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Abstract 
This paper explores the mixed-initiative issues arising in the 
Personalized Time Manager (PTIME) system. PTIME is a 
persistent assistant that builds on our previous work on a 
personalized calendar agent (PCalM) (Berry et al. 2004). In 
order to persist and be useful, an intelligent agent that 
includes collaborative human/agent decision processes must 
learn and adapt to the user’s changing needs. PTIME is 
intended to support a richer dialogue between the user and 
the system, which should be useful to both. If the system 
can reliably lean the user's preferences and practices, trust 
between user and assistant will be established, decreasing 
the system's reliance on mundane user interaction over time. 
The enabling technologies include soft constraint 
satisfaction, multicriteria optimization, a rich process 
framework, learning, and advice. 

Introduction 
 The human time management problem is intensely 
personal. Many people—especially busy workers—are 
reluctant to relinquish control over the management of 
their own time. Moreover, people have different 
preferences and practices regarding how they schedule 
their time, how they negotiate appointments with others, 
and how much information they are willing to share when 
doing so. They also have different needs and priorities 
regarding the reminders they should receive.  
 We are developing the Personalized Time Manager 
(PTIME) assistant, with the goal of managing an 
individual’s temporal commitments in a consistent, 
integrated framework over an extended period of time, 
while recognizing the differences between individuals and 
adapting to these differences. The interaction between the 
human user and the system is central to this goal. To 
maximize the continued usefulness of this interaction, both 
the user and the system should benefit from it. The 
scheduling solutions found by the system should be 
informative and proactive, and the dialogue should 
improve the quality of future interactions.  
 The PTIME project is part of a larger, ambitious 
automated assistant called CALO. CALO is a cognitive 
assistant that supports its human user in a variety of ways. 
For example, project and task management, information 
collection, organization and presentation and meeting 
understanding. However, the focus of CALO is its ability 

to learn and persist. Our hypothesis is that for mixed-
initiative systems to succeed in the long term, the dialogue 
between human and system must evolve over time. To 
achieve this, we are designing PTIME so that 
 
1. PTIME will unobtrusively learn user preferences, 

using a combination of passive learning, active  
learning, and advice-taking; 

2. As a result, the user will become more confident of 
PTIME’s ability over time, and will thus let it make 
more decisions autonomously; and 

3. As autonomy increases, PTIME will learn when to 
involve the user in its decisions. 

 Background 
Tools and standards for representing, displaying, and 
sharing schedule information have become common. A 
generally adopted standard for calendar representation is 
iCalendar (RFC2447).  
 There are also many calendar tools to organize, display, 
and track commitments. However, most people still spend 
a considerable amount of time managing the constant 
changes and adjustments that must be made to their 
schedules. Desktop tools have dramatically improved the 
administration of our calendars, but their scheduling 
capabilities are limited. Automated meeting scheduling 
assistants have shown promise, but their use tends to be 
fleeting, since they do not evolve over time. People also 
use a variety of other tools, such as to-do lists, to keep 
track of workload and deadlines not supported in the 
typical calendar tools. 

The emphasis in the research community has been on 
automated meeting scheduling: finding feasible time slots 
for meetings given a set of requirements on participants, 
times and locations. Work in this area can be generally 
divided into Open and Closed scheduling systems (Ephrati 
et al. 1994). In Open systems, individuals are autonomous, 
and responsible for creating and maintaining their own 
calendar and meeting schedules, perhaps selfishly. They 
can operate in an unbounded environment without constant 
obligation to one organization. In a Closed system, the 
meeting mechanisms are imposed on each individual, and a 



  

consistent and complete global calendar is maintained. 
Closed systems are more common because preference 
measures can be normalized across users, participant 
availability is known at all times, and the problem can be 
formulated as constraint optimization. Not all closed 
systems are centralized, and there is interesting work in 
distributed solutions to the closed scheduling problem 
(Ephrati et. al.1994, Sandip and Durfee 1998). 

Closed systems are rarely adopted because the users 
seldom live in a truly closed environment, and need to 
retain more personal control of their calendars. Open 
scheduling systems pose additional challenges, such as 
privacy: an individual may not wish to share all, part, or 
any of his schedule, or may choose not to participate in a 
meeting, but  not  divulge this information. 
 CALO exists in an open, unbounded environment where 
issues of privacy, authority, cross-organizational 

scheduling, and availability of participants abound. PTIME 
is similar in approach to RCAL (Payne et. al. 2002) but 
extends the notion of collaboration with the user. The 
scheduling task is viewed as a shared goal of the user and 
the agent. The collaborative scheduling process is 
separated from the constraint reasoning algorithms to 
enable interaction with the user and other PTIME agents. 
This interaction forms the framework for learning and 
adjustable autonomy. PTIME considers finding the best 
solution as a dialogue between user and agent, and treats 
the underlying scheduling problem as a soft Constraint 
Satisfaction Problem (CSP). PTIME also addresses the 
problems of individual preference and scheduling events 
within the context of the user's workload and deadlines. 
 Figure 1 is a screenshot of the current PTIME interface, 
and illustrates the collaborative nature of the dialogue 
between PTIME and the user. 

 

 
 

 
Figure 1: A screenshot from PTIME. 



 
Architecture 

The PTIME architecture, illustrated in Figure 2, includes a 
number of components that make it personalized and 
adaptive.  Key features of the architecture include: 
• A Process Framework (PTIME-Control), which 

captures possible interactions with users and other 
agents, in the form of structured decision points. 

• Preference Learning (PLIANT), which lets the 
system evolve over time by learning process 
preferences, scheduling preferences, and, eventually, 
new processes from the user.  Currently, we have 
developed PLIANT to learn temporal scheduling 
preference, e.g. time of day, day or week, 
fragmentation of schedule.  

• Advisability (PTIME-Control), which enables direct 
instruction by the user at various levels of abstraction. 
Exploiting the explicit decision points in the process 
framework lets the user make choices and give advice. 
Choices may involve selecting an alternative 
scheduling process, e.g. negotiate a new time for the 
meeting vs. relax an existing constraint to accept the 
current time; or they may involve expressing simple 
temporal preferences, e.g. don’t schedule meetings just 
before lunch. 

• Constraint Reasoning (PTIME-Engine), which 
permits reasoning within a unified plan representation. 
The representation used by PTIME unifies temporal 
and non-temporal constraints, soft and hard 

constraints, and preferences. The constraint reasoner 
(PTIME-Engine) considers workload issues and task 
deadlines when scheduling typical calendar events, 
such as meetings. The PTIME-Engine uses a hybrid 
solver that manages the application of temporal CSP 
algorithms, e.g., to handle Simple Temporal Problems 
(STPs) (Dechter et al. 1991) and Disjunctive Temporal 
Problems (DTPs) (Stergiou and Koubarakis 1998, 
Tsamardinos and Pollack 2003), to address complex 
constraint space and preference handling, and to 
enable partial constraint satisfaction. The PTIME-
Engine can also explore alternative conflict resolution 
options via relaxation, negotiation, and explanation 
techniques, (Junker 2004). 

• Personalized Reminder Generation (PTIME-RG), 
which reasons intelligently about if, when, and how to 
alert the user of upcoming events or possible conflicts 
amongst events. This work builds on the Autominder 
system (Pollack et al. 2003) and the learning 
algorithms to create reminders that are context-
sensitive and personalized. 

• Adjustable Autonomy (PTIME-Control), which 
modulates control over decision points as the user’s 
preferences and normal practices are learned, and trust 
between the user and the system is established.  The 
goal is to decrease the system’s reliance on user 
interaction over time. 

  

 

 
 

Figure 2: PTIME functional architecture 



  

 

Persistence and Learning 
Central to persistence are the application of learning 
technology and a framework for advisability. Through 
continual active learning and advice taking, PTIME 
constructs a dynamic preference profile containing two 
types of guidance: 
(1) Scheduling: Preferences over schedules (when to 
reserve time and with whom), relaxations (which 
constraints, or constraint sets, are more readily relaxed) 
and reminders (when, how and about which events the user 
should be alerted). 
(2) Process selection and application: preferences over 
existing process descriptions (e.g., negotiate or relax) and 
learned processes. 
Both types of information can be actively asserted using a 
policy specification language, building on work on 
advisability and adjustable autonomy (Myers and Morley 
2003). They can also be learned passively by monitoring 
the user’s decisions. 
 PTIME uses a suite of tools to learn various kinds of 
preferences. A Support Vector Machine (SVM) module, 
supplemented with active learning strategies, learns user 
preferences about schedules in the form of an evaluation 
function over schedule features (e.g., day of week, start 
time, fragmentation) (Gervasio et al. 2005).  The features 
were selected to capture the temporal characteristics of a 
scheduling decision. We are adding features that capture 
whether or not constraints are satisfied by a candidate 
schedule; this will let PTIME learn preferences over 
relaxations in the case of over-constrained schedules as 
well.  We are also exploring the problem of procedural 
learning, where the performance task is to determine what 
to do under a particular situation rather than to evaluate the 
goodness of a candidate schedule.  Along similar lines, we 
are using procedural learning to handle situations that arise 
after an event is scheduled: for example, if the host cannot 
make it or if the scheduled venue suddenly becomes 
unavailable. Finally, PTIME uses reinforcement learning 
schemes to learn both reminder strategies that are tailored 
to individual users and strategies for determining the 
amount of autonomy to take in different situations.  By 
observing the effects of different reminder strategies on a 
user, PTIME can adjust its reminder strategy to account for 
personal traits as well as different schedule situations. A 
similar process occurs with the learning of adjustable 
autonomy decisions. 
 In all cases, PTIME learns online (or from the execution 
traces of the user’s actual interactions with PTIME), so it 
can continually adjust to changing user preferences and 
situations. Concept shift—the phenomenon of users 
exhibiting drastic changes in preferences—is a known 
issue in the calendar domain. We plan to address this 
problem more directly by designing a learning approach 

that is sensitive to sharp changes as well as a period of 
stabilization of user preferences over time. 

Mixed-Initiative Research Directions 
PTIME has demonstrated its initial calendar management 
software within the CALO project, and is currently 
undergoing a test phase, conducted by an external agency, 
to assess its capability to learn user preferences and 
therefore retain a high level of usefulness to the user. 
PTIME development has four principal research goals for 
2005, and all relate to its ability to adapt to the user’s 
needs. This section describes our research into hybrid 
constraint satisfaction, partial constraint satisfaction with 
preferences, negotiation and advice-taking. The result is a 
framework for negotiation between agents and with the 
user. We will also describe our ongoing work to learn 
preferences and accept advice from the user.  

Using Preferences in Scheduling 
The constraint problem in PTIME is a combination of three 
factors: the user's existing schedule, the meeting request, 
and the interactive collaboration between PTIME and the 
user. The user may interact with PTIME to explore 
possible relaxed solutions to the problem, leading to a 
sequence of related soft Constraint Optimization Problems 
(COPs) to solve. For example, the user may initially 
specify a strong preference against meetings on Monday 
mornings. Later, she may weaken this preference but 
increase the importance of the specified meeting room. 
 Critical to the mixed-initiative goals of PTIME is the 
ability to use the learned knowledge of user preferences 
within the underlying constraint satisfaction problem. 
(Berry et al. 2005) describes our approach to constraint 
satisfaction for PTIME, which involves a combination of 
disjunctive and finite-domain constraint solvers with 
preferences. Since it is relevant to this discussion, we now 
briefly discuss the representation of schedule preferences 
and relaxations within soft CSPs. 
 User preferences are mapped into the shape and height 
of specific preference functions for each of the relevant 
soft constraints.  The shape models how much and in what 
way the constraint may be relaxed, and the height models 
the importance of the constraint. This builds on the work 
by (Peintner and Pollack 2004) and (Bistarelli, Montanari, 
and Rossi 2001). 
 For example, suppose a meeting with Bob must occur 
before a seminar. If 
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Figure 3: Example Preference Functions 
 
To solve soft CSPs that include such preference functions, 
we combine existing solvers for the temporal and non-
temporal constraint subproblems in a hybrid formulation. 
Constraint solving in PTIME is implemented in ECLiPSe 
(Cheadle et al. 2003), and is also compatible with SICStus 
Prolog; such Constraint Logic Programming systems are 
well-suited to hybrid solving. We are exploring search 
techniques that can produce not only a single optimal 
solution, but also a good set of qualitatively different 
solutions to present to the user. A good set of solutions has 
three characteristics: to include the most desirable solution, 
to give the user qualitatively different choices and to 
promote future learning. 

Negotiation: Process Design for Conflict 
Resolution 
The work on extending the constraint representation and 
relaxation framework of our CSP is to enable more 
informative dialogue between the human user and the 
agent. The motivation behind PTIME is to facilitate a 
collaborative assistant for time management. Taking note 
of research in collaboration (Grosz and Kraus 1999) and 
collaborative interfaces (Babaian, Grosz, and Shieber 
2002), we view conflict resolution as a joint task to be 
undertaken between the human and his agent, or between 
agents. Currently, the interaction is explicitly captured in 
the highly reactive process descriptions offered by 
SPARK-L (Morley 2004) and applied within a framework 
of advice. We would like to abstract and possibly learn the 
applicability conditions of the processes within the context 
of the dialogue. 
Figure 4 presents a typical dialogue that might take place 
between a user and PTIME.  To enable this type of 
dialogue, the processes capture the key decision points. 
Future research will construct a collaborative framework 
within which these processes will operate.  
Figure 5 illustrates an example process in SPARK-L. Each 
decision point offers the choice to automate the decision, 
ask the user for advice or decision, postpone the decision, 
or take another action. For example, when the  goal is: 
 
 

[do: (select_solution $resultset $result)], 
 
 

a set of different actions might be intended, including 
asking the user to select an option or automatically 
selecting the highest valued one. The choice of action 
depends on the user’s preference (learned or told), the 
physical context (such as the user’s current activity), and 

the cognitive context. Learning how and when to apply 
each activity is a highly personalized and evolving 
problem. 
 

 
User Helen: “Please schedule a group 
meeting early next week” 
PTIME Agent: “Your specific request 
conflicts with your current workload 
and meeting constraints” 
PTIME Agent: “May I suggest some 
possible alternatives” 
1. Meet Monday at 10am without “Bob” 
2. Meet Tuesday at 4pm overlapping 

the seminar 
3. Meet Monday at 10am warning your 

report deadline may be in jeopardy 
4. Meet Tuesday at 11 and reschedule 

your meeting with the boss  
User Helen: I don’t mind overlapping 
some meetings – show me more 
possibilities like 2. 
PTIME Agent: “Ok How about” 
1. Meet Monday at 11:30 running into 

lunch by 15 minutes 
2. Meet Tuesday at 9:30 but Bob may 

have to leave early 
User Helen: “Ok go ahead with 2” 
 

 
Figure 4. Example user-agent dialogue 

 
 

{defprocedure “schedule” 
  cue: [do: (schedule $event_type $constraints $attributes)] 
  preconditions (Event_Type “meeting”) 
  body: [context (and (User $self)  
                        (Participants $constraints $pset)) 
              seq:  
                 [do: (retrieve_availability $pset $constraints)] 
                 [do: (solve_schedule $constraints $resultset)] 
                 [do: (select_solution $resultset $result)] 
                 [select: (= $result []) 
                           [do: (resolve_conflct $constraints $result)] 
                  [do: (confirm_meeting $result $attributes)]] 
     } 

 
 

Figure 5. Example SPARK-L process 

Advice 
The PTIME-Controller can take user advice and conform 
to organizational policies. Advice is defined as an 
enforceable, well-specified constraint on the performance 
or application of an action in a given situation. In general 
advice can be considered to be a type of policy, often 



  

personalized. (Sloman 1994) defines two types of policy: 
authorization and obligation. For our advisable system, we 
extend this categorization to include preference: 
1. Authorization defines the actions that the agent is either 

permitted or forbidden to perform on a target.  
2. Obligation defines the actions that an agent must 

perform on a set of targets when an event occurs. 
Obligation actions are always triggered by events, 
since the agent must know when to perform the 
specified actions. 

3. Preference defines a ranking in the order or selection of 
an action under certain conditions. 

 
Advice can both apply to the application of strategies, the 
conditions under which a strategy is applicable, or the 
instantation of a variable. Advice may be conflicting, can 
be long-lived, and their relevance may decay over time. 
Advice can be used to influence the selection of procedures 
and strategies for problem solving and also to influence 
adjustable autonomy. The management of advice is an 
active research focus for the CALO project. The 
application of advice is central to both PTIME for 
influencing preference and for controlling adjustable 
autonomy strategies. 

Summary 
The concept of a persistent useful interaction motivates the 
mixed-initiative design of PTIME. It has an extended 
notion of collaboration with the user, which forms the 
framework for learning and adjustable autonomy. The time 
management process is represented using context-sensitive, 
hierarchical procedures, which provide hooks, via the 
structured decision points,  into the user’s decision process 
at multiple levels of abstraction. These hooks can be used 
to passively learn the user’s preferences or to facilitate the 
specification of advice from the user. The resulting agent 
will let the user retain control of decisions when necessary, 
and relinquish control to the assistant at other times. 
Meanwhile, the agent will be sensitive to the user’s wishes 
and preferences. 
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