
Mixed-Initiative Issues for a Personalized Time Management Assistant

Pauline M. Berry, Melinda T. Gervasio, Tomás E. Uribe,
Neil Yorke-Smith

Artificial Intelligence Center

SRI International
333 Ravenswood Avenue

Menlo Park, California 94025
{berry,gervasio,uribe,nysmith}@ai.sri.com

Abstract
This paper explores the mixed-initiative issues arising in the
Personalized Time Manager (PTIME) system. PTIME is a
persistent assistant that builds on our previous work on a
personalized calendar agent (PCalM) (Berry et al. 2004). In
order to persist and be useful, an intelligent agent that
includes collaborative human/agent decision processes must
learn and adapt to the user’s changing needs. PTIME is
intended to support a richer dialogue between the user and
the system, which should be useful to both. If the system
can reliably lean the user's preferences and practices, trust
between user and assistant will be established, decreasing
the system's reliance on mundane user interaction over time.
The enabling technologies include soft constraint
satisfaction, multicriteria optimization, a rich process
framework, learning, and advice.

Introduction
 The human time management problem is intensely
personal. Many people—especially busy workers—are
reluctant to relinquish control over the management of
their own time. Moreover, people have different
preferences and practices regarding how they schedule
their time, how they negotiate appointments with others,
and how much information they are willing to share when
doing so. They also have different needs and priorities
regarding the reminders they should receive.
 We are developing the Personalized Time Manager
(PTIME) assistant, with the goal of managing an
individual’s temporal commitments in a consistent,
integrated framework over an extended period of time,
while recognizing the differences between individuals and
adapting to these differences. The interaction between the
human user and the system is central to this goal. To
maximize the continued usefulness of this interaction, both
the user and the system should benefit from it. The
scheduling solutions found by the system should be
informative and proactive, and the dialogue should
improve the quality of future interactions.
 The PTIME project is part of a larger, ambitious
automated assistant called CALO. CALO is a cognitive
assistant that supports its human user in a variety of ways.
For example, project and task management, information
collection, organization and presentation and meeting
understanding. However, the focus of CALO is its ability

to learn and persist. Our hypothesis is that for mixed-
initiative systems to succeed in the long term, the dialogue
between human and system must evolve over time. To
achieve this, we are designing PTIME so that

1. PTIME will unobtrusively learn user preferences,

using a combination of passive learning, active
learning, and advice-taking;

2. As a result, the user will become more confident of
PTIME’s ability over time, and will thus let it make
more decisions autonomously; and

3. As autonomy increases, PTIME will learn when to
involve the user in its decisions.

 Background
Tools and standards for representing, displaying, and
sharing schedule information have become common. A
generally adopted standard for calendar representation is
iCalendar (RFC2447).
 There are also many calendar tools to organize, display,
and track commitments. However, most people still spend
a considerable amount of time managing the constant
changes and adjustments that must be made to their
schedules. Desktop tools have dramatically improved the
administration of our calendars, but their scheduling
capabilities are limited. Automated meeting scheduling
assistants have shown promise, but their use tends to be
fleeting, since they do not evolve over time. People also
use a variety of other tools, such as to-do lists, to keep
track of workload and deadlines not supported in the
typical calendar tools.

The emphasis in the research community has been on
automated meeting scheduling: finding feasible time slots
for meetings given a set of requirements on participants,
times and locations. Work in this area can be generally
divided into Open and Closed scheduling systems (Ephrati
et al. 1994). In Open systems, individuals are autonomous,
and responsible for creating and maintaining their own
calendar and meeting schedules, perhaps selfishly. They
can operate in an unbounded environment without constant
obligation to one organization. In a Closed system, the
meeting mechanisms are imposed on each individual, and a

consistent and complete global calendar is maintained.
Closed systems are more common because preference
measures can be normalized across users, participant
availability is known at all times, and the problem can be
formulated as constraint optimization. Not all closed
systems are centralized, and there is interesting work in
distributed solutions to the closed scheduling problem
(Ephrati et. al.1994, Sandip and Durfee 1998).

Closed systems are rarely adopted because the users
seldom live in a truly closed environment, and need to
retain more personal control of their calendars. Open
scheduling systems pose additional challenges, such as
privacy: an individual may not wish to share all, part, or
any of his schedule, or may choose not to participate in a
meeting, but not divulge this information.
 CALO exists in an open, unbounded environment where
issues of privacy, authority, cross-organizational

scheduling, and availability of participants abound. PTIME
is similar in approach to RCAL (Payne et. al. 2002) but
extends the notion of collaboration with the user. The
scheduling task is viewed as a shared goal of the user and
the agent. The collaborative scheduling process is
separated from the constraint reasoning algorithms to
enable interaction with the user and other PTIME agents.
This interaction forms the framework for learning and
adjustable autonomy. PTIME considers finding the best
solution as a dialogue between user and agent, and treats
the underlying scheduling problem as a soft Constraint
Satisfaction Problem (CSP). PTIME also addresses the
problems of individual preference and scheduling events
within the context of the user's workload and deadlines.
 Figure 1 is a screenshot of the current PTIME interface,
and illustrates the collaborative nature of the dialogue
between PTIME and the user.

Figure 1: A screenshot from PTIME.

Architecture

The PTIME architecture, illustrated in Figure 2, includes a
number of components that make it personalized and
adaptive. Key features of the architecture include:
• A Process Framework (PTIME-Control), which

captures possible interactions with users and other
agents, in the form of structured decision points.

• Preference Learning (PLIANT), which lets the
system evolve over time by learning process
preferences, scheduling preferences, and, eventually,
new processes from the user. Currently, we have
developed PLIANT to learn temporal scheduling
preference, e.g. time of day, day or week,
fragmentation of schedule.

• Advisability (PTIME-Control), which enables direct
instruction by the user at various levels of abstraction.
Exploiting the explicit decision points in the process
framework lets the user make choices and give advice.
Choices may involve selecting an alternative
scheduling process, e.g. negotiate a new time for the
meeting vs. relax an existing constraint to accept the
current time; or they may involve expressing simple
temporal preferences, e.g. don’t schedule meetings just
before lunch.

• Constraint Reasoning (PTIME-Engine), which
permits reasoning within a unified plan representation.
The representation used by PTIME unifies temporal
and non-temporal constraints, soft and hard

constraints, and preferences. The constraint reasoner
(PTIME-Engine) considers workload issues and task
deadlines when scheduling typical calendar events,
such as meetings. The PTIME-Engine uses a hybrid
solver that manages the application of temporal CSP
algorithms, e.g., to handle Simple Temporal Problems
(STPs) (Dechter et al. 1991) and Disjunctive Temporal
Problems (DTPs) (Stergiou and Koubarakis 1998,
Tsamardinos and Pollack 2003), to address complex
constraint space and preference handling, and to
enable partial constraint satisfaction. The PTIME-
Engine can also explore alternative conflict resolution
options via relaxation, negotiation, and explanation
techniques, (Junker 2004).

• Personalized Reminder Generation (PTIME-RG),
which reasons intelligently about if, when, and how to
alert the user of upcoming events or possible conflicts
amongst events. This work builds on the Autominder
system (Pollack et al. 2003) and the learning
algorithms to create reminders that are context-
sensitive and personalized.

• Adjustable Autonomy (PTIME-Control), which
modulates control over decision points as the user’s
preferences and normal practices are learned, and trust
between the user and the system is established. The
goal is to decrease the system’s reliance on user
interaction over time.

Figure 2: PTIME functional architecture

Persistence and Learning
Central to persistence are the application of learning
technology and a framework for advisability. Through
continual active learning and advice taking, PTIME
constructs a dynamic preference profile containing two
types of guidance:
(1) Scheduling: Preferences over schedules (when to
reserve time and with whom), relaxations (which
constraints, or constraint sets, are more readily relaxed)
and reminders (when, how and about which events the user
should be alerted).
(2) Process selection and application: preferences over
existing process descriptions (e.g., negotiate or relax) and
learned processes.
Both types of information can be actively asserted using a
policy specification language, building on work on
advisability and adjustable autonomy (Myers and Morley
2003). They can also be learned passively by monitoring
the user’s decisions.
 PTIME uses a suite of tools to learn various kinds of
preferences. A Support Vector Machine (SVM) module,
supplemented with active learning strategies, learns user
preferences about schedules in the form of an evaluation
function over schedule features (e.g., day of week, start
time, fragmentation) (Gervasio et al. 2005). The features
were selected to capture the temporal characteristics of a
scheduling decision. We are adding features that capture
whether or not constraints are satisfied by a candidate
schedule; this will let PTIME learn preferences over
relaxations in the case of over-constrained schedules as
well. We are also exploring the problem of procedural
learning, where the performance task is to determine what
to do under a particular situation rather than to evaluate the
goodness of a candidate schedule. Along similar lines, we
are using procedural learning to handle situations that arise
after an event is scheduled: for example, if the host cannot
make it or if the scheduled venue suddenly becomes
unavailable. Finally, PTIME uses reinforcement learning
schemes to learn both reminder strategies that are tailored
to individual users and strategies for determining the
amount of autonomy to take in different situations. By
observing the effects of different reminder strategies on a
user, PTIME can adjust its reminder strategy to account for
personal traits as well as different schedule situations. A
similar process occurs with the learning of adjustable
autonomy decisions.
 In all cases, PTIME learns online (or from the execution
traces of the user’s actual interactions with PTIME), so it
can continually adjust to changing user preferences and
situations. Concept shift—the phenomenon of users
exhibiting drastic changes in preferences—is a known
issue in the calendar domain. We plan to address this
problem more directly by designing a learning approach

that is sensitive to sharp changes as well as a period of
stabilization of user preferences over time.

Mixed-Initiative Research Directions
PTIME has demonstrated its initial calendar management
software within the CALO project, and is currently
undergoing a test phase, conducted by an external agency,
to assess its capability to learn user preferences and
therefore retain a high level of usefulness to the user.
PTIME development has four principal research goals for
2005, and all relate to its ability to adapt to the user’s
needs. This section describes our research into hybrid
constraint satisfaction, partial constraint satisfaction with
preferences, negotiation and advice-taking. The result is a
framework for negotiation between agents and with the
user. We will also describe our ongoing work to learn
preferences and accept advice from the user.

Using Preferences in Scheduling
The constraint problem in PTIME is a combination of three
factors: the user's existing schedule, the meeting request,
and the interactive collaboration between PTIME and the
user. The user may interact with PTIME to explore
possible relaxed solutions to the problem, leading to a
sequence of related soft Constraint Optimization Problems
(COPs) to solve. For example, the user may initially
specify a strong preference against meetings on Monday
mornings. Later, she may weaken this preference but
increase the importance of the specified meeting room.
 Critical to the mixed-initiative goals of PTIME is the
ability to use the learned knowledge of user preferences
within the underlying constraint satisfaction problem.
(Berry et al. 2005) describes our approach to constraint
satisfaction for PTIME, which involves a combination of
disjunctive and finite-domain constraint solvers with
preferences. Since it is relevant to this discussion, we now
briefly discuss the representation of schedule preferences
and relaxations within soft CSPs.
 User preferences are mapped into the shape and height
of specific preference functions for each of the relevant
soft constraints. The shape models how much and in what
way the constraint may be relaxed, and the height models
the importance of the constraint. This builds on the work
by (Peintner and Pollack 2004) and (Bistarelli, Montanari,
and Rossi 2001).
 For example, suppose a meeting with Bob must occur
before a seminar. If

!

S
M
(S

S
)and

!

E
M
(E

S
) are the start

and end of the meeting (resp. seminar), the constraint is

!

c : E
M
" S

S
0 . Figure 3 shows the shape of the

preference functions on

!

c from left to right, if the
constraint is hard, a little relaxable, and very relaxable.

Figure 3: Example Preference Functions

To solve soft CSPs that include such preference functions,
we combine existing solvers for the temporal and non-
temporal constraint subproblems in a hybrid formulation.
Constraint solving in PTIME is implemented in ECLiPSe
(Cheadle et al. 2003), and is also compatible with SICStus
Prolog; such Constraint Logic Programming systems are
well-suited to hybrid solving. We are exploring search
techniques that can produce not only a single optimal
solution, but also a good set of qualitatively different
solutions to present to the user. A good set of solutions has
three characteristics: to include the most desirable solution,
to give the user qualitatively different choices and to
promote future learning.

Negotiation: Process Design for Conflict
Resolution
The work on extending the constraint representation and
relaxation framework of our CSP is to enable more
informative dialogue between the human user and the
agent. The motivation behind PTIME is to facilitate a
collaborative assistant for time management. Taking note
of research in collaboration (Grosz and Kraus 1999) and
collaborative interfaces (Babaian, Grosz, and Shieber
2002), we view conflict resolution as a joint task to be
undertaken between the human and his agent, or between
agents. Currently, the interaction is explicitly captured in
the highly reactive process descriptions offered by
SPARK-L (Morley 2004) and applied within a framework
of advice. We would like to abstract and possibly learn the
applicability conditions of the processes within the context
of the dialogue.
Figure 4 presents a typical dialogue that might take place
between a user and PTIME. To enable this type of
dialogue, the processes capture the key decision points.
Future research will construct a collaborative framework
within which these processes will operate.
Figure 5 illustrates an example process in SPARK-L. Each
decision point offers the choice to automate the decision,
ask the user for advice or decision, postpone the decision,
or take another action. For example, when the goal is:

[do: (select_solution $resultset $result)],

a set of different actions might be intended, including
asking the user to select an option or automatically
selecting the highest valued one. The choice of action
depends on the user’s preference (learned or told), the
physical context (such as the user’s current activity), and

the cognitive context. Learning how and when to apply
each activity is a highly personalized and evolving
problem.

User Helen: “Please schedule a group
meeting early next week”
PTIME Agent: “Your specific request
conflicts with your current workload
and meeting constraints”
PTIME Agent: “May I suggest some
possible alternatives”
1. Meet Monday at 10am without “Bob”
2. Meet Tuesday at 4pm overlapping

the seminar
3. Meet Monday at 10am warning your

report deadline may be in jeopardy
4. Meet Tuesday at 11 and reschedule

your meeting with the boss
User Helen: I don’t mind overlapping
some meetings – show me more
possibilities like 2.
PTIME Agent: “Ok How about”
1. Meet Monday at 11:30 running into

lunch by 15 minutes
2. Meet Tuesday at 9:30 but Bob may

have to leave early
User Helen: “Ok go ahead with 2”

Figure 4. Example user-agent dialogue

{defprocedure “schedule”
 cue: [do: (schedule $event_type $constraints $attributes)]
 preconditions (Event_Type “meeting”)
 body: [context (and (User $self)
 (Participants $constraints $pset))
 seq:
 [do: (retrieve_availability $pset $constraints)]
 [do: (solve_schedule $constraints $resultset)]
 [do: (select_solution $resultset $result)]
 [select: (= $result [])
 [do: (resolve_conflct $constraints $result)]
 [do: (confirm_meeting $result $attributes)]]
 }

Figure 5. Example SPARK-L process

Advice
The PTIME-Controller can take user advice and conform
to organizational policies. Advice is defined as an
enforceable, well-specified constraint on the performance
or application of an action in a given situation. In general
advice can be considered to be a type of policy, often

personalized. (Sloman 1994) defines two types of policy:
authorization and obligation. For our advisable system, we
extend this categorization to include preference:
1. Authorization defines the actions that the agent is either

permitted or forbidden to perform on a target.
2. Obligation defines the actions that an agent must

perform on a set of targets when an event occurs.
Obligation actions are always triggered by events,
since the agent must know when to perform the
specified actions.

3. Preference defines a ranking in the order or selection of
an action under certain conditions.

Advice can both apply to the application of strategies, the
conditions under which a strategy is applicable, or the
instantation of a variable. Advice may be conflicting, can
be long-lived, and their relevance may decay over time.
Advice can be used to influence the selection of procedures
and strategies for problem solving and also to influence
adjustable autonomy. The management of advice is an
active research focus for the CALO project. The
application of advice is central to both PTIME for
influencing preference and for controlling adjustable
autonomy strategies.

Summary
The concept of a persistent useful interaction motivates the
mixed-initiative design of PTIME. It has an extended
notion of collaboration with the user, which forms the
framework for learning and adjustable autonomy. The time
management process is represented using context-sensitive,
hierarchical procedures, which provide hooks, via the
structured decision points, into the user’s decision process
at multiple levels of abstraction. These hooks can be used
to passively learn the user’s preferences or to facilitate the
specification of advice from the user. The resulting agent
will let the user retain control of decisions when necessary,
and relinquish control to the assistant at other times.
Meanwhile, the agent will be sensitive to the user’s wishes
and preferences.

Acknowledgments. This material is based upon work
supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCHD030010.
Any opinions, findings and conclusions, or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
DARPA or the Department of Interior-National Business
Center (DOI-NBC).

References
Berry, P.M., Gervasio, M., Uribe, T., Myers, K., and Nitz, K.
(2004). A personalized calendar assistant, In proceedings of the
AAAI Spring Symposium Series, Stanford University.
Berry, P.M. Gervasio, M., Uribe, T., and Yorke-Smith, N. (2005).
Multi-Criteria Constraint Solving and Relaxation for
Personalized Systems, Technical Report, SRI International.
Babaian, T., Grosz, B. and Shieber, S.M. (2002). A writer's
collaborative aid. In proceedings of the Intelligent User Interfaces
Conference, San Francisco, CA. January 13-16. ACM Press, pp.
7-14.
Bistarelli, S., Montanari, U., and Rossi. F. (2001). Solving and
learning soft temporal constraints: Experimental scenario and
examples, In proceedings of the CP'01 Workshop on Modelling
and Solving Problems with Soft Constraints.
Cheadle, A.M., Harvey, W., Sadler, A.J., Schimpf, J., Shen, K.
and Wallace, M.G. (2003). ECLiPSe: An Introduction, Technical
Report IC-Parc-03-1, IC--Parc, Imperial College London.
Dechter, R., Meiri, I., and Pearl. J. (1991). Temporal constraint
networks. Artificial Intelligence, 49(1– 3):61–95.
Ephrati, E., Zlotkin, G., and Rosenschein, J.S. (1994). A non
manipulable meeting scheduling system, In proceedings of the
Thirteenth International Distributed Artificial Intelligence
Workshop, Seattle.
Gervasio, M.T., Moffitt, M.D., Pollack, M.E., Taylor, J. and
Uribe, T.E. (2005). In proceedings of the International
Conference in Intelligent User Interfaces (IUI), San Diego.
Grosz, B. and Kraus, S. (1999). The evolution of SharedPlans. In
Foundations and Theories of Rational Agencies, A. Rao and M.
Wooldridge, eds. pp. 227-262.
Junker, E. (2004). QuickXplain: Preferred Explanations and
Relaxations for Over-Constrained Problems. In proceedings of
AAAI-04.
Morley, D. (2004). Introduction to SPARK. Technical Report,
Artificial Intelligence Center, SRI International, Menlo Park, CA.
Myers, K. L. and Morley, D. N. (2003). Policy-based Agent
Directability. In Agent Autonomy, Kluwer Academic Publishers.
Payne, T. R., Singh, R., and Sycara, K. (2002). Rcal: A case study
on semantic web agents, In proceedings of the First International
Conference on Autonomous Agents and Multi-agent Systems.
Peintner B. and Pollack, M.E. (2004). Low-cost addition of
preferences to DTPs and TCSPs, In proceedings of AAAI-04,
pages 723-728.
Pollack, M.E., Brown, L., Colbry, D., McCarthy, C.E., Orosz, C.,
Peintner, B., Ramakrishnan, S., and Tsamardinos, I. (2003).
Autominder: An intelligent cognitive orthotic system for people
with memory impairment, Robotics and Autonomous Systems,
44:273-282, 2003.
Sandip, S., and Durfee, E.H. (1998). A formal study of distributed
meeting scheduling. Group Decision and Negotiation, vol. 7, pp.
265-298.
Sloman, M. (1994). Policy driven management for distributed
systems. Plenum Press Journal of Network and Systems
Management, vol.2, no. 4, pp. 333-360.
Stergiou, K., and Koubarakis, M. (1998). Backtracking
algorithms for disjunctions of temporal constraints, In
proceedings of AAAI/ IAAI-98, p.248-253, Madison.
Tsamardinos, I., and Pollack, M.E. (2003). Efficient Solution
Techniques for Disjunctive Temporal Reasoning Problems,
Artificial Intelligence, 151(1-2):43-90.

