
MLS 10/19/02 1

Programming Models for Parallel
and Distributed Systems

Panel Session
ASPLOS X, Oct. 2002

Eric Brewer, UC Berkeley, Inktomi
Mary Hall, USC ISI

Maurice Herlihy, Brown Univ.
Kathy Yelick, UC Berkeley

Michael Scott, Univ. of Rochester (moderator)

MLS 10/19/02 2

How did we get here?
4 Tons of work on parallel languages and models in

the late 70s and 80s
4 Some of it bad, but much of it good, from a

conceptual point of view
4 But nobody offered a really big win, and they

often insisted on complete religious conversion
4 We couldn’t get good performance with good

models, so we settled for good performance with
poor models

MLS 10/19/02 3

And where exactly are we?

4 To first approximation
- nobody uses explicitly parallel languages

(other than Java)
- nobody uses parallelizing compilers
- the tightly coupled and distributed worlds use

completely different programming models
- but they all take the form of library calls -- no

significant language or compiler support

MLS 10/19/02 4

Moreover

4 Programmers aren’t getting any smarter
4 The environment keeps getting messier

- machines are growing more complex
- e-commerce, the GRID, and technological

trends are pulling parallel and distributed
systems together

- HPC is going mainstream

MLS 10/19/02 5

ASPLOS:
Architectural Sabotage of Programming
Languages and Operating Systems
4 relaxed memory models
4 HW synchronization
4 threaded and clustered

processors
4 deep memory hierarchies
4 pefetching, self-invalidation, etc.
4 communication /computation gap

4 PIM
4 sensor motes
4 active disks
4 user-level NICs
4 programmable NICs
4 etc., etc., etc.

MLS 10/19/02 6

Emerging Applications
4 Simulation

- weather, economics, biological systems, games

4 Modeling and rendering
- 3D photography, immersive virtual environments,

augmented reality, telepresence, games

4 Intelligent interfaces
- vision / recognition / pattern matching / search
- language and knowledge -- statistical speech models,

modeling of user intent

‹ These are HPC !

MLS 10/19/02 7

Belligerent opinions
4 Pthreads are sort of ok
4 MPI, OpenMP, and the M4 macros are not!

- too hard to use
- not applicable to non-HPC-style systems

4 RPC/RMI is sort of ok
4 Sockets are not!

4 Parallel programming is (still) ‘way, ‘way harder
than it “ought” to be.

MLS 10/19/02 8

Recommendation #1
4 Recognize that both shared memory and message

passing have a place
- Shared memory good for passive communication
- Message passing good for active communication
- Much of the time you can use either (matter of taste)
- Sometimes you need one or the other; witness
ü events in shared memory systems
ü put() and get() in message passing systems

‹ Many applications would benefit from both

MLS 10/19/02 9

Recommendation #2
4 Make the easy stuff easy

- coherent shared memory (CC-NUMA, S-DSM, or DSS) for
ü fast prototyping
ü non-performance critical code

- global address space with put() and get() for performance
tuning of shared memory code

- transactions for atomic update (Maurice)
- 2-ended message passing for active communication

- These models can comfortably co-exist within a single
application

MLS 10/19/02 10

Recommendation #3

4 Leverage the compiler
- parallelize what you can (Mary)

- provide language support for the explicitly
parallel stuff (Eric)
ü typesafe communication
ü invariant checking
ü exception handling
ü transactions
ü data placement when necessary
ü parallel operations (e.g. loops)

MLS 10/19/02 11

Recommendation #4
4 Don’t embed HPC assumptions (Kathy)

- can’t afford to assume
ü fixed number of processes
ü single process per processor

- must accommodate
ü availability / replication
ü fault tolerance / recovery
ü language and machine

heterogeneity

- potential big wins for grid computing today; enormous
wins for pervasive / ubiquitous computing tomorrow

ü uniprogrammed workloads
ü homogeneous hardware

ü distribution / mobility
ü persistence

MLS 10/19/02 12

Closing Thoughts
4 HPC is going mainstream
4 The applications will be really exciting
4 We need programming models that merge

- explicit and implicit parallelism
- shared memory and message passing
- data-parallel and distributed / mobile components
- automatic and manual locality management

4 These ideas are mutually compatible

