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How did we get here?
4 Tons of work on parallel languages and models in

the late 70s and 80s
4 Some of it bad, but much of it good, from a

conceptual point of view
4 But nobody offered a really big win, and they

often insisted on complete religious conversion
4 We couldn’t get good performance with good

models, so we settled for good performance with
poor models
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And where exactly are we?

4 To first approximation
- nobody uses explicitly parallel languages

(other than Java)
- nobody uses parallelizing compilers
- the tightly coupled and distributed worlds use

completely different programming models
- but they all take the form of library calls -- no

significant language or compiler support
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Moreover

4 Programmers aren’t getting any smarter
4 The environment keeps getting messier

- machines are growing more complex
- e-commerce, the GRID, and technological

trends are pulling parallel and distributed
systems together

- HPC is going mainstream
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ASPLOS:
Architectural Sabotage of Programming
Languages and Operating Systems
4 relaxed memory models
4 HW synchronization
4 threaded and clustered

processors
4 deep memory hierarchies
4 pefetching, self-invalidation, etc.
4 communication /computation gap

4 PIM
4 sensor motes
4 active disks
4 user-level NICs
4 programmable NICs
4 etc., etc., etc.
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Emerging Applications
4 Simulation

- weather, economics, biological systems, games

4 Modeling and rendering
- 3D photography, immersive virtual environments,

augmented reality, telepresence, games

4 Intelligent interfaces
- vision / recognition / pattern matching / search
- language and knowledge -- statistical speech models,

modeling of user intent

‹ These are HPC !
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Belligerent opinions
4 Pthreads are sort of ok
4 MPI, OpenMP, and the M4 macros are not!

- too hard to use
- not applicable to non-HPC-style systems

4 RPC/RMI is sort of ok
4 Sockets are not!

4 Parallel programming is (still) ‘way, ‘way harder
than it “ought” to be.
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Recommendation #1
4 Recognize that both shared memory and message

passing have a place
- Shared memory good for passive communication
- Message passing good for active communication
- Much of the time you can use either (matter of taste)
- Sometimes you need one or the other; witness
ü events in shared memory systems
ü put() and get() in message passing systems

‹ Many applications would benefit from both
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Recommendation #2
4 Make the easy stuff easy

- coherent shared memory (CC-NUMA, S-DSM, or DSS) for
ü fast prototyping
ü non-performance critical code

- global address space with put() and get() for performance
tuning of shared memory code

- transactions for atomic update  (Maurice)
- 2-ended message passing for active communication

- These models can comfortably co-exist within a single
application
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Recommendation #3

4 Leverage the compiler
- parallelize what you can  (Mary)

- provide language support for the explicitly
parallel stuff  (Eric)
ü typesafe communication
ü invariant checking
ü exception handling
ü transactions
ü data placement when necessary
ü parallel operations (e.g. loops)
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Recommendation #4
4 Don’t embed HPC assumptions  (Kathy)

- can’t afford to assume
ü fixed number of processes
ü single process per processor

- must accommodate
ü availability / replication
ü fault tolerance / recovery
ü language and machine

heterogeneity

- potential big wins for grid computing today; enormous
wins for pervasive / ubiquitous computing tomorrow

ü uniprogrammed workloads
ü homogeneous hardware

ü distribution / mobility
ü persistence
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Closing Thoughts
4 HPC is going mainstream
4 The applications will be really exciting
4 We need programming models that merge

- explicit and implicit parallelism
- shared memory and message passing
- data-parallel and distributed / mobile components
- automatic and manual locality management

4 These ideas are mutually compatible


