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Abstract

Mixed-initiative approaches are being applied in com-
binatorial optimization systems such as planning and
scheduling systems. Mixed-initiative optimization sys-
tems are based upon collaboration between the sys-
tem and the user. Both agents possess unique and
complementary abilities which can be jointly applied
to intractable optimization problems. Yet current ap-
proaches to designing and evaluating these systems re-
main ad hoc. In this short paper, we give a pre-
cise definition of a mixed-initiative optimization sys-
tem. We identify the salient characteristics of combi-
natorial problems which make them suitable candidates
for mixed-initiative reasoning. We provide a frame-
work which informs both the design and evaluation of
these systems. Using this framework, we characterize
the functional requirements of any mixed-initiative op-
timization system. These requirements can help to es-
tablish suitable evaluation criteria for these systems. We
conclude by situating recent work in this area within our
framework.

Introduction

Mixed-initiative optimization (MIO) systems are systems in
which the user and system collaborate to solve combinato-
rial optimization problems, such as planning and scheduling
(Howe et al. 2000; Kramer & Smith 2002; Scott, Lesh, &
Klau 2002). The benefits of MIO systems have been broadly
claimed in the literature. The arguments are based upon sev-
eral subordinate claims. Two experts ought to be better than
one for solving complex combinatorial optimization prob-
lems. The system and the user possess unique expertise, and
each complements the other. The division of labour between
these experts should reflect their inherently different capa-
bilities. The automated solving methods deal with the com-
binatorics of optmization problems, while users have differ-
ent kinds of expertise. Often the user of a MIO system will
be a professional in the field of application and consequently
will know aspects of the problem not adequately modelled
by the system. For example, some important constraints may
not be part of the model, or some preferences on solutions
may not be coded in the objective function. Furthermore, the
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user’s experience may suggest directions for finding good
solutions in the search space. Mixed-initiative designs allow
this expertise to be incorporated into the problem solving
process.

We share the general enthusiasm for mixed-initiative sys-
tems. Yet we are concerned that beneath this large tent is
hidden a broad range of systems with potentially quite differ-
ent properties. Blanket statements about “mixed-initiative
systems” may only apply to some fraction of these systems.
The methods for evaluating these systems remain ad hoc and
there is little advice available on such issues as the functional
components of an effective MIO system, or the performance
evaluation of these systems. A common ground is needed
for discussions of design and evaluation.

Such a common ground is particularly important for eval-
uation. There have been several recent evaluations of mixed-
initiative systems. Most of these studies have aimed to
demonstrate that mixed-initiative systems can be advanta-
geous. For example, Klau et al. (2002a) write, “our goal is to
show that some people can guide search, not that most peo-
ple can” (p. 46, emphasis in original). The specific mech-
anisms by which mixed-initiative systems enhance perfor-
mance remain poorly-understood, although Scott, Lesh, &
Klau (2002) have made a promising start. We locate seven
limitations in current ad hoc approaches to evaluation:

e We lack precise terminology to distinguish mixed-
initiative systems and applications. This makes it difficult
to generalize results from one study to a broader class of
situations.

e We have a multiplicity of goals, which may overlap or
contradict one another.

e We lack clear metrics of progress.

e We have limited means of systematically organizing re-
sults to date and those of the near future.

e The lack of precise terms and clear metrics makes it diffi-
cult to state clearly falsifiable hypotheses for our research.

e We have no conventional protocols that researchers can
use to evaluate a new system.

e Researchers have to account for too many variables when
constructing a study.

The systems are being built, and the need is acknowledged.



However, we lack a bigger picture in which to locate specific
studies.

Our overall goal is to suggest more precise definitions
for the mixed-initiative optimization systems community.
Specifically, we make the following contributions in this pa-
per:

e We define the scope of mixed-initiative optimization
(MIO) systems.

e We present a general framework that can inform both the
design and evaluation of effective MIO systems and iden-
tify the main parameters of the problem space and use
them to categorize the functional requirements of a MIO
system.

e We situate other research results in MIO within our frame-
work. The framework suggests the range of applicabil-
ity of previous work and can be used to identify potential
confounds.

We end with a description of how this framework might be
used to structure future research in MIO systems.

Overview of the Framework

We call our proposal a framework rather than the more de-
manding terms “model” or “theory”. We have in mind an
analogy with the framework of a house, which provides a
structure to support both the work in progress and the fin-
ished product. Parts of a framework may be modified as
construction proceeds and parts may be thrown away when
they are no longer needed. We suggest the mixed-initiative
optimization community can benefit from undertaking de-
velopment and evaluation in this coordinated way—a com-
mon framework for developing tasks and protocols, and for
interpreting results.

Within such a framework, researchers can begin detailed
analysis, extending questions of evaluation beyond, “Is
mixed-initiative optimization possible?”, to “When and how
does it help, and by how much?”, and extending systems
design beyond “I think this will be useful”, to “Previous re-
search gives this a high likelihood of being useful for these
applications”.

Evaluation is key to this process, but it is hard to get
right and requires great effort. As a practical matter, we
must break the evaluation process down into smaller pieces.
Given the high dimensionality of the design space, experi-
mental manipulations requires separable research questions.
Generalization from evaluations of individual designs re-
quires the ability to locate each design within a larger space.
By suggesting the questions to ask about a specific design,
the framework provides that generalizability and the inter-
connection of these results with others. In particular, the
community will benefit from standardized evaluation proto-
cols. This allows us to build and extend research systems
without doing a full evaluation every time.

Definition of MIO Systems

We begin with a definition of a MIO system. A mixed-
initiative optimization system is an optimization system fea-
turing both:

e interleaved contributions by the user and the system, to-
gether converging on a solution to a single problem.

e asymmetric division of labour such that the contributions
made by the computer and the user are distinct.

This definition identifies the characteristics of systems for
which a common technology can be developed. It circum-
scribes our shared field of interest. In particular, it sepa-
rates the goals of this community from the goals of the user
modeling community, which emphasizes different aspects of
mixed-initiative systems. We are not arguing that user mod-
eling is incompatible with MIO systems, nor that it is irrel-
evant to some applications of those systems. We are simply
emphasizing that user modeling addresses issues that are in-
dependent of the issues common to all mixed-initiative op-
timization. A given application my need one, the other, or
both.

Framework Top Level

At the highest level, our framework describes the context in
which the system is used and the system itself. Optimization
systems ultimately serve human needs, and thus the context
describes the system operators and the social context of their
work. It includes such issues as who interacts with the sys-
tem, what others expect from them, and how they do their
job. The context introduces requirements that the resulting
system must satisfy. We break the context into two parts, the
problem domain and the operator expertise.

For our purposes, the mixed-initiative system can also be
considered to have two fundamental parts, the interactive vi-
sualization and the solver. We emphasize that this is not
intended to be a full description of the architectural options
available to designers. Rather, our purpose is to list the high-
level system components which will most directly be evalu-
ated. Designers devote most of their attention to the system,
and evaluations are likely to compare instantiations of var-
ious combinations of them, with little consideration of the
context. This is fine—in fact, there is no practical way to
cover all possible contexts in a single evaluation. We simply
recommend that evaluations explicitly specify the details of
their intended context. This will permit readers to determine
the range of contexts to which the evaluation results may be
generalized.

Properties of Context

The framework’s elaboration of social influences on a
mixed-initiative system emphasizes that the requirements
for that system are strongly shaped by the needs and nature
of the organization employing it. Each social component has
several properties, and the system requirements are derived
from the properties (see Table 1). We will describe each
property in turn.

Domains with synchronous collaboration feature teams of
individuals working in the same room to solve the problem.
The classical (and widespread) example would be several
individuals standing at a large whiteboard, discussing, writ-
ing, and annotating. Mixed-initiative optimizers for such do-
mains will benefit from having interactive displays that per-



Area Property

Derived Requirement

Domain Synchronous collaboration
Asynchronous collaboration
Unmodellable aspects
Level of constrainedness
High dynamism
Answerability

High stakes

Task givens and goals

Task flow

Simultaneous review and update

Traces left for handoff to others

Adding specific constraints and revising solution
Choice of optimization algorithm

Rapid solution revision

Explanation

High scrutiny, human approval, explanation
Data model chosen

Activity design

Operator expertise
Domain-independent | Visual grouping

Domain-specific
Heterogeneity of approaches

Conceptual models of other programs | Compatibility with other programs
Models of objects and relationships

Display proximity, object similarity

Data model
Diversity of representations and interaction styles

Table 1: Contextual properties in the mixed-initiative optimization framework.

mit simultaneous review and update of the current solution
by multiple users, in the same way that a whiteboard can.

By contrast, asynchronous collaboration features team ef-
fort, but with individual team members working at different
times. For example, there may be only a single operator, but
the work is turned over from one shift to the next. In these
cases, the interactive display will not need simultaneous re-
view and update, but will instead benefit from providing a
mechanism for the first shift to leave traces of their choices
and pointers to ongoing problems.

Domains with unmodellable aspects have problems that
are difficult or impossible to completely represent in the
model. There are a wide variety of reasons why a prob-
lem feature may be missing from the model. Amongst other
reasons, the feature may be so specialized that the mod-
ellers forget to include it until they see a “solution” that vi-
olates it, the feature may not be representable in the mod-
eling formalism, or the feature may be so specific that it
would be impractical to represent its many permutations in
the model. Indeed, given the considerable mixed-initiative
folklore about incomplete models, it might be argued that
every domain has unmodellable aspects. In any event, do-
mains with unmodellable aspects will benefit from systems
that allow the operator to add specific constraints and call
for a revised solution.

The level of constrainedness of the domain imposes
requirements on the system. If the domain is highly-
constrained, the system should use a more sophisticated op-
timization algorithm. If the domain instead is only weakly
constrained, the choice of solver might be different or almost
irrelevant.

If the domain is dynamic, with requests frequently added
and withdrawn, the system will be required to generate re-
vised schedules rapidly.

If the operator is answerable to others for the choice of
plan, the system should provide features that facilitate expla-
nation. These could take the form of annotations and other
tools that highlight specific aspects of the plan.

High stakes domains have outcomes that are considered

critical by the participants. For such domains, the system
should support high levels of operator scrutiny and a final
human approval before the plan is carried out. These do-
mains will likely also have high answerability as well, and
so the system should also facilitate explanation.

The task statement imposes givens (initial conditions) and
goals (the form of the desired solution) upon a domain.
Different sets of givens and goals will often apply at dif-
ferent times for a single domain. For example, an airport
gate scheduling system may be used in two different modes.
First, the system could prepare a master schedule by allo-
cating planes to gates under the assumption that every flight
arrives exactly on time. In this case, the givens are the com-
plete plane list and the goal is a complete schedule. Then,
on a specific day, the plan would be revised as notices of
delays arrived. This second task has different givens (just
the planes whose schedules have changed, together with the
original master schedule) and a more specific goal (accom-
modate the delays with minimal disruption to the original
plan). Different tasks may require different data representa-
tions in the interactive display.

The final domain property is the task flow. Operators will
often perform a task in a sequence of steps. For example,
they may review all assignments of low-priority items be-
fore all high-priority ones (or vice versa). The operator task
flow imposes requirements on the system’s activity design,
the steps that the system requires the user to perform. For
example, a system that presented items to the operator in
random order would be extremely frustrating for an opera-
tor who wished to review them in priority order.

Operator Expertise

Arguments for the use of mixed-initiative optimization
systems often emphasize the unique expertise offered
by the user. We suggest that this expertise has both
domain-independent and domain-dependent properties. The
domain-independent expertise consists of the human percep-
tual skills. The primary interactive display of most MIOS
is visual, capitalizing on human skills of grouping visually-



related objects. An effective MIOS should display the prob-
lem in a way that allows the operator to draw useful conclu-
sions from object proximity and similarity. Note that even
within a given domain, different tasks, with their different
givens and goals, might be best served by different displays.

A second form of domain-independent expertise is the
operator’s experience with the conceptual models of other
systems. If the MIOS has a conceptual model that matches
that of other software commonly used by the operator pop-
ulation, the operators will find the system congenial. Al-
though this form of expertise is unlikely to have a strong
positive impact on the effectiveness of a MIOS, it can have a
strongly negative impact. System effectiveness can be sub-
stantially reduced if the operators are practiced with a con-
ceptual model that is incompatible with the MIOS they are
using.

The domain-specific expertise of the operators will also
impose strong requirements on the system design. From
both training and experience, operators will think in models
of objects and relationships. The structure of these models
is highly domain-specific, making it difficult to give specific
details. We simply note that the data model presented by
the MIOS should be well-matched to the models used by the
operators.

The final property in our categorization of expertise is the
heterogeneity of solution approaches. An operator may have
several ways of solving a problem and different operators
within the same community may use different approaches.
This is often domain-specific. Some operations communi-
ties have strong conventions that all operators are trained
to observe, while other communities may be more diverse.
We caution designers not to rely too strongly on perceived
homogeneity in a community, as even within highly-trained
groups there is often subtle variation. In general, an effective
MIOS should provide a diversity of views, representations,
and interaction styles, to support a diversity of solution ap-
proaches.

We have described these contextual properties in detail to
emphasize the diversity of contexts in which MIOS might
be applied. The effectiveness of a mixed initiative system
depends upon how well it is matched to the specifics of the
domain and the expertise of the operators. Interpretation of
evaluation results must take these factors into account. An
otherwise perfectly effective system may have poor perfor-
mance if it is evaluated on a domain whose requirements are
ill-matched to the system’s. Results from an evaluation will
best generalize to applications whose domains and operator
expertise are similar to those of the evaluation.

Properties of Systems

Our model of system properties is deliberately simpler than
our model of context. For purposes of summarizing the
properties of a system that have the largest effect on eval-
uation, we break the system down into two parts, the inter-
active display and the solver (see Table 2).

It is not our intent to list all possible features and proper-
ties of mixed-initiative optimization systems. Defining these
features and properties is a significant part of the overall re-

search program in these systems. We offer this list as a start-
ing point.

The interactive display has three main properties. The vi-
sualization is the visual representation used to display the
problem statement and the current solution. An essential
outcome of this design is the data model presented to the
user.

The second property is the chosen interaction techniques.
These will have specific speeds and place certain attentional
loads on the operators. An ideal interaction technique will
be fast and require so little explicit attention that the oper-
ator’s reasoning about the problem will not be disrupted.
Actual interaction techniques require some compromise of
these ideals.

The third property of the interactive display is the de-
tailed visual display design. These choices will determine
where and how much the operators can apply their domain-
independent expertise to the problem. This includes choices
of which aspects of the problem will be represented in close
proximity and how data values will be encoded.

The second component of the system highlighted in our
framework is the solver. There are many ways of catego-
rizing solvers, and development of new variations is an ac-
tive area of research. Given that MIOS researchers typi-
cally have a strong understanding of the properties of var-
ious solvers, we only present here two example properties,
showing how they may be connected to the contextual issues
described earlier.

Solvers are often categorized as implementing either sys-
tematic or local search. Seen in terms of their relationship to
the contextual properties described above, the main outcome
of this distinction is their suitability for dynamic problem
domains. Systematic search, while offering the potential for
higher optimization, is less likely to be responsive to shifting
requirements. Local search is more likely to apply in these
domains.

A second property of a solver is how close its solutions lie
to the optimal. Optimality is likely to be of higher value in
domains that are capital-intensive , but may not be a possibil-
ity for highly dynamic domains, whose volatile constraints
make it difficult to even define optimality.

Previous Work

The framework provides a structure for organizing discus-
sion of the research results to date on mixed-initiative op-
timization. In this section, we review many of these re-
sults and locate common threads and unexplored areas in
the field.

We start by considering the user modeling community’s
work on mixed-initiative systems. This literature is con-
cerned with rather different issues than mixed-initiative op-
timization.

Horvitz (1999) proposed 12 principles for the effective
integration of automated reasoning and direct user control.
The goal of this integration was an agent that could act as
a “benevolent assistant” (p. 160) to the user. The parame-
ters of such an agent are rather different from those of the
mixed-initiative optimization systems described in this pa-



Component Property

Outcomes

Interactive display | Visualization
Interaction techniques
Visual display

Optimality

Solver Systematic vs. incremental

Data model

Speed, attentional load

Proximity of views, coding of values

Suitability for volatile domains

Quality of solution in highly subscribed domains

Table 2: System properties in the mixed-initiative optimization framework.

per. Assistive agents are expected to have transparent algo-
rithms that perform actions the user also has the resources
and representations to perform. The goal is to relieve the
user of tedious, repetitive actions. From this perspective, the
system has the initiative most of the time and needs to de-
cide when to engage the user based on a user model—a set
of beliefs about the abilities, goals and intentions of the user.

Fleming & Cohen (2001) develop guidelines for the de-
sign and evaluation of mixed-initiative systems. However,
they start with the assumption that the central problem is
how the system will take the initiative to request assistance
from the user. They propose an approach similar to Horvitz,
based on having an explicit model of the user’s intentions
and abilities.

The work on assistive agents is explicitly excluded by our
definition, because such systems do not have an asymmet-
ric division of labour between user and system. In con-
trast to assistive agents, mixed-initiative optimization sys-
tems are designed to produce degrees of optimization that
the operator simply could not achieve unaided. Their algo-
rithms are unlikely to be transparent, and their choices may
require considerable effort for the operator to understand.
The scheduling task is a primary focus of the operator’s job
and is likely to be her highest priority task. Indeed, the de-
scription of the human partner as an “operator” rather than a
“user” emphasizes this primacy of the task.

Rich, Sidner, & Lesh (2001) cast human-computer inter-
action in terms of a collaborative dialogue process between
the user and an intelligent interface agent. The authors base
their approach to mixed initiative on human collaboration.
They argue for an interface agent that engages in a discourse
with the user in a similar way that the user would engage
with another human. In particular, they argue that an intelli-
gent user interface has to support the following questions:

e Who should/can/will do ____?
e What should I/we do next ____?
e Where am/was I ____?

When did I/you/we do ____?
Why did you/we (not) do ____?
e How do/did I/we/you do ____?

Rich et al. propose an intermediate level of software explic-
itly concerned with managing these questions.

We consider Rich et al.’s questions complementary to our
framework, as they are more abstract and at a much higher
level. We believe that many of the crucial elements for effec-
tive MIO system design lie in its rich, specific context. The

questions will best be framed in that context, which may
be difficult or impossible if the algorithm that generates the
question is insulated from the context.

Howe et al. (2000) present a study on mixed initiative
scheduling for the Air Force satellite control network. This
scheduling problem is oversubscribed—no feasible sched-
ule can satisfy all the requests. They propose a MIO system
where the system finds a good but infeasible solution and
lets the user negotiate the infeasibilities. A mixed-initiative
approach is appropriate for this application because it is hard
to express the true objective with a weighted linear sum of
criteria, and because the dynamic arrival of emergency re-
quests changes the problem specification as the solver runs.
The authors point out the limited number of designs in the
research literature mixed-initiative systems. They incorpo-
rate in their prototype some of these designs: providing an
interactive Gantt chart where the user can interact with a
schedule at an abstract, graphical level that hides schedule
implementation and optimization details to an appropriate
degree; and allowing the user to change the schedule, then
call the scheduler to propagate the effects and to optimize,
if possible. In terms of our framework, this paper empha-
sizes the dynamism and highly constrained nature of their
domain. Their comments about the limited number of avail-
able design ideas and their use of Gantt charts demonstrate
the importance of domain-specific models of objects and re-
lationships.

Kramer & Smith (2002) describe the AMC Barrel Alloca-
tor, a mixed-initiative resource allocation tool for airlift and
air-refueling management. They argue that a dynamic envi-
ronment is not the only reason for using the mixed-initiative
approach. It is also necessary to achieve the transition from
manual to fully automated system. Kramer & Smith em-
phasize that a mixed-initiative optimization system allows
a continuum of automation. In deploying their research to
production, they found that operators must first gain trust
and understanding of the system by inspecting solutions and
performing what-if scenarios trust a system before they will
accept it in a mission-critical workflow. Kramer and Smith
point out that one of the main functional requirements for
a mixed-initiative system is to provide explanations for sys-
tem decisions. In terms of our framework, this paper empha-
sizes the dynamism, high stakes, and answerability of their
problem domain, and argues that the MIO system must be
well-matched to the task flow.

Klau et al. (2002b) present the HuGS Platform, a toolkit
that supports development of human-guided search systems.
They discuss four different applications built in the HuGS
platform: a graph layout problem that minimizes edge cross-



ings between nodes, a modified version of the travelling
salesperson problem, a simplified version of the protein fold-
ing problem, and a jobshop application.

They present several motivations for mixed-initiative op-
timization. First, users need to understand and trust the
generated solutions in order to effectively implement, jus-
tify and modify them, what we would call the answerabil-
ity of the system. Second, the problem model usually in-
cludes only partially specified constraints and criteria, what
we call the unmodellable aspects of the domain. They ar-
gue that a mixed-initiative system also leverages on hu-
man abilities that outperform the systems: visual perception,
learning from experience, and strategic assessment. These
strengths range over properties of both domain-dependent
and domain-independent expertise.

Each application in the HuGS platform provides visual-
izations to display the current solution to the user for in-
spection and modification. Klau et al. argue that the use-
fulness of the system depends highly on the quality of vi-
sualization and recommend visualizations that highlight dif-
ferences from the previous solution. They suggest an eval-
uation of the quality of the visualization by running a se-
ries of experiments on the same problems for the same time,
and using two different visualizations. They propose a visu-
alization quality metric of the number of optimal solutions
that users are able to produce. In terms of our framework,
these evaluation methods are focused on the interactive dis-
play component. Klau et al. end by highlighting some ongo-
ing challenges for the mixed-initiative systems: large-scale
problems where the whole solution cannot be viewed at once
(again, located within the interactive display component of
our framework), and mixed-initiative systems where there is
more than one human user (synchronous collaboration).

Scott, Lesh, & Klau (2002) give a lucid outline of the
benefits of using a mixed-initiative optimization system.
Their research focuses on evaluating a specific aspect of
mixed-initiative optimization systems. The authors argue
that the design of interactive optimization systems needs in-
put from experiments focused on determining which opti-
mization subtasks are best suited to the strengths of the hu-
man and which are most appropriate for the computer. Their
study examines several user tasks within a mixed-initiative
optimization system for vehicle routing and compares users’
performance in these tasks to the performance of the com-
puter on the same tasks. They evaluate the users’ contri-
bution on three different subtasks: focusing search through
mobilities, finding targets that guide the search towards bet-
ter solutions, and controlling computational effort by halting
the search. Their studies suggest that people are especially
effective at managing how computational effort is expended
in the optimization process and at focusing short searches.
However, the experiments showed that humans were some-
what less effective at visually identifying promising areas of
the search space.

In terms of our framework, the work of Scott et al. is
motivated by the contextual concerns of answerability and
the unmodellable aspects of the domain. Because their
experimental participants were not vehicle routing special-
ists, the evaluation focused on HuGS’ support for domain-

independent expertise. Their project is a carefully-done,
substantial study with strong controls and high validity.
However, their paper itself does not specify the context.
By providing a context, our framework allows more precise
generalization from these results.

Conclusion

The potential benefits of mixed-initiative optimization sys-
tems are suggested by informal reasoning from basic princi-
ples and has been demonstrated by initial research. Having
established its basic feasibility, we can now turn to questions
of how much, and under what circumstances, and through
which mechanism we can benefit from a MIO system. We
have argued that context is rich and diverse, and that the ef-
fectiveness of a MIO system is determined by the degree
to which it is matched to the requirements of its context.
Key MIO system design decisions should be evaluated in
terms of the context in which the system will be used, or in
terms of requirements that are shared across multiple con-
texts. Our framework highlights this role of context and
provides a more detailed language for describing the rela-
tionship between context and system. We hope that these
more precise descriptions can support the construction of a
more consistent and solid structure of mixed-initiative opti-
mization research.
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