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ABSTRACT
In this paper, we describe the TEGUS system for mining
geospatial path data from natural language descriptions.
TEGUS uses natural language processing, GIS entity databases,
and graph-based path finding to predict lat/lon paths based
only on natural language text input. We also report on
preliminary results from experiments on a corpus of path
descriptions.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Language parsing and understanding

General Terms
Algorithms

Keywords
Geospatial language understanding, information extraction

1. INTRODUCTION
There exists a wealth of geospatial information in text

documents, audio streams, blogs, and so forth that is en-
coded in qualitative descriptions in natural language. Our
ultimate goal is to be able to extract such information from
arbitrary text or speech. In this paper, we tackle the prob-
lem of geospatial path understanding : extracting a path in
lat/lon coordinates given a natural language description of
that path. Path understanding would enable a number of
applications, including automated geotagging of text and
speech, robots that can follow human route instructions, and
NL-description-based localization.

Our approach to this problem uses natural language un-
derstanding to extract references to geospatial entities (such
as businesses, streets, intersections, parks, etc.) These lin-
guistic references are used to formulate queries to large GIS
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Figure 1: A session in the PURSUIT Corpus

databases to search for possible grounding referents (the ac-
tual entity that was referred to (e.g., meant) in the lan-
guage). Both reference extraction and search are noisy pro-
cesses which produce uncertain results. However, we are able
to use context to efficiently narrow results to those which
form a globally consistent path using a graph search algo-
rithm.

In the remainder of this paper, we first describe the cor-
pus we use for training and testing. We then describe the
path understanding system and then our first experimental
results using this system. We then discuss related work and
conclude by mentioning future directions.

2. THE PURSUIT CORPUS
In order to test and train our algorithms, we created the

PURSUIT Corpus [2], which contains path descriptions in
natural language, with each location reference annotated
with the name and lat/lon coordinates of the real-world ref-
erent. In this section we describe the data collected and the
annotations on it.

2.1 Data
The PURSUIT Corpus was gathered using a novel method

for speech data collection. In it, subjects describe their path
in real time (i.e., while they are traveling it) and a GPS
receiver simultaneously records the actual path.

These GPS tracks of the actual path can aide the annota-
tor in determining which GIS entities/locations were meant
by each geospatial reference. To be clear, the accompanying
GPS tracks are used only as “ground truth” data in evaluat-
ing the path understanding system, which only operates on
the linguistic description as input.

Figure 1 shows an example of the experimental setup for
the corpus collection. Each session consisted of a lead car
and a follow car in downtown Pensacola, Florida. The driver
of the lead car was instructed to drive wherever he wanted



for an approximate amount of time (around 15 minutes).
The driver of the follow car was instructed to follow the
lead car. One person in the lead car (usually a passenger)
and one person in the follow car (usually the driver) were
given close-speaking headset microphones and instructed to
describe, during the ride, where the lead car was going, as if
they were speaking to someone in a remote location who was
trying to follow the car on a map. The speakers were also
instructed to try to be verbose, and that they did not need
to restrict themselves to street names—they could use busi-
nesses, landmarks, or whatever was natural. Both speak-
ers’ speech was recorded during the session. In addition, a
GPS receiver was placed in each car and the GPS track was
recorded at a high sampling rate.

The corpus contains 131 audio recordings of seven paths
along with two corresponding GPS tracks from the cars.
The average session length was just over 18 minutes. Some
sample utterances from the corpus are given below:

• ...and we’re going under the I-110 overpass I believe
and the Civic Center is on the right side on the corner
of Alcaniz and East Gregory Street where we are going
to be taking a left turn...

• ... he’s going to turn left right here by the UWF Small
Business Development Center heading toward Gulf Power
...

• ... we’ve stopped at a red light at Tarragona Street okay
we’re going now across Tarragona passing the Music
House ...

• ... we’re at the intersection of East Gregory and 9th
near a restaurant called Carrabas I think and a Shell
station just a little south of the railway crossing ...

2.2 Annotation
The speech data was synchronized with the GPS tracks,

then transcribed and segmented into utterances by hand.
The GPS tracks provide ground truth for the path described,
but not for references to geospatial entities used in describing
the path. In order to better test the path understanding
system, we also hand annotated the classes of geospatial
entities available in our GIS databases (description below),
using a custom tool for annotating and synchronized replay
of speech and GPS track information in Google Earth [3].
The high-level classes annotated were:

• Streets: references to a given street, for example “Gar-
den Street” or “a divided road”

• Intersections: references to street intersections, for ex-
ample “the corner of 9th and Cervantes” or “the next
intersection”

• Addresses: references to street address, for example
“401 East Chase Street” or even “712” (when referring
to the address by just the street number)

• Other Locations: this class is a grab bag for all other
location types that we annotated, consisting of such
data as businesses, parks, bridges, bodies of water, etc.

1In one session only one audio recording was made.

Named Category Total
Street 77.2% 22.8% 48.5%

Intersection 45.5% 54.5% 6.8%
Address 100.0% 0.0% 0.8%

Other Loc 67.7% 32.3% 43.9%

Total 71.1% 28.9% 100%

Table 1: Breakdown of geospatial entity reference
annotations in the PURSUIT Corpus

Note that not all geospatial entity references have been
annotated in PURSUIT—just those that are accessible in
our GIS databases. Examples of entities that appear in the
corpus but were not annotated are fields, parking lots, side-
walks, railroad tracks, and fire hydrants. These were not an-
notated only because we did not have access to data about
those entities. However, there is nothing inherent in our ap-
proach to path understanding which would prohibit the use
of those classes of entities, if data were available for them.

Although not all classes of entities were annotated, within
those classes that were annotated, all references to entities of
interested were annotated, whether or not they were named.
Thus “Garden Street”, “a divided road”, or even “it” were
annotated if they referred to a geospatial entity of interest.

Annotations are also marked with whether an entity ref-
erence was named (i.e., contained at least part of the proper
name of the entity, such as “the Music House” and “the in-
tersection at Cervantes”) or category (description did not in-
clude a name, such as “the street”, “a Mexican restaurant”,
and “it”).

All entity references of interest were minimally annotated
with their canonical name and a lat/lon coordinate. Streets
were annotated with the lat/lon of the street segment from
the database closest to the speaker’s current location. Where
applicable, entities were also annotated with a street ad-
dress. In cases where the entity was not in the databases,
the human annotator searched for the missing data by hand
using various resources.

In total, 1649 geospatial entity references were annotated
in the corpus. The breakdown of categories is shown in
Table 1.

3. THE PATH UNDERSTANDING SYSTEM
In this section, we describe our path understanding system

TEGUS (ThE Geospatial language Understanding System).
The general architecture of TEGUS is shown in Figure 2.
Input to the system is the natural language text description
of a path. The description is parsed to a Logical Form (LF),
from which references to geospatial entities are extracted.
These references are used to generate queries to two GIS
databases, producing a list of possible entity matches. The
list of references and possible matches are then used in a
path finding algorithm which uses temporal and geospatial
constraints to predict the most likely path.

Note that, in the current form of the system, the path that
is recognized is not based on street segments. Rather, the
assumption is made that geospatial entities being mentioned
will be in the close vicinity of the current position of the car.
The “path” predicted by the system is actually an ordered
list of geospatial entities and their lat/lon coordinates. In
Section 6, we discuss our plans to move to a street segment



Figure 2: The TEGUS System Architecture

based system.
It is also important to note that, although GPS track in-

formation was gathered as part of the corpus, it is not used
as input to the path understanding system. The only in-
put to TEGUS is the text description of the path in natu-
ral language. (The GPS information is used for evaluation,
however, as described below.)

We now describe each of the system’s subcomponents.

3.1 Language Processing
Language processing is done by the TRIPS Parser system

[1], which is the language understanding component of the
TRIPS dialogue system [5]. TRIPS performs deep syntac-
tic/semantic analysis on the text using a hybrid symbolic-
statistical model. The result of analysis is a graphical Log-
ical Form (LF). Several external components are used to
guide the symbolic parser, which helps ensure broad cov-
erage. These include a statistical shallow parser, several
large lexical resources including WordNet, and the Stanford
Named Entity Recognizer (NER) [4]. During processing,
output from these components are used as suggestions to the
TRIPS parser. However, the parser takes a larger context
into account and it is free to heed or ignore these sugges-
tions. (A detailed description of the TRIPS Parser system
is outside the score of this paper. However, we mention
the Stanford NER especially, as it is used to customize the
parser in our experiments described below.)

The Logical Form representation for “He’s coming down
Spring” is shown in Figure 3.

3.2 Location Reference Extraction
LFs for the utterances are then passed to the Entity Ex-

tractor. This component uses hand-built semantic graph
matching rules to find the subgraphs of the LF that corre-
spond to location references. In the case for the LF shown in
Figure 3, the entity extractor matches on the GEOGRAPHIC-

REGION subtree and returns it.

3.3 GIS Search
TEGUS currently accesses two GIS databases, although

the architecture will allow any number of databases that
may be available. The first database, TerraFly [10], is a
large aggregation of GIS data. Relevant parts of TerraFly
used in TEGUS are a street segment dataset with NavTeq

data; a custom-built dataset of street intersections based on
the street segment database; and a large, geographic points
dataset with businesses, bridges, parks, schools, restaurants,
hotels, bodies of water, etc. aggregated from several datasets
including: GNIS, NAVTEQ POI, Yellow Pages, and US
Census data. The second database is Google Local2, which
provides API-level access to a large database of businesses
and points of interest.

Both databases support queries for keywords and a lat/lon
for the center of the search. Currently, we make the simpli-
fying assumption that the start and end points of the path
are the same, and that we know the lat/lon coordinate for
that point. We also assume that the path stays within 3
miles of the starting location. Below we discuss plans to
relax these assumptions in future work.

The Search Controller converts each extracted location
reference into one or more queries to the GIS databases
above. Except for cases where the LF clearly marks the
high-level class of the entity (e.g., such as knowing that
the referent is a street), queries are executed to all of the
databases. Search results are aggregated these become the
list of possible referents for the given location reference.

3.4 Path Finding
The search controller may return many possible referents

for a location reference. The Path Finder component uses
global context choose the best referent for each location ref-
erence. This is done by constructing a directed graph of
all possible referents for all location references in the ses-
sion and finding the optimal path between the start and
end points. Although we formulate the Path Finder as a
graph search algorithm, it is important to note that geo-
metric distance is not the only factor in determining edge
weights in our graph. We are not literally trying to find the
shortest path (in physical sense), but rather the best fit for
the given linguistic description.

The search graph is constructed with each possible ref-
erent as a node, and edges connecting all nodes from one
location reference to the next. This simple graph forms a
trellis, and the optimal path through the trellis visits exactly
one node for each location reference, which we can then use
to predict the referent for that reference. Unfortunately, a
trellis alone will not work for this problem. The assumption
that each layer contains the correct referent is too rigid, as
it is possible that none of the entities in the list is the cor-
rect answer for the location reference. This can (and does)
happen because of problems at any stage of processing. For
example, a non-location may be incorrectly extracted, or the
GIS databases may not contain the actual referent. What-
ever the reason, we need to be able to handle the case where
no node is the correct answer for a given location reference.

To do this, we add additional edges from a node to all
nodes up to N references ahead of it. This allows the optimal
path algorithm to skip a location reference (thus not making
a prediction about that node). Although this multiplies the
number of edges in the graph, the constant “skip” factor (N)
keeps this number manageable. Optimal paths through the
graphs produced in our experiments were speedily found.
The experimental results below were attained by allowing
the algorithm to skip up to 10 references (i.e., N = 10).

Next in the graph construction process, TEGUS uses tem-
poral and geometric knowledge to delete any edges that

2http:\\maps.google.com



Figure 3: Logical Form for “He’s coming down Spring”

are considered impossible transitions. Because the corpus
is based on speech, we are able to preserve the timing infor-
mation from between utterances. With this, we know how
much time has transpired between two location references.
Using this, together with knowledge about limitations on
the mode of transportation (a car), TEGUS can determine
whether the (physical) distance between two possible ref-
erents was possible given a maximum assumed car speed
(100 km/h). Remaining edges are weighted by the distance
between the two entities plus a penalty for each location
reference “skipped” by the edge.

The remaining edges are assigned as weight based, prelim-
inarily, on physical distance as well as name similarity. The
latter is currently a simple average of similar word tokens be-
tween the two entities. As discussed below, we believe more
sophisticated similarity measures will help increase accuracy.

Once the graph is constructed, Dijkstra’s Algorithm is
used to compute the least cost path through the graph. This
path represents TEGUS’ prediction of the actual path taken.

4. EXPERIMENTAL RESULTS
We performed a preliminary evaluation of the TEGUS

system on the PURSUIT Corpus. To evaluate, we performed
a 7-fold cross validation (one for each session) of TEGUS on
the PURSUIT Corpus. The Stanford NER was trained on
all named location references from the remaining 6 sessions
and used with the TRIPS parser. Each path description was
separately input to the TEGUS system, which produced a
single path prediction.

4.1 Evaluation
We evaluate the results of this experiment in two ways,

using the GPS track and hand-annotations of the corpus.
The first evaluation is on the path prediction itself. As noted
above, the current version of the system does path prediction
by location references as opposed to street segments. Except
for street mentions, very rarely will the speaker have been
exactly on the lat/lon coordinates of the geospatial entities
he mentions. However, our assumption, as explained above,

is that these entities will often be very close to the speaker.
We check correctness of the predicted path by looking at
the distance between the predicted location and the position
of the car (as given by the GPS track) at the time of the
location is referred to in speech. If the distance is within
300m, it is counted as a correct prediction.3

As the algorithm counts on location mentions to predict
current location, it is unreasonable to expect that the system
will make predictions at the same rate the GPS location was
sensed (e.g., 1 Hz). Instead, we take as the maximum num-
ber of expected prediction the number location references
(from the hand-annotated corpus). This number is used in
computing recall for the path prediction.

Besides the final path result, we also evaluate the system’s
performance on correctly resolving each location reference
to the corresponding referent (the actual geospatial entity).
Here, we also measure precision and recall. Also, similar to
what we do with the path, we allow some distance between
the predicted and actual points. As we are working with
different databases, because of the inaccuracies of geocod-
ing or other errors, entries for the same entity in different
databases can have different names and/or lat/lon coordi-
nates. Because of this, entities predictions within 200m of
those in the corpus are counted as correct predictions. This
number was chosen anecdotally from examples where the
same address was geocoded to different lat/lons in Google
Local and TerraFly.

Results on the test corpus for path prediction were 92.6%
precision and 49.2% recall. Results on geospatial entity
reference resolution were 88.9% precision and 47.2% re-
call.

Reference resolution statistics broken down by reference
and entity type are shown in Table 2.

4.2 Discussion
We first note that these results are somewhat preliminary,

3The allowable distance from the path will ultimately de-
pend on the end application using geospatial path under-
standing.



Named Category Total
Prec. Recall Prec. Recall Prec. Recall

Street 96.8% 73.9% 100.0% 1.1% 96.8% 57.3%
Intersection 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Address 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Other Loc 86.2% 60.0% 43.5% 11.5% 79.7% 44.3%

Total 92.4% 64.0% 45.3% 6.1% 88.9% 47.2%

Table 2: Breakdown of reference resolution results by entity and reference type

and we expect to improve both precision and recall through
the future work described below. All-in-all, however the
results seem very good, especially the precision in path pre-
diction. Recall numbers are only in the 40’s, although for
most extraction tasks, precision is far more important than
recall. Many of the missed cases in recall are actually quite
difficult, if not impossible to do based on the current model
of location-based path prediction. References such as “the
road”or“this intersection”hold very little informational con-
tent, making search for them nearly impossible (without re-
turning all the street segments or intersections in the search
radius). We believe that moving to a street-based modeling
will lead to much higher rates of recall.

In reference resolution, resolution for street references was
quite high with 96.8% precision, and other loc prediction has
88.9% precision. TEGUS does not yet try to extract inter-
section or address references (which is why no predictions
were made), but we include them for completeness.

The performance on named versus category references is
quite stark. Overall, for named references (references with at
least one proper name in them), TEGUS achieved 92.4% pre-
cision and 64.0% recall. For category references (references
with no proper names), however, the system only achieved
45.3% accuracy and 6.1% recall. This is attributable to sev-
eral factors, including the “the road” type references with
little informational content mentioned above, and the fact
that category references (such as “a bank”) usually match a
much wider range of entities than a named reference (such
as “Wells Fargo”) does.

It is also interesting to note that the precision result for
path prediction is almost 5% higher than precision on refer-
ence resolution. What seems to be happening here is that,
in some cases, the algorithm is predicting an entity which
is not the intended referent, but nonetheless is still close to
the car position. This is partly due to the fact that entities
may have similar names in similar areas (e.g., Alcaniz Street
and Atelier Alcaniz (which is on Alcaniz Street). Category-
based descriptions are sometimes also clumped (e.g., many
banks or restaurants in the same vicinity). Additionally,
Google Local often returns results which not only match
the keywords from the search, but also entities that are in
the general vicinity from those entities. In these cases, the
path finding algorithm is faced with a choice among several
entities that are very close to each other. We believe that
weighting edges based on a better name similarity metric
will help here.

As mentioned above, there are several simplifying assump-
tions that undoubtedly help the results. The assumption
that we know the start and end locations of the path is un-
realistic in most cases. In future work below, we discuss
plans to remove this assumption.

5. RELATED WORK
Although there has been a fair amount of work on geospa-

tial reference extraction and resolution ([6, 7, 8], inter alia),
most has been at the level of cities, provinces, and countries.
Our work focuses on the sub-city level and the resolution of
references to streets, intersections, and businesses. The sub-
city contains a much larger set of possible referents, and
databases are much less complete than they are for informa-
tion about cities and states.

As far as we are aware, very little work has been done in
the area of mining geospatial path data from descriptions.
The work in [9] tries to extract paths from text descriptions,
although it, too, is at a city and province level as opposed
to a sub-city level of granularity.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented the TEGUS system for

path understanding. TEGUS uses natural language process-
ing, access to large GIS databases, and graph-based path
finding to mine geospatial paths from natural language de-
scriptions. We also presented preliminary experimental re-
sults on the PURSUIT corpus.

There are several areas of future work. First, in the short
term, there are many incremental improvements that can
be made to the system. As mentioned above, currently edge
weight in the graph is based on physical distance and a sim-
ple name similarity metric (and skip penalties), which is
not a good model of the problem. Consistent graphs should
be treated equally, not whether one is geometrically shorter
than the other. Instead, we plan to weight edges based (at
least partly) on more sophisticated similarity metrics be-
tween the original search keywords and the actual name and
category of the entity found, such as described in [11].

There are also several simplifying assumptions which we
will try to remove from the system. First is the assumption
that the start and end point of the path are the same and
are known to the system. The second is that we know the
radius of the search. We will replace these assumptions with
only the assumption that we are operating in a given region
(defined by a bounding box), and that the start and end
location can be in arbitrary points within that bounding box.
It may be reasonable to assume that one knows the general
area that the path was in. Our ultimate goal, of course, is
to start without any a priori knowledge of location and still
find the path. Doing so efficiently may be a challenge.

Additionally, although temporal information can be used
when processing speech, it is not available for text sources
(e.g., blogs). We will also try to run the system without the
assumption that we have temporal information from spoken
utterances. Currently temporal information is used to make
certain transitions in the path impossible based on a set



maximum speed. Not knowing when the references were
made should make this a more difficult problem.

In the longer term, we plan to move from the current
location-based path prediction to a model which tracks the
current street segment the car is on, and uses a wider range
of natural language understanding to understand not only
location references, but also movement (e.g., “we just turned
left”) and orientation (e.g., “we’re going south”) information.
This should result not only in increased precision and recall,
but also increased frequency with which the system can pre-
dict the user’s current position.
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