
Featherweight Transactions:
Decoupling Threads and Atomic Blocks

Virendra J. Marathe
University of Rochester

vmarathe@cs.rochester.edu

Tim Harris James R. Larus
Microsoft Research

tharris@microsoft.com larus@microsoft.com

Categories and Subject Descriptors [D.1.3 Concurrent Pro-
gramming]: Programming Abstractions

General Terms Algorithms, Languages

Keywords atomicity, transactional memory, data parallel pro-
gramming, work groups

1. Introduction
Transactional memory is a powerful programming abstraction that
enables a programmer to turn a complex, composite collection of
statements into an atomic operation. Previous work usually ex-
presses this abstraction as an atomic block, which offers mutual
exclusion for code running on threads [3]. The implicit connection
between transaction memory and threads has the unfortunate effect
of limiting the use of transactions because threads are expensive to
create and use in most systems.

This paper introduces an alternative form of transactional mem-
ory that supports much finer grain transactions. Featherweight
transactions are atomic operations that execute to completion (com-
mit, abort, or retry). They mesh very nicely with a data parallel pro-
gramming style, in which each data parallel operation executes in a
featherweight transaction. Section 2 describes our implementation.

Executing each data parallel operation in a separate memory
transaction introduces asynchrony and composable synchroniza-
tion into data parallel programming. An operation can use the
retry construct to abort its computation and wait for values to
change. When the values change, the operation re-executes. A col-
lection of asynchronously executing operations can be treated prof-
itably as a single data parallel operation.

To illustrate this, we built a highly-parallel implementation of
the Chaff [4] SAT solver. Section 3 describes the parallel version
of Chaff constructed using our new techniques. Chaff is typical
of an important group of applications such as theorem provers
and constraint optimization systems. These applications naturally
exhibit large degrees of data-level parallelism that is difficult to
exploit using existing data parallel paradigms.

2. Atomic Work Items
Memory transactions provide a concise mechanism for mutual ex-
clusion and have been extended to offer condition synchronization

Copyright is held by the author/owner(s).

PPoPP’07 March 14–17, 2007, San Jose, California, USA.
ACM 978-1-59593-602-8/07/0003.

through the retry language construct [1]. However, while inves-
tigating Chaff we realized that existing abstractions are not appro-
priate to express the parallelization of applications that contain a
large amount of fine-grain data parallelism, but in which concur-
rent transactions interact in non-trivial ways. The main difficulty is
correctly coordinating the transactions. The retry construct is a
good starting point that offers a mechanism to convey information
between concurrent transactions; however, a programmer must ex-
plicitly and carefully tie different concurrent computations (trans-
actions) together to coherently get the application’s desired behav-
ior. We believe that the abstractions proposed in this paper signif-
icantly simplify this difficult aspect of implementing some impor-
tant parallel applications.

Transactions are usually tied to a thread, a rather heavy-weight
parallel programming abstraction. An executing transaction typi-
cally owns the host thread. No other transaction (with the exception
of nested transactions) can be executed by the thread simultane-
ously because the owner transaction uses the host thread’s runtime
stack. Applications that might be best expressed as a large number
(potentially in the order of millions) of fine-grain transactions are
simply infeasible in this environment.

A key insight is that completed (committed, aborted, or retried)
transactions do not require a runtime stack. They require a stack
when they execute, but when terminated their stack frames can
be reused for another transaction. To eliminate the stack frames
preceding a transaction, we restrict the programming model by
requiring that an entire method body be enclosed in a transaction.
Transactions can now be multiplexed onto a thread provided each
is guaranteed to run to completion on the thread.

A transaction performs a unit of work atomically. In data par-
allel programming, each data parallel operation can be executed in
a transaction. We define a new abstraction called an atomic work
item (henceforth called “work item”) that associates a transaction
with a particular data item in a data parallel aggregate. In our im-
plementation, a work item is an instance of class WorkItem and
is instantiated by passing a function delegate (an abstraction for
type-safe function pointers) and the data as the WorkItem’s con-
structor parameters. The work item’s data object is essentially the
sole parameter to its delegate function. The runtime system exe-
cutes a work item by invoking its delegate function and passing its
data object as a parameter.

In Chaff, it is necessary to repeatedly executed work items when
they are successful. To permit repeated execution of work items,
we introduce the notion of daemon workers, which repeatedly
execute work items after they commit (a work item is re-executed
when it aborts due to data conflicts or blocks because of retry).
In our implementation, a daemon is an instance of class Txn-
Worker. The programmer must suspend a daemon using a special
TxnWorker.Suspend()method call. This prevents subsequent
execution of the suspended daemon’s work items.

134

mls
poster session, PoPP 2007



Another useful abstraction is a group of work items, which we
call a work group (referred to as TxnGrps in our implementation).
Work groups correspond to aggregates in data parallel program-
ming. Work groups provide a programmer with useful collective
operations, such as starting execution of all work items in a group,
waiting for all members of a group reach a quiescent state (us-
ing say the TxnGrp.WaitForAll()method), suspend all work
items in a specific group, perform group level joins, splits and re-
ductions, etc. We believe that there is great potential for far richer
semantics of work groups, which we leave for future work.

A key problem was the semantics of exception handling in
work groups. In prior work, exceptions reaching boundaries of
an atomic block aborts the work done within the block and is
rethrown to the enclosing context. In the context of atomic work
items, an exception generated by a work item is considered to be
an exception generated by the enclosing group. Thus, when a work
item throws an exception, the entire group’s activity is suspended
and the exception is percolated to the thread that waits for the
group to reach a quiescent state. Notice that multiple work items
may simultaneously generate exceptions in a group. All but one
exception is suppressed. It may be valuable to permit dispatch of
multiple exceptions from a work group, but we leave that design
for future work.

There are several other important operations on these abstrac-
tions that are useful for the underlying runtime system as well as
for user programmers, but we will not discuss them due to space
restrictions. We have implemented our abstractions in the Bartok
STM system [2].

3. Parallelizing ZChaff
Since the boolean satisfiability problem (SAT) is NP-complete,
there is no efficient solution to this problem. Existing solvers rely
on heuristics to make literal assignment decisions. However, most,
if not all, SAT solvers rely on the standard boolean constraint
propagation (BCP) algorithm to propagate implied literal assign-
ments once an explicit literal assignment (suggested by the deci-
sion heuristic) is made. It is also widely known that BCP is the
most time consuming (roughly about 80% of the execution time)
operation in any SAT solver. We focus on this BCP component of
ZChaff (a C# implementation of Chaff) in our parallelization.

Our implementation of ZChaff processes formulas in the CNF
SAT form. In the sequential version, whenever an explicit literal
assignment is made, say l, it is posted in a global implication
queue. The BCP algorithm thereafter gets the implication queue’s
first literal entry and looks up the clauses containing the negation
of that literal (¬l in our example). Since l is assigned the value
true its negation ¬l is false. ZChaff then determines if any
clause containing ¬l contains a single unassigned literal and if all
other literals have the value false. If so, the unassigned literal is
implied to be true and is in turn posted in the implication queue.
After processing all clauses corresponding to ¬l, the algorithm
checks if a new implication queue entry was added and processes
it in a similar fashion.

A coarse-grain method of parallelizing ZChaff is to fork off two
threads at the point at which an explicit literal assignment is made;
one thread takes the literal and the other takes its negation. In ex-
isting implementations, this approach has led to performance im-
provements that vary widely based on the input formula. An alter-
nate, fine-grain parallelization approach focuses on the BCP com-
ponent of SAT solvers wherein “computational units” are dedicated
to process distinct sets of clauses in the SAT formula. An explicit
literal assignment triggers activity in these computational units that
collectively perform the BCP task.

Fine-grain parallelization has definite benefits, provided the
concurrency achieved is sufficient to offset the co-ordination cost

involved. The BCP component is highly parallel (thousands or mil-
lions of clauses), but the computations are fine grained. Directly
expressing them may lead to an unmanagably large number of
threads (computational units). In addition, writing such an appli-
cation is difficult because of the difficulty of explicitly controlling
co-ordination among these computational units. We believe that
our atomic work item abstractions mitigate these difficulties.

Using our abstraction, parallelizing ZChaff is simple: dedicate
a distinct daemon worker for each clause in the formula. The
computation for each work item starts by reading the variables
in its clause. If there exists a literal assignment that may lead to
an implied literal assignment, make that literal assignment and
commit. If there is no such literal assignment, then simply retry
(and wait for the clause’s variables to change). A co-ordinator
thread manages explicit literal assignments in the formula. After
making the literal assignment, the main thread waits for completion
of BCP activity by calling WaitForAll() on the work group.

If a clause evaluates to false during BCP, an exception is
raised by the relevant work item, which in turn suspends execution
of the entire work group. The WaitForAll() method called by
the main thread returns this exception. On receiving an exception,
the main thread generates a conflict clause, adds it to the existing
list of clauses, rolls back literal assignments up to a point at which
there is no conflicting literal assignment, and resumes with more
explicit literal assignments. Conflict clauses are of great value in
pruning large search spaces in SAT solvers. The input formula is
designated unsatisfiable if rollback happens all the way beyond the
very first explicit literal assignment made by the main thread. If
the algorithm cannot make any new explicit literal assignments
and there are no outstanding conflicts, the formula is designated
satisfiable.

We are implementing our runtime system and parallel ZChaff.

References
[1] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable

Memory Transactions. In Proceedings of the 10th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
pages 48–60, 2005.

[2] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing Memory
Transactions. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 14–25,
2006.

[3] J. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool,
2007.

[4] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings on the
38th Design and Automation Conference, pages 530–535, 2001.

135




