An Efficient Enumeration Algorithm for Canonical
Form Underspecified Semantic Representations

Mehdi Manshadi, James Allen, Mary Swift
University of Rochester
Rochester, NY
{mehdih, james, swift} @cs.rochester.edu

Abstract. We give polynomial-time algorithms for satisfiability and
enumeration of underspecified semantic representations in a canonical form.
This canonical form brings several underspecification formalisms together into
a uniform framework (Manshadi et al., 2008), so the algorithms can be applied
to any underspecified representation that can be converted to this form. In
particular, our algorithm can be applied to Canonical Form Minimal Recursion
Semantics (CF-MRS). An efficient satisfiability and enumeration algorithm has
been found for a subset of MRS (Niehren and Thater, 2003). This subset,
however, is not broad enough to cover all the meaningful MRS structures
occurring in practice. CF-MRS, on the other hand, provably covers all MRS
structures generated by the MRS semantic composition process.

Keywords: Formal Semantics, Underspecification, Minimal Recursion
Semantics, Canonical Form Underspecified Representation.

1 Introduction

Underspecification in semantic representation is about encoding semantic ambiguities
in a semantic representation. Efficient enumeration of all possible readings of an
underspecified semantic representation is a topic that has interested researchers since
the introduction of underspecification in semantic representation. Hobbs and Shieber
(1987) is one of the earliest works on this topic. The underspecification formalism
that they use is based on a traditional underspecified logical form (Woods 1978),
which is neither flat nor constraint-based. Most of the recent semantic formalisms,
however, use a flat, constraint-based representation of natural language semantics,
such as Minimal Recursion Semantics (Copestake et al., 2001), Hole Semantics (Bos
1996), and Dominance Constraints (Egg et al., 2001).

Recently there has been some work on finding efficient algorithms for determining
whether an underspecified representation has a reading or not (the satisfiability
problem) and for enumerating all the possible readings of a satisfiable representation
(the enumeration problem). Althaus et al. (2003) shows that the satisfiability problem
for Dominance Constraints formalism in its general form is NP-complete. Niehren
and Thater (2003) define a subset of dominance constraints called dominance nets,
and show that an algorithm given by Bodirsky et al. (2004) can be used to generate
the readings of a dominance net. Furthermore, they define a translation of Minimal

Recursion Semantics (MRS) to dominance constraints. As an analogy to dominance
nets, they also define a subset of MRS called MRS nets and prove that there is a
bijection between the readings of a MRS net and the readings of its corresponding
dominance net. This shows that the above mentioned algorithm can be used for
enumeration of MRS nets, a big subset of MRS. They do not, however, make any
claim about the coverage of MRS nets. By studying the output of the LinGO English
Resource Grammar (ERG) (Copestake and Flickinger 2000) on the Redwoods
Treebank (Oepen et al., 2002), Fuchss et al. (2004) claim that all the non-net MRS
structures are semantically “incomplete”. In other words, they claim that the concept
of net is broad enough to cover all semantically complete MRS structures. This claim,
however, later was invalidated (Thater 2007). That is there are examples of coherent
English sentences whose MRS structure is not a net (see section 6). As a result no
efficient enumeration algorithm has been found that covers all MRS structures
occurring in practice.

In recent work, Manshadi et al. (2008) define another subset of MRS structures
called Canonical Form MRS (CF-MRS) and prove that it covers all the well-formed
MRS structures generated by the MRS semantic composition algorithm (Copestake et
al. 2005). Motivated by the definition of CF-MRS, they define a Canonical Form
Underspecified Representation (CF-UR) and claim that this representation can be
translated back and forth to some other underspecification formalisms, such as
Dominance Constraints and Hole Semantics.

In this paper, we give a polynomial-time algorithm for satisfiability and
enumeration of CF-UR. This directly results in an efficient algorithm for solving CF-
MRS. Since CR-MRS has been proved to cover every well-formed MRS generated by
the MRS semantic composition process, our algorithm covers coherent non-net
examples that previously proposed algorithms do not.

The structure of this paper is as follows. We give an informal introduction in to
CF-UR in (2.1) and the formal definition in (2.2). We define dependency graph (3)
and present the algorithms to solve a first-order CF-UR (4) and the CF-UR in its
general form (5). (6) discusses the related work in detail; it specifically addresses the
difference between MRS net and CF-MRS.

2 Canonical Form Underspecified Representation

2.1 An informal introduction

We first explain the concept of CF-UR through an example. Consider the sentence
Every dog probably chases some cat. Two of its readings are shown in figure (1), and
the corresponding CF-UR in graphical form is shown in figure (2).

Every(x) Some(y)
Some(y) Probably
Dog(x) Probably Catly) Every(x)
Cat(y) Chase(xy) Dog(x) Chase(x,y)

(a) (b)

Figure 1. Two readings of the sentence Every dog probably chases some cat.

L Probably

~--
I

O @-==

s }
=

x

<

Catly) !
¢ Chase(x,y)

Figure 2. CF-UR graph

As shown in this figure, the graph has two types of node: label node and hole node,
and two types of edge: solid edge and dotted edge. The graph is directed, although the
directions are not shown explicitly when the graph is a tree or a forest. There are three
kind of label nodes: first-order predicates (such as Dog(x), Chase(x,y)), operators
(such as Probably) and quantifiers (such as Every(x)). Every quantifier node has two
outgoing solid edges to two hole nodes: one for its restriction (restriction hole) and
one for its body (body hole). Operators such as Probably also have one or more
outgoing solid edges to distinct hole nodes. There is only one hole node in the graph
which does not have any incoming edge. This is called the fop hole. As seen in figure
(2), the number of hole nodes and label nodes in the graph are equal. In order to build
the readings of a CF-UR, we must plug the label nodes into the hole nodes. But not
every plugging? is desirable. The dotted edges in a CF-UR represent the geq (equality
modulo quantifiers, Copestake et al., 2005) constraints. A qeq constraint from hole 4
to label / is satisfied, if either the label / directly plugs into the hole 4 or, 4 is filled by
a quantifier node and / plugs into the body hole of that quantifier, or there is another
quantifier which plugs into the body hole of the first one and / plugs into the body of
the second one and so on. Given a CF-UR, a tree is built by removing all the
constraint edges and plugging every label to a distinct hole. The tree is called a fully
scoped structure iff it satisfies all the qeq constraints. For example, figures (1a,b) both
satisfy the four constraints of the CF-UR in figure (2); hence they are fully scoped
structures of this CF-UR.

To have a valid reading of an underspecified representation every variable must be
in the scope of its quantifier. We call this dependency constraint. A node P(...) is
dependent on a quantifier node Q(x) if x is an argument of P(...). A fully scoped
structure satisfies this constraint iff Q(x) outscopes® (i.e. is an ancestor of) P(...) in the
tree. A fully scoped structure of a CF-UR is called a reading or a solution iff it
satisfies all the dependency constraints. Manshadi et al. (2008) prove that every well-
formed MRS structure generated by the MRS’s semantic composition process is in a
canonical form (hence called CF-MRS), which is a notational variant of CF-UR.
Furthermore, they show that in a CF-MRS, qeq relationships and outscoping
constraints are equivalent; that is if the qeq constraints in a CF-UR are treated as
outscoping constraints, the CF-UR will still have the same set of readings. As
mentioned before, the dependency constraints are also outscoping relations; therefore
similar to the Dominance Constraints formalism, the dependency constraints are made
explicit (figure 3), and all the constraints in CF-UR are treated as outscoping
relations.

2 We borrowed the term plugging from Hole Semantics. Manshadi et al. (2008) call the
plugging a label assignment.
3 Note that outscoping (or dominance) is considered to be a reflexive and transitive relation.

Every(x) @ Some(y)

N ,r‘
e Probably .-
] AN ,”]
' S o 1
¥ ~ - ¥

Dog(x o Cat
96 W¥Chase(x,y))

Figure 3. UR graph with explicit dependencies

2.2 The formal definition

Consider F the set of labeled formulas of the following types:

* Quantification: A formula of the form /:Q(x, hr, hb) where [is the label, Q is
the generalized quantifier, x is the first order variable quantified by Q, and Ar
and &b are the holes for the restriction and the body of the quantifier.

* Operators: A formula of the form [:P(x1, x2, ..., hl, h2, ...) where P is an
operator, x/, x2, ... are first order arguments of P and %/, h2, ... are holes for
the higher order arguments.

* Predications: A formula of the form [:P(xI, x2, ...) where P is a first order
predicate and x/, x2, ... are its arguments.

A CF-UR is the triple U = <F, hy, C> in which F is a set of labeled formulas, A7 is a
unique hole which does not occur in any argument position in F, called the top hole,
and C=C,U C;, where C, is a set of hole to label constraints (corresponding to geq
relationships) and C,; is a set of label to label constraints (corresponding to
dependency constraints). We require U to satisfy following conditions (the canonical
form conditions):

a) No quantifier labels and no quantifier body holes are involved in any constraint

in C,.
b) Every other hole and label is involved in exactly one constraint in C,.

A label assignment or plugging P is a bijection between holes and labels. The ordered
pair <U, P> is called a reading or a solution of U iff it satisfies all the constraints in
C=C,UCy.
<U, P> satisfies an outscoping constraint u<v iff
* when u and v are both labels: u=P(..., A, ...) is in F and 4<v recursively holds.
* when u is a hole and v is a label: P(u)=v or P(u)=I/, where [=P(..., h, ...)is a
labeled formula in F and 4<v recursively holds.
As an example, the CF-UR for the sentence Every dog probably chases some cat is
shown below.
U = <{ll1: Every(x, hl, h2), 12: Dog(x), 13: Some(y, h3, h4), 14: Cat(y), I5: Probably(hs5),
16:Chase(x,)}, h0, {h0<I5, h1<I2, h3<I4, h5<I6}U {16<l1, 16<I3}>
Figure (3) shows a graphical representation of the CF-UR U, in which the dotted
edges represent the constraints (the labels of the formulas are not shown in this
figure). Note that the hole nodes of every formula are assumed to be ordered from left
to right. A plugging P, which satisfies all the constraints in U, is given below.
P = {(h0, 13), (h1, 12), (h2, 16), (h3, I4), (h4, 15), (hS, 11)}

P corresponds to the graphical representation of the solution <U,P> in figure (1b)
above, which is obtained by removing all the dotted edges from U’s graph in figure
(2) and merging every hole node / with the label node P(h).

A CF-UR is called satisfiable iff it has at least one solution. The problem of
finding all possible solutions of a CF-UR is called the enumeration problem.

Since dependency constraints are obvious from the first order arguments of the
formulas, for the sake of readability, we often remove the dependency constraints
from CF-UR’s graph as in figure (2) above. The graph in figure (2) is a forest of three
trees; two of which are rooted at the two quantifiers and one rooted at the top hole.
Using canonical form conditions (conditions (a) and (b) given above), it is easy to see
that this configuration holds in general; that is given a CF-UR U with n quantifier
nodes, if we ignore the dependency constraints (i.e. C,), U’s graph is a forest of
exactly n+1 trees whose roots are the top hole and the quantifiers as in figure (4).

Q1(X1)
09 66
[}

L]

Figure 4. General structure of CF-UR

3 Dependency Graph

In this section we build a mathematical framework to formally present the algorithms
and prove their properties. We will first solve the satisfiability and enumeration
problems for a CF-UR with only quantifiers and first order predicates (i.e. no
operators). We call such a CF-UR a first-order CF-UR (figure 5).

Qi(x4) Qn(Xn)
O
? o

Ro(..) & 6
Ri(...) Rn(...)

Figure 5. General structure of first-order CF-UR
To generalize this to handle an arbitrary CF-UR U with operators (figure 4), we
transform U into a first-order CF-UR U’, which we call U’s reduced form, by
collapsing the trees 6; (i=0..n) into a single first order predicate R;(...), whose
arguments are the union of the first order arguments of all the predicates and
operators in the tree 6; (figure 6). We use the algorithms for first-order CF-UR (given
in section 4) to solve U’ and use the results to solve the original problem (section 5).

Qi(x)

W o P

B — e
(/\Q Ri(x,y)
P2(x) 4 & P3(y)
(a) (b)

Figure 6. Collapsing the trees into a single node

Consider a first order CF-UR with n quantifiers (figure 5). In order to build all its
corresponding fully scoped structures, all we need to know is the number of
quantifiers. For example, a first order CF-UR with two quantifiers has four possible

fully scoped structures shown in figure (7).
) Q1 Q2 Q2

) §>\ B M

R2 R1 R2 R1 R2 R1 RO
(c) (d)

Q1
Q2
RO

(a) (b)

Figure 7. All fully scoped structures for n =2

In order to check whether each fully scoped structure is a solution or not, we only
need to check the satisfaction of the dependency constraints. We define the concept of
dependency graph to represent all these dependencies in a compact form. A
Dependency Graph (DG) is a directed graph with n+/ nodes labeled O0...n,
corresponding to the nodes R, to R, . The node i (i>0) is connected to node j by a
directed edge (7, j) iff R; is dependent on Q;. In all the examples in this paper, we
assume that the quantifiers are numbered in the order they appear in the sentence. As

an example consider the CF-UR in figure (8) for the sentence Every politician whom
somebody knows a child of runs. The DG for this sentence is given in figure (9c¢).

Q1: Every(x) Q2: Some(y) Q3: A(z)

N

é é
Run(x) Politician(x)* person(y) ~ Child(z, x)
Know(y, z)

Figure 8. CF-UR for Every politician whom somebody knows a child of runs.

Figures (9a,b) show the DGs for the sentences Every dog chases a cat and Every dog
in a room barks respectively. Note that out of the four possible fully scoped structures
for n=2, given in figure (7), (7b,d) are the solutions for the DG in (9a) and (7a,d) are
the solutions for DG in (9b).

1 2 1 2 1 3

0 0 2 0
(a) (b) (c)

Figure 9. Examples of dependency graph

From the definition, node 0 in every DG has no outgoing edges, so it is a sink node.
We call the sink node the heart of the DG. In all the DGs in figure (9), every node can
reach the heart by a directed path. We call this property (that every node in a DG is
connected to the heart by a directed path) heart-connectedness. Therefore all three
DGs in figure (9) are heart-connected. This is not a coincidence. Note that if a node is
directly connected to the heart by a directed edge, it means that the corresponding
noun phrase (NP) is an argument of the heart formula (i.e. the main predicate of the
sentence). If a node is connected to the heart by a path of length two, it means that the

corresponding NP is a modifier of an argument of the heart formula, and so on. The
heart-connectedness property requires that every NP contribute to the meaning of the
sentence, either by filling an argument position of the main predicate or by modifying
an argument of the main predicate, and so on; which is a trivial property of every
coherent sentence.

4 Scoping in first order CF-UR

Consider a first order CF-UR U with the heart-connected DG G. A solution of U (or
simply a solution of G) is an ordered binary tree T with exactly n interior nodes
labeled Q;..0;, and n+1 leaf nodes labeled Ry...R, such that
* Qeq constraints: Ry is the right-most leaf of 7. Every other R; is the right-most leaf
of the tree rooted at the left child of Q;in T.
* Dependency constraints. for every i, j (i>0), if node i immediately dominates node j
in G, then Q; dominates R; in T.
Here, by u immediately dominates v, we mean u is connected to v by an edge (u,v).
Dominates is the reflexive transitive closure of immediately dominates. We represent
the tree rooted at the left child of Q; in T, T; and call it the restriction tree of Q;.
Similarly, the tree rooted at the right child of Q) is called the body tree of Q;
For example, the DG given in figure (11a) for the sentence Every dog in a room of
some house barks has 5 different solutions, two of them given in figure (11b,c).

Q1
3 Q2 Q2
2 Q3 RO Q3 Q1
1 R1
0 R3 R2 R3 R2 R1 RO
(a) (b) (c)

Figure 11. A DG with two of its solutions

It is important to understand some counter intuitive properties of DG. First, the fact
that i immediately dominates j in G, although implying Q; has to dominate R; in T,
does not necessarily mean that Q; has to dominate Q; in 7. This is shown in both
figures (11b,c) for the nodes Q2 and Q3. Second, if i transitively (i.e. not immediately

or reflexively) dominates j in G, it does not force Q; to dominate R; in T, as shown for
nodes O3 and R/ in both figures (11b,c).

4.1 Satisfiability algorithm

If the DG G has no directed cycle (hence is a directed acyclic graph or DAG), then
there is a topological order of the nodes in G, say n, n-1, ..., 0. In this case, figure
(12) is an interpretation of G. Hence G is trivially satisfiable.

Qn
/>\Qn-1
Rn R

R .
1, /-\Q1
R1 R0
Figure 12. An interpretation for a DAG

Now consider the DG G in figure (9¢) as an example of a DG with directed cycles.
We can partition G into 3 Strongly Connected Components (SCC) Gy, G;, G, as
shown in figure (13a). A node in an SCC, which connects it to some node outside the
SCC, is called a head of SCC. In this example, every SCC (except Gy) has exactly
one head. We replace every SCC (except Gy) with its head as shown in figure (13b)
and call the new graph G'. G" is a DAG, so we can build an interpretation 7" of G" as
shown in figure (13c). Since we replaced G; with a single node, Q3 is missing in 7.
We remove all the outgoing edges of the head (node 1) in G; and call the new graph
G’; as shown in figure (13d). If we treat node 1 as the heart, G’; can be seen as a
heart-connected DG. Therefore we can recursively apply the same procedure to G’ to
build a solution 7; shown in figure (13e). When we return from this recursive
procedure, we replace the node R; in 7~ with the tree 7; and call the new tree T (figure
13f). T'is a solution of G.

Note that if G; has more than one head, that is if node 3 is also directly connected
to the heart, then 7 would no longer be a solution of G, as R, is not in the scope of Q;
in T. This suggests rejecting every DG containing an SCC with more than one head.

To state this idea formally, consider a DG G=(V, E), with K+1 SCC Gy...Gg
where Gy only contains the heart node. We formally define a head of Gy=(V}, Ey) as a
node u in Vj such that there exists a node v in V-V where (u,v) is an edge in E. Since
G is heart-connected, every Gy (k>0) has at least one head. We call a DG G single-
headed iff every SCC Gy has at most one head. Let iy (k>0) be the head of Gy. We
remove all the outgoing edges of iy in Gy to call the resulting graph G . If we treat i

as the heart, G 4 can be seen as an independent DG, called the underlying DG of Gk.

G,
1 3
Gz2ioe Ny 0 T\‘ />\
(a)
T
G"

Q
1¢¢ 3 /\3 R

(d)
Figure 13. Satisflablllty ofa DG with cycles

SAT(G)

1. Find all the SCCs in G (Gy...Gg).

2. If some SCC has more than one head output UNSAT and halt, otherwise:

3. Replace each SCC Gy (k>0) with its head iy and call the new graph G'.

4. Find a topological order of the nodes in G', say ik .. i;; build an
interpretation T' of G' as shown in figure (15a).

5. For each SCC Gy with more than one node, remove all the outgoing edges
of the head and call it G'y. Let T, = SAT(G'})

6. Replace every Riy in T with T, call the new tree T as shown in figure (15b).

7. Return T

Figure 14. SATisfiability algorithm for first-order CF-UR

A heart-connected DG G is called recursively single-headed iff
i) Gisasingle SCC, or
ii) G is single-headed and the underlying DG of all its SCCs are recursively
single-headed.
Note that if a single-headed G is heart-connected, all the underlying DGs of G are
also heart-connected; therefore the concept of recursive single-headedness is well-
defined.

Theorem 1. A heart-connected DG is satisfiable if and only if it is recursively single-
headed.

Note that theorem 1 has an intuitive linguistic explanation. Since an SCC in the DG of
a sentence represents a noun phrase and the head of an SCC actually represents the
head of the noun phrase, this theorem says that an underspecified semantic
representation has a reading if and only if every noun phrase has a single head.

The algorithm in figure (14) generalizes the procedure introduced in the above
example. It returns a tree T if G is recursively single-headed and outputs UNSAT
otherwise. To prove the if direction of theorem 1, all we need is to show that if the
algorithm returns a tree 7, T is a solution of G. We prove this using induction on the
depth of the recursion d. For d=0, G is a DAG; hence 7 is trivially a solution of G.
Consider a DG G for which the depth of recursion is d (d>0) and let T be the output
of the above algorithm. T'is a solution of G since:

* Qeq constraints: R0 is trivially the right-most leaf of 7. Also, for every k>0, using
the induction assumption, 7} is a solution of G’; with the heart i;; therefore Rij is
the right-most leaf of 7;. All other qeq constraints hold by induction assumption.

Rik.1 R - Qi
AT T A
RI1 Rg ;_____E Ro
(@) (b)

Figure 15. Graphical description of the algorithm

* Dependency constraints: consider the nodes i, j such that i immediately dominates j
in G. If i, j are in the same SCC, say G, then this dependency constraint holds by
the induction assumption (because 7} is a solution of G). If i, j are in two different
SCCs, say Gand G, respectively, then we have i=i; (because i is the single head of
Gy) and i;<i; (because ik, ik, ... 1S a topological order); therefore Qi; dominates Qi;
and the whole tree T; in T (figure 15b) and since R; is in 7;, O; dominates R; in T.

The proof of the only if direction is not as straightforward. The proof idea is given
below by stating three helpful lemmas. For a given node v in G, we define Anc(v) as
the set of nodes that dominate v (including v itself) and Dis(v) as the set of nodes that
have a path to the heart without going through v (including the heart itself). As G is
heart-connected, for every v in V, we have Anc(v) U Dis(v) = V.

Lemma 1: If Q; is the root of some arbitrary solution T of G, then for every j#i in
Anc(i), O; is in the restriction tree of Q; and for every k>0 in Dis(i), Oy is in the body
tree of Q;.

Proof: Consider jEAnc(i). We use induction on the length of the path P (shown as
|P|) from j to i to show that Q; is in the restriction of Q; . First, let |P|=], that is j
immediately dominates i. Q; is the root and R; (the restriction of Q;) has to be in the
scope of O, therefore O; has to be in the restriction tree of Q;. Now Let |P|=n+]
(n>1) and k be the node immediately after j on the path P. According to the induction
assumption, @y is in the restriction tree of Q;. On the other hand, R; must be in the
scope of Q; therefore Q; has to be in the restriction tree of O, too. A similar argument
applies when j€Dis(i). []

From this lemma, a node Q; can be the root of some solution G only if Anc(i) and
Dis(i) are disjoint. We call this property the root condition.

Lemma 2. If a subgraph G’ of G (with the same heart) is unsatisfiable, then G is
unsatisfiable.

Although simple, the above lemma is very helpful as it allows us to consider only the
problematic part of the DG and ignore the rest. Now consider a DG G with an SCC

G, which has at least two heads, say i; and j; (figure 16). The nodes i; and j; are
connected to some node(s) outside SCC, say i and j respectively. As G is heart-
connected, i and j are connected to the heart by paths P; and P,. First, consider the
case where the two paths intersect only at the heart node. Consider only the part of G
which includes the SCC G, and the paths P, and P»; call it G (figure 16).

SCC Gy P,

/ - H \._ « s .
VAR 3 ~u0
\\\ IJ/.’_%. « . 0/

. i P,

Figure 16. An unsatisfiable DG

G’ is unsatisfiable because none of the nodes in this graph satisfy the root condition.
Therefore from lemma (2), G is unsatisfiable. A similar argument can be given for the
case where P; and P; intersect at some other nodes as well. This completes the proof
that G is satisfiable only if it is single-headed. To prove that G needs to be recursively
single-headed, we use following lemma, which directly results from lemma 1.

Lemma 3. If j; is the head of some SCC G; and T is an arbitrary solution of G, for
every node j#i in Gy, Q; is in the restriction tree of Qi; in T.

From this lemma, the nodes in every SCC G; form a smaller satisfiability problem
whose DG contains the underlying DG of Gy (i.e. G';) and whose heart is the same as
G'’s heart (i.e. Riy). Therefore from lemma 2 the property of being single-headed
must recursively hold for G;.

The algorithm given in figure (14) divides the satisfiability of G into K
subproblems, satisfiability of G';...G 'k, where |V'j|+...+|V 'k|<|V] (|G| is the size of
G and |V]| is the number of nodes in G). The cost of this breaking is linear in |G|.
Therefore if 7(|G|) is the running time of the algorithm, we have:

G = O(GY+T(G 1) +...+T(1G k)

Using induction on |V|, the worst-case complexity of the algorithm is quadratic in size
of G. More precisely the running time is O(|V|'|G|), where |G| = |V]|+|E| if we
represent the graph using adjacency list.

4.2 Enumeration algorithm

Using lemma 1, we showed that Q; can be a root of some solution T of G only if
Anc(i) and Dis(i) are disjoint. Consider the subgraph of G induced by the nodes in
Dis(i) and call it G, (figure 17 is an example where i=1).

G 1 3 4 Gp 4 Gr 1 3
2 0 ‘o/ 2
(a) (b) ()

Figure 17. G, G,, and G, for Every politician whom
somebody had a chat with voted for the bill.

From lemma 1, it can be seen that the body tree of Q; in T has to be a solution of G,.
Now, consider the subgraph of G induced by the nodes in Anc(i). We remove all the
outgoing edges of i and call the resulting DG, G, (figure 17¢). From lemma 1, the
restriction tree of Q; in T has to be a solution of G,. As a result, Q; is a root of some
solution of G if and only if it satisfies the root condition and its corresponding G, and
G, are both satisfiable. Note that since G is heart-connected, both G, and G, are heart-
connected. Figure (18) summarizes the enumeration algorithm.

EnumerateFO (G)
1. If G is not satisfiable fail.
2. If G has only one node, return G.
3. Find R, the set of nodes i in G which satisfy the root condition.
4. Non-deterministically pick a node i in R:
5. Build G, and G,
6. Let T, = EnumerateFO(G,) & T, = EnumerateFO(Gp)
7. Build the tree T rooted at Q;, with T, and T, as restriction and
body tree of Q; respectively.
8. Return T

Figure 18. Enumeration for first-order CF-UR

Rz Ry Rs Rs Ro
Rz Ry
(@) (b) (c)

Figure 19. An example of enumeration algorithm

As an example, if the recursive call to EnumerateFO() for G, and G, in figure (17),
returns the trees 7, and T} in figure (19a,b), the final solution tree 7 would be the one
in figure (19c). An argument similar to the proof of the if direction of theorem 1 can
be given to prove the soundness of the algoithm. The completeness can be prove by
induction. If T is a solution of a heart-connected DG G rooted at Q, according to the
above discssions and lemma 1, O must satisfy the root condition (hence it will be
picked as the root at some branch of the algorithm). On the other hand, the restriction
and the body tree of O must be solutions of G, and G (hence they are built at step 5
based on induction asumption), therefore T will be generated by the algorithm.

The enumeration algorithm breaks the problem into subproblems, but this time the
cost of this breaking is quadratic in |G| (because we check the satisfiablity at each
step). Therefore the time complexity of the overall procedure is cubic in size of G per
solution. The time-complexity can be improved though. It can be shown that the
satisfiability check at each step is not necessary. In fact, we can remove step 1 of the
algorithm and if the enumeration algorithm ever fails (i.e. it encounters an empty R)
we declare G as unsatisfiable. After this simplification, the running time would be
O(|V]"|G|). Space does not permit us to give the technical details of the proofs given
here. We reserve those for a longer paper.

5 Scoping with operators

The following theorem shows that to check the satisfiability of a CF-UR, it is enough
to check the satisfiability of its reduced form.

Theorem 2. A CF-UR is satisfiable if and only if its reduced form is satisfiable.

The only if direction is trivial. The if direction is true because for every solution of the
reduced form, at least one solution of the original CF-UR can be built by taking the

solution T of the reduced form, expanding every node R; to its original tree 6; (see

figures 4-6) and simply assigning every label in the 6; to the hole to which the label is
geq. We call such solutions basic solutions. For example, figure (20a) shows the CF-
UR for the sentence Every dog which probably chases some cat does not bark with its
reduced form in figure (20b). Figures (20c,d,e) show one solution of the reduced
form, its expanded version, and the corresponding basic solution of the original MRS
respectively. In general, corresponding to each solution of the reduced form, there is
more than one solution of the original CF-UR. For example there are three more
solutions corresponding to (20c) as shown in (20f,g,h).

Every(x)
eu? O/\) Every(x) Some(y) Every(x) Every(x)
61 Some(y)

Barko! |y I§ R Ri(xy) Rely) Ry Ri(xy)

e g "BPe b] A o o % So;(y{\ Some(y) - 8 -
i H 1 1 1 of
Pl (L [t 1) ‘ Ro(x) D-P(x) \é

¢ Chase(x, y) Bark(x)

(a) (b) (c) (d)

Every(x) Every(x) Not Not

Some(y) Not D-P(x) Every(x) Every(x)

D-P(x)

Not Some(y) D-P(x)

Some(y)

Cat(y)
« Bark
Chase(x, y) Barkix) Cat(y) Chase(x,y) ark(x) Cat(y)

D-P(

X} Bark(x) Some(y) Bark(x)

Chase(x, y) Cat(y) Chase(x, y)
(e) Ui (@ ()
Figure 20. Scoping with operators

The solutions other than basic ones are built by taking a basic solution and moving
quantifiers with their restriction trees inside operators (figure 21).

T & P
T P T, Qi\T T

P

Figure 21. Moving quantifiers inside operators

A quantifier Q; can move inside an operator P only if P is not dependent on Q;. The
enumeration algorithm for a general CF-UR is shown in figure (22). For every basic
solution 7', EnumerateB(T’, n) is called to build all the corresponding non-basic
solutions. In order to prevent generating a single solution in more than one way,
quantifiers in a basic solution are ordered in a post order fashion and are picked by
EnumerateB() based on this order using argument m (see condition (a) in step 2 of
EnumerateB()). Trivially the algorithm is sound. To see why it is complete, consider
an arbitrary solution 7 (e.g. figure 20h); move quantifiers with their restriction trees
(based on a preorder) all the way up in T until it hits another quantifier node; the
resulting tree 7° would be a basic solution (figure 20e).

Enumerate(U) // U: a CF-UR with n quantifiers
1. Let G =DG of U’ (Reduced-form of U)
2. Let T = EnumerateFO(G)
T’ = Basic solution corresponding to T
3. Call EnumerateB(T’, n)

EnumerateB(T, m)

1. Output T

2. Non-deterministically pick a quantifier Q;;
a) whose order k is at most m;
b) whose body node is an operator P;
¢) where P is not dependent on Q;

3. Move Q;inside P and call the new tree T".

4. Call EnumerateB(T’, k)

Figure 22. General enumeration algorithm

Every branch of EnumerateB() takes linear time and uniquely generates a solution;
therefore EnumerateB() runs in linear time per solution; therefore Enumerate() runs in
quadratic time per solution as a result of the call to EnumerateFO().

In these algorithms, we only considered single-hole operators. The extension to
general case is straightforward; if an operator P has more than one hole, when moving
a quantifier inside P, we non-deterministically pick a child of P and move the
quantifier inside P along that child. We define an order on the children of P (e.g. from
left to right) to prevent generating a single tree in exponentially many ways.

6 Related Work

There has been some work on satisfiability and enumeration of underspecified
representation in the context of dominance constraints (Althaus 2003, Bodirsky
2004). Crucially, the concept of solution in that context has a different definition from
the standard definition of reading in formal semantics, which we gave in section 2. In
dominance constraints formalism, the standard notion of reading is referred to as the
constructive solution or configuration. In the following discussion, we will use the
term DC solution to refer to dominance constraints notion of solution and the term
reading or constructive solution to refer to the standard notion of solution.

The main difference between a DC solution and a constructive solution is that
there could be nodes in the DC solution that do not correspond to any label in the
actual underspecified representation, but in a constructive solution every node
corresponds to some label in the underspecified representation. As a result there are
examples of underspecified representations that have DC solutions but no
constructive solution. In fact, the problem of finding the DC solutions is easier than
the problem of finding constructive solutions. However, even finding DC solutions
for dominance constraints in general is NP-complete.

As a result, Althaus et al. (2003) define a subset of dominance constraints called
normal dominance constraints and show that this subset can be solved in polynomial
time. Bodirsky et al. (2004) expand the definition of normal dominance constraints to
weakly normal dominance constraints and show that this larger subset still can be
solved in polynomial-time. However, finding the constructive solutions of both
normal and weakly normal dominance constraint is still NP-complete. This means
that Bodirsky’s algorithm cannot be used to find constructive solutions of weakly
normal dominance constraints. Niehren and Thater (2003) define the concept of
dominance net, a subset of weakly normal dominance constraints, and show that for
this subset, Bodirsky’s algorithm can be used to enumerate the constructive solutions.

As an analogy with dominance nets, they define a subset of MRS called MRS
nets and show that Bodirsky’s algorithm can be used to enumerate its readings. The
concept of net, however, is too restricted. Figure (23) shows the three schemas that
can occur in a net. In this figure dependency constraints are shown explicitly and all
the constraint edges are interpreted as outscoping relations.

T 5y |
¥ ¥

¥ ¥ &

(@) (b) ©

Figure 23. Net schemas

The first schema corresponds to the operators in CF-UR where every hole has exactly
one outgoing constraint. The second schema corresponds to the quantifier nodes
where the restriction has one outgoing constraint edge and the body has no outgoing
edge. The net condition requires that the quantifier node has exactly one outgoing
dependency edge, which means there must be exactly one predicate (other than
quantifier’s restriction) dependent on every quantifier. This is where the limitation of
nets comes from: not every natural language sentence satisfies this restriction. For
example consider the CF-UR in figure (8). Figure (24) shows the same CF-UR with
explicit dependency constraints.

A(z) Every(x) O Some(y)
oG-
1 -7 -
R ¥
Child(z,y) P;mfzc(?) i Person(y)

Figure 24. A non-net CF-UR

As seen in this figure, the quantifier Every has two outgoing dependency edges,
therefore it is not a net. Note that in CF-UR, there is no restriction on the number of
outgoing dependency edges of a quantifier, therefore CF-UR covers the non-net
structures such as the above example.

The schema in figure (23c), on the other hand, does not have any counterpart in
CF-UR. This means that CF-UR lacks a certain kind of structure covered by nets.
However, within the context of practical MRS structures this is not a limitation for
CF-UR. In fact, this schema only occurs when translating MRS structures into
dominance constraints. Since the dominance constraints formalism does not allow a
free hole, the top hole of an MRS is replaced with a dummy operator Prop with a
single hole. To enforce that this predicate has the widest scope (i.e. be the root of
every reading), the hole is connected to every other label by a dominance edge (cf.
Thater 2007). This results in one structure of schema 3 in every MRS net. No such a
transformation is needed when MRS structures are represented in canonical form,
therefore such a structure never occurs in CF-MRS. As a result, within the domain of
practical MRS structures, nets are a strict subset of canonical form structures. After
all, CF-MRS is proved to cover all well-formed MRS structures generated by the
MRS semantic composition process.

7 Conclusion

We have presented algorithms for satisfiability and enumeration of CF-UR, an
underspecified semantic representation in a canonical form. CF-UR is a notational
variant of CF-MRS, which is the set of all well-formed MRS structures that can be
generated by the MRS semantic composition algorithm. CF-MRS is broader than
MRS nets, a previously defined subset of MRS for which satisfiability and
enumeration algorithms have been found; broad enough to cover all the MRS
structures occurring in practice.

In addition, CF-UR brings several different formalisms together into a uniform
framework. Therefore, the proposed algorithms can be applied to any underspecified
representation that can be transformed into CF-UR. For example, by using the
concept of dependency graph, it is straightforward to show that the enumeration
algorithm given here can replace the traditional wrapping algorithm (Woods 1987) to
generate all the readings of a logical form.

The main drawback with both CF-UR and nets is that they do not allow holes to
have more than one constraint edge, while some semantic constraints such as island
constraints require additional outscoping constraints on the restriction hole of
quantifiers. Presenting a version of the algorithms for this extended underspecified
representation remains future work.

References
Althaus, E., Duchier, D., Koller, A., Mehlhorn, K., Niehren, J., and Thiel S. (2003). An
efficient graph algorithm for dominance constraints. Journal of Algorithms, 48:194-219.

Bos, J. (1996) Predicate logic unplugged. In Proc. 10th Amsterdam Colloquium, pages 133—
143.

Bodirsky M., Duchier D., Niehren J., and Miele S.. 2004. An efficient algorithm for weakly
normal dominance constraints. In ACM-SIAM Symposium on Discrete Algorithms. The
ACM Press.

Copestake, A. and Flickinger, D. (2000) An open-source grammar development environment
and broad-coverage English grammar using HPSG. In Conference on Language Resources
and Evaluations.

Copestake, A., Lascarides, A. and Flickinger, D. (2001) An Algebra for Semantic Construction
in Constraint-Based Grammars. ACL-01. Toulouse, France.

Copestake A., Flickinger D., Pollard, C., and Sag, [. (2005) Minimal Recursion Semantics: An
Introduction. Research on Language and Computation, 3 (4):281-332.

Egg M., Koller A., and Niehren J. (2001) The constraint language for lambda structures.
Journal of Logic, Language, and Information, 10:457-485.

Fuchss, R., Koller, A., Niehren, J. and Thater, S. (2004) Minimal Recursion Semantics as
Dominance Constraints: Translation, Evaluation, and Analysis. ACL-04. Barcelona, Spain.

Hobbs, J. and Shieber, S. M. (1987) An Algorithm for Generating Quantifier Scopings.
Computational Linguistics 13, pp. 47-63.

Manshadi, M., Allen J., and Swift, M. (2008) Toward a Universal Underspecifed Semantic
Representation. 13th Conference on Formal Grammar (FG 2008), Hamburg, Germany.

Niehren, J. and Thater, S. (2003) Bridging the Gap Between Underspecification Formalisms:
Minimal Recursion Semantics as Dominance Constraints. ACL-03. Sapporo, Japan.

Oepen, S., Callahan, E. Flickinger, D., and Manning, C. (2002) LinGO Redwoods. A Rich and
Dynamic Treebank for HPSG. In Beyond PARSEVAL, LREC 2002, Las Palmas, Spain.
Thater, S. (2007) Minimal Recursion Semantics as Dominance Constraints: Graph-Theoretic
Foundation and Application to Grammar Engineering. PhD Thesis, Universitit des

SaarlandesWoods,

W. A. (1978). "Semantics and Quantification in Natural Language Questiom Answering."
Advances in Computers 17: 1-87.

