
EPILOG: The Computational System for Episodic Logic

LIBRARY ROUTINES

Stephanie Schaeffer

Chung Hee Hwang

John de Haan

Lenhart K. Schubert

August 1993

Revised September 2000

Prepared for Boeing Computer Services, Seattle, Washington

Under Purchase Contract W-278258

Contents

1 Introduction 3

2 General Routines 4

2.1 General Routines . 4

2.1.1 Symbol Manipulation . 4

2.1.2 List Manipulation . 5

2.1.3 Other . 6

2.2 Output Routines . 6

2.2.1 Warnings and Errors . 6

2.2.2 Printing . 6

2.2.3 Indenting . 7

2.3 Help . 8

2.4 Hashing Routines . 8

2.5 Tracing . 9

2.6 Parameter Tweaking . 10

2.7 Display . 11

2.8 Storage Functions . 12

2.8.1 Checkpointing and Retraction . 12

2.8.2 Storage for Retraction . 14

2.8.3 Storage/Retrieval without Retraction . 14

3 Low Level EPILOG Routines 16

3.1 Information Routines . 16

3.1.1 Properties of Normalized Objects . 16

3.1.2 Other Information from Normalized Objects . 19

3.1.3 For Unnormalized Objects (Lists) . 20

3.2 Creation of EPILOG Objects . 21

2

CONTENTS 3

3.3 Matching . 23

3.3.1 Unification . 23

3.3.2 Formula Matching . 25

3.3.3 Substitution . 26

3.3.4 Hierarchies . 27

4 EPILOG Specialists Interface Routines 28

4.1 Definition Routines . 28

4.2 Communication with Other Specialists . 30

4.2.1 Immediate Evaluation . 30

4.2.2 Delayed Communication . 30

4.3 Communication with EPILOG . 31

4.4 EPILOG Usage of Specialists . 31

4.4.1 Specialist Activation . 32

4.4.2 Specialist Invokation . 32

Chapter 1

Introduction

This manual describes the calling sequence and actions of some of the low level routines used by EPILOG
. It is intended for the user building his/her own specialist, or for a system maintenance person trying to
track down a bug.

There are several sets of routines described here: the Chapter 2 contains routines for symbol ma-
nipulation, tweaking parameters, retracting information, etc, all of which are potentially useful for any
system and are not EPILOG dependent. Chapter 3 contains the low level routines which deal with
specific EPILOG internal structures. Chapter 4 contains routines needed to interface specialists with
EPILOG and with other specialists.

4

Chapter 2

General Routines

This chapter contains the calling sequences and actions for a number of routines for symbol manipula-
tion, tracing system actions, tweaking parameters, help facilities, hashing routines, output routines, and
checkpointing and retraction facilities. The routines is this section are useful for any large system and
are not EPILOG dependent. They are located in directory epi/lib/ , and a

(require ’lib ”..EPILOG path ../epi/lib/lib”)

command will load them into your workspace, and you can do a use-package or use whatever
access method you prefer to use them.

2.1 General Routines

2.1.1 Symbol Manipulation

(pack symbol-list) [function]
This function squishes all of the symbol names in the list symbol-list into a new symbol name. For
example, (pack ’(a b c)) would give a new symbol abc .

(pack* &rest symbol-list) [function]
This function squishes all of the symbol names in the list symbol-list into a new symbol name (just
another interface to the pack routine.

(unpack symbol) [function]
This function explodes symbol into a list of the characters that make up its name. If symbol exists
in a package other than the one this routine is called from, the package name will also be exploded
and at the front of the list.

5

CHAPTER 2. GENERAL ROUTINES 6

(strip-pkg arg) [function]
returns the exploded version of arg (a list of characters) with the package name removed from the
front.

(build-symbol symbol-list) [function]
builds a new symbol from the symbols in symbol-list . Exactly like pack except that package names
are stripped off first.

(character-atom code) [function]
returns the character responding to code .

(nthchar n symbol) [function]
returns the n th character in the list of characters making up symbol ’s name.

2.1.2 List Manipulation

(filter1 pred list) [function]
returns a list consisting of the first element of list which satisfies pred , followed by the remaining
elements of list . If none satisfy pred , the result is nil.

(filter pred list) [function]
returns all the elements in list that satisfy pred .

(revers x) [function]
calls the lisp function reverse iwth x after checking to see if it is a list or an atom.

(last1 x) [macro]
returns the last ELEMENT of x (the CAR after using the function last).

(nondest-rplacd old item new) [function]
non-destructively replaces the thing associated with item in old with new . Old is assumed to be an
association list.

CHAPTER 2. GENERAL ROUTINES 7

2.1.3 Other

(average &rest items) [function]
computes the average of all the numbers in items . Items must all be numbers.

(squish strings) [function]
concatenates all the strings in the list strings together into a longer string.

(check-online-status) [function]
returns t if the current process is running interactively, nil otherwise. This is useful to check if a
program does any querying of the user.

2.2 Output Routines

2.2.1 Warnings and Errors

(print-error &rest print-stuff) [function]
prints a message beginning with ”ERROR: ”, followed by print-stuff .

(fatal-error where &rest print-stuff) [function]
prints a message beginning with ”ERROR: ”, followed by print-stuff , and then jumps to where .
The lisp command throw is used, so where had better be in a catch .

(warn-error &rest print-stuff) [function]
if *warn* is t, prints a message beginning with ”WARNING: ”, followed by print-stuff .

warn [tweakable]
if set to t, warnings will be printed. Otherwise they are suppressed. The default is to print warnings
(t).

2.2.2 Printing

(print-line &rest print-args) [function]

CHAPTER 2. GENERAL ROUTINES 8

This function can be used by a specialist display routine to print print-args onto standard output
after starting a new line and spacing the current indent spaces. If *nl* is a member of that list, a
new line will be printed in its place.

(print-it &rest print-args) [function]
This function can be used by a specialist display routine to print print-args onto standard output
without starting a new line.

nl [constant]
when included in a list of items to be printed will cause a new line to be started.

print [tweakable]
global ”allow printing” flag. If set to nil, these print routines will not print.

2.2.3 Indenting

(set-indent number) [function]
This function sets the current indent to number , and sets *spaces* to the appropriate number of
spaces. Whenever print-line is called, the *spaces* space string will be printed first - automatic
intenting.

(reset-indent spaces number) [function]
This function resets the current indent to number , and the current space string to spaces .

(indent number) [function]
starts a new line and prints number spaces.

(depth-indent number) [function]
starts a new line and prints number * 2 spaces.

spaces [variable]
string containing spaces which is printed at the beginning of each print-line command. This should
be set using the set-indent and reset-indent commands.

CHAPTER 2. GENERAL ROUTINES 9

indent [variable]
contains the number of spaces which will be printed at the beginning of each line. This should be
set using the set-indent and reset-indent commands.

2.3 Help

help-path [tweakable]
path used to find help files. For example, for the EPILOG system, it is ”EPILOG/epi/help/.hlp”,
which indicates that the help files are found in directory EPILOG/epi/help, and the files end in .hlp.

(help &rest items) [function]
retrieves information from the help files corresponding to items and displays it.

2.4 Hashing Routines

Hash tables are useful objects to have in a system. These routines set up expandable hash tables which
use sxhash to calculate hash position, which allows lists to be safely used as hash keys. The tables are
automatically expanded when they get too full.

(initialize-element-table name) [function]
creates an expandable hash table with name name . The hash table itself is returned.

(put-element element name table &optional temp) [function]
puts name into hash table table , using element as the hash key. If table is too full, it is expanded
first, automatically.

Put-element assumes that the element is not there already. If temp is specified, a simple insert is
done, otherwise the system uses the checkpointing-retraction insertion routines.

(get-element element table) [function]
retrieves the item in table corresponding to the hash key element .

element-table [structure]

CHAPTER 2. GENERAL ROUTINES 10

this is the structure the hash table routines use. For most operations the details of this structure
are not necessary, but for those where it is, the fields are as follows:

element-table-load current number of entries stored
element-table-size current size of table
element-table-vector actual hash table
element-table-size-index index used to get current size
element-table-rehash-threshold load fraction before rehashing
element-table-current-rehash element number that will cause rehash

2.5 Tracing

The tracing feature allows you to set up your system so that as much or as little output as is desirable at
a given time, or by a given user is produced. This is handy for debugging, or intense scrutiny of system
processes. To do this, you set up names corresponding to the different sets of output (using traceable
), and test to see if they are being traced (using traced-p) before printing. If a number of packages are
in use, it is wise to make the trace symbols internal to the package the user will most likely be in (for
EPILOG this will be the package epilog).

(traceable trace-symbol documentation tracelist) [function]
Sets up trace-symbol as a new item which may be traced. Documentation is added as a property of
trace-symbol , and is printed when print-traceables is used. If tracelist is specified, trace-symbol is
a complex trace item which will turn tracing on or off for all of the symbols in tracelist when tracing
for it is turned on or off. Tracing is turned on and off using the trace and untrace functions. Note
- all user functions handled by the specialist should test to see if fn-eval is being traced, and if so,
print out the function they compute and its result.

(traced-p symbol) [function]
returns t if symbol is currently being traced, nil otherwise.

(trace-item &rest items) [function]
starts tracing for all entries in items . Each is checked to ensure it is a traceable item first, and an
error message printed if it isn’t.

(untrace-item &rest items) [function]
stops tracing for all entries in items .

(trace-all) [function]
starts tracing for all traceable items.

CHAPTER 2. GENERAL ROUTINES 11

(untrace-all) [function]
stops tracing for all traceable items.

(print-traceables &rest items) [function]
prints traceable items, with their documentation. If items are specified, they are printed only if they
are legal trace values. If no items are specfied, all traceable values will be printed. Currently traced
values are also printed.

traceable-items [variable]
contains all the items which may be traced.

traced-items [variable]
contains the items currently being traced.

2.6 Parameter Tweaking

In a large system, there are often a number of system parameters which the user can set to make the
system operate differently. These are sometimes difficult for both user and system designer to keep track
of, and often a user will change a parameter and not get the desired result, and be unable to reset it to the
original value. To get around this, the tweak feature has been set up. The tweak command is very much
like a setq , except that if no new value is given, a default may be obtained and used. Documentation
is attached to each parameter as well.

(tweakable parameter &optional default documentation type-spec) [function]
Sets up a tweakable parameter parameter with initial value default . This may be then changed using
the tweak command. Documentation is added as a property of parameter , and is printed when
print-tweakables is used. A LISP type specification can also be added to constrain possible values
for the parameter (e.g. integer , (integer 1 100) , boolean (t or nil), etc).

(tweak item &optional value) [function]
sets the value to item to value . If value is not specified, the default from item ’s property list is
used.

(print-tweakables &rest items) [function]

CHAPTER 2. GENERAL ROUTINES 12

prints tweakable parameters and their documentation. If items are specified, they will be printed
only if they are valid tweakable parameters. If no items are specified, all tweakable paramters will
be printed.

tweakable-items [variable]
contains all the parameters which may be tweaked.

2.7 Display

In a large system with a number of parts, it is difficult for the user to keep track of all the routines he
needs to use to print out various bits of information. To help in this, and to provide a uniform interface
for this, the display commands were set up. These allow you to set up a printing function, and an easy
to remember name for it, and then the user need only call display with that name.

(set-display-function name function-name &optional documentation) [function]
Extends the display command, by adding the symbol function-name as a valid display option.
Whenever display is called with this symbol as the display option, it will invoke the function
function-name , which should be a function with the parameter list brief-flag &rest display-args .

(display &rest args) [function]
args is a list consisting of a display option, possibly arguments to it, and optionally ONE of the
flags -brief, -b , -full, or -f . The flags are stripped off, and the routine corresponding to the display
option will be called with the rest of the arguments, as well as a ”brief” flag. Display with no
arguments will cause the display options to be printed. A ’-key (’-k) flag is accepted for some display
options (tweak , trace , and display). In this case apropos is used on each argument, and the valid
options are displayed. If ’tweak is specified as well, the tweakable parameters which match the given
arguments will be displayed. If ’trace is specified, the traceable values that match are displayed. If
’display is specified, the display options that match are displayed (the default). These may be used
in any combination.

(print-display &rest items) [function]
prints display options and their documentation. If items are specified, they will be printed only if
they are valid display options. If no items are specified, all display options will be printed.

display-items [variable]
contains a list of all the options which may be used in the display commmand.

CHAPTER 2. GENERAL ROUTINES 13

display-default [tweakable]
contains the name of an option to use if there is no option specified by a display request, and the
arguments are not know tweakable parameters or trace values. That function is then invoked with
the arguments to the display command.

2.8 Storage Functions

This section describes routines for storage at a low level, including routines whose actions may be later
retracted.

2.8.1 Checkpointing and Retraction

These routines allow you to set checkpoints during a session and to retract anything entered after that
checkpoint. This does not include changes to system parameters or the list of items being currently
traced. Checkpointing and retraction are virtually identical to the same functions in ECoNet . Note
that retraction always removes things in reverse, starting with the latest formula entered.

There are two main checkpointing/retraction methods. One is to use named checkpoints, and to
retract to those named points. These may be nested, so that you can retract as much or as little as you
like. The other is to have the application define arbitrary ”units” (for example, EPILOG uses formulas),
and to allow retraction of a specified number of these units. The two methods may be mixed so that you
can retract a number of objects while still keeping track of a named checkpoint.

(checkpoint &optional item) [function]
This function should be called before a specialist modifies its knowledge base. It adds a symbol to
the checkpoint rewind stack, to mark a place that the user may rewind back to. If item is a number,
a revolving checkpoint is set up which allows retraction of up to the last item formulas. If item is
a string, or is absent, a checkpoint is set up which allows retraction of any formulas entered after
the checkpoint, regardless of how many there are. The function returns a symbol which can later
be given to the retract function. If item is a string, it is included in the symbol’s name, to make
examining the checkpoint stack more informative. checkpoint does nothing if checkpointing is not
currently enabled; checkpointing-p can be used to test whether a checkpoint has actually been set.

(retract &optional item) [function]
where item is a number (the number of anonymous checkpoints to retract), or a symbol (the check-
point to retract to). In the latter case, if a keyword argument :remove t is also given, the checkpoint
itself will be removed after the retraction. (display ’checkpoints) can be used to see what check-
points have been named.

CHAPTER 2. GENERAL ROUTINES 14

(checkpointing-p) [function]
Returns true if checkpointing is currently enabled. This prevents doing a lot of unnecessary work to
save something.

(get-last-checkpoint) [function]
Returns the last checkpoint set. The only valid use of the value returned by this function is to
determine if a checkpoint has been set since a previous invocation of get-last-checkpoint , by eq
comparing the two values.

(start-checkpoint undo-function undo-args) [function]
This function will put an item on the rewind stack. When a retraction is called for, undo-function
will be called with undo-args . This should be used when enough atomic level changes are grouped
together that it is wasteful to have a separate item for each. For example, wffs in EPILOG have
their own rewind routine called remove-wff , which just sets the property list of the wff symbol to
nil. This avoids having separate rewind items for each property of the wff.

(anon-checkpoint) [function]
this starts up one of the ”numbered” variety of checkpoints. Retraction using numbers will retract to
checkpoints created with this function. For example, in EPILOG , each input routine for formulas
contains a call to anon-checkpoint so that retraction of a specified number of formulas can be
achieved.

(display-ckpts &optional msg print-stack) [function]
prints the currently active checkpoints, optionally preceded by msg . If print-stack is t, the rewind
stack itself is also printed (not recommended except for debugging! It’s very long!!)

additional-checkpoint-routine [tweakable]
contains the name of an additional routine to call whenever a checkpoint is started. For example, if
you are maintaining a global environment of some sort and wish it to be automatically saved and
restored during checkpointing and retraction, you could set this to the name of a routine which added
another item to the rewind stack for the environment.

checkpoint-names [variable]
contains the names of the currently active named checkpoints. Order is not guaranteed.

CHAPTER 2. GENERAL ROUTINES 15

2.8.2 Storage for Retraction

These routines automatically add information to the rewind stack so that the changes may be retracted
later.

(change-array array-name index newvalue) [function]
This function will change the array entry for index in array-name to newvalue , after saving the
oldvalue and adding an element to the rewind list for retraction later.

(change-hash item hash-array newvalue) [function]
This function will change the hash entry for item in hash-array to newvalue , after saving the oldvalue
and adding an element to the rewind list for retraction later.

(change-field field-name item newvalue) [function]
This function will change the field field-name in item to newvalue , after saving the oldvalue and
adding an element to the rewind list for retraction later.

(change-property item property-name newvalue) [function]
This function will change the property field-name in item to newvalue , after saving the oldvalue and
adding an element to the rewind list for retraction later.

2.8.3 Storage/Retrieval without Retraction

(geta array index) [macro]
returns the element in array at location index .

(geth hasharray index) [macro]
returns the element in hasharray at hash location index .

(getp item property) [macro]
returns the contents of the property field property for item .

Note: the following routines set properties, and array locations, but do NOT add the changes to the
rewind list. Use these only for things which should not change even if a retraction is done, or for
things which are being ”rewound” at a higher level and do not need the atomic changes saved.

CHAPTER 2. GENERAL ROUTINES 16

(seta array index newvalue) [macro]
sets the element in array at location index to newvalue .

(seth hasharray index newvalue) [macro]
sets the element in hasharray at hash location index to newvalue .

(setp item property newvalue) [macro]
sets the contents of the property field property for item to newvalue .

Chapter 3

Low Level EPILOG Routines

This chapter contains the calling sequences and actions for a number of low level routines for examining,
manipulating and creating EPILOG objects. These are all located in the epilib library, but a special
interface called spec has been set up to minimize the number of conflicts due to imported symbols. The
routines are located in directory epi/epilib/ , and a

(require ’epilib ”..EPILOG path ../epi/epilib/epilib”)
command will load them into your workspace.

If you are building a specialist, you will also need the specialist interface routines in the next chapter.
To make things easy, you can simply load them in, and you will automatically get these routines as well.
I.e.

(require ’spec ”..EPILOG path ../epi/spec/spec”)
It would be wise to do a use-package very early in the specialist, or simply to add spec to the package
use-list when defining the package. For example:

(in-package ’time-specialist :nicknames ’(time) :use-list ’(lisp user spec lib))
Note: these routines are intended to be operation when all of EPILOG is loaded - they do expect the
EPILOG package to be present, and so cannot be simply loaded independent of EPILOG (unlike the
routines in the previous chapter).

3.1 Information Routines

These routines return parts of EPILOG objects and properties about them. The list form of a normalized
formula is available under the ’print property.

3.1.1 Properties of Normalized Objects

(print-info item) [function]
returns the print property of an EPILOG object item , or just item if there is nothing under that
property.

17

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 18

(type-of-concept arg) [function]
returns the type of the concept - will be one of constant, variable, function .

(term-type term) [function]
returns the type of term term is (modified, constant, variable, wff, quoted-expression, quasi-quoted-
expression, record, function)

(pred-type pred) [function]
returns the type of predicate pred is (modified, constant, variable, lambda)

(op-type op) [function]
returns the type of operator op is (modified, constant, variable)

(wff-type wff) [function]
returns the type of formula wff is (quantified, logical, causal, episodic, prefix, modified, constant,
variable, quasi-quoted-expression)

(entity-type entity) [function]
returns the type of entity entity is (quantifier, wff, term, pred, op)

(neg-p wff) [function]
returns t if wff is negated, nil otherwise.

(wff-p object) [function]
returns t if object is a normalized formula, nil otherwise.

(term-p object) [function]
returns t if object is a normalized term, nil otherwise.

(pred-p object) [function]

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 19

returns t if object is a normalized predicate, nil otherwise.

(operator-p object) [function]
returns t if object is a normalized operator, nil otherwise.

(quantifier-p object) [function]
returns t if object is a normalized quantifier, nil otherwise.

(function-p object) [function]
returns t if object is a function symbol, nil otherwise.

(epi-variable-p object) [function]
returns t if object is a variable, nil otherwise.

(function-term-p object) [function]
returns t if object is a functional term, nil otherwise.

(record-p object) [function]
returns t if object is a record term, nil otherwise.

(quoted-expression-p object) [function]
returns t if object is a quoted-expression term, nil otherwise.

(quasi-quoted-expression-p object) [function]
returns t if object is a quasi-quoted-expression term, nil otherwise.

(lambda-pred-p object) [function]
returns t if object is a normalized lambda predicate, nil otherwise.

(type-pred-p object) [function]

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 20

returns t if object is a type predicate, nil otherwise.

(skolem-constant-p object) [function]
returns t if object is a constant resulting from skolemization, nil otherwise.

3.1.2 Other Information from Normalized Objects

(find-sort arg) [function]
returns the sort of arg . If a concept, the sort is returned. If a record, the second element of the list.

(instance-type item) [function]
returns a list of the types which have been asserted for item .

(content item) [function]
returns a list of the formulas which have been asserted with for item . The formulas are all in list
form.

(record-contents item) [function]
returns the part of the record without the record indicator or sort.

(description item) [function]
returns a list of the formulas which have been asserted with **, * , or @ for item . The formulas are
all in list form.

(non-constant-arg arglist) [function]
returns t if any of the arguments in arglistis not a constant concept or a quoted expression, nil if they
are all constants. Note that variables or functions with any kind of arguments are not considered
constants by this routine.

(check-constant arg) [function]
returns t if the given argument is a constant - either a record or a constant concept; otherwise nil.

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 21

(number-arg arg) [function]
returns t if arg is either a concept of sort number , or a number.

3.1.3 For Unnormalized Objects (Lists)

(prop-pred prop) [function]
returns the predicate of prop . If prop is a quantified proposition, the predicate is nil .

(prop-args prop) [function]
returns the list of arguments of prop . If prop is a quantified proposition, this list will be nil .

(is-negated prop) [function]
returns t if prop is negated (i.e. a list beginning with not), nil otherwise.

(is-wff item) [function]
returns t if item is an unnormalized proposition, nil otherwise.

(is-pred item) [function]
returns t if item is an unnormalized predicate, nil otherwise.

(is-function item) [function]
returns t if item is a function, nil otherwise. (Note: currently functions may only be simple symbols,
so function-p and is-function are identical).

(is-variable item) [function]
returns t if item can legally be a variable.

(is-function-term item) [function]
returns t if item is an unnormalized functional term, nil otherwise.

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 22

(is-quoted-expression item) [function]
returns t if item is an unnormalized quoted expression, nil otherwise.

(is-quasi-quoted-expression item) [function]
returns t if item is an unnormalized quasi-quoted expression, nil otherwise.

(is-record item) [function]
returns t if item is an unnormalized record term, nil otherwise.

(is-operator item &optional result) [function]
returns t if item is an unnormalized operator, nil otherwise. If result is specified, the result of the
operator must be of that type, otherwise any type will do.

(is-quantifier item) [function]
returns t if item is an unnormalized quantifier, nil otherwise.

3.2 Creation of EPILOG Objects

These routines create formulas, predicates, operators, etc. Some are also described in the user manual.

(make-prop neg &key quantifier variable restriction main-clause pred args) [function]
This function creates a proposition (in list form). If the quantifier is given, the new proposition will
be of the form (quantifier variable restriction main-clause) otherwsie it will be ((car args) pred (cdr
args)) . If neg is non-nil, not is placed at the front of the proposition.

(make-fn-arg fnname args) [function]
creates a normalized functional term with function fnname and arguments args .

(new-record contents &optional sort) [function]
creates a normalized record term with sort sort and contents contents .

(normalize formula &optional context insertion new-vars) [function]

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 23

When calling from a specialist, only the formula parameter should be specified, and it should be a
proposition in the form of a list. The result will be a normalized formula - an atom.

(normalize-wff term &optional context) [function]
This function takes a list form wff and normalizes it into an atom. No variable renaming is done,
and trigger literals are not maintained.

(normalize-term term &optional context) [function]
This function takes a list form term and normalizes it into an atom.

(normalize-pred pred &optional context) [function]
This function takes a list form pred and normalizes it into an atom.

(normalize-op op &optional context result) [function]
This function takes a list form operator and normalizes it into an atom. Result is the expected type
of the operator.

(add-predicate &key type part hier subnodes parent hier-type indicators package entry-rtn)[function]
adds a new predicate. If type is t , this will be a type predicate. To be a type predicate it must
be on a type hierarchy. You may specify the hierarchy name with hier , parent node with parent
and subnodes with subnodes , and even give the hierarchy type with hier-type . If they are not
specified, a new hierarchy will be invented for the predicate automatically. It is usually easier to
add type hierarchies using the add-hier command, but this serves to add type predicates quickly
and easily for testing. Part predicates are specified when part is t. Indicators may be added here, or
through the command add-indicate . For externally defined routines to be accessed through the
”other” specialist, a package to find the evaluation routine should be specified. If there is in addition
and entry routine to save information using this predicate, entry-rtn should also be specified. Some
additional keys are sort and specialists .

(add-function fnname &key specialists package) [function]
adds a new function fnname . The keys are all optional. If this function may be evaluated by an
external routine (through the ”other” specialist), the package the other routine lives in should be
specified in package .

(add-operator operator &key op-type result-type arg-types indicators specialists) [function]

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 24

adds a new operator. operator is the name of the new operator, and either the type of operator
op-type , or the resulting type result-type and the types of the arguments arg-types must be specified.
Types which may be used are pred , operator , wff , and term (all as defined in the syntax summary),
as well as any predefined or user defined operator types. Predifined operator types are: pred-op
(makes a pred out of a pred), term-op (makes a term out of a term , and wff-op , makes a wff
out of a wff). Indicators is a list of topic indicators for this operator. Unless these are specified,
the operator will generally be ignored in the classification phase of the system. This works well for
operators like very , but operators like make are probably important enough that they should have
special classifications (so indicators should be specified for them). Specialists is a list of interested
specialists - unless you are adding a new specialist do not include this field!

(add-operator-type op-type &key result-type arg-types) [function]
defines a new operator type. Operators of this type create objects of type result-type and expect
arguments of type arg-types . This can be used to simplify definitions for operators if there are a
large number which take the same type of arguments and return the same type of result.

(add-sort sort &key nicknames) [function]
where nicknames is a list of other possible names for sort . These are usually shorter than sort .
The first nickname is taken as the short form for the sort and will be used in building variable and
constant names for entities of that sort.

(add-quantifier quant &key prob negation distributive) [function]
adds a new quantifier quant . If applied as part of a rule, prob is included in the probability
calculations of the result. If prob is not specified, 1 is used. Negation is a lambda expression
denoting how to negate an expression involving the quantifier. Distributive is t is the quantifier is
distributive.

3.3 Matching

These routines are to be used to unify sets of arguments, and to make substitutions in propositions
and terms. All are non-destructive - the unifications produce substitution lists and do not change the
arguments. The substituion routines produce a new copy of the original with the substitutions made.

3.3.1 Unification

(compare-arglists args-1 args-2 &key match-const-fn same-clause) [function]
compare-arglists tries to find a unifying substitution between two argument lists, using the stan-
dard unification method. Arguments can be any lisp object, but the only variables and functions
recognized are those that are concept nodes.

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 25

For the purpose of unification, propositional arguments are considered to be constants. It is possible
to override what would normally be a constant mismatch by specifying :match-const-fn . The
value of this keyword should be a function that accepts two arguments, and returns non-nil if the
arguments should be considered equivalent for the purpose of unification.

If the same variable appears in both argument lists it is considered to be two distinct variables,
unless the value of :same-clause is non-nil.

Normally, any object can be substituted for a variable, but variables which have been tagged with a
sort can only be substituted by concepts with the same sort.

If a unifying substitution can be found, compare-arglists returns a dotted pair of substitution
lists—one for each of the orginal argument lists. If unification fails, compare-arglists will return
nil. It is possible for unification to succeed without substitutions, in which case compare-arglists
will return (nil . nil) .

Each substitution in a substitution list is itself a three element list. The first element is the argument
to be substituted, the second is its substitution, and the third is either 1 or 2 , indicating which
argument list the substitution came from. (This last number is needed to distinguish between
variables which appeared in both argument lists.) If the value of same-clause is non-nil, then all
substitutions are considered to come from the first argument list.

To aid literal comparison, a unification routine was set up in the specialist, which takes two argument
lists, an ordering list, and a last-chance test for unification. This routine may be used by the specialist
to simplify unification.

(unify-lists arglist1 arglist2 ordlist testrtn mult-subs) [function]
where arglist1 is the argument list from the first literal, and arglist2 the argument list from the
second literal. Ordlist is a list of dotted pairs of the form (element number from 1st list . element
number from 2nd list) . For example ((1 . 2) (2 . 1)) would unify the 1st element of arglist1 with
the 2nd element of arglist2 and the 2nd element of arglist1 with the 1st element of arglist2 ; in
effect, reversing the order of the arguments. This routine actually calculates the new argument lists
and then calls compare-arglists . Mult-subs indicates whether the substitutions should be applied
recursively (i.e. if there is a substitution of x for y , and another of c1 for x , with this flag, all y ’s
would end up as c1 , without it, they end up as x .

Testrtn is a routine for the unifier to call when it has two constants to unify. Normally two constants
don’t unify, but in the case of specialists, we can still do something useful. Testrtn should have the
calling sequence: (testrtn arg1 arg2) , and should return t if there is some known relation between
arg1 and arg2 , and nil otherwise. If it is time consuming to determine the exact relation, the routine
should return t if it is likely that there is a relation, rather than calculating it. If there really wasn’t
any point, that will be discovered in the actual resolution/factoring attempt anyway. Constants are
not substituted for.

Unify-lists returns nil if no unification is possible, otherwise a dotted pair of the form returned by
compare-arglists (consisting of substitutions for arglist1 dotted with substitutions for arglist2).

(make-sub-element newarg oldarg &optional which) [function]

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 26

makes a substitution element consisting of the new argument and the old. If there is no change, nil
is returned.

(arg-sub-list newargs oldargs &optional which) [function]
returns the substitution list required to make the list oldargs look like newargs . This is especially
useful in a comparison attempt after unification and term evaluation have been done to add the
necessary substitutions for the evaluated terms to the substitution lists returned with resolving
actions. Which indicates which literal in the comparison attempt these arguments belong to (1 or
2).

unify-sorts [tweakable]
if this parameter is set to t (the default), the sorts of variables and constants will be taken into
consideration during unification. Note however that a null sort will match any sort.

(print-subs sublist) [function]
returns a list of the form ((var by item) (var by item) ...) which may be included in a print-
line to print the substitutions in a nice format. The existing specialists use this method to print
substitutions. For example, (print-subs ’((x c1 1) (y c2 1)) would return list ((x by c1) (y by c2)) .

(print-trace-subs sublist) [function]
actually prints the substitutions returned by unification. Printing is done on the current line so
that it may be combined with other information. If there are no substitutions, ”nothing” is printed,
otherwise the substitutions are printed in the form (sub/var sub/var ...) . For example, (print-trace-
subs ’((x c1 1) (y c2 1))) would print:

c1/x c2/y
Typically other print statements will surround this to give more complete information:

with substitutions: c1/x c2/y in (x love y)

3.3.2 Formula Matching

(compare-wffs wff1 wff2 compatible prefer) [function]
compares two formulas, wff1 and wff2 to see if wff2 is compatible with wff1 (if compatible is t), or
incompatible with wf1 (if incompatible is nil). Prefer is optional, and if specified, must be either 1
or 2. If 1, it means that when unifying two variables from wff1 and wff2 , it is prefered that the
variable from wff1 be kept, and the substituted for the other one. Compare-wffs invokes specialists
if applicable and if the appropriate flags are turned on. If successful, a list of comparison-item s will
be returned, otherwise nil.

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 27

(incompatible-with-eval test-item eval1 eval2 subs1 subs2 traced header incompatible)[function]
After substitution and term evaluation have been done for two literals being resolved, this routine
will create the resulting comparison items, and return them. It returns nil if the evaluations are
not enough to indicate (in)compatibility. Traced indicates whether resolution tracing is on in the
specialist, and header is a header for any messages this routine prints about adding subgoal agenda
items. Header should be a string of the form ” xxx Specialist:”.

comparison-info [structure]
a list of these structures is returned by the comparison routines (such as compare-wffs), and
expected to be returned by specialist comparison routines. To create one of these structures, use the
following:

(make-comparison-info :wff1 wff1 :wff2 wff2 :lit1 lit1 :lit2 lit2

:subs1 subs1 :subs2 subs2 :residue1 residue1 :residue2 residue)
Residue1 and residue2 are optional. Specialists needn’t worry about wff1 and wff2 as they will only
be working with the sub literals - a higher level routine will update those fields.
The fields are as follows:

comparison-info-wff1 the first formula in the comparison
comparison-info-wff2 the second formula in the comparison
comparison-info-lit1 the literal that was matched from wff1
comparison-info-lit2 the literal that was matched from wff2
comparison-info-subs1 substitutions required in literal 1
comparison-info-subs2 substitutions required in literal 2
comparison-info-residue1 residue for literal 1
comparison-info-residue2 residue for literal 2

3.3.3 Substitution

(substitute-prop prop subs &optional subs-2 subs-num mult-subs) [function]

(substitute-term term subs &optional subs-2 subs-num mult-subs) [function]
These two functions will perform a set of substitutions on propositions or terms. The format of the

substitution list subs is as described for compare-arglists . For each argument in the proposition
or term, the substitution list is searched for a substitution triple whose first element is eq to the
argument. If one is found, the argument is replaced by the second element of the triple. If mult-
subs is true (if anything has been added using arg-sub-lists this should be true, otherwise nil),
the replacement itself is then checked to see if any substitutions can be done within it, using the
substitution list specified by the third element of the substitution triple—if 1 , the substitution list
subs is used; if 2 , the substitution list subs-2 is used. It’s possible to omit the third element in a
substitution triple, in which case the substitution list currently in effect will remain so. Normally,
the subs substitution list is the first to be used, but this can be changed to be subs-2 , by specifying
subs-num to be 2 . Circular substitutions are not detected—the functions will simply recurse forever
if given one.

CHAPTER 3. LOW LEVEL EPILOG ROUTINES 28

The proposition or term passed to these functions and all of the substitution replacements which are
nodes must be interned. The functions return interned nodes. Variables which are not substituted
out will be left as is—no variable renumbering is done.

3.3.4 Hierarchies

(add-hier args) [function]
adds subnodes to a type or predicate hierarachy.

(add-part-hier args) [function]
adds subnodes to a part hierarachy.

(set-hier-type hier type) [function]
sets the hierarchy type for hier . Type must be one of (exclusion, overlap) , or pred-hier .

(add-sort-to-hier pred sort) [function]
adds a sort to the type predicate pred so that any entity predicated with type pred or any predicate
beneath it on a type hierarchy will be given the sort sort= .

(compare-hier-res res1 res2) [function]
returns the relationship between two entities in different hierarchies, given that res1 is the relationship
between the first entity and an entity common to both hierarchies, and res2 is the relationship
between that common entity and the other entity in question.

(hier-rel a1 a2 &optional allowed-parts) [function]
returns the relationship between entities a1 and a2 using the hierarchies. If allowed-parts is specified,
the part hierarchies specified in that list may also participate in the determination of the relationship.

Chapter 4

EPILOG Specialists Interface Routines

This chapter contains the calling sequences and actions for a number of routines which enable a specialist
to communicate with EPILOG and use its resources, and also to communicate with other specialists. A
special interface called spec has been set up containing these routines, as well as the low level EPILOG
routines described in the previous chapter. This minimizes the number of conflicts due to imported
symbols. The routines are located in directory epi/spec/ , and the command

(require ’spec ”epilog:spec;spec”)
will load them into your workspace.

It would be wise to do a use-package very early in the specialist, or simply to add spec to the package
use-list when defining the package. For example:

(in-package ’time-specialist :nicknames ’(time) :use-list ’(lisp user spec lib))

4.1 Definition Routines

These commands are used to describe a specialist to EPILOG so that it knows when it is appropriate
to call the specialist.

(set-specialist specialist-name defn-file nicknames description) [function]
tells EPILOG that a specialist by the name of specialist-name is available. When activated, the
file defn-file will be loaded, which should contain a define-specialist command. Nicknames is
optional, and is a list of other names that may be used to invoke the specialist. Description is a
string indicating what the specialist’s domain is. This command belongs in the specialists file in the
epi/ directory.

(define-specialist specialist-name loadfile predicates operators sorts functions topics)[function]
this command belongs in the definition file for a specialist which is loaded when a specialist is
activated. Specialist-name is the name of the specialist, loadfile is the file which contains the code

29

CHAPTER 4. EPILOG SPECIALISTS INTERFACE ROUTINES 30

for the specialist (and should start with a new package definition!), predicates are predicates which
this specialist is interested in, operators are operators the specialist is interested in, and functions
are functions the specialist is interested in. Sorts are the sorts that the specialist expects the first
argument of a literal to have. This is an additional check after checking the predicate and operator
to see if the specialist should be invoked. Topics is a list of default topics that predicates of the
specialist should indicate.

The following routines should be used for specialists whose predicates are not all known at start-up
time. The add-predicate, add-operator , or add-function routines described in the previous chapter
may be used instead of these - the action will be identical.

(create-predicate predicate specialist) [function]
dynamically adds specialist to the property list of specialists for predicate , creating a concept for
predicate if none existed. This requires that specialist has already been defined and activated, and is
designed for those specialists whose predicates are not all known at start-up time. Note, you might
also want to use add-indicate when you use this.

(create-operator operator specialist) [function]
dynamically adds specialist to the property list of specialists for operator , creating a concept for
operator if none existed. This requires that specialist has already been defined and activated, and is
designed for those specialists whose operators are not all known at start-up time.

(create-function function specialist) [function]
creates a concept of the appropriate form for functions if one didn’t exist, and dynamically adds
specialist to the property list of specialists for that concept. This requires that specialist has already
been defined and activated, and is designed for those specialists whose functions are not all known
at start-up time. It also declares function to be a function in the net.

(function-with-rel-pred function pred &optional sort) [function]
Sometimes it is desirable to have formulas containing functional terms ”flattened” to conform more
with specialist expectations. This function puts relational predicate pred and sort on the property
list of function so that it be used in converting assertions of the form ((function a1) p1 a2) into
(a1 pred c sort) and (c sort p1 a2) . For example, if ((cardinality-of s1) less-than 3) is asserted, it
will not be sent to the set specialist, since the predicate is not a set predicate. When flattened, two
formulas result, one for the set specialist,

(newsymbol number less-than 3)
and one for the number specialist,

(s1 has-cardinality new-symbol) .
The set specialist can then ask the number specialist for more complete information.

CHAPTER 4. EPILOG SPECIALISTS INTERFACE ROUTINES 31

4.2 Communication with Other Specialists

Specialist interface routines for handling immediate and delayed communication are as follows.

4.2.1 Immediate Evaluation

Sometimes information necessary for a specialist may not be available, but some other specialist might
be able to help. The interface has been set up so that a specialist may ask for a particular functional
term to be evaluated, or an entire literal. The request will be sent to any interested specialists, who may
or may not provide an answer. The requesting specialist does not need to know which specialist(s) will
answer his plea, or even if such a specialist exists.

(spec-eval-fn fnarg) [function]
immediately evaluates a functional argument. fnarg is the term to be evaluated. The specialist
interface will locate applicable specialists and invoke them to evaluate the function. The result is
returned by the function. If the functional term cannot be evaluated, fnarg itself will be returned.
If this is an embedded function (some of the arguments are also functional terms), the result may
be a simplified function, which still has not been evaluated.

(eval-with-spec netname prop effort) [function]
immediately evaluates a literal. Netname should be the current subnet identifier (this is a parameter
available from the invokation of the particular specialist, but is also available in *current-netname*
), prop is the literal to be evaluated, and effort the amount of work to be used to evaluate it. The
specialist interface finds the applicable specialists and invokes them, and returns the result of the
evaluation. This is the same process used by EPILOG to find specialists to evaluate literals, but no
”stripping” of subnet information is done here - it is assumed that specialists will not want to jump
from one belief subnet to another.

(spec-eval-args literal) [function]
returns the list of arguments for literal after first trying to evaluate them. This is useful during the
literal comparison phase of a specialist after unification has been done - any functions which can now
be evaluted are evaluated here.

4.2.2 Delayed Communication

Occasionally information will not be available for an immediate evaluation, or the specialist may wish
to be informed of any changes to that information so that it can keep its own representation up to date.
To handle this, interested party lists keep track of entities which specialists are interested in, and literals
which can be reasserted to them which will ensure that the desired information is retrieved and used
properly. If a specialist makes a change to some internal information for a particular entity, it must
notify the interface. When the specialist entries have finished, the list of changed entities is examined,

CHAPTER 4. EPILOG SPECIALISTS INTERFACE ROUTINES 32

and if any have interested party lists, the appropriate specialists will be called. They can then ask for
the updated information.

(add-interested-party item spec) [function]
adds an entry to the interested party list of item . This entry will consist of the specialist requesting it
spec , the current literal being asserted, and the current subnet identifier. When any other assertions
are made containing item with the same subnet identifier, spec will be called to resassert this literal.

(spec-changed-concept concept) [function]
indicates that some information about concept has changed, and adds it onto the list of concepts
whose interested party lists are to be reasserted.

4.3 Communication with EPILOG

The communication from EPILOG to the specialists is all quite automated. Besides the evaluations that
specialists communicate back to EPILOG , they may also make input-driven inferences, and send these
back to EPILOG . A variable called *assertions* is available for any specialist to add inferences to.
These inferences must be in unnormalized, list form. When the current input formula has been examined
by all the interested specialists, and regular input-driven inferencing is about to take place, EPILOG
looks at the list *assertions* and asserts each of them as if they were regular inferences.

assertions [variable]
a place to put input-driven inferences made by specialists so that they can be communicated back to
EPILOG . *assertions* should be in the form of a list of non-normalized (i.e. list form) formulas.

spec-assert [tweakable]
is a tweakable parameter which indicates whether or not EPILOG should accept the specialist
inferences on the *assertions* list. The default is t (accept).

4.4 EPILOG Usage of Specialists

This section describes the routines EPILOG uses to call specialists, and the expected top level definitions
required by the specialists. Note that a user should NOT actually call these routines, except for testing
purposes. The routines are called automatically by EPILOG . They are included here so that you can
get a better understanding of how the interface works.

CHAPTER 4. EPILOG SPECIALISTS INTERFACE ROUTINES 33

4.4.1 Specialist Activation

(use-spec &rest specialists) [function]
activates all the specialists in specialists . The specialists may be indicated by their full names or
specified nicknames. If no specialists are included the ones remaining available that are not yet
activated will be displayed.

available-specialists [variable]
includes the full names of all the specialists which can be activated.

active-specialists [variable]
includes the full names of the specialists which are currently active.

4.4.2 Specialist Invokation

(spec-compare-preds pred1 pred2) [function]
compares the two normalized predicates pred1 and pred2 using specialists if any are applicable. If an
applicable specialist is found, and the routine compare-preds exists in the specialist’s package, that
routine is invoked as follows:

(compare-preds pred1 pred2)
where pred1 and pred2 are the predicates to be compared. These include any operators acting on
them, and the specialists themselves are responsible for discarding any with operators which they do
not handle. One of disjoint , equivalent , subsumes , subsumed , or unknown must be returned.

If more than one specialist is applicable, all are called until an answer other than unknown is returned.

spec-compare-preds [tweakable]
this flag indicates whether or not specialists should actually be used to compare predicates. If this
flag is nil, spec-compare-preds will not be invoked, and no specialists will be used to compare
predicates. Note that this should never be tweaked to nil, except for testing purposes.

(spec-enter literal) [function]
”flattens” literal if necessary, and strips off any modal embedding to determine subnets. It then
determines the applicable specialist(s), and if a routine called enter is found in the specialist’s
package, it is called with the following:

(enter netname lit neg pred arglist)
where netname is the subnet indicator determined after any modal embedding is stripped off, lit is

CHAPTER 4. EPILOG SPECIALISTS INTERFACE ROUTINES 34

the formula to be entered, neg indicates whether or not the formula is negated, pred is the predicate
in the formula, and arglist are the arguments to the predicate. The specialist should return t if it
entered something, and nil otherwise, but this is not required.

Note that ALL interested specialists are called to enter the information.

spec-enter [tweakable]
a tweakable flag that indicates whether or not specialists should be called to enter information in
their own domains. The default is t (enter). If this is set to nil, spec-enter will not be called, and
no formulas will be entered into specialists’ representations - thus no evaluations with specialists that
normally save formulas themselves will be possible.

specialist-entry-effort [tweakable]
the effort level that a specialist should use when entering a formula to determine how hard it should
work at guaranteeing consistency. 0 indicates constant time only operations. Any number higher
than that is specialist specific as to the effect it has.

(spec-evaluate literal &optional effort) [function]
like spec-enter , the formula is first flattened if necessary, and has any modal embedding stripped
off. Interested specialists who have a routine called evaluate in their packages are called in the
following way:

(evaluate netname lit neg pred arglist effort)
where netname is the subnet indicator determined after stripping off modal embedding, lit is the
formula to be evaluated, neg indicates whether or not the formula is negated, pred is the formula’s
predicate, and arglist are the arguments to the predicate. Effort indicates how hard the specialist
should work to evaluate the formula. This usually defaults to *specialist-eval-effort* . The evaluation
routine should return one of yes , no , or unknown .

Applicable specialists are called until one returns an answer other than unknown .

spec-evaluate [tweakable]
indicates whether or not specialists should be used to help evaluate formulas. The default is t (let
them help). If tweaked to nil, spec-evaluate will not be called, and so no specialists will be invoked
to evaluate a formula.

specialist-eval-effort [tweakable]
the effort level that a specialist should use when evaluating a formula. 0 indicates constant time only
operations. Any number higher than that is specialist specific as to the effect it has.

CHAPTER 4. EPILOG SPECIALISTS INTERFACE ROUTINES 35

(spec-eval-fn fnarg) [function]
determines specialists interested in fnarg based on the function name alone, and if any specialist
contains a routine the same as the function name in its package, that routine is invoked with:

(apply function args)
where args are the arguments of the functional term fnarg . The function should either return a
normalized term, or nil. If more than one specialist contains such a function, they are all called until
a non-nil answer is returned.

spec-eval-fn [tweakable]
indicates whether or not functions should be evaluated by specialists, using the spec-eval-fn routine.
Currently the flag is not checked - specialists are allowed to evaluate the functions. This should
probably be fixed to make it more flexible (and for testing purposes).

(spec-incompatible-lits lit1 lit2 &optional effort) [function]

(spec-compatible-lits lit1 lit2 &optional effort) [function]
first strip off any modal embedding and ensures that both formulas refer to the same subnet. Then
they determines specialists which are interested in BOTH lit1 and lit2 , and if any contain a routine
called incompatible-lits (for spec-incompatible-lits) or compatible-lits (for spec-compatible-lits
) in their package, the routine is called in the following manner:

(incompatible-lits netname lit1 lit2 neg1 pred1 arglist1 neg2 pred2 arglist2 effort)

(compatible-lits netname lit1 lit2 neg1 pred1 arglist1 neg2 pred2 arglist2 effort)
where netname again indicates the subnet after modal embedding has been stripped off, lit1 and
lit2 are the formulas to be compared, neg1 and neg2 indicate whether the lit1 and lit2 are negated,
respectively, pred1 and pred2 are the literal’s predicates, and arglist1 and arglist2 are the argument
lists. Effort is an indicator of how hard the specialist should work at comparing the literals. This is
usually defaulted to *specialist-eval-effort*. The routine should return a list of comparison-item s if
it is successful, nil otherwise.

Note that ALL applicable specialists are called.

spec-compare-lits [tweakable]
indicates whether or not specialists should be allowed to participate in literal comparison. This is
initially set to nil (do not let them participate) because the operation is usually expensive and is
not always helpful. More investigation is required into this. If nil, spec-incompatible-lits and
spec-compatible-lits will never be called.

fwd-spec-compare [tweakable]

CHAPTER 4. EPILOG SPECIALISTS INTERFACE ROUTINES 36

An additional flag to control the specialist comparison of literals. If specialist comparisons are
allowed, they are usually useful for goal-directed reasoning (questions), but rarely for input-driven
inferencing. If this flag is tweaked off, specialists will NOT be used to compare literals during
forward inference, even if *spec-compare-lits* is t. If tweaked on, *spec-compare-lits* makes
the decision.

Index

active-specialists, 32
additional-checkpoint-routine, 13
assertions, 31
available-specialists, 32
checkpoint-names, 13
display-default, 11
display-items, 11
fwd-spec-compare, 34
help-path, 8
indent, 7
nl, 7
print, 7
spaces, 7
spec-assert, 31
spec-compare-lits, 34
spec-compare-preds, 32
spec-enter, 33
spec-eval-fn, 34
spec-evaluate, 33
specialist-entry-effort, 33
specialist-eval-effort, 33
traceable-items, 10
traced-items, 10
tweakable-items, 11
unify-sorts, 25
warn, 6

add-function, 22
add-hier, 27
add-interested-party, 31
add-operator, 22
add-operator-type, 23
add-part-hier, 27
add-predicate, 22
add-quantifier, 23
add-sort, 23
add-sort-to-hier, 27
anon-checkpoint, 13
arg-sub-list, 25
average, 6

build-symbol, 5

change-array, 14
change-field, 14
change-hash, 14
change-property, 14
character-atom, 5
check-constant, 19
check-online-status, 6
checkpoint, 12
checkpointing-p, 12
compare-arglists, 23
compare-hier-res, 27
compare-wffs, 25
comparison-info, 26
content, 19
create-function, 29
create-operator, 29
create-predicate, 29

define-specialist, 28
depth-indent, 7
description, 19
display, 11
display-ckpts, 13

element-table, 8
entity-type, 17
epi-variable-p, 18
eval-with-spec, 30

fatal-error, 6
filter, 5
filter1, 5
find-sort, 19
function-p, 18
function-term-p, 18
function-with-rel-pred, 29

get-element, 8
get-last-checkpoint, 13

37

INDEX 38

geta, 14
geth, 14
getp, 14

help, 8
hier-rel, 27

incompatible-with-eval, 25
indent, 7
initialize-element-table, 8
instance-type, 19
is-function, 20
is-function-term, 20
is-negated, 20
is-operator, 21
is-pred, 20
is-quantifier, 21
is-quasi-quoted-expression, 21
is-quoted-expression, 20
is-record, 21
is-variable, 20
is-wff, 20

lambda-pred-p, 18
last1, 5

make-fn-arg, 21
make-prop, 21
make-sub-element, 24

neg-p, 17
new-record, 21
non-constant-arg, 19
nondest-rplacd, 5
normalize, 21
normalize-op, 22
normalize-pred, 22
normalize-term, 22
normalize-wff, 22
nthchar, 5
number-arg, 19

op-type, 17
operator-p, 18

pack, 4
pack*, 4
pred-p, 17
pred-type, 17
print-display, 11

print-error, 6
print-info, 16
print-it, 7
print-line, 6
print-subs, 25
print-trace-subs, 25
print-traceables, 10
print-tweakables, 10
prop-args, 20
prop-pred, 20
put-element, 8

quantifier-p, 18
quasi-quoted-expression-p, 18
quoted-expression-p, 18

record-contents, 19
record-p, 18
reset-indent, 7
retract, 12
revers, 5

set-display-function, 11
set-hier-type, 27
set-indent, 7
set-specialist, 28
seta, 15
seth, 15
setp, 15
skolem-constant-p, 19
spec-changed-concept, 31
spec-compare-preds, 32
spec-compatible-lits, 34
spec-enter, 32
spec-eval-args, 30
spec-eval-fn, 30, 33
spec-evaluate, 33
spec-incompatible-lits, 34
squish, 6
start-checkpoint, 13
strip-pkg, 4
substitute-prop, 26
substitute-term, 26

term-p, 17
term-type, 17
trace-all, 9
trace-item, 9
traceable, 9

INDEX 39

traced-p, 9
tweak, 10
tweakable, 10
type-of-concept, 16
type-pred-p, 18

unify-lists, 24
unpack, 4
untrace-all, 9
untrace-item, 9
use-spec, 32

warn-error, 6
wff-p, 17
wff-type, 17

	Introduction
	General Routines
	General Routines
	Symbol Manipulation
	List Manipulation
	Other

	Output Routines
	Warnings and Errors
	Printing
	Indenting

	Help
	Hashing Routines
	Tracing
	Parameter Tweaking
	Display
	Storage Functions
	Checkpointing and Retraction
	Storage for Retraction
	Storage/Retrieval without Retraction

	Low Level EPILOG Routines
	Information Routines
	Properties of Normalized Objects
	Other Information from Normalized Objects
	For Unnormalized Objects (Lists)

	Creation of EPILOG Objects
	Matching
	Unification
	Formula Matching
	Substitution
	Hierarchies

	EPILOG Specialists Interface Routines
	Definition Routines
	Communication with Other Specialists
	Immediate Evaluation
	Delayed Communication

	Communication with EPILOG
	EPILOG Usage of Specialists
	Specialist Activation
	Specialist Invokation

