional penalty factor ofy (the total penalty would now be?). This recurses until a
probability is found, or until it goes past the unigram prbiity. In the latter case, we
return a very low probability instead of zero so that we doewr exclude any goal

schema from consideration.

The schema probability distribution is updated calculdtgdhultiplying each goal

schema by the corresponding n-gram probability.

Prediction Phase Once the goal schema distribution has been updated, thgmezeo

now has the option of making a prediction. Unlike other (pdagoal) recognizers of
which we are aware, our recognizer suppaedective predictionwhich means that
it only makes predictions when it has achieved a certainedegf confidence in the

prediction.

We believe this is an important feature for a recognizerlllow the most trivial do-
mains, it is likely not possible to achieve correct predictafter every observed action,
even for humans (cf. [Schmidt, Sridharan, and Goodson}9F3rfect performance
would mean that we would immediately know what the agent wasglafter seeing
just one action. Things are not always that clear. In the Xitomain, for example, a
first action ofpwd, which has very little predictive power, was not uncommonsoi
for goals likenove-fi | es- by- nane it was not always clear that the goal was a
move (as opposed to a copy) until the very last action had pedormed (which was

then typically thertw command).

Instead of having the recognizer make a prediction aftelh ebdserved action, we



145

Action move-file know usage | Prediction
(init) a priori probabilities .30 70| N/A
pwd PG| init, pwd) .50 .50

new probabilities .30 .70| (no prediction)
l's PG| pwd, | s) .30 .70

new probabilities .16 .84| know usage
nv PG| s, nv) .97 .03

new probabilities .86 14| nove-file
l's PG| mv, | s) .80 .20

new probabilities .96 .04| nove-file

Figure 7.1: Schema Recognition Exampte= 0.8

set a confidence threshotd which allows the recognizer to decide whether or not it
is confident enough to make a prediction. If the probabilitthe prediction is greater

thanr, the recognizer predicts. Otherwise, it predicts “donowei

Another feature supported by the recognizer is n-best gliedi For some appli-
cations where the result of goal recognition is used fohrrtreasoning (e.g., natural
language understanding), we do not necessarily need agingtliction, but instead
can predict the: best goal schemas. In the case of an n-best prediction, thelpility
of the prediction is taken to be the sum of the probabilitiethe n individual goals,

and that is then compared againsh deciding whether to make a prediction.

Example To illustrate the algorithm, we give a short (contrived) mxxde here. In
this example domain, there are just two possible goal schekmow usage (know
the disk usage of a particular file) andve- f i | e (move a file to a certain directory).
Figure 7.1 shows the observed actions and resulting céloogaand predictions in an

example plan session.



146

The first line (labeled ’init’) shows the a priori probal#is for the goal schemas
before any action has been observed. Upon observing thadiish pwd), the rec-
ognizer looks up the bigram probabilities of each of the galemas (shown by
P(G| init,pwd)). In this case, both of these probabilities0is, as shown in the fig-
ure. For each goal schema, the bigram probabilities arerthdtiplied by the previous
prediction probabilities (i.e., the a priori probabilg)eand then normalized to a prob-
ability distribution, shown on the line labeled 'new probies’. The recognize then
chooses the goal schema with the highest probabkiho(+ usage) and then com-
pares the probability to the prediction thresheldin this case, the probability of the
prediction (0.7) is not greater than the threshold (0.8)tand, no prediction is made.

For the next observed actiohy), the procedure is the same, except this time, the
recently calculated prediction probabilities are usetkiad of the a priori probabilities.
Here, the probability oknow usage is greater than the threshold, and thus, this

schema is predicted by the recognizer.

The final two predictions occur in much the same way. Bigranbabdities are
looked up and new prediction probabilities are calculatedboth cases, the correct

schemarfove- fi |l e)is predicted.

Complexity

As discussed in Chapter 5, prediction speed and scalabiiityrespect to number of
goals is a needed feature for goal recognizers. For thisneage measure complexity

in terms of the number of possible goal schemé&s)(

At a prediction opportunity (i.e., after an action has beésenved), the update
of a single goal schema can be done in constant time (it is laapitity lookup with
possible n-gram backoff). The entire update phase, théingar in the number of goal
schemag)(|G|). We do the prediction phase during this pass over the goainsah

as well, keeping track of the schemas with the highest probabilities. Thus the entire



147

prediction algorithm (|G

), or linear with respect to the number of possible goal

schemas.

Comparison with Albrecht et al.

In Chapter 5, we described the goal recognizer developed byegt et al. [1998]
and mentioned it is similar to our own flat goal schema recgniNow that we have
described our schema recognizer, we are in a position togisgimilarities and differ-

ences.

At a conceptual level, our recognizer is almost identicahtr actionModel rec-
ognizer, with the exception that they also condition thebptwmlity of the current goal
schema on the previous goal schema. (We assume that therly isn@ goal schema
per session.) They, however, also introduce other modeishvdiso incorporate the
current state in the form of player location and conditioa ¢foal schema probability
on that as well. They also use their models to predict nextgplaction and next player

location, whereas we only predict the goal schema.

Our recognizer uses an— 1 backoff strategy for unseen action/goal combinations,
whereas they do not. Also, our recognizer uses a threshaleléatively make predic-

tions.

7.2.2 Experiments

We tested our goal schema recognizer on both Monroe and lcogpora. We first we
discuss the general metrics we use for evaluating resulgalf schema recognition

and then we discuss the experimental results on the two @rpo

Evaluation Metrics

As Lesh [1998] has pointed out, there is a lack of agreed-ipgoichmarks and metrics

for reporting results in the plan and goal recognition comityu This makes it diffi-



148

cult if not impossible to compare performance across rezegst As we mention in
Chapter 6, one of the contributions of this thesis is a paires corpora (Linux and
Monroe) which can be used as benchmarks for the communithigrchapter and the
next, we also contribute several new evaluation metricelwhre designed to measure

the desired features of recognizers discussed in Chapter 5.

In reporting results for goal schema recognition, we usddhawing metrics:

Precision:the number of correct predictions divided by the total nundjere-

dictions made.

e Recall: the number of correct predictions divided by the total nundfexctions

observed.

e Convergencewhether or not the final prediction was correct (i.e., whethe

recognizeffinishedthe session with the correct answer).

e Convergence pointif the recognizer converged, at which point in the input it
started giving only the correct answer. This is reported @sadient of the action
number (i.e., after observingactions) over the total number of actions for that

case! This is similar to Lesh’s measurement of work saved [Lesi8L99

Precisionandrecall are used to measure overall accuracy of the recognizer, both
in predicting and deciding when to predict. It is importamtrémember that here the
predictions are 'online’, i.e., that they occur after eatlserved action, and not post

hoc, after all observations have been seen.

Convergencandconvergence poirdre an attempt to measure early prediction, i.e.,

how far into the plan session does the recognizer zero in@udirect prediction. We

41t is necessary to report the total number of actions as vRsicause this statistic is only for the
test cases which converged, it is possible that the avecdgmsa per session is different from that of the

entire corpus.



149

Precision (2/3) 66.7%
Recall (2/4) 50.0%
Convergence yes
Convergence Point 3.0/4.0

Figure 7.2: Evaluation Metrics for Example in Figure 7.1

use the term convergence here, as it is often the case thadihgnizer is unsure at the
start of a session, but that at some point it has seen enoudgnee to converge on a
particular prediction, which it then begins predicting gmedicts from that point on (cf.
[Albrecht, Zukerman, and Nicholson1998]). Note that, tog purposes of calculating
theconvergence point the recognizer does not make a prediction (i.e., predans’t
know”), itis considered an incorrect prediction and thevaygence point is reset, even

if the correct prediction was made beforehand.

To illustrate, we refer to the short example given above gufé 7.1. Each of the
above metrics for this example are shown in Figure 7.2. Toutafe precision, we see
that three predictions were made and two of them were cogeahg us 66.7 percent.
For recall, we note there were four possible prediction {sajane after each observed

action), and again, two correct predictions were madengiuis 50.0 percent.

The example does converge, since the last prediction wasatptherefore we can
calculate a convergence point for it. After the third obseraction, the recognizer
made the right prediction, and it kept making this predittioroughout the rest of the
plan session. Thus, we have a convergence point of 3.0 azbactions, over the total
of 4.0 observed actions. Note that for a group of resultsdér@minator will be the

average of total observed actions per each converged pdaiose



150

n-best(r) | 1(0.7)| 2(0.9)| 3(0.9)

Precision 95.6%| 99.4%| 98.9%

Recall | 55.2%| 58.7%| 69.6%

Convergence|| 96.4%/| 99.8%| 100.0%

Convergence Point|| 5.4/10.2| 5.4/10.3| 4.1/10.2

Table 7.1: Goal Schema Recognition Results on the Monroe Corpus

Monroe Experiments

In our experiments with the Monroe corpus, we randomly $etk800 plan sessions
as a test set and trained a bigram model over actions (assdatwabove) using the

remaining 4500 sessions.

Table 7.1 shows results for different n-best predictiomgat We get a precision of
95.6 percent for 1-best prediction, which can be raised té pércent by predicting the
2 best schemas. In 2-best prediction, the correct schemansually predicted for 99.8
percent of sessions. For 1-best, the recognizer convergéseocorrect schema after
seeing an average of 5.4 of 10.2 actions (for those case$iwbiwverge). This means

that, on average, the recognizer zeros in on the predictidtieamore than halfway

through the session.

Recall for 1-best is 55.2 percent, which increases to 69.6epé¢rfor 3-best pre-
diction. Although this may seem poor in comparison to pieaisand convergence
numbers in the 90’s, it is important to keep in mind that, aswestion above, a recall
of 100 percent is usually out of the question, as that wouldmibat we can always
predict the right goal after seeing just one action. We kel®6.2 percent recall (or

70.1 percent for 3-best) to be a very good result.

5The threshold value needs to be individually set for each n-best value. Thalues here were

chosen experimentally.



151

n-best(r) | 1(0.4)| 2(0.6)| 3(0.9)

Precision | 37.6%| 64.1%| 73.7%
Recall | 22.9%| 40.6% | 41.4%
Convergence| 37.4%/| 56.5%| 59.7%

Convergence Point|| 3.5/5.9| 4.0/7.2| 4.1/7.2

Table 7.2: Goal Schema Recognition Results on the Linux Corpus

Linux Experiments

Because of the smaller size of the Linux corpus, we used s@sgiation, testing on

sets of 5 plan sessions at a time and training a bigram mod&leoremaining 452.

Table 7.2 shows results for different n-best values. Thesnsuch different picture
than in the Monroe domain. Precision in the 1-best case is3hb percent, with 22.9
percent recall and 37.4 percent of sessions convergingrelstingly, the convergence

point for 1-best is comparable to that in Monroe.

Although still not near the performance in the Monroe domé#ne 2 and 3-best
results on the Linux corpus are much better than 1-best,prébision jumping to 64.1
percent for 2-best and 73.7 percent in 3-best, with recatkiasing to 40.6 percent and

then 41.4 percent. These results are much more reasonahléth1-best case.

Still, performance on the Linux corpus is much worse thart dmathe Monroe

corpus. We believe there are several contributing factors:

First, the corpora have very different properties. Mosthpreently, the Monroe
corpus has only 10 goal schemas, whereas Linux has almoteditnat amount (19).
In addition, the average session length in Monroe is 9.%astivhereas in Linux it
is only 6.1. Longer sessions can give more evidence to thegrézer, giving more
opportunities to make predictions with more evidence. Alsdhe Monroe tests, the
recognizer was trained on a factor of magnitude more dat@0(48ssions) than in the

Linux tests (452 sessions).



152

In addition, as discussed in Chapter 6, the Linux corpus ia ftatm real humans,
whereas Monroe is artificially generated. Although we dithe@utomatic cleanup of
the Linux corpus (as described in Appendix C), many humarotstrstill survived. In
one example, a user used the commgnép to try to search for a file in a directory
tree @Qr ep is for searching for text in files, not files in a directory). cBumistakes
served as a kind of red herring for the recognizer, pointingfrongly in the wrong

direction (in this case a text search), and often ruininglteg$or an entire session.

Another factor seems to be goal similarity. Some of the golémas used in the
Linux corpus are very similar (e.d.j nd-fi | e- by- ext andfi nd-fil e- by- nane).
The recognizer often confused these (and other simila$gisals). This is one of the

reasons for the big performance increase in the 2 and 3-beditpon results.

7.3 Goal Parameter Recognition

In order to recognize instantiated goals, we need to rezegmoal parameter values
as well as goal schemas. One straightforward way of doirgywhiuld be to treat

instantiated goal schemas as atomic goals and then use @hsajema recognition

algorithm from above. Thus, instead of estimatiRgmove-files-by-nanfis,cd), we

would estimateP(move-files-by-nanfa.txtbdir)|Is(paperd,cd(prog9).

This solution has several problems. First, this would rteisulin exponential in-
crease in the number of goals, as we would have to consideosdlible ground in-
stances. This would seriously impact the speed of the akgori It would also affect
data sparseness, as the likelihood to have seen any n-gréme mmaining data will

decrease substantially.

For this reason, we perform goal schema and parameter réicogseparately, as
described in Equation 7.3 above. From the last term of thatému we get the follow-

ing for a single parametey':



153

¢’ = argmaxP(G7|G®, A7, A7) (7.9)

1,n

We could estimate this with an n-gram assumption as we dideabidowever, there
are several problems here as well. First, this would makaigsdat least linear in the
number of objects in the world (the domaing}), which may be expensive in domains
with many objects. Second, even without a large object spaeemay run into data
sparsity problems, since we are including both the actibes@as and their parameter
values. In addition, this model would not work for domainkgILinux) where domain

objects (e.g., files) can be created or destroyed duringresgission.

The solutions above also miss out on the generalization dft@ntimes, theosi-
tionsof parameters are more important than their values. For pbaithe first param-
eter (i.e., thesource fil¢ of the actionnv is usually thef i | enanme parameter of the
goalnove-fil es- by- nane, whereas the second parameter (i.e.,dhstination

almost never is, regardless of the parameter’s actual value

For our parameter recognizer, we learn probability digtrdns of equality over
goal and action parameter positions. During recognitioa,use these distributions
along with a special, tractable case of Dempster-Shafeorijite dynamically create a
set of possible parameter values and our confidence of therohwe use to estimate

Equation 7.9.

In this section we first describe this model and then reposgeriments using it

on the Monroe and Linux corpora.

7.3.1 Algorithm

Formally, we want to base our recognizer on the followingbatality distribution:
P((G7 = A¥)|G®, A?), which represents the probability that the value of tte pa-
rameter of actiord; is equal to theth parameter of the go&l, given both the goal and

action schemas as well as the two parameter positions. Natert this distribution,



154

thevalueof the parameter is not considered, onlyptssition We can easily compute

this conditional probability distribution from our traimg corpus.

To use the above model to predict the value of each goal schamameter as we
observe actions, we need to be able to combine probabifiiesach parameter in
the observed action, as well as probabilities from actioadimon. In order to do this
tractably, we have introduce a special subset of Dempstafe Theory (DST) which
we callsingleton Dempster-Schafer ThedgPST). We first give a short introduction
to DST, and then describe sDST. Then we describe the recagaitgorithm and its

computational complexity.

Dempster-Shafer Theory

Dempster-Shafer Theory (DSTis a generalization of probability theory which allows
for incomplete knowledge. Given a domdin a probability mass is assigned to each
subset of(2, as opposed to each element, as in classical probabiligryheé&uch an

assignment is calledlzasic probability assignmeiibpa).

Assigning a probability mass to a subset in a bpa means thatiage that level
of confidence in the subset, but cannot be any more specific exanple, suppose
we are considering the outcome of a die réll & {1,2,3,4,5,6}).” If we have no
information, we have a bpa @f({2 = 1), i.e., all our probability mass is dn. This is
because, although we have no information, we are 100 peceetatin thaone of the

elements in is the right answer; we just cannot be more specific.

Now suppose we are told that the answer is an even numberisinabe, our bpa
would bem({2,4,6}) = 1, we have more information, but we still cannot distinguish
between the even numbers. A bpamf{2,4,6}) = 0.5 andm({1}) = 0.5 would

intuitively mean that there is a 50 percent chance that tmebeu is even, and a 50

6See [Bauer1995] for a good introduction.
"This example is taken from [Bauer1995].



155

percent chance that it is 1. The subsetS)othat are assigned non-zero probability

mass are called tHecal elementsf the bpa.

An often-cited problem of DST is that the number of possildeal elements of
Q is the number of its subsets, Bf2l. This can be a problem both for storage and

computation time.

Evidence Combination Two bpasm andm’ representing different evidence can be

combined into a new bpa using Dempster’s rule of combination

> m(Bym'(B)
(m D m’)(A) _ BNB'=A (710)
> m(Bm/(B)

BNB'#£0)

The complexity of computing this ©(l,,1,./|<?|), wherel,,, andl,,, are the number
of focal elements inm andm/, respectively. Basically, the algorithm does set inter-
section (thg(2| term) on each combination of focal elements fromandm/'.2 As the
number of focal elements of a bpa can2ig, the worst case complexity of Dempster’s

rule of combination i€ (exp(|©2])), whereQ2 is the set of objects in the domain.

Singleton Dempster-Schafer Theory

In our goal parameter recognizer, we use a special case op&lerrSchafer Theory
which we termsingleton Dempster-Schafer ThedgDST), in which we only allow
focal points in a bpa to either be singleton sets{2dthe full set). sDST has several
nice properties:

First, because we only allow singleton sets &nals focal elements, a bpa can have
maximally |2| 4+ 1 elements. Not only are there a decreased number of poseitsdé f

elements in sDST bpas, but set intersection for evidencdtwng becomes simpler as

8We only need consider the focal elements here, since nai-€ements have a probability mass 0,

which will always makgm @ m’)(A) = 0.



156

well. As mentioned above, Dempster’s rule of combinatioriggens a set intersection
of each combination of focal elements fram andm’. With sDST focal terms, set
intersection can be done in constant time. We show this byoarg each possible

combination of focal element setsandb from sDST bpas:

1. Botha and b are singleton setsin this case the single values are compared in
constant time. If they are the same, the intersection is & obp. If they are

different, the intersection is.

2. One ofa and b is a singleton set and the other §& In representing? in the
system, we do not need to actually store each individualevadia set. Rather,
we can just use a special variable that marks this focal eleaebeing2. In
the case that one focal elemenfisthe intersection will always be a copy of the
other focal element. No inspection of set contents is necgsthus this can be

done in constant time as well.

3. Botha andb are €2: Actually, this is a special case of the preceding case. When
both elements ar@, then the intersection i3, which does not require any special

inspection of set contents and can also be done in constaat ti

These three cases exhaust the possible focal element catiobhs in combining
two sDST bpas. Thus, the complexity of Dempster’s rule of loimiation of two SDST
bpas isO(l,,1,») or O(|Q?) in the worst case.

sDST is also closed under Dempster’s rule of combinatione pioof actually
follows from the three cases intersection we enumerateeablvall three cases, the
resulting set is either: the empty set (in which case it isarmgeér a focal element), a

singleton set, of).



157

Representing the Model with sDST

As stated above, we estimaltg (G7 = A¥)|GS, AY) from the corpus. For a given goal
schemaz® and theith action schemal?, we define docal bpam{f’k for each goal
and action parameter positiopndk s.t. m  ({A¥}) = P((G7 = AF)|GS, A?) and
ml(Q) = P((G7 # AF)|GS, A7). This local bpa intuitively describes the evidence
of a single goal parameter value from looking at just one mpatar position in just
one observed action. The bpa has two focal elemegnté}, which is a singleton set
of the actual action parameter value, dadThe probability mass of the singleton set
describes our confidence that that vdlisethe goal parameter value. The probability

mass of) expresses our ignorance, as it did in the die roll exampleeaifo

In order to smooth the distribution, we always make sure ¢él@nents2 and A*
are given a small probability mass. If either one is has poibya mass of 1, a very

small value is taken from that and given to the other.

There are several things worth noting here. First, if a golaéma has more than one
parameter, we keep track of these and make predictions #iemt separately. Also,
we do not need to represent, enumerate or évewthe elements of2. This means
that we can handle domains where the set of possible valwesyidarge, or in which

values can be created or destroyed. (Both of these are pexpefthe Linux domain.)

Combining evidence As mentioned above, we maintain a sepapagliction bpan’
for each goal parameter positign Each of these are initialized ag'(2) = 1, which

indicates complete ignorance about the parameter values.

9Note that this is the actual instantiated value and not pstpsition. Two instances of the same

action schema with different parameter values will creiffereént bpas.
1ONote here thaf? is the set ofall possible domain values and still includd§. The reason for

this is that just because we may not have seen much evidencg fgiven the action schema doesn’t
necessarily mean that? is not the goal parameter value. It just means that we don't yet haveh
evidence that its the value. We actually ran experiments in whi¢hlid not include any of the values in

the singleton focal elements and, while precision went ealt dropped significantly.



158

As we observe actions, we combine evidence within a sindgleraand then among
single actions. First, within a single actienwe combine each of the local bpa&j’k
for each parameter positiorny which gives us amction bpam{ . This describes the
evidence the entire action has given us. Then, we combinewudence from each
observed action to give us an overpikdiction bpathat describes our confidence in
goal parameter values given all observed actions so farh@feuse this prediction bpa

to make (or not make) predictions.

When we observe an actiofy(py, ps, . . ., p,) We create local bpas for each action
parameter positiom?, ... m? . The action bpan] is the combination of all of these:
m] =m], &@ml,...®m],. The prediction bpa is similarly calculated from all of
the action bpas from observed actions: = m} & mj & ... © m]. However, we can
calculate this incrementally by calculating’ = m’ @ m{ at each action observation.

This allows us to only do 1 action-bpa combination per obsgaction.

It is worth nothing here that only values that we have seemascton parameter
value will be part of the prediction bpa. Thus, the maximurmber of focal elements
for a bpam’ will be the total number of unique action parameters sears phe (for
). As a corollary, this means that our method will not be abledrrectly predict
a goal parameter unless its value has been seen as an acat@onepar value in the
current plan session. On the other hand, it means that weredicpparameter values
that were never seen in the training data, as long as theyaappthe observed actions.
In the reported results below, we report results of totahlteand also ‘recall/feasible’,
which restricts recall to the prediction points at which #hgorithmhad access tthe
right answer. Admittedly, there are cases in which the cbmparameter value could
be learned directly from the training corpus, without hgvbeen seen in the current
session, although it is unclear how often this occurs. larutvork, we would like to

investigate ways of learning both parameter values andiposi



159

Prediction At some level, we are using the prediction bpa as an estimafithe term
P(GY1G®, A7, Ar',) from Equation 7.9 above. However, because the bpa corftains

it is not a true probability distribution and cannot provalédirect estimation. Instead,

we usel) as a measure of confidence in deciding whether to make a poedic

To make an n-best prediction, we take thsingleton sets with the highest proba-
bility mass and compare their combined mass with thd®.off their mass is greater,
we make that prediction. 2 has a greater mass, we are still too ignorant about the

parameter value and hence make no prediction.

In order to more finely control prediction, we add a factortis tomparison which
we callignorance weigh{v). In deciding whether or not to make a predictiéhjs
multiplied by ) before it is compared with the probability of the predictiovilues
of ¢ greater than 1 will cause the recognizer only to predict wimeme sure of the
prediction, whereas values between 0 and 1 will cause tlognezer to predict more

profusely.

Complexity

The other thing to mention is computational complexity oflafing the prediction bpa
for a single goal parameté?. We first describe the complexity of computing tile
action bpam{, and then the complexity of combining it with the previougdliction
bpam’.

To computem{, we combiner 2-focal-element local bpas, one for each action pa-
rameter position. If we do a serial combination of the logaa® (i.e.,m! = ((m{,1 ®
ml,) @mly) @ ... ®ml,), this results i — 1 combinations, where the first bpa is an
intermediate composite bpﬁ{ and the second is always a 2-element local bpa. Each
combination (maximally) adds just 1 subsetiip (the other subset i8 which is always
shared). Thék — 1)th combination resulf:/,_, will have maximum lengtft + 1. The

combination of that with a local bpa is @ + 1)). Thus, the overall complexity of the



160

r—1
combination of the action bpa iy O(2(k + 1)) = O(r?), wherer is the arity of the

k=1
observed action.

The action bpan? is then combined with the previous prediction bpa, whichdas
maximum size of-(i — 1) 4+ 1 (from the number of possible unique action parameter
values seen). The combination of the two bpa®isr?), which, together with the
complexity of the computation of the action bpa becort¥g? + r*) ~ O(ir?). r
is actually constant here (and should be reasonably sreallje get a complexity of
O(7). This is done for each of thegoal parameters, bytis also constant, so we still
haveO(:). This gives us a fast parameter recognition algorithm wigdmear in the
number of actions observed so far, and is not dependent anuthber of objects in the

domain.

7.3.2 Experiments

We tested the goal parameter recognizer on the Monroe ant lcorpora as we did
the schema recognizer. We discuss each corpus in turn,bafegly mentioning the

metrics we use in reporting results.

Evaluation Metrics

In evaluating the parameter recognizer, we use the samemet did for the schema
recognizer. We also report two new metricscall/feasibleandconvergence/feasihle
which measure how much recall/convergence the recogniefrgm what it could
feasiblyget. As mentioned above, the recognizer can only predictegathat it has
seen as action parameter values within the current sestlarsrecall/feasibleis the
number of correct predictions divided by the number of felasprediction points, i.e.,
points at which the goal parameter value had already apgp@sran action parameter
value.Convergence/feasiblaeasures the number of correct last predictions in a similar

fashion.



161

n-best(y) | 1(2.0)| 2(2.0)| 3(2.0)
Precision || 94.3%| 97.6%| 98.8%
Recall | 27.8%| 39.2%| 40.0%
Recall/Feasible|| 55.9%| 78.9%/| 80.6%

Convergence|| 46.9%| 76.2%| 76.7%

Conv./Feasible|| 59.1%| 96.1%| 96.7%

Convergence Point|| 5.1/10.0| 4.8/9.0| 4.7/9.0

Table 7.3: Goal Parameter Recognition Results on the MonroguSor

Monroe Experiments

We tested the parameter recognizer on the Monroe corpug isaiime way we did the
schema recognizer, training the probability model on 45¥X3®ns and testing on the

remaining 500. The results of the tests are shown in Table 7.3

Here the recognition results are quite good, with high [gieaieven in the 1-best
case. Recall and convergence, as can be expected, are latieanly 27.8 percent
recall for 1-best. Looking at the measures of recall/fdasibd conv./feasible, however,
shows that the algorithm is doing quite good for the casesiti@an. In only 49.6
percent of parameter prediction points had the paramelee 2&tually appeared as an
action parameter value. In fact, in only 79.4 percent of sakeé the parameter value

appear as an action parameter value at all. Thus the adjresteli and convergence

measures are much higher.

Convergence point performance is also very encouraginggledi less than half-
way through the session, even in the 1-best case. In factietsble convergence
point (i.e., the average point in the action stream when #rarpeter value appears) is
3.8/9.1, which means that the recognizer is converging erright prediction around

only one action after the parameter value appears in therastieam.



162

n-best(y) | 1(2.0)| 2(2.0)| 3(2.0)
Precision | 90.9%| 93.2%| 91.4%

Recall | 32.1%| 35.8% | 37.0%

Recall/Feasible|| 57.1%| 63.8% | 65.9%

Convergence| 54.4%| 60.3%/| 62.1%

Conv./Feasible|| 66.2%| 73.5%| 75.6%

Convergence Point|| 3.5/6.2| 3.4/6.2| 3.6/6.4

Table 7.4: Goal Parameter Recognition Results on the Linuxu3orp

Linux Experiments

The Linux corpus was tested using cross-validation withidieatical test set used for

schema recognition. The results are shown in Table 7.4 foousn-best values.

Performance for Linux is also quite good, and is only slightbrse than that for
Monroe. Precision starts at 90.9 percent and rises to 93czpein the 2-best case.
Interestingly, precision goes down in the 3-best case. iBhiiecause the recognizer
makes more predictions, as it is more sure of the 3-bestgired] but it appears that

the third best value tends not to be the right value, and trmger-predicts.

Recall, convergence, and convergence point are compacgideformance in Mon-
roe. In the Linux corpus, feasible recall is 56.1 percentfaadible convergence is 82.1
percent. The feasible convergence point is 2.8/6.2, theisgbognizer is recognizing

parameter values soon after it sees them.

Some errors in Linux are attributable to typographical erfocom the user similar
to those described above. For example, when a user typetl i e instead ofl s

fil e, this causes the recognizer to consifler e as a possible parameter value.



163

7.4 Instantiated Goal Recognition

We now turn our attention to building anstantiatedgoal recognizer using the schema
and parameter recognizers. This brings us back to our atijanmulation of goal
recognition above, particularly to Equation 7.3. We haveoal gchema recognizer
which estimates the first term, and a goal parameter recegmihich estimates the
each of the terms for each parameter position in a goal schéfathematically, we
simply need to compute the argmax to get the most likely m&teed goal, although,
as we will see, this is not so straightforward, especiallyéf want to support n-best

and patrtial prediction.

The argmax in Equation 7.3 is an optimization problem oveers# (g + 1) vari-
ables (%, G1%), wheregq is the arity of the goal schema. Although this could mean a
big search space, it remains tractable in the 1-best caseibeof an assumption made
above: namely, that goal parameter values are indepenfienecanother (given the
goal schema). This means that, given a goal scheinthe set of individual argmax re-
sults for each goal parametgris guaranteed to be the maximum for that goal schema.
This now becomes an optimization problem over just two weist the goal schema

and its parameters.

Although computing the argmax works well in theory, there several problems
with using it in practice. First, it only gives us the 1-bestgiction. The search space
gets larger if we want an n-best prediction. Second is thelpno mentioned earlier
about goal schema arity. Straight probability compariseitisnot work for goals with

different arities, as lower-arity goals will tend to be faed.

Partial prediction is also a problem. We want to supportiglapredictions by al-
lowing the recognizer to predict a (possible empty) subs#teparameter values for
a goal schema. This will allow us to make predictions everases where the param-
eter recognizer is unsure about a specific parameter, anihlcags on the ability of

the stand-alone parameter recognizer to not make a pradlicticases where it is not



164

certain.

In doing partial predictions, however, we encounter a r@tension. On one hand,
we want the predictions to be as specific as possible (e gdigiras many parameter
values as possible). On the other hand, we want high precasid recall for predic-
tions!! A recognizer which made only full predictions would give pesific predic-
tions (with all parameters predicted), but would likely Bdew precision/recall. At
the other extreme, we could just predict the goal schemahwhiauld give us the best
chance for high precision/recall, but no parameter infdioma Yet another dilemma
is how to compare two predictions when one has more predpeaimeters than the

other.

Because of these problems, we have decided to take a sligtiésedt approach to
building our instantiated goal recognizer which capitgion the prediction ability of

the schema and parameter recognizers as they are.

7.4.1 Algorithm

Our instantiated goal recognizer works as follows: at edoseoved action, we first run
the goal schema recognizer. This makes an n-best predwftischemas (or does not
if the confidence threshold is not reached). If no predicisomade by the schema rec-
ognizer, the instantiated recognizer also makes no predidf the schema recognizer
does make a prediction, we use the parameter recognizerk®e fmanot make) 1-best
predictions for each of the parameter positions for eacthefbest schemas. This
automatically gives us partial prediction if a predictismiot made for one or more pa-
rameter positions in a schema. The combined results themtfue n-best instantiated

prediction.

Note that this algorithm does not give us true n-best redaitshe search space.

It instead chooses the n-best goal schemas, and then fgaigcpredicts parameters

11n a way, specificity adds a third dimension to the existingsien between precision and recall.



165

for them. A true n-best result would include the possibibfyhaving a goal schema
twice, with different predictions for parameters. Howevas mentioned above, we
did not see an obvious way of deciding between, for exampimah schema with no

parameters predicted, and that same goal schema with oameia@r predicted. The
latter is guaranteed to not have a lower probability, bug @ more specific prediction.
Although we do not provide true n-best prediction, we baieur algorithm provides

a natural way of deciding between such cases by appealihg foerameter recognizer

itself.

Complexity

For an observed action, the recognizer first runs the scheomgnizer Q(|G|)) and
then runs the parameter recogniz@(4)) for each parameter position)(of each goal
schemal(G|).12 This gives us an overall complexity 6f(|G| + |G|iq) or O(|Gliq). As

q is constant and small, this becom@s¢|G|:), which is linear in the number of goal
schemas and the number of actions observed so far. Whichdtyexdnat we need for

speed and scalability.

7.4.2 Experiments

We tested the instantiated goal recognizer on the Monrod.entk test sets using the
same procedure as outlined above. On average, the recogtitie for Monroe was
0.2 seconds per action, and 0.4 seconds per action for Lintxuwmoptimized Perl

code on a high-end desktop PC.

2Note that, although we only need run the parameter recogoizthe n-best schemas to get immedi-
ate results, we need to run it for all schemas to keep the pilitgaassignments for the other parameters

up to date.



166

n-best(r/v) | 1(0.7/2.0)| 2(0.9/2.0)| 3(0.9/2.0)
Precision 93.1% 95.8% 96.4%

Recall 53.7% 56.6% 67.8%
ParamPctg 20.6% 21.8% 22.3%
Convergence 94.2% 97.4% 98.6%
ConvParamPctg 40.6% 41.1% 48.4%
Convergence Point| 5.4/10.0f 5.5/10.1] 4.4/10.2

Table 7.5: Instantiated Goal Recognition Results for the Mer€orpus

Evaluation Metrics

We use the same evaluation metrics for the instantiatedgrezer as well did the
schema recognizer above. In addition, we use two new megsiesigned to mea-
sure the specificity of predictionParamPctgreports, for all correct predictions, the
percentage of the parameter values for that goal that werigbed. ConvParamPctg

reports the same for all sessions which converged.

Monroe Experiments

Results on the Monroe test set are shown in Table 7.5. Perfmerfallowed schema
recognizer performance quite closely, being slightly lowéh the addition of param-

eter recognition.

The specificity measures of ParamPctg and ConvParamPctg2@&@ercent and
40.6 percent respectively for the 1-best cismeaning that, on average, a correct pre-
diction had just over a fifth of its parameter values predictghereas a correct final

prediction had under half predicted. These reflect the Facal convergence perfor-

13They also remained fairly constant over the n-best valuésyugh this is likely a reflection of the
fact that the recognizer only uses the 1-best predictiom fitee parameter recognizer, regardless of the

n-best value for the overall instantiated recognizer.



167

n-best(r/v) | 1(0.4/2.0)| 2(0.6/2.0)| 3(0.9/2.0)
Precision 36.3% 60.2% 68.8%

Recall 22.1% 38.1% 38.7%
ParamPctg 51.5% 50.0% 51.6%
Convergence 36.1% 53.8% 56.5%
ConvParamPctg 51.8% 49.0% 49.4%
Convergence Point 3.6/5.8 4.0/7.0 4.1/7.0

Table 7.6: Instantiated Goal Recognition Results for the xi@orpus

mance of the parameter recognizer (30.5 percent and 49cgrmierespectively for

1-best).

Linux Experiments

Results on the Linux test set are shown in Table 7.6. Thesddallswed the schema
recognizer results fairly closely, being lower with the @ida of the parameter predic-

tions.

In the Linux corpus, correct predictions had around halfhairt parameters in-
stantiated, while the Monroe corpus had just over a fifthhéligh both corpora had
fairly comparable performance in (stand-alone) paranretagnition, it appears that a
greater portion of the correctly predicted goals in the Mendomain happened to be

goals for which the parameter recognizer did not have asdfigécall.

7.5 Conclusion

In this chapter, we have presented a statistical recogaofzep-level instantiated goals
and presented results on the Linux and Monroe corpora. Tognezer is fast and scal-

able (linear in the number of goal schemas and actions obdesw far), and supports



168

partial prediction. The recognizer does very well on the kendomain and decently

for 2 and 3-best prediction on the Linux corpus.

In addition, we have presented a set of metrics for evalgdtie accuracy, early
prediction, and prediction specificity of recognizers. Vépé these will be adopted by

the community to facilitate easier comparison of goal redizogss.



169

8 Hierarchical Goal Recognition

In the previous chapter, we introduced an algorithm for ftatlgecognition, or recog-
nition of a agent’s top-level goal given observed actionghis chapter, we move to the
case ofhierarchical goal recognition — recognition of the chain of an agent’svact

subgoals within a hierarchical plan.

Recognizing such chains of active subgoals (hencefgoti chaing can provide
valuable information not available from a flat recognizarst:though not a full plan,
a goal chain not only provides information about which gaal agent is pursuing, but

also a partial description dfow.

Additionally, the prediction of subgoals can be seen as a dfpartial prediction.
As mentioned in previous chapters, when a full predictiorisavailable, a recognizing
agent can often make use of partial predictions. In our flabgaizer, we allowed
partial prediction through the possible omission of predits of parameter values. A
hierarchical recognizer can additionally predict an agesnutbgoals, even when it is still
not clear what the top-level goal is. This can allow a recegnto make predictions
much earlier than it can predict top-level goals. We susphettthe longer (in actions)
and more involved a plan is, the longer, on average, it wiéti recognize the top-
level goal. In fact, there is evidence that humans use suipgediction as a type of

partial prediction [Schmidt, Sridharan, and Goodsonl19@8pecially in interpreting



170

language [Carberry1990Db].

In building our hierarchical goal recognizer, we take themsdasic approach we
did to flat goal recognition. In Section 8.1, we present adrighical goal schema
recognizer and in Section 8.2, a hierarchical goal parametegnizer. We then discuss
how the two are combined into a hierarchical instantiatead ggrognizer in Section 8.3.

We then conclude in Section 8.4.

8.1 Goal Schema Recognition

Hierarchical goal schema recognition can be describecedsllowing problem: Given

a set of observed atomic action$,(,) determine the agent’s top-level goal (G) as well
as the chain of subgoalsy(p_;) from G to the last observed actioA,() (wheresS; is
the subgoal immediately beneath G a$igl ; is the subgoal immediately abovg,).
Note that for each subgoal, we indicate dispthby how many steps it is away from
the top-level goal. We can therefore consider the top-lgeal G to actually be5,

although we will frequently refer to it as G.

As an example, consider the plan tree shown in Figure 8.%rAlbserving action
A1.5, the goal chain to be recognized would lae { S;.; : S5.3), the (sub)goal nodes
which lead from the top-level goal to the latest observeibactAfter observing the

next action @), we would want to recognizéx: Si.5 : So.4).

In moving to hierarchical recognition, it was our hope to bkedo be able to reuse
our flat schema recognizer, recognizing immediate subgadaach level and then us-
ing those results to predict subgoals at the next level ups Was unfortunately not
possible. The flat schema recognizer is basically a classiigiven an ordered list of
observed actions, it labels the plan session with a tod-tged. However, consider the

bottom level of the plan tree from Figure 8.1:



171

&
L e

& @3

At this level, instead of having a single goal to predict, &sdid in flat recognition,
we have five. Still worse, we do not know in general how manygsals we have at

the next level, or at which point one ends and the next begins.

When we consider the next level up, things only get worse. @ensecognition of

subgoals at level 1.:

© ©
Voo O©6

If we are cascading recognition results up, we would nowdéweting level 2 as input

(i.e., observed actions). At the atomic action level (lek®) we know that there is a



172

new action at each timestep. At this middle level, we do navkwhen each subgoal
at level 2 ;) ends, as well as not knowing when each subgoal at levé] lefpds. In
addition, we are also uncertain of our observed outfiit, (vhereas the flat recognizer

assumed that we observddwith certainty.

As we discussed in Chapter 5, other hierarchical goal rezegnie.g., [Pynadath
and Wellman2000; Bui, Venkatesh, and West2002]) deal wekelproblems by taking
an approach similar to parsing. In both approaches, thevalguit of productions are
used to define legal sequences of nodes at the level beloveehgbal. We have chosen
to take a different approach, based on the forward algorithifidden Markov Models,

which allows us to perform recognition without the need a¢a@ped production rules.

In the remainder of this section, we first discuss a new typgabhical model used
in our recognition algorithm and how we use it to represeahpl We then describe
the schema recognition algorithm itself and then reporeérmental results using the

recognizer.

8.1.1 Cascading Hidden Markov Models

In our hierarchical schema recognizer, we utilize a typerapgical model we have
termed aCascading Hidden Markov Model (CHMMyvhich consists ofD stacked
state-emission HMMsH,, ;). Each HMM (H,) is defined by a 5-tuple

(04, ka, I, Aq, Bg) Whereo, is the set of possible hidden stategijs the set of possible
output states]l; = {m4.;},7 € o4 is the initial state probability distributiond, =
{aq.4;},1,5 € oq4is the set of state transition probabilities; aBg= {bs.i},i € 04, k €

kq 1S the set of output probabilities.

The HMMs are stacked such that for each HMNj, the output state is the hidden
state of the HMM below it ;). For the lowest levelK _,), the output state is the

We use here a similar notation to that in [Jurafsky and Ma@0], although they define an arc-

emission HMM.



173

©-0-0- 6
GH6-¢

OG-~

)~~~ —()

Figure 8.2: A Cascading Hidden Markov Model (CHMM)

actual observed output. In essence, at each timeste@ have a chain of hidden state
variables § p_1.;) connected to a single observed outpltat the bottom level. An

example of a CHMM is shown in Figure 8.2.

Here, thedth HMM (i.e., the HMM which starts with the hidden statg,;) is a
normal HMM with the output sequencg, ,,. As we go up a CHMM, the hidden level

becomes the output level for the level above it, and so forth.

We will now discuss the differences between CHMMs and othenanchical HMMs.
We then discuss how inference is done with CHMMs, in particuiaw the forward

probability is calculated, as this is a key part of our regtgn algorithm.

Comparison to Hierarchical HMMs

Hierarchical HMMs (HHMMS) [Fine, Singer, and Tishby1998icithe closely related
Abstract HMMs (AHMMSs) [Bui, Venkatesh, and West2002] repneishierarchical in-
formation using a limited-depth stack of HMMs. In these nisdan hidden state can
output either a single observation, or a string of obsesuati Each observation can also
be associated with a hidden state at the next level down hadain also output observa-

tions, and so forth. When a hidden state outputs an obsemyaimtrol is transferred



174

to that observation, which can also output and pass con@ohtrol is only returned
to the upper-level when the output observation has finistsedutput. This is similar
in function to a push-down automaton although it is not egjent, as HHMMs only

support a finite depth.

In contrast, a CHMM is much simpler. Here, each hidden stateocdy output a
single observation, thus keeping the HMMs at each levelék-ktep. In other words,
in CHMMs, each level transitions at each timestep, wherelsaosubset transitions in

HHMMs.

Below, we use CHMMs to represent an agent’s execution of araigical plan.
As we will discuss there, mapping a hierarchical plan onto &8Hresults in a loss
of information which could be retained by using an HHMM (duj, Venkatesh, and
West2002]). However, using CHMMs allows us to do tractabléneninference in
terms of the number of possible states (subgoals). Exasbnéag in HHMMs has been

shown to be exponential in the number of possible statespMuand Paskin2001].

Computing the Forward Probability in CHMMs

An analysis of the various kinds of inference possible withMMk is beyond the
scope of this thesis. Here we only focus on the forward allgiori which is used in our

schema recognition algorithm below.

Normal HMMs In an HMM, the forward probability

Oél(t) = P(Ol,t; Xt = Z|H, A, B)
describes the probability of the sequence of outputs obsdeaup until timet (o, ;) and
that the current stat&, is ¢, given an HMM modelIl, A, B).

The set of forward probabilities for a given timestEp(a(T) = {«(T),i € o})

can be efficiently computed using the so-called forward rélgm. The forward algo-



175

rithm uses a state lattice (over time) to compute the forvwaabability of all inter-
mediate states. This allows it to efficiently compute forvprobabilities for the next
timestep by simply using those from the previous timestemgidynamic program-

ming. The algorithm works as follows:

First, «(0) is initialized with the initial state probabilitie$l). Then, for each sub-
sequent timestefy individual forward probabilities are computed using tbédwing

formula:

a;(t) = [Z a;(t — 1)%’] bjo, (8.1)

€0
The complexity of computing the forward probabilities fosequence of’ obser-
vations is Of¢|?T) (whereo is the set of possible hidden states). However, as we will
be using the forward probability in making online prediasan the next section, we
are more interested in the complexity ®xtendinghe forward probabilities to a new
timestep (i.e., calculating(¢ + 1) given«(t)). For extending to a new timestep, the

runtime complexity is Q¢|?), or quadratic in the number of possible hidden states.

Algorithm Overview In a CHMM, we want to calculate the forward probabilities for
each depth within a given timestepi(t) = {aq(t)},d € 0,D — 1, wherea,(t) =
{aai(t)},i € o4. This can be done a timestep at a time, cascading result®optifre

lowest level O — 1). The basic form of the algorithm is shown in Figure 8.3.

Initialization of each level occurs as normal — as if it wera@amal HMM —
using the start state probabilitieslify. For each observation newy, the new forward
probabilities for the chain are computed a bottom-up faststarting withap, 1 (2). At
this level, the new forward probabilities can be computetbaa normal HMM using

the formula in Equation 8.1.

We then move up the chain, computing one forward probalsktyat a time, using

the results of the lower chain as observed output. Howevegamnot use Equation 8.1



176

t=0
initialize eachn,(0) as usual (usingl,)
. loop
t=t+1
o, = nhew observation
calculaten, 4 (t) givenap_1(t — 1) and using, as observed output
for d = D — 2 downto0 do
calculateny,(t) givenay(t — 1) and usingy,, 1 (t) as observed output
end for
. end loop

©e NPT R®NRE

[N
o

Figure 8.3: Algorithm for Calculating Forward Algorithm fQHMMs

to calculate these forward probability sets (¢)). This is because the normal forward
algorithm assumes that output is observed with certaintyilé\this was the case for
level D — 1 (where the output variable is), for all other levels, the output state is

actually also a hidden stat&’(, ), and is thus uncertain.

We overcome this by first observing that, although we do nawkihe value of
Xa11. With certainty, if we have the forward probability set foatmode {,.1(¢)), we
can use it as a probability distribution over possible valior the state. As discussed
above, we can compute the forward probability set at theobotevela,_4(t), which
gives us a probability distribution over possible values<gf ;.. In order to calculate
the forward probability at the next level up,_»(¢) (as well as higher levels), we need
to augment the forward algorithm to work for HMMs with un@ent output, which we

discuss now.

Computing the Forward Probability with Uncertain Observation The forward

algorithm for a single HMM can easily be adjusted to handéedhise where the output
state is uncertain (i.e., we have a probability distributaver possible values). The
initialization step remains the same. We calculate forvpaababilities for subsequent

timesteps using the following equation (instead of Eque8d):



177

agi(t) = [Z Qg.i(t — 1)%‘]’] Z at1:(t)bji (8.2)

icog k€ogiq
As in Equation 8.1, the forward probability is calculatedtasproduct of two terms,

corresponding to the probability of transition to that stahd the probability of the

output from the new state. In calculating with uncertainaslagtion, the state transition

term remains the same (the sum of all weighted transitiobaiihties). We change the

output probability term to be a weighted sum over all possdaltputs §) multiplied

by their output probabilitiesh(,). This sum gives us the total probability that whatever

was output was output when the HMM was in state

Algorithm Complexity The complexity of computing the forward probability with
uncertain output at a levelfor 7" timesteps i$)(T'(|o4|* + |o4||oas1|)) Where the term
|o4]|oar1| comes from the summing over output probabilities. If we assthat the
set of possible states is roughly the same at each lexgh( ~ |o4|), the complexity
become®)(T|a,4]?), which is unchanged from the complexity of the forward aithon

with certain output.

As mentioned above, because we are making online predigtiva are also in-
terested in the complexity axtendingforward probabilities to the next timestep. In
this case, this also remains the same as that for the normvedufe algorithm, and is

O(|o4|?), or quadratic in the number of possible states at each level.

In a CHMM, calculating the next chain of forward probabil#jeas described in
Figure 8.3, simply calculates the next forward probaletitior each level. Thus the
overall complexity of extending the chain given a new obagon is O(D|0 4. |?),

whereo ... is the level with the most possible states, dnhi the depth of the CHMM.



178

00000000
OO OOE

O-OOOO-00e-E

Figure 8.4: The Sequence of Goal Chains Corresponding to #meTiPge in Figure 8.1

8.1.2 Mapping Plan Trees onto CHMMs

Our basic approach to hierarchical goal schema recogngitmmodel a plan tree as
a CHMM and to use forward probabilities to make predictionsath subgoal level.
Given a plan-labeled corpus, we convert it to a sequenceafaains, which we can

then use to learn transition and output probabilities ferdbhema recognizer.

Up until now, we have modeled plans as trees (e.g., as showigure 8.1). In
hierarchical goal recognition, however, we do not try tcogrdze the entire tree (which
would beplanrecognition), but rather thgoal chain or sequence of subgoals from the
last observed action to the top-level goal. We can, in thig wanvert a plan tree into
a sequence of these goal chains, one for each observed actmoic. For example, the
results of converting the plan tree in Figure 8.1 into a lisgoal chains is shown in
Figure 8.4.

Note that subgoals which span more than one timestep ardysilmplicated across
all timesteps in that span. Below, we will discuss the rantifoces of this expansion,
including the fact that, at upper levels, sequence infoilonas lost. First, however, we
must discuss one more issue that must be dealt with. The gaai<in the plan tree
in Figure 8.1 are all the same depth. This, however, may nedyas be the case. A

CHMM, however, is required to be of uniform depth. We now dsschow this case is



179

©
O

Figure 8.5: A Plan Tree with Varying Depth

handled.

Handling Differences in Plan Tree Depth

Paths in a plan tree need not necessarily be of the same défgimodel plan de-
composition through recipes which can include subgoalsedsas atomic actions, at
any level. As an example, consider the plan tree in Figurel8ese, observed actions
(A, 4) exist at various depths in the tree. Actiadgand A; are the deepest at depth 3,
whereasA, is at depth 2 (it is the child of subgo4l.;). Note the case aofi,, which is

a direct child of the top-level go&r.

As mentioned above, in order to convert trees to CHMMs, we nheddve leaves
all be at the same depth. To do this, we expand each leaf whitboi shallow by
copying the node which is its immediate parent and insertihgtween the parent and
the leaf. We repeat this until the leaf node is at the propethdeWe refer to these
copies of subgoals aghostnodes. The result of expanding the tree in Figure 8.5 is
shown in Figure 8.6, which can then be converted into the CHMbWs in Figure 8.7.
Note that by doing this expansion, we make each possibleositilagia particular depth
Sq a possible subgoal at each subsequent depth, as it can leel topower levels as a

ghost. As a simplification below, we will just assume thathesgbgoal is possible at



180

:

Figure 8.6: The Expanded Version of the Plan Tree in Figube 8host nodes are

-9

shown as rectangles.)

P

@@

9

Figure 8.7: The Sequence of Goal Chains Corresponding to tbartebed Plan Tree in
Figure 8.6

each depth. Thus, we will simply useto refer to the set of all possible subgoals (at

any level, including top level goals).

Discussion

In mapping plan trees to CHMMs, we lose certain informatioowtliree structure,

which is retained in approaches which do goal schema rettognising a tree-like



181

structure (e.g., Abstract HMMs [Bui, Venkatesh, and Wes2@» grammars [Pyna-
dath and Wellman2000]). Consider again the plan tree fromrgig.1 along with its
corresponding CHMM (in Figure 8.4). Atdepth 1 (i.e., the fiestel below the top-level
goal), two subgoals are executefl.; andS;.,. This transition occurs after timestep
5, and the information that the preceding subgoal #ascan be used in making pre-
dictions at timestep 6. In subsequent timesteps, howeweldpwse this information
because of the Markovian assumption. Thus, at timesteeH KM at level 1 thinks
that the previous subgoal w&s.,, although the lasactual subgoal wass;.;. Further-
more, for cases where a subgoal of a certain type is follovyeal $uibgoal of the same
type, it becomes impossible to determine if these compmngeon two instances of the

subgoal in the original tree.

As we discussed briefly above, the advantage to making tmgliication is im-
proved runtime complexity. Exact inference in hierarchié®Ms has been shown to
be exponential in the number of possible states [Murphy askiR2001], while we
have shown that computing forward probabilities in CHMMs mdyoquadratic in the

number of possible states.

8.1.3 Recognition Algorithm

Schemarecognition is performed by constructing a CHMM amtute forward prob-
abilities to make predictions at each subgoal depth. Wedestribe how the CHMM
is trained, and then how predictions are made. We then am#thgzruntime complexity

of the recognition algorithm.

Training the CHMM

As a CHMM is really just a stack of HMMs, we need to learn transifprobabilities

(Ay), output probabilities B,;) and start state probabilitieH () for each deptld. These



182

are estimated from a plan-labeled corpus in which each@essiconverted into a

sequence of goal chains, as described above.

Predictions

At the start of a recognition session, a CHMM of appropriatgtddor the domain is
initialized with start state probabilities from the mod®lpon observing a new action,
we calculate the new forward probabilities for each depihgithe CHMM forward

algorithm described in Figure 8.3.

Using the forward probabilities, n-best predictions aredenaeparately for each
depth, using the same prediction method used in our flat selreoognizer (as de-
scribed in Section 7.2). The most likely schemas are chosen, and their combined
probability is compared against a confidence threshdldf the n-best probability is
greater tham, a prediction is made. Otherwise, the recognizer does maligrat that

level for that timestep.

It is important to note that using this prediction algorithmeans that it is possible
that, for a given timestep, subgoal schemas may not be peeldat all depths. It is
even possible (and actually occurs in our experiments testbelow) that the depths
at which predictions occur can be discontinuous, e.g., digiien could occur at levels
4, 3, and 1, but not 2 or 0. We believe this to be a valuable feas subgoals at

different levels may be more certain than levels below, ddpeg on the domain.

Complexity

The runtime complexity of the recognizer for each new obsgtimestep is the same
as that of forward probability extension in the CHMK(D|S|?), whereD is depth of

the deepest possible goal chain in the domain (not incluthegbserved action), and

2Although it would be possible to set a separate thresholddoh depth, our results below are based

on using a single threshold for all levels.



183

S is the set of possible subgoals (at any level). Thus the ghgois linear in the depth

of the domain and quadratic in the number of possible sulkgodhe domain.

8.1.4 Experiments

We now report on two sets of experiments using the hieraatigioal schema recog-
nizer. For both experiments, we used the Monroe corpusgelivinto the same set
of training and testing data as used for the experiments omeftagnition described
in Chapter 7. Note that we did not perform experiments on tmenticorpus, as our
algorithm requires a plan-labeled corpus for learning thé/®H and the Linux corpus

is only top-level goal labeled.

Before we describe the experiments and their results, haywseedescribe how we

report results.

Result Reporting

We report results for individual subgoal depths, as welbtas$. For each depth, we use
the same metrics we used for flat schema recognition in Ch@pterecision recall,
convergenceandconvergence pointHowever, as there are some differences with flat

recognition, we make two changes to how these are counted.

First, as described above, in modeling goal recognitiorgerwé plan tree has leaf
nodes at differing depths, we insgttost nodeabove the shallow leaves. When we are
performing goal recognition, the assumption is that ea&i giaain is the same length,
and predictions are potentially made at each level. Uporrobyy a new action, it
is unknown at which depth of the plan tree it was before extendccurred — the
recognizer simply makes predictions for the entire goailrgh@ossibly including ghost

nodes.

In reporting results for each level (and in the total), e notcount predictions

when the correct answer was a ghost node. Ghost node posdietids to be correct,



184

and thus resulted in heavily inflated results, especialigvagr depths. The introduction
of ghost nodes is a product of our use of CHMMs, and thus it isiund credit these

as correct predictions.

The second change we make to result reporting involves cgemee and conver-
gence point. Subgoals may only correspond to one timesigpiteey only resultin one
executed atomic action), in which case, it does not makessdengport convergence or
a convergence point. For all levels, we only report conwecgeand convergence point

for subgoals which correspond to at least 2 timesteps.

The Pure Forward Algorithm

We first tested the algorithm as described above on the samminty and testing data
from the Monroe corpus as used in the experiments in Chapireé/results of the test
are shown in Table 8.1. We first look at the results for prauiciop-level goal schemas

(level 0) and then explore the other levels.

Top-level Results In interpreting the results, we first refer back to the resaftflat
schema recognition reported in Chapter 7, on the same dat&@etonvenience, we

show the results of flat recognition again in Table 8.2.

Of course, flat recognition was only concerned with predgtine top-level goal,
which is the same as level O for the hierarchical recognkzerrecall, convergence, and
convergence point, the two recognizers perform fairly egjently, both in 1-best and
2-best prediction. Precision, however, is markedly lowmehie hierarchical recognizer,
for both the 1-best and 2-best cases. Whereas precisiortip8tent for 1-best in the
flat recognizer, it drops to 85.7 percent for the hierardhmeeaognizer. A similar drop

in precision from 99.4 percent to 91.5 percent is shown irRthest case.

Although there seem to be several factors involved in thigpdit is perhaps most
important to mention two. First is, as we mention above, tiss bf true bigram infor-

mation within the hierarchical recognizer. In the hieréacehrecognizer, the top-level



185

1-best(t = 0.7) 2-best(r = 0.95)
level || prec. | recall | conv.| conv. pt| prec.| recall | conv.| conv. pt
0 || 85.7%/| 55.7% | 97.0%| 5.3/10.2| 91.5%| 57.4%| 97.0%| 5.1/10.2
1| 87.1%| 42.4%| 61.2%| 3.7/6.5| 99.7%| 51.4%| 72.1%| 3.2/6.1
2| 69.1%| 35.3%| 45.3%| 3.5/4.8|| 100% | 24.3%| 45.7%| 4.1/4.8
3| 70.2%| 32.6% | 30.1%| 2.1/3.1| 95.9%| 79.2%| 86.8%| 3.2/4.5
41 66.0%| 54.7%| 61.8%| 3.3/3.7| 92.3%| 79.1% | 87.3%| 2.4/3.7
5| 59.0%| 45.9%| 6.2%| 3.8/4.2| 98.8%| 98.8%| 100% | 1.2/3.9
6 || 69.3%]| 69.3%| 0.0% N/A | 100%| 100% | 100%| 1.0/4.0
7 95.2%| 95.2%| N/A N/A | 100%| 100%| N/A N/A
8 || 100%| 100%| N/A N/A | 100%| 100%| N/A N/A
Total | 76.6% | 45.1%| 59.4%| 4.1/7.0|| 95.7%| 57.8% | 74.4%| 3.7/6.5

Table 8.1: Results of Schema Recognition using the CHMM

1-best(r = 0.7) 2-best(r = 0.95)
level | prec. | recall | conv.| conv. pt| prec.| recall | conv.| conv. pt
top || 95.6% | 55.2%| 96.4%| 5.4/10.2| 99.4%| 58.7% | 99.8% | 5.4/10.3

Table 8.2: Results of Flat Schema Recognition on the MonroeuSdfpm Chapter 7)

goal is predicted based on predictions at the next immedi#tgoal level (level 1) as
opposed to directly from the action observation level akésfiat recognizer. As men-
tioned above, converting a plan tree into a sequence of d@ahs can loose explicit

information about the actual previous subgoal.

Secondly, and most importantly, a direct comparison of rilgm performance is
difficult because the hierarchical is doing much more thampg top-level goal clas-
sification as was done in the flat recognizer. As we discuskeabéginning of this

chapter, direct application of the flat algorithm was notsilole for hierarchical goal



186

recognition. The hierarchical recognizer presented heteonly recognizes goals at
the top level, but at every subgoal level as well. The togllgwoal is a special case
because there was only one per session. Arguably, we copldiym performance by
using the hierarchical recognizer for the subgoal levetsthen the flat recognizer for
top-level recognition, although this then looses the galiEation that the hierarchical

recognizer can also handle cases where several top-lezisl g pursued serially.

Other Levels Results at lower levels are not as good as those at the top [Elel
foremost reason is that there is actually more competiticloveer levels. At lower
levels, many more subgoals are possible (even top-levds$ gibmough ghost extend-
ing), whereas only the 10 top-level schemas are possiblevat 0. Also, there are
several lower-level subgoals per level throughout a gossiea. Only one top-level
goal makes the transition probabilities much simpler atitipelevel as well (basically

transition probabilities are 1 between the same schema@ bativeen any others).

That said, in the 1-best case, recognition results areyfgobd for levels 1 and
7, and 8, although there is a trough between them. A partialaeation is that, at
higher levels, there are less competitors (because of highel subgoals can appear
as ghosts at lower levels, but not vice versa). Thus, as we nwolower levels, things
become harder to predict. At the same time, the lower we gx;ltser to the observed
output, and thus closer to certain information. Thus thetlas levels have very good
precision and recall because they are so closely relatdetoliserved action. (Levels
7 and 8 contained no subgoals which span more than one timésiece convergence

and convergence point are not reported.)

It appears that in the middle (e.g., levels 2-6), the recgniends to not be able
to distinguish well among competitors. That this is the czame be shown by looking
at the 2-best case, where all levels move to the 90’s or 10&epéefor precision and

also improve dramatically in recall.Thus, for the middle levels, the next best com-

SExcept for level 2 recall, which seems to be a quirk in the daitds irregularity disappears in our



187

petitor seems to often be the right one. However, as infaomas cascaded up the
CHMM, middle levels only have the level immediately belowrthas context for up-
dating probabilities. In a followup set of experiments, wed to make the recognizer

more predictive by adding more information.

Adding Observation Information

In order to try to improve performance, we added observdgwal information to the

calculations at each level. We did this by making both tri@msiand output proba-
bilities context dependent on the current and last obsemetidn (bigram). The idea
was that this would tie upper-level predictions to poss#imals present only in the
actual actions executed (as opposed to just some highar-ggneric subgoal). This is
often done in probabilistic parsing [Charniak1997], whesadal items are included in

production probabilities to provide better context.

The only change we made was to the transition probabilitig$ énd output prob-
abilities (B;) at each level. Thus, instead of the transition probability; being
P(X4: = j|Xat—1 = i), we expand it to be conditioned on the observed actions as
well:

Qg5 = P(Xd:t = led:t—l = i) Ot7 Ot—l)
Similarly, we added bigram information to the output prabaés (b,.;.):

bair = P(Xae = 1| Xay14 =k, O, O1_1)

These distributions were learned from the corpus. We aled tl#e corpus to es-
timate the corresponding unigram (over observed actiostjildutions as well as the
original transition and output distributions from the lagperiments. In the case that

a bigram context with the transition or output context hatlbeen seen in the corpus,

next experiment.



188

1-best(t = 0.7) 2-best(r = 0.95)

level || prec. | recall | conv.| conv. pt| prec.| recall | conv.| conv. pt

0 || 85.6%| 58.6%| 100% | 5.2/10.2| 90.7% | 62.0%| 100% | 4.9/10.2
84.3%| 54.8% | 71.8%| 2.9/6.1| 96.1%| 77.3%| 99.0%| 2.3/5.6
89.3%| 46.3% | 45.8%| 3.4/4.7| 93.0%| 64.3%| 84.4%| 3.5/4.8
74.8%| 42.8%| 41.2%| 2.7/3.5| 97.6%| 80.1%| 99.0%| 3.5/4.5
78.7%| 53.5%| 61.8%| 3.3/3.7| 97.0%| 73.2%| 100% | 3.2/3.8
59.3%| 46.1%| 6.2%| 3.8/4.2| 99.1%| 77.1%| 100% | 2.0/3.9
69.3%| 69.3%| 0.0% N/A | 100%| 100% | 100%| 1.0/4.0
95.2%| 95.2%| N/A N/A | 100%| 100%| N/A N/A
100% | 100%| N/A N/A | 100%| 100%| N/A N/A

0 N 0| |WIDN|BE

Total || 81.9% | 52.3%| 65.0%| 3.8/6.8| 94.9% | 71.4%]| 95.7%| 3.3/6.1

Table 8.3: Results of Schema Recognition using the CHMM and i@asen Informa-

tion

we used the unigram and then original distributions as dagkobabilities. At each

backoff step, we multiplied the resulting probability by enalty of 0.5.
The results of using this modified recognizer are shown ineras.

The addition of observation context resulted in a slighjpdrotop-level precision,

although it did result in an increase in recall.

The real improvement, however, can be seen in the middi¢slevbere both preci-
sion and recall went up in most cases. For example, precigitavel 4 rose from 66.0
percent to 78.7 percent and recall at level 2 went from 35r6qm to 46.3 percent.
That there was an overall improvement in both the 1-best bes?-cases can be seen
in comparing the level totals. For 1-best, total precisioserfrom 76.6 percent to 81.9

percent, and recall rose from 45.1 percent to 52.3 percent.



189

8.2 Goal Parameter Recognition

In this section, we describe a hierarchical goal paramet&gnizer which (selectively)
predicts parameter values for each depth in a goal chain.steod-alone parameter
recognition, we make the same assumption we did in Chaptemiely, that we know
a priori the goal schemas in the chain. We also make the assumtpat we know
when each subgoal begins and ends. We remove these assisnplien we move to
full instantiated recognition in the next section. We alssuane a CHMM model of

plan execution, where each subgoal level transitions &t @estep.

We first describe the recognition algorithm, and then theltef tests on the

Monroe corpus.

8.2.1 Recognition Algorithm

Parameter recognition is performed separately at eacth degh the same basic al-
gorithm used for flat recognition. For each levielwe define grediction bpasn/,

j € 1, q for each subgoal parameter positiph These prediction bpas are then updated
and used to make predictions after each new observed adtieriirst discuss the ini-
tialization phase of the algorithm, then how updates octtireabottom level. We then

discuss updates at upper levels and finally, we analyze gjogitim’s complexity.

Initialization

At each depthi, we initialize a set of; prediction bpasn’’, j € 1,¢ s.t. m%7(Q) = 1.
As parameter recognition is necessarily tied to the comeding goal schema, each set
of prediction bpas is associated with the beginning goadisehat each level,.;. This

is similar to what was done in the flat parameter recognizer.

4For clarity of discussion, we assume that all goal schemad &tion schemas) have the same
number of parameter positiogs In the algorithm itself, this is dealt with in a similar wag that in
Chapter 7.



190

As we will describe below, each of these prediction bpas ecemputed at each
timestep and are used to make predictions. As opposed tathredbgnizer, however,
in all but the top level, subgoal instances may change duhagession. When a new
observation corresponds to the start of a new subgoal atarcével, we reinitialize
the prediction bpas at that level before integrating the aeldence. The reasons for
this are twofold. First, as mentioned above, parametergrazers are specific to a
certain goal schema. Thus, a parameter recognizer for alisghemaX cannot be
used to recognize parameters for subgoal schEma&lso, even if the two subgoals
instances have the same schema, they will likely have difftgparameter values. Thus
keeping the prediction bpas from the previous recognizeunldvpossibly cause the
recognizer to keep predicting tlodd parameter values. What we want to do in either
case is start out with a blank slate. We discuss below howabwiigh this problem in

instantiated recognition, where subgoal changes are motrkmvith certainty.

Updates at the Bottom Level

At the bottom level D—1), we are dealing with certain output (i.e., the observemalrt
and thus can perform parameter recognition as we did forahedke. Upon observing
actionA;, we calculate a set of local bpasfk‘lij , Which represent the evidence that the
kth action parameter provides for tlign goal parameter. This local bpa is calculated by
using the probability that the action parameter value isstimae as the goal parameter

value given the context, i.e., the following probabilit((S5,_, = A¥)|S3,_,, AY).

For the observed action, each of thhdéocal bpas (one for each action parameter
position) are combined (using Dempster’s rule of comborgtio create an action bpa
mP =" which holds the evidence for goal parametdrom action4,. The predic-
tion bpam?”~17 is then updated through combination with this action bpais T

unchanged from the flat recognition algorithm.



191

Updates at Upper Levels

At higher levels, we need to modify the recognition algaritbecause of two compli-
cations: uncertain output and multiple output instanceisivbelong to the same event.

We discuss each in turn.

Dealing with Uncertain Output As we move up the goal chain, the subgoal schema
at leveld + 1 becomes the output action at levkl The parameter recognizer expects
an instantiated action as input, and thus we integrate thenpeter probabilities from
the recognizer at level + 1 to form a goal schema with uncertain parameter values.
Instead of integrating just the predicted n-best parametieres for each position, we
include each prediction bpa for each parameter positiothiischema from the level
below: (ni*t1J),

To handle uncertain parameter values, we change the Waylemjrbpamf:g is
calculated. We first initialize the local bpa to be a copy ef plarameter prediction bpa
from the level belown,,.;. This is then weighted by the positional equality prob#ili
used aboveP((S5,_, = AF)|S3_,, AY). Bpa weighting is done using Wu’s weighting
formula [Wu2003]:

wm(A) : forallA: ACQ, andA # Q
m/(A) = (8.3)
wm(A)+1—-—w : A=Q
wherem is the bpa to be weighted andis the weight. This equation basically weights

each of the focal points of the bpa and redistributes lodtgiodity to 2.

The resulting weighted bpa is then used as the local bpatinguprocessing.

Dealing with Multiple Output Instances A more subtle change in the algorithm at
upper levels arises from the fact that subgoals at the lesfeMbmay correspond to

more than one timestep. As an example, consider again thelgmia sequence shown



192

in Figure 8.7. At level 2, the subgo&l.; lasts for 2 timesteps. At the lowest level, we

are assured that each observed action is a separate insfarcaction.

This becomes a problem because Dempster’s rule of combimaiakes the as-
sumption that combined evidence bpas come from indeperdents. For the case
in Figure 8.7, when predicting parameters for the level Jgsah we would combine
output evidence frond,.; two separate times (as two separate action bpas), as if two

separate events had occurred.

The parameter distributions fék.; will of course likely be different at each of the
timesteps, reflecting the progression of the parametegrezer at that level. However,
instead of being two independent events, they actuallyatfle estimates of the same
event, with the last estimate presumably being the mostrate(because it itself has

considered more evidence at the output level).

Thus, we need to change the update algorithm to additiohkakp track of the
prediction bpa formed with evidence from the last timesteihe most recentlgnded
subgoal at the level below, which we will call theest subgoal prediction (Isp) bpaht
a new timestep, the prediction bpa is formed by combiningattiemn bpa with this Isp
bpa. If this timestep does not end the subgoal at the levehh#hen this prediction bpa
is only used to make predictions at this timestep and therstacdded. If the subgoal
below does end, then we save this prediction bpa as the nelpkspln this way, we

treat evidence from continuing subgoals as updates, thste@ew events.

Prediction

Prediction is done separately at each level in the same wegsitin the flat recognizer.
The n-best parameter values for a given position are chasertheir combined weight
is compared against the ignorance meagunaultiplied by the specified ignorance
weight.



193

Complexity

To calculate a new prediction bpa for a given parameter iposét a given depth, we
combineq local bpas (one for each output parameter position) to makecion bpa.

This action bpa is then combined with the Isp bpa. This resunl total combinations.

As discussed in Chapter 7, the complexity of combination oD3E bpas is the
product of their sizes. In the flat recognizer, local bpasengraranteed to only have
2 elements, however, this is not the case in hierarchicalgmtion. Local bpas at
upper levels will have the number of elements as the predidipa at the level below.
As an upper bound for local bpa size, we note that, at timestiggal bpas can only
contain parameter values which have been seen in the oldssetiens up to that point
A1, t. Thus the maximum number of unique parameter values seenvidereq is the
maximum arity of observed actions. Thus the complexity est#y combinations is
O(t*¢®).

For a single timestep, we computenew prediction bpas &b levels, giving us an
overall complexity ofO(Dt?¢*). As q is constant (and likely small), we drop the term,

making the complexity)( Dt?) or quadratic in the number of actions observed thus far.

8.2.2 Experimental Results

We tested the recognizer on the Monroe corpus in the same svihedlat recognizer
in Chapter 7. The results of the tests are shown in Table 8.4ilRese given using the
same metrics used for the flat recognizer and using the samievedcounting scheme
used for reporting results for the hierarchical schemageizer above. We first look at

the results at the top level (i.e., level 0) and then the dehesls.

Top-level Results

To help interpret the results, we compare performance dbfhievel to that of the flat

recognizer (which only made predictions at the top levedy. ¢onvenience, the results



1-best(y) = 2.0)

level | prec. | recall | recall/feas.| conv. | conv./feas.| conv. pt
0 || 98.6% | 25.8% 52.0%| 44.7% 56.3%| 5.0/9.9
1| 99.7%| 26.4% 52.0%| 39.9% 55.2%| 4.1/6.3
21 96.7%| 53.0% 76.4%| 51.6% 57.7%| 2.5/4.8
3| 98.7%| 73.8% 89.4%| 73.8% 74.1%| 3.1/4.1
4 1 99.3% | 80.0% 94.6% | 80.9% 80.9%| 3.3/3.8
5 || 97.5%| 82.6% 91.1%| 53.1% 53.1%| 2.2/3.9
6 || 99.9%| 98.3% 99.3% | 50.0% 50.0%| 2.0/4.0
7 || 100%| 100% 100%| N/A N/A N/A
8|l 100%| 100% 100%| N/A N/A N/A
total | 98.5% | 51.7% 76.5%| 51.6% 61.2%| 3.5/5.7
2-best(y) = 2.0)
level | prec. | recall | recall/feas.| conv. | conv./feas.| conv. pt
0 97.7%] 40.1% 80.8% | 76.0% 95.8% | 4.7/9.0
1| 99.9%| 41.3% 81.2%| 63.6% 88.0%| 3.5/5.7
2 1| 99.6%| 65.9% 95.1%| 82.9% 92.8% | 2.8/4.7
3| 99.8%| 81.0% 98.2%| 97.6% 97.9%| 3.4/4.5
4| 100% | 83.3% 98.5% /| 97.6% 97.6%/| 3.3/3.9
5| 100%| 89.7% 99.0%| 93.0% 93.0%/| 2.5/3.9
6 || 100%| 99.1% 100% | 100% 100%| 2.5/4.0
7 || 100% | 100% 100% | N/A N/A N/A
8 || 100% | 100% 100% | N/A N/A N/A
total || 99.5% | 62.4% 92.4%| 78.6% 93.2%| 3.5/5.6

Table 8.4: Results of Parameter Recognition

194



195

1-best(y) = 2.0)

level | prec. | recall | recall/feas.| conv.| conv./feas.| conv. pt

top || 94.3%| 27.8% 55.9% | 46.9% 59.1%| 5.1/10.0

2-best(y = 2.0)

level | prec. | recall | recall/feas.| conv.| conv./feas.| conv. pt

top || 97.6%| 39.2% 78.9%| 76.2% 96.1%| 4.8/9.0

Table 8.5: Results of Flat Parameter Recognition on the Mo@arpus (from Chap-

ter7)

of the flat parameter recognizer on the same data set are shdable 8.5.

The hierarchical recognizer performed slightly better athbthe 1-best and 2-best
cases. In 1-best, precision moved from 94.3 percent to ¥8dept, although there was
adrop in recall from 27.8 percent to 25.8 percent. In the &-terognizer, results were

slightly better all around.

The reason for the improvement in performance is likelylaitable to the fact that
(perfect) subgoal schema information was present in theuttkical recognizer. This
allowed parameter values to be considered given the imrieediald subgoal, giving

better context for predictions.

Other Levels

The hierarchical recognizer performed well at other leaslIsvell, with precision stay-
ing (for the 1-best case) in the high 90’s and even up to 100emerfor levels 7 and 8.
This performance inched up for the 2-best case (with 100gpe¢narecision for levels
4-8).

It is interesting to note that recall begins quite low (25e8gent for level 0) and then

climbs as we go down levels, reaching 100 percent for levaelsd/8. As mentioned in



196

Chapter 7, high absolute recall is not to be expected in pleogration, as ambiguity
is almost always present. The closer we move to the actualheds action, however,
the higher precision gets. This can be attributed to twafact-irst, subgoals at lower
levels are closer to the observed input, and thus deal wsthueacertainty about what

the parameter values are.

Second, and probably most important, is that lower-levieysals span fewer timesteps
than those at higher levels, meaning that, if parameteesgaoe available, they will be
seen after a shorter number of actions. In the case of levatal B, all subgoals only
spanned one timestep, and thus only had one chance to gelihparameter values.

It turns out that parameter values at these levels alwagsttiircorresponded to the

action parameters, which is why precision and recall re@€hgercent here.

Overall, the performance of the parameter recognizer wag erecouraging, es-
pecially the performance at lower levels which had high ltecehis is an important
factor in our ability to do specific and accurate partial peedn in the instantiated goal

recognizer, which we move to now.

8.3 Instantiated Goal Recognition

In this section, we describe how we integrate the schema araineter recognizers
to create a hierarchical instantiated goal recognizerclwvisan recognize a chain of
subgoal schemas and their parameter values. We first des$iceibecognition algorithm

and then test results on the Monroe corpus.

8.3.1 Recognition Algorithm

The recognition algorithm for the hierarchical recognigesimilar to that of the flat
recognizer. Upon observing a new action, we first update ¢herma recognizer and

use it to (selectively) make preliminary predictions. Facle of the predicted subgoals



197

(at each level), we then use the corresponding parametegmaers to (selectively)

make predictions for each of the parameter positions.

We discuss the stages of initialization, update, and ptiedicand then present an

analysis of the runtime complexity of the algorithm.

Initialization

We initialize the schema recognizer as described abovesd&ar depth, we also initial-
ize a parameter recognizer for each possible subgoal scidobathat this is different
from the stand-alone parameter recognition done aboveshwdgsumed a knowledge
of subgoals (and their beginning and ending times) and tadg$dr each level only one
active parameter recognizer at a time. Here we will basidslupdating.S| parameter
recognizers per level per timestep. We describe how updagbandled in the next
section. Also, unlike the stand-alone parameter recogritaese parameter recognizers
will run for the entire session. As we do not know when subgbabin and end, we do

not initialize new recognizers during the session.

Update

Given a new observed action, we first update the schema reesgmd use it to make
preliminary predictions (as will be discussed in the nextisa). We then update each
of the parameter recognizers. (Note that, as was the cadlatfoecognition, we need
to update each parameter recognizer at each timestep, favénot used to make a

prediction at that timestep.)

However, we need to modify the parameter recognizer updgbeitom to make it
work for instantiated recognition. We make three changdashtorrespond to each of
the following issues: uncertain output schemas, uncettairsitions at the prediction

level, and uncertain transitions at the output level. Weulis each in turn.



198

Uncertain Output Schemas In the stand-alone parameter recognizer, we made the
assumption that the goal schema was known. At higher letressmeant that output
consisted of a goal schema and uncertain parameter valudsghfer levels in the in-
stantiated recognizer, however, we additionally have dategoal schemas as output.

In a nutshell, we now need to model output as a set of uncegtzah schemas, each

having a set of uncertain parameters.

Modifying the update algorithm for this case follows the gapminciple we used
in handling uncertain parameters. To handle uncertain gamas, we compute an
action bpa for each possible goal schema as described fetahd-alone recognizer.
We then introduce a new intermediate result callecbservation bpavhich repre-
sents the evidence for a parameter position given an ertigsergation (i.e., a set of
uncertain goal schemas each associated with uncertaimpteavalues). To compute
the observation bpa, first each action bpa in the observaiamighted according to
the probability of its goal schema (using Equation 8.3). ©bservation bpa is then
computed as the combination of all of the action bpas. THiectbely weights the
contributed evidence of each uncertain goal schema acgptdi its probability (as

computed by the schema recognizer).

Uncertain Transitions at the Prediction Level In the stand-alone parameter recog-
nizer, we knew a priori when goal schemas at the predictivel leegan and ended.
This information was used to reset prediction bpas to igeeidence gathered from
observed actions corresponding to previous subgoals.s&b tiee prediction bpas, they

were set td) = 1, or total ignorance.

In instantiated recognition, we do not know the when goaksts begin or end.
We can, however, provide a rough estimation by using thesifian probabilities es-
timated for the schema recognizer. We use this probability, the probability that a
new schema does not begin at this timestep) to weight theudsfoal prediction (Isp)

bpa at each new timestep.



199

Basically, this provides a type of decay function for evideigathered from pre-
vious timesteps. Assuming we could perfectly predict schetart times, if a new
schema started, we would have a 0 probability, and thus wegould result in a
totally ignorant Isp bpa. On the other hand, if a new subgaindt start, then we

would have a weight of 1 and thus use the evidence as it stands.

Uncertain Transitions at the Output Level Not knowing schema start and end times
gives us a similar problem at the output level. As we disadi$sethe stand-alone pa-
rameter recognizer, we need a way of distinguishing whiceoled output represents

a new event versus which represents an updated view of the eant.

We handle this case in a similar way to that above. We caletites probability that
the new observation starts a new timestep by the weightedo$wath same transition
probabilities at the level below. This estimate is then usesleight the prediction bpa
from the last timestep and then combine it with the Isp bpatmfa new Isp bpa. In
cases that there is high probability that a new subgoal wgarhehe prediction bpa

will have a large contribution to the Isp bpa, whereas it nlt if the probability is low.

Prediction

Prediction is performed as it was for the flat recognizerstithe goal schema recog-
nizer is used to (selectively) make an n-best predictioroal gchemas for each depth.
If the schema recognizer does not make a prediction at arcel¢ath, the instantiated

recognizer also does not predict for that depth.

If the schema recognizer does make a prediction, we use thesponding param-
eter recognizers to predict parameter values for each afi#hest goal schemas. The
instantiated prediction then consists of the chain of mtedi goal schemas with the
instantiated parameters for those values for which thenpeter recognizers made a

prediction.



200

Complexity

First, we must analyze the complexity of the modified par@metcognizer (which
deals with output with uncertain goal schemas). The moddlgdrithm computes the
observation bpa by combining (worst ca$€) action bpas — each with a maximum
size ofiq (limited by the number of unique parameter values seen,ssitled above).
Thus, the total complexity for the update of a single paramposition isO(|S|t%¢?)
and for the parameter recognizer of a single goal schemh {vparameter positions),
this become®(|S|t?¢*). Again, we dropy as it is constant and small, which gives us
O(|S|%).

The complexity of an update for the instantiated recogriaerbe calculated from
the runtime of the schema recognizer plus the runtime of e&the D|S| parameter
recognizers (one per each goal schema per level). Thus thlerdatime complexity
is O(D|S|* + D|S|?t?) = O(D|S|*t?), or quadratic in the number of possible goal

schemas and the number of actions observed so far.

8.3.2 Experimental Results

We tested the recognizer on the Monroe corpus in the same arag/ for the flat rec-
ognizer in Chapter 7. The results of the tests are shown ireT&abl Results are given
using the same metrics used for the flat recognizer and ukmger-level counting
scheme used for the other hierarchical recognizers. Weldogtat the results at the

top level (i.e., level 0) and then the other levels.

Top-level Results

To help interpret the results, we compare performance dbfhievel to that of the flat
recognizer (which only made predictions at the top levedy. ¢onvenience, the results

of the flat instantiated recognizer on the same data set avensin Table 8.7.



1-best(r = 0.7,¢ = 2.0)

level | prec.| recall | param% | conv. | conv. param% | conv. pt
0| 82.5%| 56.4% 24.0%| 90.8% 49.8%| 5.6/10.3
1| 81.3%| 52.8% 23.5%| 67.6% 26.5%| 3.1/6.1
2 || 85.4%| 44.3% 22.5%| 45.8% 38.5%| 3.4/4.7
31| 72.9%| 41.7% 82.4%| 41.2% 90.6%| 3.0/3.5
4| 73.6%| 50.0% 99.9%| 61.8% 100%| 3.7/3.7
5 58.8%| 45.7% 100% | 6.2% 100%| 4.2/4.2
6 || 69.3%| 69.3% 100% | 0.0% N/A N/A
7 1| 95.2%]| 95.2% 100% | N/A N/A N/A
8| 100%  100% 100% | N/A N/A N/A
total || 79.0%| 50.4% 44.1%| 61.7% 46.4%| 3.9/6.8
2-best(r = 0.95,¢ = 2.0)
level | prec. | recall | param% | conv. | conv. param% | conv. pt
0| 88.2%| 60.2% 23.2%| 91.0% 49.9%| 5.2/10.3
1| 93.8%| 75.4% 16.6% | 94.8% 18.9%| 2.4/5.6
2 || 89.7%]| 62.0% 42.1% | 84.4% 45.2%| 3.6/4.8
3| 90.6%| 74.4% 81.8% | 99.0% 71.0%| 3.9/4.5
4 1 90.8%| 68.6% 96.5%| 100% 80.9%| 3.8/3.8
51 98.2%| 76.4% 81.4% | 100% 53.1%| 2.0/3.9
6 | 98.3%/| 98.3% 99.2%| 100% 50.0%| 4.0/4.0
7 || 100%| 100% 100%| N/A N/A N/A
8| 100% | 100% 100%| N/A N/A N/A
total || 91.3%| 68.7% 47.2%| 92.5% 43.7%| 3.6/6.1

Table 8.6: Results of Instantiated Recognition

201



202

1-best(r = 0.7,¢ = 2.0)

level | prec. | recall | param% | conv. | conv. param% | conv. pt

top || 93.1%| 53.7% 20.6% | 94.2% 40.6%| 5.4/10.0

2-best(7 = 0.9,¢ = 2.0)

level | prec. | recall | param% | conv. | conv. param% | conv. pt

top | 95.8%| 56.6% 21.8%| 97.4% 41.1%| 5.5/10.1

Table 8.7: Results of Flat Instantiated Recognition on the ’derCorpus (from Chap-
ter7)

Hierarchical instantiated results at the top level closelyror results of the hier-
archical schema recognizer. This also happened for theeftaignizer and is to be
expected, as schema recognition performance limits pegoce of the instantiated

recognizers.

As discussed in Chapter 7, the addition of parameter predgserves to degrade
the precision and recall of schema recognition resulteréstingly, a comparison of the
degradation in the flat recognizer (Tables 8.2 and 8.7) aadhigtrarchical recognizer
(Tables 8.3 and 8.6) shows a similar percentage point dropele® the schema and
instantiated recognizers for precision and recall. Thestthema recognizer achieved
95.6 percent precision and 55.2 percent recall for the 1dase, which dropped to 93.1
percent and 53.7 percent for the flat instantiated recognimilarly, the hierarchical
schema recognizer achieved 85.6 percent precision angh&8:ént recall for the 1-best

case, which dropped to 82.5 percent and 56.4 percent fori¢gharbhical instantiated

recognizer.

The percentage of parameter values instantiated for dgredictions actually in-
creased in the hierarchical recognizer — from 20.6 perae@4tO percent, which at

least partially reflects the improved performance of thean@hical parameter recog-



203

nizer over the flat recognizer. Thus, at the top level, aln@oguarter of parameter
values are instantiated in correct predictions, whichsrisealmost half for converged

sessions.

8.3.3 Other Levels

Precision and recall at other levels also closely mirrorgbgormance of the schema
recognizer. Precision dips in the middle levels as it didhe $chema recognizer, but
this levels out for 2-best prediction, which achieves mieci ranging from the high
80’s to 100 percent (with recall ranging in the 60’s and 70stigh levels and high

90’s and 100 percent for the lower levels).

Parameter prediction for levels 1 and 2 remains in the 20ty avsudden jump to
82.4 percent at level 3, 99.9 percent at level 4, and 100 pefoe the lower levels,
for the 1-best level. Note that the drop in parameter prexticit several levels in the
2-best case is due to the fact that the recognizer gets mees cgght (i.e., increases
recall), but that many of the new correct predictions hags iastantiated parameter
values. Thus the decrease in number reflects that the remvgsigetting more correct
predictions, but it does not reflect a decrease in performésrahe cases it got correct

in 1-best prediction.

8.4 Conclusion

In this chapter, we have presented a hierarchical goal rezegwhich recognizes the
chain of active subgoal schemas, instantiated with theiampater values. For effi-
cient hierarchical goal schema recognition, we have intced a new type of graphical
model, the Cascading Hidden Markov Model (CHMM) and use a nedliiorward al-

gorithm to make predictions based on probabilities leafr@d a plan-labeled corpus.



204

We are now in a position to evaluate the hierarchical goalgezer based on the

desired requirements we outlined in Chapter 5:

Speed: This refers to the speed of the algorithm in making a prealictgiven a new
observation. Our recognizer has a runtime complexity wiicuadratic in the number
of possible subgoals and the number of observed actiondireaat in the depth of the

goal chain. This makes it scalable in terms of all of theseofac

Early Prediction: Not only should a recognizer be fast, it should also be able to
predict the agent’s goal before the agent completes it.divbnroe domain, for cases
where it converges, our recognizer is on average able tagbrige correct top-level

goal after a little more than half of the observed actions.

Partial Prediction: In cases where full early prediction is not possible, recegns

should be able to provide partial predictions. Our recogmzovides partial prediction
in two separate ways. First, it can make partial predictimnpredicting only a subset
of parameter values for a goal schema. The early predictisnlts above are actually

based on partially instantiated predictions, and not frébctions.

Also, our recognizer can provide partial information bygicging the agent’s cur-
rent subgoals, even in cases where it is not yet able to primdicop-level goal. This
is perhaps the most valuable contribution of the hieraathiecognizer, as it is able to
make predictions at lower levels very early on (after justfthst action for levels 7 and
8 — with 100 percent precision). As discussed above, as goaplexity increases, itis
unlikely that the top-level goal will be predictable earlyio the session. In such cases,
the ability to predict lower-level subgoals should be evemervaluable in allowing the

recognizer to make predictions early on in the exchange.



205

O Conclusion

The goal of building a generalized agent-based dialoguesyis one which requires a
lot of progress in many areas of artificial intelligence. histthesis, we have presented

work which lays several foundational pieces for agent-dasalogue systems.

First, we have created a model of agent collaborative protdelving which is
based on human communication. This model also includes@igege language of
communicative intentions which can serve as an (artifiéiggnt communication lan-
guage, or as a model of communicative intentions in humaloglie. We have also
described a model of dialogue based on this collaboratiwblem-solving model and
expanded to incorporate a well-known theory of communieaidrounding. This model
of dialogue is able to represent a wider range of dialogua@mmena than previous sys-
tems, including a range of collaborative paradigms andabolative problem-solving
activity.

The collaborative problem-solving model and the dialoguweleh based upon it are
an important backbone of agent-based dialogue researclweAdiscussed in Chap-
ter 1, there are three main subsystems necessary to sugpattl@ased dialogue. First,
an interpretation subsystem is necessary to convert lgegudo communicative in-
tentions. The dialogue model provides a descriptive laggud these communicative

intentions which need to be recognized.



206

Second, a behavior subsystem is necessary to guide thasofithe system. This
is where the autonomous agent lives. The dialogue modetpies in this thesis rep-
resents dialogue moves and dialogue state at a problermgadéxel, which is much
closer to a form which current artificial agents reason widmtmost dialogue models;

it provides a significant narrowing of the gap between theftelds of research.

Third, a generation subsystem is required to convert concative intentions into
language for communication. Again, the definition of whatsth communicative inten-

tion was a prerequisite for this.

After the agent-based dialogue model, we turned our atteriti the second half
of the thesis to supporting the problem of interpretationrerspecifically, to intention
recognition, where communicative intentions are recagpghfrom a high-level semantic
form. Intention recognition is a special form of plan recivigm (the recognition of an
agent’s goal and plan given observations), and one of ttgebigchallenges to this has

been the lack of tractable algorithms.

In the second half of the thesis, we introduced a fast goalg®izer based on sta-
tistical machine learning. The algorithm is fast and sdalabith runtime complexity
guadratic in the number of possible goals. At the same titig able to hierarchically
recognize active goal schemas and their parameter valndsjaes not place the re-
strictions on the expressiveness of the domain that otbalalsle recognizers do. We
intend to use this goal recognizer as the engine for an iotemécognizer for agent-

based dialogue in future work.

In order to train and test the recognizer, we also providem ew corpora to the
plan recognition community — the Linux corpus and the Mornzogpus — and intro-
duced a method for the stochastic generation of plan-ldlmelgora. We also described
a set of general desirable properties of plan recognizes,raroduced several new
metrics for measuring these. We believe the contributiothe$e corpora and metrics
will foster better evaluation in the plan recognition commtyand better comparability

between different recognizers.



207

In short, the work described in this thesis has been a folworddtone. We have
set the primary foundation for work in agent-based dialogysems by describing a
model of agent-based dialogue and its accompanying conuattive intentions. We
have also contributed a new form of scalable goal recogniticthe plan recognition
community, which will serve as the foundation of efficienteintion recognition algo-

rithms for agent-based dialogue systems.

In the remainder of this chapter, we discuss various routeeeded future work
which this thesis has lead to. We first discuss future workatogue modeling, using
the dialogue model we presented in Chapters 3 and 4. We thdorexpture work
in the area of goal recognition. Finally, we discuss in moetad, needed work in

agent-based dialogue systems.

9.1 Future Work in Dialogue Modeling

In this section, we mention several areas of future workterdollaborative problem-

solving dialogue model.

9.1.1 Evaluations and Argumentation

As noted in Chapters 3 and 4, we do not yet have a good idea abauiblrepresent
evaluations in the model, beyond a simple good/bad dichptolmore study needs
to be done to determine how evaluations are made in dialcgue what kinds are

distinguished.

As a further extention, we believe it may be possible to usguations to model
argumentation in dialogue. Typically, argumentation isisidered to be part of an
exchange in which beliefs of the various agents are suppartd attacked — a sort of

debate.



208

Usually, argumentation is modeled solely as being abou¢fiselcf. [Chu-Carroll
and Carberry2000]). Our evaluations seem to also serveuthetion. For example, an
evaluation of a constraint on the top-level situation (eagoelief in our model) could
be used to decide whether that belief is good or bad, i.ee,drunot true. This is also
true for anywhere an evaluation can be used in the model @ngevaluation of an
objective). Our model also supports evaluations of evalnaf which may be able to

support attacks on attacks as used in [Chu-Carroll and Ca&¥iey.

To model full argumentation, however, we need to be able tdeha reason or
argumentfor or against the proposition. Argumentation allows a ogas argument to
be supplied for the attack or support, something which owlehdoes not have at the
moment. This addition seems like a natural extension anddwiden the range of

dialogue that can be handled by the model.

9.1.2 Grounding

Another area which needs improvement is the model of Grawgndicts (GAS). In
Chapter 4, we simply took the act types from Conversationas flaiaum and Hinkel-
man1992] and defined a single parameter value for them: thealttion Act (IntAct)
which is to be grounded. Although this may be sufficient faresal of the acts (e.qg.,
initiate, cance), operationalizing the model has shown us that more/diffemmforma-

tion is needed in some cases.

First, we model separate grounding acts for each of the dieigmntActs from the
speaker. As an example, we will suppose that agent A uttenetbing to B that has
three Grounding Acts as the correct interpretation. Sawener, that the B does not
understand the utterance at all (e.g., hears that it wastr@anim, but does not un-
derstand anything from the content), and says somethied@kuld you repeat that?”
as a response. It is now unclear, using our model, how the eonuative intentions of

this response should be modeled. It is clear that the Grogniict is aReqRepaiibut



209

how many are there? Right now, our model would say that thevaldtbe threeRe-
gRepairs since there were three GAs in A's utterance, but B obviodslgs not know

that, since he was not able to decode the message that far.

A possible solution would be to model grounding acts at ed€Hark’s [Clark1996]
four levels of communication, and at lower levels, only hgveunding occur on the
utterance as a whole. For example, in the case given ab@epthmunication failure
occurs at the signal level, i.e., B knows a signal was sentntg but does not know
what the content was. We could therefore model the respdbae {ou repeat that?”

as aRegRepaiat that level (and thus on the signal) or something similar.

Another need to better operationalize the grounding masi¢éhat some GAs need

to provide more information than just the IntAct to be groedd

Again, for example, take thReqRepai@act. This time, suppose that A utters “Pick
up the block”. Suppose that B responds with “Which block?”ijclilwould be modeled
as aRegRepairand this time, (we suppose that) B understands exactly imbatts
were meant, just not which block (which would be modeled assted resource within
the objective). However, simply wrapping these intentiong ReqRepairgives no
indication about whiclpart of the utterance has been requested to be repaired. Similar
examples can be given fegpair and everack(e.qg., for differentiating varying degrees

of acknowledgments for different parts of the utterance[(€lark1996]).

9.2 Future Work in Goal Recognition

In this section, we outline next steps for work in statidtg@al recognition.

9.2.1 Further Testing with New Corpora

As discussed in Chapter 6, we are aware of only very few corjpogalan recognition.

We have tested our flat recognizer on the Linux corpus and therd& corpus, and our



210

hierarchical recognizer only on the Monroe corpus. An ingatrnext step would be to
evaluate the recognizers in different domains. This is@apig true for the hierarchical

recognizer, as the recognition results are based on ariattfigenerated corpus.

Especially interesting to us would be to gather a human «oifpa domain similar
to Monroe and annotate it (by hand, most likely) with plarommfation. The creation
and use of this corpus could help answer several open gosdtiom our work, in-
cluding: How difficult is it to hand annotate a corpus with plaformation? What
differences are exhibited in human versus artificial caapoHow well does our hi-
erarchical recognizer perform on human-produced data? WeNvcan we recognize

human goals with a recognizer trained on artificially geteztalata?

9.2.2 Conditioning on Parameter Values

Another important next step will be to remove one of the tinepdifying assumptions
we made in Chapter 7, namely, that the probability of a goaészhis independent of
action parameter values, given their action schema. As weiomed in Chapter 7, this
is not always the case, as the goal schema can very much depemhat the action

parameter values are.

The main reason for making this assumption was data spamight now, both
the flat and hierarchical schema recognizers use a faidygsttforward bigram model
over action schemas. If we do not make this independencengsgisun, however, we
need to introduce action parameter values into the equatibich would lead to an
explosion in the number of possible instantiated actionthendomain (in the worst

case, exponential in the number of parameter positions hjedts in the domain).

There are several potential solutions to this that couldiké.t The first would be
to use some sort of abstraction backoff for getting condélgrobabilities. The idea
would be similar to the n-gram backoff we use in the recognigght now. The rec-

ognizer would first look for the most specific conditional Ipability (i.e., the bigram



211

of action schemas and their actual parameter values).slfthas not found (or was not
found enough times) in the training data, then the recogmpelld look for the proba-
bility of some sort of abstraction of that bigram. For exaemmplarameter values could
be abstract to their domain types (e.g., vehicle or persod)tlaen those conditional
probabilities could be searched. By using a domain ontolalgstraction backoff could
happen until at the end, it abstracts to just using the asitiemas themselves. This
would theoretically give us more information where it is iéafale in the training data,

but give us a backoff to what is happening now.

Another possibility would be to use data mining techniquefs[gZaki, Lesh, and
Ogihara2000]) to automatically identify cases in the ddtare action parameter values
are particularly helpful in discriminating goal schemaued. The intuition here is that,
in our experience, in many cases, the action parametersvaksdly do seem to be
independent from the goal schema. However, there are sosilg ekentifiable cases
where they are nearly always a distinguishing factor. Disdog these would allow

the recognizer to take those into account only where helpful

9.2.3 Problem Solving Recognition

Finally, we believe that an important area of future rededbrought out especially
from the focus of this thesis) will be the generalization tdrprecognition to what
we will call problem solving recognitianPlan recognition is typically defined as the
recognition of an agent’s plan, given observed actionss Tkfinition, however, im-
plicitly makes the same assumption many plan-based dialogpdels do (as discussed

in Chapter 2) namely, that an agent first creates a plan, ancettezutes it.

Of course this is not always the case, and we would arguehbes are many do-
mains in which this is usuallgot the case. We believe if we want to model real agents
from observations, we need to recognize the agent’'s probldwing activity itself.

This would mean recognizing the agent’s current probleisg state, which could



212

then change from timestep to timestep. There would no lobhgex singleplan data
object attached to a plan session, rather, a post hoc viewlahasession would reveal a
trace of the agent’s problem-solving state over the ses$ioaagent may have had sev-
eral (partial or full) plans over the session, which may hiagen expanded or revised
(or scrapped) as time passes. This would also model shigsagoution of different
plans for different objectives, and even phenomena liké go@ndonment. (It could be

very useful to know when an agent has abandoned a goal widltootmplishing it.)

As this is a very new area, much work is needed here. Howesea, ossible
extention to our work, we have considered the possibilitysahg an artificial agent to
create groblem-solving labeled corpughich could then give us information about not
only hierarchical goal structure over time but also couldibed to train a recognizer to

predict when phenomena like replanning or goal abandonhsesmt occurred.

9.3 Future Work in Agent-based Dialogue Systems

In this section, we describe directions of future work nekfde supporting agent-based
dialogue systems. We discuss these by subsystem: startingith interpretation, then

moving to behavior, and finally discussing generation.

9.3.1 Interpretation

An agent-based dialogue system needs to be able to conpatiamguage into the cor-
responding communicative intentions, i.e., the insta@tiggrounding acts from Chap-
ter 4. This, of course, is highly context dependent, thushgention recognizer would

need to take the dialogue state into account, as well as tharges of the utterance.

We believe a good starting point for an agent-based interrgégognizer will be
the basic ideas of a plan-based recognizer (e.g., [Lochb&8&) Chu-Carroll and Car-

berry2000]). However, as we discussed in Chapter 2, plaaebadention recogniz-



213

ers are only able recognize intentions based on their owlogilia model. Thus, a
plan-based intention recognizer would need to be augméoatetognize the range of

collaborative problem-solving activity which we need to &gent-based dialogue.

Most intention recognition algorithms are based on plangadion, and are there-
fore not scalable. To provide scalability, the next step idne to incorporate our hi-
erarchical goal recognizer into the intention recogniZdthough the goal recognizer
cannot recognize intentions on its own, it does provide aviay to narrow down the
search space (e.g., by an n-best prediction) to allow foowesi symbolic recognition

algorithm to perform the recognition of the actual intentio

9.3.2 Behavior

Once the user’s intentions have successfully been recegnike dialogue model de-
scribed in Chapter 4 defines in which way they update the di@agate. Given an
updated dialogue state, we need a behavioral componenhwhit make decisions
about what to do next, both in terms of interaction with theld/@hrough sensing and

acting) as well as interaction through communication.

To provide a truly agent-based system, we want to use an @auikauns agent to
control behavior. Work in the agents field has made progredesigning agents which
act based on their beliefs about the world, their desirelsdarthe world should be, and
intentions for action ([Rao and Georgeff1991]), but thesendégytypically do not know
how to collaborate with others. Research needs to be donegngmming such agents
to take problem-solving obligations into account in demismaking. Such agents also
need to be able to generate their own communicative intesitidich can be passed on

to generation.



214

9.3.3 Generation

The final area of needed research for agent-based systemg@neration, particu-
larly in the area of content planning, where communicatientions generated by the
behavioral subsystem are converted into language to be comated with the user.
This is perhaps the most wide-open field, as most researemguage generation for
dialogue has taken high-level semantic forms as inputeatsof communicative inten-

tions.



215

Bibliography

[Agre and Horswill1992] Agre, P. and I. Horswill. 1992. Cuialisupport for impro-
visation. InProceedings of the Tenth National Conference on Artificialligence
(AAAI), pages 363—-368.

[Albrecht, Zukerman, and Nicholson1998] Albrecht, David, Wigrid Zukerman, and
Ann E. Nicholson. 1998. Bayesian models for keyhole plangattmn in an ad-
venture gameUser Modeling and User-Adapted Interactid@15-47.

[Alexandersson et al.1998] Alexandersson, Jan, Bianka BesdhWolf, Tsutomu
Fujinami, Michael Kipp, Stephan Kock, Elisabeth Maier, Nert Reithinger, Birte
Schmitz, and Melanie Siegel. 1998. Dialogue acts in VERBMOBI$econd edi-
tion. Verbmobil Report 226, DFKI Saarlicken, Universit Stuttgart, TU Berlin,
Universitt des Saarlandes, July.

[Allen et al.2000] Allen, J., D. Byron, M. Dzikovska, G. Fespn, L. Galescu, and
A. Stent. 2000. An architecture for a generic dialogue shdtiurnal of Natural
Language Engineering special issue on Best Practices irk&@pbanguage Dia-
logue Systems Engineerirg(3):1-16, December.

[Allen1983] Allen, James. 1983. Recognizing intentiongrirnatural language utter-
ances. In M. Brady and R. C. Berwick, edito@ymputational Models of Discourse
MIT Press, pages 107-166.

[Allen, Blaylock, and Ferguson2002] Allen, James, Nate Bial| and George Fergu-
son. 2002. A problem-solving model for collaborative agerih Maria Gini, Toru
Ishida, Cristiano Castelfranchi, and W. Lewis Johnson, eglitéirst International
Joint Conference on Autonomous Agents and Multiagent Syspamges 774—-781,
Bologna, Italy, July 15-19. ACM Press.

[Allen and Core1997] Allen, James and Mark Core. 1997. Draft
of DAMSL: Dialog act markup in several layers. Available at
http://www.cs.rochester.edu/research/cisd/resoldagss|/, October.



216

[Allen, Ferguson, and Stent2001] Allen, James, Georgeusery and Amanda Stent.
2001. An architecture for more realistic conversationatayms. InProceedings of
Intelligent User Interfaces 2001 (IUI-Olpages 1-8, Santa Fe, NM, January.

[Allen1979] Allen, James F. 1979. A plan-based approaclpé&esh act recognition.
Technical Report 131/79, University of Toronto. PhD thesis.

[Allen et al.2001] Allen, James F., Donna K. Byron, Myroslébaikovska, George
Ferguson, Lucian Galescu, and Amanda Stent. 2001. Towamdgersational
human-computer interactiodl Magazing 22(4):27-37.

[Allen and Perrault1980] Allen, James F. and C. Raymond Pkrra880. Analyzing
intention in utterancedgArtificial Intelligence 15(3):143-178.

[Appelt and Pollack1991] Appelt, Douglas E. and Martha Blde&. 1991. Weighted
abduction for plan ascriptiotser Modeling and User-Adapted Interactidhl-25.

[Ardissono, Boella, and Lesmo1996] Ardissono, Liliana, é&uBoella, and Leonardo
Lesmo. 1996. Recognition of problem-solving plans in dialgterpretation. In
Proceedings of the Fifth International Conference on UserdMimng pages 195
197, Kailua-Kona, Hawaii, January.

[Ashbrook and Starner2003] Ashbrook, Daniel and Thad 8tar@003. Using GPS
to learn significant locations and predict movement acragsipre users.Personal
and Ubiquitous Computing/(5).

[Austin1962] Austin, J. L. 1962How to Do Things with WordsHarvard University
Press, Cambridge, Massachusetts.

[Azarewicz et al.1986] Azarewicz, Jerome, Glenn Fala, R&lplk, and Christof Hei-
thecker. 1986. Plan recognition for airborne tactical sieci making. InPro-
ceedings of the Fifth National Conference on Artificial Ingghce pages 805-811,
Philadelphia.

[Bauer1994] Bauer, Mathias. 1994. Quantitative modelingsef preferences for plan
recognition. In B. Goodman, A. Kobsa, and D. Litman, editéhsiceedings of the
Fourth International Conference on User Modeling (UM9dages 73—78, Hyannis,
Massachusetts, August. MITRE Corporation.

[Bauer1995] Bauer, Mathias. 1995. A Dempster-Shafer appraamodeling agent
preferences for plan recognitionUser Modeling and User-Adapted Interaction
5(3-4):317-348.

[Bauerl996a] Bauer, Mathias. 1996a. Acquisition of userguegfces for plan recogni-
tion. In Proceedings of the Fifth International Conference on Used®lmg, pages
105-112, Kailua-Kona, Hawaii, January.



217

[Bauer1996b] Bauer, Mathias. 1996b. Machine learning for osadeling and plan
recognition. InWorking Notes of the International Conference on Machine hiegy
Workshop ML Meets HCBari, Italy, July 3.

[Bauer1998] Bauer, Mathias. 1998. Acquisition of abstraahmlescriptions for plan
recognition. InProceedings of the Fifteenth National Conference on Artificitel-
ligence (AAAI-98)pages 936—-941, Madison, WI, July.

[Bauer and Paul1993] Bauer, Mathias and Gabriele Paul. 1993jictbased plan
recognition for intelligent help systems. In Christead&stbm and Erik Sandewall,
editors,Current Trends in Al Planning: EWSP '93 — Second European SYa on
Planning Frontiers in Artificial Intelligence and Applications. 8Press, Vadstena,
Sweden, December, pages 60-73. Also DFKI Research Report RR3-93-

[Blaylock2002] Blaylock, Nate. 2002. Managing communicatiatentions in dia-
logue using a collaborative problem-solving model. TecAhReport 774, Univer-
sity of Rochester, Department of Computer Science, April.

[Blaylock and Allen2003] Blaylock, Nate and James Allen. 200@®rpus-based, sta-
tistical goal recognition. In Georg Gottlob and Toby Walshjtors, Proceedings
of the Eighteenth International Joint Conference on Artfidntelligence pages
1303-1308, Acapulco, Mexico, August 9-15.

[Blaylock and Allen2004] Blaylock, Nate and James Allen. 2008tatistical goal
parameter recognition. In Shlomo Zilberstein, Jana Kaehled Sven Koenig, ed-
itors, Proceedings of the Fourteenth International Conference otoated Plan-
ning and Scheduling (ICAPS’04)ages 297-304, Whistler, British Columbia, June
3—7. AAAI Press.

[Blaylock and Allen2005a] Blaylock, Nate and James Allen. 280A collaborative
problem-solving model of dialogue. IRroceedings of the SiGdial Workshop on
Discourse and DialogLisbon, September 2—3. To appear.

[Blaylock and Allen2005b] Blaylock, Nate and James Allen. 200Generating arti-
ficial corpora for plan recognition. In Liliana Ardissoncal® Brna, and Antonija
Mitrovic, editors,User Modeling 2005number 3538 in Lecture Notes in Artificial
Intelligence. Springer, Edinburgh, July 24-29, pages 188-

[Blaylock and Allen2005c] Blaylock, Nate and James Allen. 200Recognizing in-
stantiated goals using statistical methods. In Gal Kamimihtor, Workshop on
Modeling Others from Observations (MOO-200ppges 79-86, Edinburgh, July
30.

[Blaylock, Allen, and Ferguson2002] Blaylock, Nate, Jameke® and George Fer-
guson. 2002. Synchronization in an asynchronous ageetdbaschitecture for



218

dialogue systems. IRroceedings of the 3rd SiGdial Workshop on Discourse and
Dialog, Philadelphia, July.

[Blaylock, Allen, and Ferguson2003] Blaylock, Nate, Jamds#land George Fergu-
son. 2003. Managing communicative intentions with colfalige problem solving.
In Jan van Kuppevelt and Ronnie W. Smith, edit@syrent and New Directions in
Discourse and Dialoguevolume 22 ofKluwer Series on Text, Speech and Language
TechnologyKluwer, Dordrecht, pages 63—-84.

[Blum and Furst1997] Blum, Avrim L. and Merrick L. Furst. 199Fast planning
through planning graph analysiértificial Intelligence 90:281-300.

[Bohlin et al.1999] Bohlin, Peter, Johan Bos, Staffan Lars&am] ewin, Colin Math-
eson, and David Milward. 1999. Survey of existing intenae8ystems. Deliverable
D1.3, EU Project TRINDI, February.

[Bohus and Rudnicky2003] Bohus, Dan and Alexander I. Rudnick§032 Raven-
Claw: Dialog management using hierarchical task decompaosind an expectation
agenda. IrProceedings of Eurospeech-2Q@seneva, Switzerland.

[Bui2002] Bui, Hung H. 2002. Efficient approximate inferenoednline probabilistic
plan recognition. Technical Report 1/2002, School of CormgytCurtin University
of Technology.

[Bui2003] Bui, Hung H. 2003. A general model for online probeiic plan recog-
nition. In Georg Gottlob and Toby Walsh, editoBroceedings of the Eighteenth
International Joint Conference on Artificial Intelligeno&capulco, Mexico, August
9-15.

[Bui, Venkatesh, and West2002] Bui, Hung H., Svetha Venkatesid Geoff West.
2002. Policy recognition in the Abstract Hidden Markov Mbddournal of Ar-
tificial Intelligence Researcii7:451-499.

[Carberry1983] Carberry, Sandra. 1983. Tracking user goas information-seeking
environment. InProceedings of the Third National Conference on Artificiaéllt
gence pages 59-63, Washington, D.C.

[Carberry1987] Carberry, Sandra. 1987. Pragmatic modeliogard a robust natural
language interfaceaComputational Intelligenge3:117-136.

[Carberry1990a] Carberry, Sandra. 1990a. Incorporatinguleihferences into plan
recognition. InProceedings of the Eighth National Conference on Artificiaélin
gence pages 471-478, Boston, July 29 — August 3. AAAI Press.

[Carberry1990b] Carberry, Sandra. 1990Blan Recognition in Natural Language
Dialogue ACL-MIT Press Series on Natural Language Processing. MEE®r



219

[Carberry, Kazi, and Lambert1992] Carberry, Sandra, ZunadiKand Lynn Lam-
bert. 1992. Modeling discourse, problem-solving and dongaials incrementally
in task-oriented dialogue. IAroc. 3rd Int. Workshop on User Modelingages 192—
201. Wadern.

[Carletta et al.1997] Carletta, Jean, Amy Isard, Stephemnl|skacqueline C. Kowtko,
Gwyneth Doherty-Sneddon, and Anne H. Anderson. 1997. Thabrgy of a
dialogue structure coding schem@omputational Linguistic23(1):13-31.

[Charniak1997] Charniak, Eugene. 1997. Statistical tealesdor natural language
parsing.Al Magazine 18(4):33—-43.

[Charniak and Goldman1993] Charniak, Eugene and Robert Pntaold 1993. A
Bayesian model of plan recognitioArtificial Intelligence 64(1):53-79.

[Chu-Caroll and Brown1997] Chu-Caroll, Jennifer and Michael KowBn. 1997. Ini-
tiative in collaborative interactions — its cues and effett S. Haller and S. McRoy,
editors,Working Notes of AAAI Spring 1997 Symposium on Computationde
of Mixed Initiative Interactionpages 16-22, Stanford, CA.

[Chu-Carroll2000] Chu-Carroll, Jennifer. 2000. MIMIC: An adaptmixed initiative
spoken dialogue system for information queriesPmceedings of the 6th Confer-
ence on Applied Natural Language Processipgges 97-104.

[Chu-Carroll and Carberry1994] Chu-Carroll, Jennifer and Sa@harberry. 1994. A
plan-based model for response generation in collabortdsle-oriented dialogues.
In Proceedings of the Twelfth National Conference on Artificigélligence pages
799-805, Seattle, WA.

[Chu-Carroll and Carberry1995] Chu-Carroll, Jennifer and Sar@arberry. 1995.
Communication for conflict resolution in multi-agent colkahbtive planning. In
V. Lesser, editorProceedings of the First International Conference on Mujéat
Systemgpages 49-56. AAAI Press.

[Chu-Carroll and Carberry1996] Chu-Carroll, Jennifer and Sar@arberry. 1996.
Conflict detection and resolution in collaborative plannihgM. Woodbridge, J. P.
Miller, and M. Tambe, editoréntelligent Agents Il: Agent Theories, Architectures,
and Languagesnumber 1037 in Lecture Notes in Atrtificial Intelligence.ridger-
Verlag, pages 111-126.

[Chu-Carroll and Carberry2000] Chu-Carroll, Jennifer and Sar@arberry. 2000.
Conflict resolution in collaborative planning dialoguetternational Journal of
Human-Computer StudieS3(6):969-1015.

[Clark1996] Clark, Herbert H. 1998Jsing LanguageCambridge University Press.



220

[Cohen1978] Cohen, Philip R. 1978. On knowing what to say: Rtenspeech acts.
Technical Report 118, Department of Computer Science, Usityesf Toronto, On-
tario, January. PhD thesis.

[Cohen1994] Cohen, Philip R. 1994. Models of dialogue. In Tigsto, editor,Cogni-
tive Processing for Voice and VisioBociety of Industrial and Applied Mathematics,
pages 181-203.

[Cohen and Levesquel990a] Cohen, Philip R. and Hector J. Leged®90a. Inten-
tion is choice with commitmentArtificial Intelligence 42:213-261.

[Cohen and Levesquel1990b] Cohen, Philip R. and Hector J. Leeestj990b. Per-
sistence, intention, and commitment. In P. R. Cohen, J. Morgad M. Pollack,
editors,Intentions in CommunicatioMIT Press, Cambridge, MA, pages 33-69.

[Cohen and Levesquel1990c] Cohen, Philip R. and Hector J. LaeeskP90c. Ratio-
nal interaction as the basis for communication. In P. R. ColleMorgan, and
M. Pollack, editors,Intentions in CommunicatiorMIT Press, Cambridge, MA,
pages 221-254.

[Cohen et al.1991] Cohen, Philip R., Hector J. Levesqueg Jds T. Nunes, and
Sharon L. Oviatt. 1991. Task-oriented dialogue as a coresemof joint activ-
ity. In Hozumi Tanaka, editoirtificial Intelligence in the Pacific RimlOS Press,
Amsterdam, pages 203—-208.

[Cohen and Perrault1979] Cohen, Philip R. and C. Raymond Perfi®19. Elements
of a plan-based theory of speech adBagnitive Scienge3:177-212. Reprinted in
B.J. Grosz, K. Sparck-Jones, and B.L. Webber, editors, Resdindatural Lan-
guage Processing, Morgan Kaufmann, Los Altos, 1986 and Reprin L. Gasser
and M. Huhns, editors, Readings in Distributed Artificiaditigence, Morgan Kauf-
mann, Los Altos, 1988.

[Cohen, Perrault, and Allen1982] Cohen, Philip R., C. Raymondraiér and
James F. Allen. 1982. Beyond question answering. In Wendy&bnért and
Martin H. Ringle, editorsStrategies for Natural Language Processithgwrence
Erlbaum Associates, pages 245-274.

[DARPA Knowledge Sharing Initiative, External Interface®iing Group1993]
DARPA Knowledge Sharing Initiative, External Interfaces NMiog Group. 1993.
Specification of the KQML agent-communication language rkivg paper, June.

[Davison and Hirsh1997] Davison, Brian D. and Haym Hirsh. 2.9&xperiments in
UNIX command prediction. Technical Report ML-TR-41, Depagtrhof Computer
Science, Rutgers University.



221

[Davison and Hirsh1998] Davison, Brian D. and Haym Hirsh. 89%redicting se-
quences of user actions. Notes of the AAAI/ICML 1998 Workshop on Predicting
the Future: Al Approaches to Time-Series Analysladison, Wisconsin.

[Di Eugenio et al.1997] Di Eugenio, Barbara, Pamela W. Jord&ichmond H.
Thomason, and Johanna D. Moore. 1997. Reconstructed mreriti collaborative
problem solving dialogues. M/orking Notes of AAAI Fall Symposium on Commu-
nicative Action in Humans and Machingsambridge, Massachusetts, November.

[Ferguson and Allen1998] Ferguson, George and James F.All898. TRIPS: An
intelligent integrated intelligent problem-solving adant. InProceedings of the
Fifteenth National Conference on Atrtificial Intelligence (NA98), pages 567-573,
Madison, WI, July.

[Fine, Singer, and Tishby1998] Fine, Shai, Yoram Singed Baftali Tishby. 1998.
The Hierarchical Hidden Markov Model: Analysis and apgiicas. Machine
Learning 32:41-62.

[Geib and Goldman2001] Geib, Christopher W. and Robert P. iGafd 2001. Plan
recognition in intrusion detection systems.2md DARPA Information Survivability
Conference and Exposition (DISCEX-II 200pages 46-55, Anaheim, California,
June 12-14.

[Goldman, Geib, and Miller1999] Goldman, Robert P., ChrisepW. Geib, and
Christopher A. Miller. 1999. A new model of plan recognitiom Uncertainty in
Artificial Intelligence: Proceedings of the Fifteenth Caefece (UAI-1999)pages
245-254, San Francisco, CA. Morgan Kaufmann Publishers.

[Gricel1957] Grice, H. P. 1957. MeaninBhilosophical Revien66(3):377-388.

[Gricel1969] Grice, H. Paul. 1969. Utterer's meaning anéntibn. Philosophical
Review 78(2):147-177.

[Gricel1975] Grice, H. Paul. 1975. Logic and conversatiorR.ICole and J. L. Morgan,
editors,Speech Actsvolume 3 ofSyntax and Semanticdcademic Press, New York,
pages 41-58.

[Gross, Allen, and Traum1992] Gross, Derek, James Alled,Ravid Traum. 1992.
The Trains 91 dialogues. TRAINS Technical Note 92-1, Uniwersf Rochester,
Department of Computer Science.

[Grosz and Sidner1986] Grosz, Barbara and Candace Sidne8. Pa&ntion, inten-
tion, and the structure of discoursgéomputational Linguistigsl2(3):175—-204.

[Grosz1981] Grosz, Barbara J. 1981. Focusing and desgriptiomatural language
dialogues. In A. Joshi, B. Webber, and I. Sag, edit&tsments of Discourse Un-
derstandingCambridge University Press, New York, New York, pages 85-10



222

[Grosz and Kraus1996] Grosz, Barbara J. and Sarit Kraus. .188Baborative plans
for complex group actionArtificial Intelligence 86(2):269-357.

[Grosz and Kraus1999] Grosz, Barbara J. and Sarit Kraus. .19%@ evolution of
SharedPlans. In A. Rao and M. Wooldridge, editéi®indations and Theories of
Rational AgencyKluwer, pages 227-262.

[Grosz and Sidner1990] Grosz, Barbara J. and Candace L. Sid®80. Plans for
discourse. In P. R. Cohen, J. Morgan, and M. Pollack, editetantions in Commu-
nication MIT Press, Cambridge, MA, pages 417-444.

[Hansen, Novick, and Sutton1996] Hansen, Brian, David G.itlgwand Stephen Sut-
ton. 1996. Systematic design of spoken promptsCémference on Human Fac-
tors in Computing Systems (CHI'9§ages 157-164, Vancouver, British Columbia,
April.

[Hong2001] Hong, Jun. 2001. Goal recognition through goapg analysisJournal
of Artificial Intelligence Researgii5:1-30.

[Horvitz and Paek1999] Horvitz, Eric and Tim Paek. 1999. Anputational archi-
tecture for conversation. IRroceedings of the Seventh International Conference on
User Modeling pages 201-210, Banff, Canada, June. Springer-Verlag.

[Huber, Durfee, and Wellman1994] Huber, Marcus J., Edmund DHirfee, and
Michael P. Wellman. 1994. The automated mapping of plangléor recognition. In
R. L. de Mantaras and D. Poole, editod#l94 - Proceedings of the Tenth Confer-
ence on Uncertainty in Artificial Intelligen¢c@ages 344-351, Seattle, Washington.
Morgan Kaufmann.

[Jurafsky and Martin2000] Jurafsky, Daniel and James H.tiMa2000. Speech and
Language Processing: An Introduction to Natural Languagedessing, Computa-
tional Linguistics, and Speech Recognitidtrentice Hall.

[Kautz1990] Kautz, Henry. 1990. A circumscriptive theorypdan recognition. In
P. R. Cohen, J. Morgan, and M. Pollack, editdntentions in CommunicatioMIT
Press, Cambridge, MA, pages 105-134.

[Kautz1991] Kautz, Henry. 1991. A formal theory of plan rgadion and its imple-
mentation. In J. Allen, H. Kautz, R. Pelavin, and J. Tenenpedgors,Reasoning
about PlansMorgan Kaufman, San Mateo, CA, pages 69-125.

[Kautz and Allen1986] Kautz, Henry and James Allen. 1986n&3alized plan recog-
nition. In Proceedings of the Fifth National Conference on Artificiaklhgence
pages 32—-37, Philadelphia.



223

[Kautz1987] Kautz, Henry A. 1987. A formal theory of plan ogoition. Technical
Report 215, University of Rochester, Department of Computarge. PhD thesis.

[Kellner1998] Kellner, Andreas. 1998. Initial language aets for spoken dialogue
systems. IrProceedings of ICASSP’9Bages 185-188, Seattle, Washington.

[Lambert1993] Lambert, Lynn. 1993. Recognizing complexdisse acts: A tripar-
tite plan-based model of dialogue. Technical Report 93-1fivéssity of Delaware,
Department of Computer and Information Sciences, Newarlavieee, May. PhD
thesis.

[Lambert and Carberry1991] Lambert, Lynn and Sandra Carbéd991. A tripartite
plan-based model of dialogue. froceedings of the 29th ACpages 47-54, Berke-
ley, CA, June.

[Lamel et al.2000] Lamel, L., S. Rosset, J. L. Gauvain, S. BeehjaM. Garnier-
Rizet, and B. Protus. 2000. The LIMSI ARISE syste@peech Communicatipn
31(4):339-354, August.

[Larsson2002] Larsson, Staffan. 2002. Issues under raggwti InProceedings of the
3rd SiGdial Workshop on Discourse and Diajggages 103—-112, Philadelphia, July.

[Lemon, Gruenstein, and Peters2002] Lemon, Oliver, AleeainGruenstein, and
Stanley Peters. 2002. Collaborative activities and makking in dialogue sys-
tems: Towards natural language with robotsaitement Automatique des Langues
(TAL), 43(2):131-154.

[Lesh1998] Lesh, Neal. 199&calable and Adaptive Goal Recognitid?h.D. thesis,
University of Washington.

[Lesh and Etzioni1995a] Lesh, Neal and Oren Etzioni. 1998sights from machine
learning for plan recognition. In M. Bauer, edittdCAI 95 Workshop on The Next
Generation of Plan Recognition Systems: Challenges for asjlht from Related
Areas of Al (Working Notespages 78-83, Montreal, Canada.

[Lesh and Etzioni1995b] Lesh, Neal and Oren Etzioni. 199%lsound and fast goal
recognizer. INJCAI95 - Proceedings of the Fourteenth International J&ainfer-
ence on Artificial Intelligencgpages 1704-1710, Montreal, Canada.

[Lesh and Etzioni1l996] Lesh, Neal and Oren Etzioni. 1996ali8g up goal recog-
nition. In Proceedings of the Fifth International Conference on thenBiples of
Knowledge Representation and Reasoning (KR®&ges 178-189.

[Levesque, Cohen, and Nunes1990] Levesque, H., P. Cohen, &lohds. 1990. On
acting together. IProceedings of the Eighth National Conference on Artificial In
telligence pages 94-99, Boston, July 29 — August 3. AAAI Press.



224

[Litman1985] Litman, Diane J. 1985. Plan recognition argtdurse analysis: An in-
tegrated approach for understanding dialogues. TechReabrt TR170, University
of Rochester, Department of Computer Science. PhD thesis.

[Litman1986] Litman, Diane J. 1986. Understanding plaipsits. InProceedings of
the Fifth National Conference on Atrtificial Intelligencpages 619-624, Philadel-
phia.

[Litman and Allen1987] Litman, Diane J. and James F. AlleB871 A plan recogni-
tion model for subdialogues in conversatio@agnitive Sciencel1(2):163-200.

[Litman and Allen1990] Litman, Diane J. and James F. Alle@9Q. Discourse pro-
cessing and commonsense plans. In P. R. Cohen, J. Morgan, &wll&tk, editors,
Intentions in CommunicatioMIT Press, Cambridge, MA, pages 365—-388.

[Lochbaum1998] Lochbaum, Karen E. 1998. A collaborativenping model of in-
tentional structureComputational Linguistic24(4):525-572.

[Lochbaum, Grosz, and Sidner2000] Lochbaum, Karen E., Barhasrosz, and Can-
dace L. Sidner. 2000. Discourse structure and intentioogreition. In Robert Dale,
Hermann Moisl, and Harold Sommers, editdisndbook of Natural Language Pro-
cessingMarcel Dekker, New York, pages 123—-146.

[Mann and Thompson1987] Mann, William C. and Sandra A. Thamps 1987.
Rhetorical structure theory: A theory of text organizatiom. L. Polanyi, editor,
The Structure of Discourséblex Publishing Corporation.

[McRoy1998] McRoy, Susan W. 1998. Achieving robust human4ooi@ communi-
cation. International Journal of Human-Computer Studié8:681—-704.

[Murphy and Paskin2001] Murphy, Kevin P. and Mark A. Pask2®01. Linear time
inference in hierarchical HMMs. INIPS-01

[Nau et al.2003] Nau, Dana, Tsz-Chiu Au, Okhtay Illghami, Ugurter, J. William
Murdock, Dan Wu, and Fusun Yaman. 2003. SHOP2: An HTN plamsystem.
Journal of Artificial Intelligence ResearcB0:379-404.

[Patterson et al.2003] Patterson, Donand J., Lin Liao, @i€bx, and Henry Kautz.
2003. Inferring high-level behavior from low-level sensoin Fifth Annual Confer-
ence on Ubiquitous Computing (UBICOMP 200Sgattle, Washington.

[Pollack1986] Pollack, Martha. 1986. Inferring domainndan question-answering.
Technical Report MS-CIS-86-40 LINC LAB 14, University of Pegivania, May.
PhD thesis.



225

[Pollard and Sag1994] Pollard, Carl and Ivan A. Sag. 19%#ead-Driven Phrase
Structure Grammar Studies in Contemporary Linguistics. University of Chicago
Press, Chicago.

[Pynadath1999] Pynadath, David V. 199Brobabilistic Grammars for Plan Recog-
nition. Ph.D. thesis, University of Michigan, Department of Congpi&cience and
Engineering.

[Pynadath and Wellman1995] Pynadath, David. V. and MichBeWellman. 1995.
Accounting for context in plan recognition, with applicatito traffic monitoring.
In Proceedings of the Eleventh Conference on Uncertainty iifiéial Intelligence
pages 472-481, Montreal, Canada. Morgan Kaufmann.

[Pynadath and Wellman2000] Pynadath, David V. and MichaalV&Iiman. 2000.
Probabilistic state-dependent grammars for plan reciogniin Proceedings of the
16th Conference on Uncertainty in Artificial IntelligenceX1J2000) pages 507—
514, Stanford, CA, June.

[Ramshaw1989] Ramshaw, Lance A. 1989. A metaplan model fdygmosolving
discourse. IfProceedings of the Fourth Conference of the European Chaptieo
Association for Computational Linguistigsages 35-42, Manchester, England.

[Ramshaw1991] Ramshaw, Lance A. 1991. A three-level modgdléor exploration.
In Proceedings of the 29th ACpages 39-46, Berkeley, CA, June.

[Ramshaw1989] Ramshaw, Lance Arthur. 1989. Pragmatic krigeldéor resolving
ill-formedness. Technical Report 89-18, University of Dedde, Newark, Delaware,
June. PhD thesis.

[Rao and Georgeff1995] Rao, A. and M. Georgeff. 1995. BDI agdfism theory to
practice. In V. Lesser, editoBroceedings of the First International Conference on
Multiagent System#\AAI Press.

[Rao and Georgeff1991] Rao, Anand S. and Michael P. George&d®1.1 Modeling
rational agents within a BDI-architecture. In James AllerghRrd Fikes, and Erik
Sandewall, editorsRrinciples of Knowledge Representation and Reasqmiages
473-484, Cambridge, Massachusetts, April 22-25. Morgarfridann. Also avail-
able as AAIl Technical Note 14.

[Rayner, Hockey, and James2000] Rayner, Manny, Beth Ann Hockeyg Frankie
James. 2000. A compact architecture for dialogue manageased on scripts
and meta-outputs. IRroceedings of the 6th Conference on Applied Natural Lan-
guage Processing



226

[Rich and Sidner1998] Rich, Charles and Candace L. Sidner. 1@IBLLAGEN:
A collaboration manager for software interface ageniser Modeling and User-
Adapted Interaction8(3—4):315-350. Also available as MERL Technical Report
97-21a.

[Rich, Sidner, and Lesh2001] Rich, Charles, Candace L. SidndriNaal Lesh. 2001.
COLLAGEN: Applying collaborative discourse theory to hurmamputer interac-
tion. Al Magazine 22(4):15-25. Also available as MERL Tech Report TR-2000-38.

[Rudnicky et al.1999] Rudnicky, A. I., E. Thayer, P. Constaidis, C. Tchou, R. Sh-
ern, K. Lenzo, W. Xu, and A. Oh. 1999. Creating natural dialomgthe Carnegie
Mellon Communicator system. IRroceedings of the 6th European Conference on
Speech Communication and Technology (Eurospeechp2@es 1531-1534, Bu-
dapest, Hungary, September.

[Sadek and De Mori1998] Sadek, David and Renato De Mori. 199&logue sys-
tems. In Renato De Mori, edito§poken Dialogues with ComputefSignal Pro-
cessing and Its Applications. Academic Press, London,$838-561.

[Schmidt, Sridharan, and Goodson1978] Schmidt, C. F., N.rilh&an, and J. L.
Goodson. 1978. The plan recognition problem: An intersectf psychology
and artificial intelligenceArtificial Intelligence 11:45-83.

[Searle1975] Searle, John R. 1975. Indirect speech acts.Gol®and J. L. Morgan,
editors,Speech Actvolume 3 ofSyntax and Semanticdcademic Press, New York,
pages 59-82.

[Seneff and Polifroni2000] Seneff, Stephanie and Josepifréto. 2000. Dia-
logue management in the Mercury flight reservation system.Prbceedings of
ANLP/NAACL-2000 Workshop on Conversational Syste®esttle, Washington,
May.

[Sidner1994] Sidner, Candace L. 1994. An artificial discedssmiguage for collabo-
rative negotiation. IfProceedings of the Twelfth National Conference on Artificial
Intelligence pages 814-819, Seattle, WA. Also available as Lotus TeaehReport
94-09.

[Sidner and Israel1981] Sidner, Candace L. and David J.lIsrE@81. Recognizing
intended meaning and speakers’ plansPtaceedings of International Joint Con-
ference on Artificial Intelligenggprages 203-208, Vancouver, B.C.

[Sidner1994] Sidner, Candy. 1994. Negotiation in collabeesactivity: A discourse
analysis.Knowledge-Based Systeni$4):265—-267. Also available as Lotus Techni-
cal Report 94-10.



227

[Stent2000] Stent, Amanda J. 2000. The Monroe corpus. TeahReport 728,
University of Rochester, Department of Computer SciencechMaAlso Technical
Note 99-2.

[The Foundation for Intelligent Physical Agents2002] Theufdation for Intelligent
Physical Agents. 2002. FIPA Request Interaction Protocdcigigation.
http://www.fipa.org/specs/fipa00026/SCO0026H.html, Daoer.

[Traum1994] Traum, David R. 1994. A computational theory afumnding in natural
language conversation. Technical Report 545, Universitgadhester, Department
of Computer Science, December. PhD Thesis.

[Traum2000] Traum, David R. 2000. 20 questions for dialogtt¢axonomiesJour-
nal of Semanticsl7(1):7-30.

[Traum and Hinkelman1992] Traum, David R. and Elizabeth Ankdiman. 1992.
Conversation acts in task-oriented spoken dialog@@mputational Intelligence
8(3):575-599. Also available as University of Rochesterdyapent of Computer
Science Technical Report 425.

[Vilain1990] Vilain, Marc. 1990. Getting serious about piaig plans: a grammatical
analysis of plan recognition. IRroceedings of the Eighth National Conference on
Artificial Intelligence pages 190-197, Boston, July 29 — August 3. AAAI Press.

[Wilensky1983] Wilensky, Robert. 1983lanning and Understanding: A Computa-
tional Approach to Human Reasoningddison-Wesley, Reading, Massachusetts.

[Wooldridge and Jennings1999] Wooldridge, Michael andidlas R. Jennings. 1999.
The cooperative problem-solving processlournal of Logic and Computation
9(4):563-592.

[Wu2003] Wu, Huadong. 2003Sensor Data Fusion for Context-Aware Computing
Using Dempster-Shafer Theoriyh.D. thesis, Carnegie Mellon University, Robotics
Institute, December.

[Zaki, Lesh, and Ogihara2000] Zaki, Mohammed J., Neal Lestd Mistunori Ogi-
hara. 2000. PLANMINE: Predicting plan failures using saggeemining.Artificial
Intelligence Reviewl4(6):421-446, December. special issue on the Applicaifo
Data Mining.

[Zue et al.2000] Zue, Victor, Stephanie Seneff, James Glasseph Polifrani, Chris-
tine Pao, Timothy J. Hazen, and Lee Hetherington. 2000. TEHRIi A telephone-
based conversational interface for weather informatiodEEE Transactions on
Speech and Audio Processjr&{1):100-112, January.



228

A Instructions Given to Users in the

Linux Corpus Collection

We are studying how people perform tasks in Linux. We willggjou a series of tasks
to complete. In each case, we will record the commands yoyarsgtheir results).
By continuing, you agree to let us do this recording and usar ifurther study and/or

publications. It will in no way be used to personally ideytyou.

Each task should take no more than a few minutes at most. ¥ofres to do as

many tasks as you like and you may quit at any time.

INSTRUCTIONS

You will be given a task to complete in Linux. When you have ssstully completed
the task, use the command 'success’ to indicate so. If, atia@y you wish to give up,
use ‘fail’. Note: the system is not actually checking to §g@u accomplished the task
or not. It just believes you when you say 'success’ or 'fdilse the command 'help’ if

you ever need any.

You may perform the task any way you like. However, pleasieothe following

rules:

1. Do everything in the current shell. Don’t invoke new si¢ltsh, rsh, etc.) or do

stuff in another program (like emacs). It prevents the progfrom monitoring



229

your activity.
2. Don't use scripts (awk, perl, sh, ...)

3. Use one command per line, don’t use pipg®f commands with other com-
mands embedded in them, (e.g., with ’;" or backticks '’). sAl it's ok to use

'find’ but not 'find -exec’

4. For each session, you will be assigned a randomly gemnedatectory called:
/u/blaylock/Experiment/Playground/usernatimae (where 'usernamame’ will
be your username and the current time). Please stay withirstibdirectory tree

(i.e., pretend like /u/blaylock/Experiment/Playgrowmslrnamdime is /)

5. Use only standard programs. Don’t use any shell scritgfpms installed in

personal user accounts.

6. Arrows, command completion, and command editing donitkw8orry.

Remember, there is nowhere you need to put an 'answer’ foaile Simply type

'success’ if you accomplished the task, or 'fail’ if you arigigg up.

The current directory idi r nane, please treat this as your root directory.



230

B Goal Schemas in the Linux Corpus

There were 19 goal schemas used in the Linux corpus. TablehBvisseach schema,
along with the template used to generate its English dagmmipnd its assigned a priori
probability.

Note that the English description includes parametersaridhm $1, $2, etc. which
correspond to the first, second, etc. parameter in the gbahs&. In the corpus collec-
tion, these variables were instantiated with the value efattual parameter and then

the text was shown to the subject.



231

Goal Schema Prob.
English Description

find-file-by-attr-nanme-exact(fil enane) 0.091
find a file named '$1’

find-file-by-attr-nane-ext(extension) 0.055
find a file that ends in ".$1’

find-file-by-attr-nanme-sten(stem 0.055
find a file that begins with '$1’
find-file-by-attr-date-nodification-exact(date) 0.055
find a file that was last modified $1
conpress-dirs-by-attr-nanme(dirnane) 0.055
compress all directories named '$1’
conpress-dirs-by-loc-dir(dirnane) 0.055
compress all subdirectories in directories named '$1’

know-fi | espace-usage-fil e(fil enane) 0.073
find out how much filespace file '$1’ uses

know-fi | espace-usage-partition(partition-nane) 0.055
find out how much filespace is used on filesystem '$1’

know-fil| espace-free(partition-nane) 0.036
find out how much filespace is free on filesystem '$1’

det er m ne- machi ne- connect ed- al i ve( machi ne- nane) 0.036
find out if machine '$1’ is alive on the network

create-file(filename, dirnane) 0.073
create a file named '$1’ in a (preexisting) directory nameti '$
create-dir(create-dirnane, | oc-dirname) 0.036
create a subdirectory named '$1’ in a (preexisting) dirgctamed '$2’
renove-fil es-by-attr-nane-ext(extention) 0.036
delete all files ending in ".$1’

renove-fil es-by-attr-size-gt(nunbytes) 0.018
delete all files which contain more than $1 bytes

copy-fil es-by-attr-name-ext(extention,dirnane) 0.018
copy all files ending in ".$1’ to a (preexisting) directorymad '$2’
copy-files-by-attr-size-I|t(nunbytes,dirnane) 0.018
copy all files containing less than $1 bytes to a (preexi¥ting

directory named '$2’

nove-fil es-by-attr-nanme-ext(extention, dirnane) 0.091
move all files ending in ’.$1’ to a (preexisting) directorymed '$2’

nove-fil es-by-attr-nanme-sten(stem dirnane) 0.073
move all files beginning with '$1’ to a (preexisting) direggmamed '$2’
nove-fil es-by-attr-size-1t(nunbytes,dirnane) 0.073
move all files containing less than $1 bytes to a (preexiyting

directory named '$2’

Table B.1: Goal Schemas in the Linux Corpus



232

C Action Schemas in the Linux

Corpus

We discuss here some of the issues in converting raw Linuxntamd strings into
parameterized actions. We first discuss some of the gersswas encountered and

then discuss the action schemas themselves.

C.1 General Issues for Conversion

The following describes some of the general difficulties weaaintered in mapping the
Linux domain onto actions. It is important to note that oualga this project was not
to write a general-purpose action-description languagekifwx, rather to test a theory

of goal recognition, thus some of our choices were pragnnatiwer than principled.

Flags Linux uses command flags (e.g.l ) in two different ways: to specify un-
ordered parameters and to change the command functiongtié/former is fairly easy
to handle. The latter, however, is more difficult. It would fppessible to treat each
command/flags combination as a separate command. Howeamry, commands have
various flags, which may be used in various combinations¢ivhiould likely lead to

a data sparseness problem.



233

We currently just ignore all command functionality flags.eTdction schema name
used is just the ‘command name’ of the Linux command (¢.g.fromls -1 -a).
One option would be to form a sort of multiple-inheritancestadaction hierarchy of
commands and their flags (e.¢.s -| -a inherits fromls -1 andls -a), al-

though we leave this to future work.

Optional Parameters Treating various modes of commands as one command ex-
pands the number of possible parameters for each comman@x&amplef i nd can
take the- si ze parameter to search for a file of a certain size, wane to search for

a certain name. These parameters can be used togethegtegpar not at all.

To deal with this problem, each action schema has a pararfoeteachpossible

parameter value, but parameter values are allowed to bk.blan

Lists of Parameters Many commands actually allow for a list of parameters (Ugual
for their last parameter). The commahd, for example, allows a list of flenames
or directory names. Rather than handle lists in special wagdreat this as multiple

instances of the action happening at the same timestepr{staace for each parameter

in the list).

Filenames and Paths As can be seen below in the action schemas, many commands
have both gat h and apr epat h parameter. Because our parameter recognizer uses
the action parameter values to help predict goal’s paramatees, it is necessary that
the corresponding value be found in the action parametereyp@ssible. Paths were
especially difficult to handle in Linux because they can emtoally be thought of

as alist of values — namely each subdirectory name in the path as wedl fnal
subdirectory name (in the case that the path refers to atdiggor a filename (in the
case it refers to a file). In a complex path, the parameteevahs often the last item

in the path.



234

As a solution, we separated each path inp@&éh and apr epat h. Thepat h was
the last item on the original path, whereasphepat h contained the string of the rest

of the original path (even if it had more than one subdirgcioiit).

As an example, consider the commardl di r 1/ dir2/fil e. t xt which con-
tains a complex path. In this case, it would translate ineddfiowing action in our cor-
pus:cd(dirl/dir2,file.txt). Thisway, the argumeriti | e. t xt becomes a

separate parameter value, and thus accessible to the paraewognizer.

Wildcards How to handle wildcards (* and ?) was another issue. In Lifilenames
containing wildcards are expanded to a list of all matchitegdnd directory names in
the working directory. However, that list was not readilyagable from the corpus.
Furthermore, even if there is not match to expand to, we wikidto be able to tell
that a commantls *. ps is looking for an extensiops. Our solution was to simply

delete all wildcards from filenames.

Current and Parent Directories The special filenames and. . refer to the current
working directory and its parent, respectively. The reféseof these were not readily
available from the corpus, and leaving them aand. . made them look like the same
parameter value, even though the actual referent was at(fgr example when ad

was executed).

For each goal session, we renamand. . to*dot [ nun] * andxdot dot [ nunm *,
where[ num is the number o€d commands which have been executed thus far in the
current plan session. This separates these values inteadence classes where their
real-life referent is the same. Of course this doesn’t hamdises where a lated

comes back to a previous directory.



235

C.2 The Action Schemas

There were 43 valid command types used in the Linux corpushwive converted into

the action schemas listed below. Each action schema Iistsatime of the command as

well as its named parameters.

cal ()

cat ( pr epat h, pat h)

cd( pr epat h, pat h)

cl ear ()

conpr ess( prepat h, pat h)

cp(dest - prepat h, dest - pat h, sour ce- pr epat h, sour ce- pat h)
date()

df ( pr epat h, pat h)

di r ( prepat h, pat h)

du( pr epat h, pat h)

echo(string)

egrep(pattern, prepath, pat h)
fgrep(pattern, prepath, path)
file(prepath, path)

fi nd(prenane, nane, si ze, pr epat h, pat h)
grep(pattern, prepath, pat h)

gt ar (dest - prepat h, dest - pat h, sour ce- prepat h, sour ce- pat h)
gzi p(prepat h, pat h)

i nf o( command)

j obs()

| ess(prepat h, pat h)



236

| n(dest - prepat h, dest - pat h, sour ce- pr epat h, sour ce- pat h)
| s( prepat h, pat h)

man( command)

nkdi r ( pr epat h, pat h)

nor e( pr epat h, pat h)

nmount ()

nv( dest - pr epat h, dest - pat h, sour ce- pr epat h, sour ce- pat h)
pi co( pr epat h, pat h)

pi ng( machi ne- nane, machi ne- pat h)

pwd( )

r1 ogi n(machi ne)

r m( pr epat h, pat h)

rsh( machi ne, command)

ruptinme()

sort ( prepath, pat h)

t ar (dest - prepat h, dest - pat h, sour ce- pr epat h, sour ce- pat h)
t ouch( pr epat h, pat h)

tree(prepath, pat h)

unconpr ess( pr epat h, pat h)

Vi (prepat h, pat h)

whi ch( comrand)

zi p(dest - prepat h, dest - pat h, sour ce- prepat h, sour ce- pat h)



237

D Goal Schemas in the Monroe

Corpus

There were 10 top-level goal schemas used in the Monroe sorpable D.1 shows

each schema, along with its assigned a priori probability.

Note that, in the domain, we modeled roads as simple beinggeet their two end-
points. Thus incl ear - r oad- hazard(fromto), thef romandt o parameters

refer to the road between the two variables (where the hagard

Goal Scherma Prob.
cl ear-road- hazard(fromto) 0.094
clear-road-tree(fromto) 0.063
cl ear-road-weck(fromto) 0.156
fix-power-line(location) 0.063
fix-water-main(fromto) 0.031
pl owroad(fromto) 0.219
provi de- medi cal -attention(person) | 0.219
provi de-t enp- heat ( per son) 0.094
qguel I -riot (|l ocation) 0.031
set-up-shelter(l ocation) 0.031

Table D.1: Goal Schemas in the Monroe Corpus



