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Abstract
Substantial advances in STM performance in recent years have
mostly focused on blocking systems. We describe our work inte-
grating the most important techniques and optimizations emerging
from the recent work on blocking STMs into several variants of a
nonblocking STM.

In particular, our design is based on the philosophy of keep-
ing the common, contention free execution path as simple (conse-
quently fast) as possible, while resorting to the more expensive data
displacement and metadata management only in situations where
transactions have problems making forward progress. We employ
novel ownership “stealing” and metadata management techniques
in our nonblocking STM to enable several recent blocking STM
optimizations such as timestamp-based validation and ownership
release viastore instructions, all leading to a more streamlined and
efficient fast path. We present anundo log(eager versioning) vari-
ant of our STM, as well as tworedo log(lazy versioning) variants,
the latter of which are based on the two ownership acquisition tech-
niques (namelyeagerandlazy) for writes made by transactions.

Experimental results show that our efforts have improved the
performance of nonblocking STMs up to the level of being com-
petitive with the state-of-the-art blocking STMs such as TL2.

Categories and Subject Descriptors [D.1.3 Concurrent Pro-
gramming]: Parallel Programming

General Terms Algorithms, Performance

Keywords software transactional memory, nonblocking

1. Introduction
Transactional Memory (TM) is a concurrent programming abstrac-
tion that promises to simplify the task of writing parallel programs.
TM allows programmers to expresswhatshould be executed atom-
ically, leaving the system to determinehowthis atomicity should be
achieved. Herlihy and Moss [11] proposed hardware transactional
memory (HTM) and Shavit and Touitou [24] proposed software
transactional memory (STM). A recent flurry of activity in both
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HTM (e.g., [1, 5, 18, 19]) and STM (e.g., [3, 6, 8, 10, 16, 22]) has
yielded substantial progress towards making TM practical.

Foundational work on TM grew out of research intononblock-
ing concurrent data structures, which aim to overcome the many
well-known software engineering, performance, and robustness
problems associated with lock-based implementations.

Recently, many researchers have developedblockingSTMs [3,
8, 22], recognizing that they are much easier to design and that
most of the software engineering benefits of STM can be delivered
even by a blocking STM. Nonetheless, hiding blocking from the
application programmer does not eliminate all of its disadvantages.
For example, as pointed out by Ramadan et al. [20], in their TM
enabled TxLinux kernel, it isunacceptablefor an interrupt handler
to be blocked by the thread it has interrupted.

The nonblocking STMs described in this paper areobstruction-
free [9]: they guarantee that, if a transaction is repeatedly retried
and eventually encounters no interference from other transactions,
then eventually the transaction commits successfully. Obstruction-
freedom does not make any progress guarantees and admits “live-
locks”. An out-of-bandcontention manager[10, 23] can be used in
practice to eliminate such undesirable situations.

In this paper we present our algorithms in aword-basedSTM
setting, where conflict detection is at the granularity of contiguous
blocks of memory. This setup is important for unmanaged environ-
ments such as C and C++ since the STM cannot dictate the layoutof
program data, for example to colocate transactional metadata with
the program data it mediates. Word-based STMs keep transactional
metadata (often calledownership records– orecsin short) separate
from program data; Tabba et al. [27] describe preliminary work on
applying our initial design approach [14] to achieve efficient non-
blockingobject-basedSTMs.

The only other nonblocking word-based STM of which we are
aware is Harris and Fraser’s system (HF-STM)[6]. We found their
nonblockingcopybackmechanism ingenious, and in fact, our work
was inspired in part by theirs. However, we also felt that it imposed
too much overhead on the common case. As the results in Section 6
show, we have been able to dramatically improve performanceover
HF-STM and achieve performance that is competitive with state-of-
the-art blocking STMs.

1.1 Our Contributions

We make the following key contributions in this paper.

• We are the first to almost entirely decouple the contention free
fast path of a nonblocking STM from the complicated data
displacement and metadata management required for forward
progress.

• We have successfully integrated key optimizations appearing
in recent state-of-the-art blocking STMs into our nonblocking
STM. This includes timestamp based transaction validationand
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Figure 1. Binary Search Tree with 32K nodes. Notice the progres-
sive improvement in performance of our nonblocking STMs.

simplestore instruction based ownership release, both enabling
a more streamlined fast path.

• We present an undo log based nonblocking STM. To our knowl-
edge, this is the first such nonblocking STM. We also present
some interesting performance tradeoffs between redo and undo
logs for heavily contended workloads.

1.2 Overview of design approach

The work reported in this paper proceeded in two phases. Our phi-
losophy for the first phase was to mimic behavior of blocking STMs
as far as possible, and resort to the more expensive data displace-
ment and metadata management only in situations where trans-
actions have problems making forward progress. This approach
effectively decouples almost all of the nonblocking progress re-
lated metadata management from the fast path, thus yieldingper-
formance comparable to the blocking STM in the common case.

In the summer of 2005, we took a simple blocking STM sim-
ilar to the one described in [2], and designed an obstruction-free
STM that closely tracks the blocking scheme (particularly with re-
spect to metadata structure and cache behavior) until the contention
manager decides that a transaction should not wait for another to
complete. In a blocking implementation, there is no choice but to
wait in such circumstances: the mechanism dictates the policy.

For our Phase-1 nonblocking STM, we introduced the ability to
“steal” ownership of a memory location from another transaction,
rather than waiting for the other transaction to explicitlyrelease it.
Accessing stolen locations is more complicated and expensive than
accessing unstolen ones, but nonetheless stealing is worthwhile
in order to avoid waiting for another transaction that is delayed
for a long time, for example due to preemption. Additionally, our
design focused on quickly switching the stolen locations back to
the unstolen state so as to minimize the overhead of occassional
stealing that happened due to high contention.

Our Phase-2 effort focused on incorporating optimization tech-
niques, such as timestamp based transaction validation [3,21], from
state-of-the-art blocking STMs into out nonblocking STM. Figure 1
demonstrates the significant improvements rendered by our Phase-
2 enhancements. Clearly, our nonblocking STM is competitive with
one of the leading blocking STMs, TL2 [3]. It therefore seemspre-
mature to dimiss nonblocking STMs as fundamentally performing
worse than their blocking counterparts.

1.3 Roadmap

The remainder of this paper is structured as follows. We givean
overview of STM designs in Section 2. Section 3 describes our
simple Phase-1 blocking STM and the modifications we made to
make it nonblocking. Section 4 makes a qualitative argumentabout

the salient features of state-of-the-art blocking STMs that primarily
contribute to drastic performance improvements. In Section 5 we
describe extensions to our Phase-1 design that yielded substantial
improvements in performance. We also describe three variants of
our Phase-2 algorithm: two variants, based on eager and lazyown-
ership acquisition techniques, of a redo log version; and anundo
log version. In Section 6, we present experimantal results that com-
pare all flavors of our Phase-2 nonblocking STM with the Phase-1
blocking and nonblocking STMs, the nonblocking STM by Har-
ris and Fraser [6], and TL2, a state-of-the-art blocking STM. Our
results demonstrate that our design approach has closed theperfor-
mance gap between blocking and nonblocking STMs. Some dis-
cussion appears in Section 7, and we conclude in Section 8.

2. Background on STMs
A transaction speculatively reads and writes memory locations, and
attempts to commit at the end, either “succeeding” as if the entire
transaction executed atomically, or “failing” as if the transaction
did not execute at all.

To provide the illusion that a successful transaction commits
atomically, STM systems generally acquireownershipof all mem-
ory locations modified by the transaction in order to preventcon-
current transactions from observing partial updates. Thisownership
is coordinated through specialmetadataassociated with program
data.

Some STMs [2, 3, 6] buffer writes into a private write set during
transactional execution, and copy the values to the affected mem-
ory locations upon successful commit; such STMs are sometimes
referred to asredo logSTMs, because they “redo” the writes upon
commit. Other STMs [8, 22, 28] instead store speculatively writ-
ten values directly into the affected memory locations, maintaining
an undo logthat preserves overwritten values so that they can be
restored in case the transaction aborts. This approach is attractive
because it optimizes for the hopefully common case in which most
transactions commit successfully: there is no need to redo writes
upon commit, and there is no need for transactional reads to search
the write set for values previously written by the transaction.

Ownership acquisition can be either “eager” or “lazy”[15].With
eager acquisition, a transaction acquires ownership of a location
when it first writes to the location. In contrast, with lazy acquisition
a transaction acquires ownership of locations it has speculatively
written only at commit time. Because undo log STMs store specu-
latively written data directly in the affected memory locations dur-
ing transactional execution, they must acquire ownership eagerly
in order to prevent other transactions from observing values writ-
ten by a transaction that may subsequently abort. Redo log STMs
can use either eager or lazy acquisition.

To guarantee isolation of transactions, the STM must ensure
that reads done by transactions are always mutually consistent.
This is achieved by verifying that all read locations have not been
modified since. This transaction “validation” can be accelerated
with timestampbased techniques [3, 21, 28]. We have incorporated
timestamp based validation in all our nonblocking STMs.

After committing or aborting, a transaction releases ownership
of locations it has acquired. In blocking STMs, a transaction must
wait for a conflicting committed or aborted transaction to release
ownership of the locations under conflict.

3. Phase-1: Decoupling Nonblocking Progress
Related Work from the Fast Path

We first describe the simple Phase-1 blocking STM, which is based
on the one described in [2] and includes some novel optimizations.
We then explain how we modified this STM to be nonblocking,
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Figure 2. Data Structures of Nonblocking/Blocking STM. Fields in bold are required for the nonblocking version only.

while keeping the common case as close to the blocking STM as
we could in order to achieve a similar fast path.

3.1 STM API

Out STM API includes the following calls, similar to that of other
word-based STMs.

stm_begin(TxnDescriptor* my_txn)
stm_commit(TxnDescriptor* my_txn)
Word_t stm_read(TxnDescriptor* my_txn,

Word_t* addr)
void stm_write(TxnDescriptor* my_txn,

Word_t* addr,
Word_t value)

3.2 Data Structures

The primary data structures in our STMs are thetransaction de-
scriptor, which is used to represent a transaction, and a table of
ownership records(orecs), which are used to represent ownership
by transactions of memory locations. A many-one hashing function
maps memory locations into the orec table.

A transaction descriptor consists of a transaction ID (tid), a ver-
sion number (version), astatus (Active, Committed, or Aborted),
and read and write sets. Thetid and version uniquely identify a
transaction. Thus, by incrementing the version number in its trans-
action descriptor, a thread can reuse the transaction descriptor.

The read and write sets are organized as per-orecrows, such that
all entries relating to memory locations that map to the sameorec
are stored in the same row. Each row contains an orec identifier, a
snapshot of the orec with which it is associated, and an arrayof
entries, each of which is an address-value pair of some address
covered by the indicated orec. On a read/write operation, ifthe
transaction does not already contain a row used for the identified
orec, it uses the next available row in its read/write set forthe orec.
Figure 2 depicts the structure of a transaction descriptor.

Each orec is stored in one 64-bit word, and is atomically modi-
fied using aCAS. Each orec consists of:tid andversion fields, used

to identify the current owner transaction; and arow field, to iden-
tify the row of the owning transaction’s write set in which itstores
entries for locations mapping to that orec.

Embedding the owner transaction’stid andversion in the orec
enables a novelfast releaseoptimization, wherein the transaction
may simply increment itsversion to implicitly release ownership
of orecs it owns. This eliminates from a transaction’s fast path
the overhead of explicitly releasing orecs using expensiveCAS
instructions (as in HF-STM [6]). Note that this design decision
differs from our Phase-2 design described in Section 5.

3.3 Simple Phase-1 Blocking STM

The blocking STM transaction executes in theActive state and uses
the write set as a redo log. Orecs are acquired eagerly. To ensure
consistency at all times, a transaction validates its entire read set ev-
ery time a new orec is accessed. This step is particularly necessary
for unmanaged languages such as C/C++ since temporary incon-
sistencies in “doomed-to-abort” transactions may cause arbitrary,
irrecoverable program behavior. (Timestamp-based validation tech-
niques [3, 21] were not invented when we designed this algorithm.)
To commit, a transaction atomically switches its status from Ac-
tive to Committed. Finally, the transaction copies the values from
its write set (redo log) to the affected memory locations, and then
fast releases the orecs it owns by incrementing its version number.

If a transactionT intends to access a location already owned
by some committed transactionS, T must wait forS to release the
corresponding orec. Given the use of redo-logging,T does not need
to wait if S has aborted.

3.4 Making the STM Nonblocking

Our nonblocking STM allows a transaction to “steal” ownership of
an orec from a committed transaction, rather than waiting for it to
complete. Until a transaction decides to steal an orec from acom-
mitted transaction, the nonblocking STM behaves very similarly to
the blocking version.



Stolen

(C) clear−copier

S=1, C=0

Stolenafter copier reset

S=1, C=1

Stolen

S=0, C=0

Unstolen

(B) re−steal
(A) steal

(D) first steal 

(E) reset copier
& stolen (G) reset copier

(reset copier & stolen failed)

(H) acquire−CAS

(F) interim steal

S=1, C=1

Figure 3. Transitions among theunstolen and stolen states of
an orec.S and C represent the values of thestolen orec and
copier exists flags in the orec. All transitions use an atomicCAS.

In the remainder of this section, we briefly describe the stealing
mechanism that we incorporated to make our Phase-1 STM non-
blocking, with reference to the state transition diagram inFigure 3.
This mechanism is presented in more detail, along with a detailed
example, in [14].

A transactionT steals ownership of an orec (transitionA) from
another transaction byCASing the orec to point to a row inT ’s
write set (T uses this row to store its subsequent speculative updates
to locations mapping into the orec). Although this seems straight-
forward, some more bookkeeping must be done to ensure that the
logical valuesof locations mapping into the stolen orec are cor-
rectly preserved during the stealing process.

Note that orec stealing happens if a transaction (the “stealer”)
encounters an orec,O, owned by a committed transaction (the
“victim”). This means that the victim is still in the processof
copying back its speculative updates to the locations in itswrite set.
The logical values of locations mapping intoO may thus reside in
the victim’s write setrow, Rv, thatO points to before it is stolen by
the stealer. To correctly preserve this view of memory, the stealer
must first “merge”Rv into an availablerow, sayRs, in its write
set. Successful stealing will makeO point toRs.

During stealing, the victim is possibly in the process of copying
back updates from its redo log (more specifically fromRv) to
the locations mapping intoO. This “copyback” could be delayed
arbitrarily. As a result, a situation may arise where the stealer,
after stealing ownership ofO, completes before the victim finishes
its copyback phase. In this case, the logical values of locations
mapping intoO reside in the stealer’s redo log (more precisely in
Rs). If the stealer were to copyback its updates toO’s locations and
fast releaseO, there is a possibility that the victim’s now “stale”
updates may overwrite the stealer’s more recent updates. Toavoid
such a race, we introduce a newstolen orec flag, represented as the
S flag in the state transition diagram, in an orec (see Figure 2). This
flag indicates that orecO is in thestolen state, and logical values
of locations mapping intoO may reside in the write setrow that it
points to (Rs in our example).

As long as thestolen orec flag for O is true, the logical values
of locations mapping intoO may reside in the write setrow (Rs in
our example) thatO points to. Consequently,Rs cannot be reused
by a subsequent transaction executed by the same thread using the
same transaction descriptor;Rs may be reused only whenO no
longer points to it. We use astolen row flag (see Figure 2) in
a write setrow to indicate that a stolen orec,O, points to that
row (Rs in our example). Thestolen row flag is set during the
stealing process. Any subsequent transaction that “re-steals” O

(transitionB) must clear thestolen row flag of Rs. Resetting of
the stolen row flag happens indirectly, in that the new stealer sets
the released stolen row flag in Rs (Figure 2), which is then used
by the victim to “reclaim”Rs for subsequent reuse.

Logical values of a locationl mapping into a stolen orecO may
reside in the write setrow thatO points to provided there exists an
entry for l in thatrow. Otherwise the logical value is atl itself.

A stealer is usually inActive state during the stealing process.
Thereafter the stealer could either commit or abort. If it commits, its
redo log updates hold the new logical values of locations mapping
into O. However, if it happens to abort, its redo log updates must be
discarded and the “old” (stolen) values must be retained. This re-
quirement of retaining old values if a stealer happens to abort makes
maintainance ofold and new values of stolen entries mandatory
(Figure 2). Thus, if the stealer commits, thenew values become the
logical values of the locations; otherwise theold values remain the
logical ones. To indicate that a transaction committed its changes to
a stolen row, we add a new flag,txn committed to a write setrow
(Figure 2), which is set totrue if the stealer managed to commit,
andfalse otherwise.

Note that since the logical values of locations mapping into
a stolen orecO are retained in the write setrow that O points
to, there is no need for stealers to copy back their updates to
locations mapping intoO; only the first victim is copying back
its updates. (In general we maintain the invariant that at any given
time, at most one transaction is copying back committed updates to
locations mapping into a given orec.) After the first victim finishes
its copyback, it verifies that all orecs it owns were not stolen.1 If
an orecO was stolen, the victim has the opportunity to inform the
system that it has finished its copyback forO.

Access to stolen locations is expensive. Hence it is important to
switch an orec back tounstolen state as quickly as possible. Since
the first victim is the only transaction doing a copyback of locations
mapping intoO, using a singlecopier exists flag in O suffices to
inform the system that the lone copier ofO has finished: The first
stealer that stealsO sets both thestolen orec and thecopier exists
flags (transitionA). The first victim, after its copyback, resets the
copier exists flag indicating to the system that it has completed its
copyback (transitionC). This state of the orec gives the system
an opportunity to safely switch the orec back to theunstolen state
as follows: At this point there exists no transaction copying back
updates to locations mapping intoO. As a result, the next stealer of
O can safely assume the responsibility of doing the copyback (by
setting thecopier exists flag during the stealingCAS, transition
D). It copies back the most recent logical values of locations
mapping intoO in its write setrow, and subsequently resets both
thestolen orec andcopier exists flags using aCAS (transitionE).
This switchesO back to theunstolen state.

Note that the stealer’sCAS to clear O’s stolen orec and
copier exists flags may fail if another transaction stealsO in the
interim (transitionF ). In such a situation, the stealer resetsO’s
copier exists flag (transitionG), thereby handing over the copy-
back responsibility to a future stealer.

Read Sharing Our implementation permits read sharing, even
for stolen orecs. A reader must ensure that the stolen orec isnot
concurrently modified by a stealer, and retrieve the logicalvalues
of the target locations from the write setrow associated with the
stolen orec. The reader simply maintains a snapshot of the orec,
and read validation is achieved by ensuring that all of the orecs from
which the transaction has read still match the previous snapshots.
We ensure that the reader maintains exactly one copy of each orec
read in its read set.

1 This is done with astealers list in the transaction descriptor (Figure 2)
that is atomically accessed with itsversion field. The stealer atomically
adds itself in thestealers list to inform the victim about theft of an orec.
Our technical report [14] details all these design aspects.



4. What Makes Blocking STMs Fast?
At the heart of the significantly better performance of recent block-
ing STMs (see curves for our Phase-1 STMs and TL2 in Figure 1)
is their simplicity. This simplicity, combined with a number of opti-
mization techniques [3, 8, 22, 28] has yeilded significant improve-
ments in STM performance. In this section we briefly discuss what
we believe to be the key features that make blocking STMs so fast.

(a) Streamlined Fast Path:Recent state-of-the-art blocking STMs
have been carefully engineered to make the fast path for spec-
ulative reads and writes as efficient as possible. Among several
important design decisions are: (i) simple metadata structure,
making common case conflict detection more efficient; (ii) sim-
ple ownership acquisition and release operations consisting of
a compare-and-swap (CAS) and astore instruction, respec-
tively; and (iii) more streamlined read and write set implemen-
tations.

(b) Timestamp-based Validation: Some recent breakthroughs in
guaranteeing transaction consistency at a low common case
cost (such as timestamp-based transactiona validation [3,21])
have contributed significantly to performance improvementin
blocking STMs. To our knowledge, our work is the first to
integrate timestamp-based validation in a nonblocking STM.

(c) Undo logging Capability: Undo log based implementations [8,
22] result in inexpensive reads of locations that have already
been modified by the same transaction.

5. Phase-2: Toward Fast Nonblocking STMs
As suggested in Section 4, we believe that incorporating thekey
optimizations of blocking STMs is sufficient to make nonblocking
STMs comparably efficient in the common case, thereby guaran-
teeing nonblocking progress for almost no extra cost.

5.1 Integrating Recent Blocking STM Optimizations

Our first phase yeilded significant performance improvements over
the prior best word-based nonblocking STM, the HF-STM [6] (see
Figure 1). However, there were some key optimizations missing
from our implementation. Firstly, recent state-of-the-art blocking
STMs employ the timestamp-based validation scheme, which sig-
nificantly mitigates the overhead of transaction validation.

Secondly, although our fast release optimization eliminates the
need for explicit ownership release operations (implemented us-
ing CASes in HF-STM), it introduces an extra level of indirec-
tion, where a transactionT1 reading an orecO must identify if
the transactionO points to, sayT2, is no longerActive. Such an
approach not only requires extra instructions on the fast path, but
may also lead to expensive bus transactions due to cache misses. A
lazy cleanupstrategy (as in ASTM [16]), wherein the first reader of
orecO CASes it to anUnowned state, seems like an attractive alter-
native. However, lazy cleanup simply moves the ownership release
CAS from the owner’s commit/abort cleanup time (as in HF-STM)
to a later time, and does not seem like a real improvement.

Our second phase addressed both optimizations with some
novel, and surprisingly simple extensions to the Phase-1 STM.
Specifically, we integrated, in our Phase-1 STM, an inexpensive
orec release operation that employs a single wordstore instruction
per acquired orec. This ownership release operation mimicsthe
behavior of current high performance blocking STMs more accu-
rately than fast release. Furthermore, our new ownership release
operation facilitates incorporation of the recent timestamp-based
transaction validation schemes [3, 21] in our STMs. Specifically,
we were able to superimpose a timestamp with the orec version
number. With some more simple modifications we were able to
build an undo log version of our Phase-2 nonblocking STM.
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Figure 4. Transitions of the orec state in the Phase-2 nonblock-
ing STM. S and C represent the values of thestolen orec and
copier exists flags in the orec.Unowned represents the state when
the orec’sstolen orec flag isfalse and the orec’sversion field con-
tains a timestamp.Owned state represents the orec’s state wherein
it is either owned by anActive transaction, aCommitted transac-
tion (where the transaction is in its copyback phase and is yet to
release the orec), or is in thestolen state (although it may not be
owned by anActive transaction at some give time). All transitions,
except therelease storetransitions, use an atomicCAS.

5.1.1 Timestamp-based Validation

Timestamp-based validation employs a globally shared “clock”.
When a transaction begins execution it reads the global clock and
stores the value in a transaction localbegin timestamp field. This
value is used, during the transaction’s execution, to determine if
the locations accessed by the transaction are mutually consistent.
Each orec contains a timestamp field which approximates the “log-
ical time” at which the orec was last modified by a transaction. A
transaction is guaranteed to view a consistent version of anorec
O if O’s timestamp is less than or equal to the transaction’sbe-
gin timestamp. This is the simple step of validating a transaction
at each shared memory access. The whole read set of the transac-
tion may be revalidated at commit time. At commit time, a writer
reads the global time2 and stores it in the timestamp field of all
acquired orecs, thereby releasing them.

5.1.2 Efficient Ownership Release

Our new ownership release operation is based on the observation
that we can superimpose the timestamp value and the transaction
version number on an orec’sversion field. Initially an orec’sver-
sion contains a timestamp. During an acquireCAS, the writer trans-
action swaps its current version (differentiated from a timestamp
by the least significant bit) into the orec’sversion field. The new
ownership release operation of a transactionT is simple — use an
ordinary store instruction to overwrite the version in an acquired
orecO with the most recent timestamp value in the global clock
(accessed byT at commit time). Our key insight is that permitting
this behavior, and the already existing representation of the stolen
state of an orec, lets us define anunowned state for an orec in a
different way. We say that an orec isunowned when it is not stolen
(thestolen orec flag isfalse) and it contains a timestamp.

Although it may sound straightforward, the new orec release
operation has several subtleties that arise in stealing andtransaction
abort scenarios. As a result, we explain the details of the orec
release operation on a case-by-case basis. In our description, we
refer to the new state transition diagram in Figure 4.

2 Several alternatives for scalable clocks in the context of STMs have been
proposed recently [3, 21]. We use the implementation available in the
TL2 [3] library, where the global clock is a counter that is atomically
incremented by a committing transaction.



The Uncontended Case Note that in all cases, except for the orec
release operation, the entire orec (two adjacent 32-bit words) is ac-
cessed by transactions atomically. An unowned orec is simply ac-
quired by theCAS shown in transitionX. Consider an example
where transactionT1 owns orecO; i.e. O containsT1’s ID, the
write setrow number that contains the speculative updates made
by T1 to locations mapping intoO, and the currentversion of T1

(both thestolen orec andcopier exists flags ofO arefalse). If T1

commits, it first copies back all speculative updates to locations
mapping intoO and thereafter releasesO by storing a new times-
tamp inO’s version field (transitionR). SinceO’s stolen orec flag
is false, the release essentially switchesO back to theunowned
state.

The Stealing Case Now consider transactionT2 that intends to
acquireO. If T1 has already releasedO (via transitionR), O

is already in theunowned state, andT2 does not need to steal
O. However, if T1 has not yet releasedO, T2 stealsO as per
our stealing algorithm discussed earlier (transitionA). Stealing
requires aCAS over the entire orec, which also sets thestolen orec
andcopier exists flags inO. This switchesO into thestolen state.

MeanwhileT1 may finish copyback of its speculative updates
and attempt to releaseO by storing its release timestamp inO’s
version field, which now containsT2’s version (transitionB). Al-
though this release overwritesT2’s version,O still persists in its
stolen state since itsstolen orec flag (set byT2) is still true. (Note
that the algorithm ignores the orec’sversion field contents when
the stolen orec flag is true.) At this pointT1 can verify thatO is
stolen by another transaction (T2 in our example).

Since we continue to adhere to our invariant that there can exist
at most one transaction doing the copyback for an orec at any
given time,T1 is the only transaction doing the copyback forO.
Following our stealing protocol,T1 can inform the system that
it has finished the copyback by resettingO’s copier exists flag
(transitionC). A subsequent transaction, sayT3, that intends to
acquireO, may switchO back tounstolen (albeit owned byT3)
state, as per the state transition diagram in Figure 4 (transitions D

followed byE). If these transitions are successful,T3 can release
O with a simple releasestore (transitionR). This portion of the
algorithm is identical to the Phase-1 algorithm from Section 3.

There exist two subtleties in ordering of events which may lead
to unpredictable behavior in our new stealing algorithm. The first
concern is that we cannot guarantee that thestore-based orec-
release followed by verification that the orec is not stolen both hap-
pen atomically. As a result, a situation may arise where transaction
T1 releases unstolen orecO and is delayed arbitrarily before it re-
readsO to verify that it was not stolen. In the interim,O may be
modified several times by concurrent transactions and eventually
switch to thestolen state. IfT1 readsO at this point, assumes that
it is the victim, and clears thecopier exists flag (which was set for
another transaction, sayT2, to clear) the runtime may end up with
more than one copier for an orec, a violation of our invariant.

To ensure that the right transaction (T2 in our example) clears
the copier exists flag of a stolen orec (O in our example), we
added a newcopier ID field in the write setrow data structure
(from Figure 2). The first stealer of an orec sets thecopier ID
field in its write setrow to the value of the victim’sID. Only
when the possible victim’sID is the same as thecopier ID of the
write setrow that the stolen orec points to, should the victim clear
the orec’scopier exists flag. In our example, onlyT2 can clear
O’s copier exists flag. When a transaction, sayT3, assumes the
responsibility of doing a copyback (via transitionD), it sets the
corresponding write setrow’s copier ID to its own ID.

The second source of concern is related to the fact that now an
orec’sversion field contains either a transaction version or a times-
tamp. Recall that in the Phase-1 STMs the version number in the

orec’sversion field was used to determine if the currently execut-
ing version of the transaction descriptor that the orec points to is the
one that acquired the orec. In our new algorithm, the stolen orec’s
version field may be overwritten by a timestamp of the first victim,
causing loss of information about the transaction version that actu-
ally stole the orec. Our solution was to add another field to the write
set row data structure, which we call thestealing time version.
The stealer transaction, during the stealing process, stores its cur-
rent version into its target write setrow’s stealing time version
field. Any new transactions that access the orec instolen state use
thestealing time version field to determine whether the current (or
a past) version of the owner owns (or owned) the orec.

The Abort Case Since the Phase-1 STM used redo log and im-
plicit fast release techniques, the operation of acquiringan orec that
points to an aborted transaction was not considered as orec steal-
ing. In our new algorithm, we continue to adhere to the policythat
acquiring an orec that points to an aborted transaction is not steal-
ing (this policy changes in case of our undo log version, discussed
later). However, now an aborted transaction must also explicitly re-
lease an acquired orec. The simplestore instruction based release
operation on an orecO, by an aborted transaction, sayT1, may
overwrite theversion field of O, which contains the version ofO’s
current owner, sayT2, with a timestamp. SinceO’s stolen orec flag
is nottrue, T1’s store illegitimately switchesO’s state tounowned.

We have a simple solution for this problem – an orec-wide
CAS based release. TheCAS ensures that theversion field of the
orec will not be overwritten by an aborted transaction if theorec
was already acquired by another concurrent transaction. Since it is
reasonable to assume that aborts will be rare, we believe that our
solution does not entail significant overhead.

5.1.3 Read and Write Set Implementations

As may be clear from our description, the write set implementation
in our new algorithm (except for the newly added fields –copier ID
andstealing time version – in the write setrow data structure) is
more or less the same as our Phase-1 STM.

Realizing that the read set implementation need not be the
same as the write set implementation, we modified the read set
data structure to a more streamlined version consisting of alinear
linked-list of entries superimposed on a list of contiguousblocks
of 256 entries each. This structure is very similar to that used
in recent blocking STMs [3, 8, 22]. To make the fast path for
reads more streamlined, for each new read operation the transaction
appends an entry in the read set. Each entry consists of an orec
address, which is used at commit time for read set validation.
Thus, redundant entries for the same location may exist in the read
set. As shown by Harris et al. [8], for long running transactions,
these redundancies may be reduced by periodicallyfiltering the
read set. If the target location’s orec is already owned by the
transaction itself, the transaction’s corresponding write set row is
searched for a possibly updated value (by the same transaction)
of the target location. This searching is inherent in redo log based
implementations, but not in undo log based implementations.

5.2 Lazy Ownership Acquisition

The algorithm presented thusfar uses aneager ownership acqui-
sition policy for writes. Modifying the algorithm to support lazy
ownership acquisition [15] (where the the writer acquires owner-
ship of locations written to at commit time) was quite straightfor-
ward. We introduced a linear write list data structure, which was
very similar to the streamlined read set data structure (theonly dif-
ference being that the write list entries contain address-value pairs),
to retain the redo log of the transaction. At commit time, thetrans-
action traverses the write list and acquires correspondingorecs. In
the process, the transaction also builds up the 2-dimensional write



set (as is in the eager acquire version of the STM). This extrastep
of replicating the redo log made the lazy acquire STM versioneas-
ily compatible with our nonblocking stealing algorithm with little
extra overhead (shown in Section 6).

5.3 The Undo Log Algorithm

In a redo log based STM, a transaction intending to read an already
modified location must refer to its write set for the most recent
logical value of the location. This lookup for aread-after-writeop-
eration is potentially a significant source of overhead in redo log
based STMs. In undo log based STMs a writer transaction stores
the old value of the target location in its write set, and makes a
direct update to the location. This avoids the lookup required in
a subsequent read-after-write operation by the transaction. On the
flip side, in redo log based blocking STMs, a transaction thaten-
counters a conflict with an already aborted transaction may safely
acquire ownership of the location without waiting for the aborted
transaction’s release. However, for correctness, a transaction in an
undo log based blocking STM must wait for such an aborted trans-
action to release ownership of the location, which may possibly
take an arbitrary amount of time, particularly because the aborted
transaction may not notice that it is aborted for a long time.With
nonblocking progress guarantees in undo log based STMs one can
get the best of both worlds – elimination of read-after-write lookup
overhead and of arbitrary waiting during transaction aborts.

The undo log variant of our algorithm was surprisingly simple.
In redo log based STMs, stealing is necessary in case a conflicting
transaction has already committed since the logical valuesof all
its updates may reside in its write set. The same reasoning applies
to conflicting aborted transactions in the undo log variant of our
nonblocking STM. Thus, in our STM’s undo log variant stealing
pre-dominantly happens when transactions abort.

Contrary to our initial impression, in our undo log based non-
blocking STM, stealing is necessary even when a transactionen-
counters an already committed transaction. This is an artifact of our
store instruction based orec release policy, which we maintainedin
our undo log STM. The orec release operation races with the same
orec’s acquisition by another transaction. Note however, that steal-
ing is needed in this case only to maintain a consistent view of the
orec’s state. The logical values of the locations modified bythe vic-
tim already reside in the respective locations. Thus we do not need
to merge the victim’s write set row into the stealer’s write set. All
other parts of the nonblocking stealing algorithm remain the same
in the undo log STM.

5.4 Fast Path Behavior

As our empirical evaluation (Section 6) suggests, our nonblocking
STMs are competitive with state-of-the-art blocking STMs.Most
of the credit goes to the fast path behavior of our STMs.

5.4.1 Read Fast Path

In the fast path, a speculative (transactional) read in our nonblock-
ing STM is very similar to that of state-or-the-art blockingSTMs
– a transaction computes the target location’s orec address, reads
the entire orec atomically in registers, makes two ownership tests
(one to check if the orec contains a version and the other to check if
the orec is stolen, either of which indicates that the orec isowned),
verifies that the orec’s timestamp is consistent, and finallylogs the
orec in the read set. Figure 5 depicts the fast path in C-like pseu-
docode form. Of these instructions, our algorithm’s fast path dif-
fers from recent blocking STMs in the orec size, and an extra test
for the stolen orec case, which amounts to slight increase inregis-
ter pressure (for one extra orec word), and bitwise operations with
a comparison (for testing stolen state) which typically succeeds.

Word_t stm_read(Word_t* addr) {
ORec_t* p_orec = get_orec(addr);
ORec_t orec = *p_orec;

if (is_stolen(orec) || is_version(orec.version))
goto slowpath;

if (orec.version > my_read_timestamp)
// assume inconsistency
self_abort();

return log_read(addr);

slowpath:
// acquired myself, contention, or stolen orec case
...
...

}

Figure 5. Fast path for speculative (transactional) reads.

Our empirical results indicate that this overhead is not significant
enough to make a noticable difference in performance.

5.4.2 Write Fast Path

void stm_write(Word_t* addr, Word_t value) {
ORec_t* p_orec = get_orec(addr);
ORec_t orec = *p_orec;

if (is_stolen(orec) || is_version(orec.version))
goto slowpath;

if (orec.version > my_read_timestamp)
// assume inconsistency
self_abort();

ORec_t new_orec = [my_ID | row | my_version];

if (CAS(p_orec, orec, new_orec)) {
log_write(addr, value);
return;

}

slowpath:
// acquired myself, contention, or stolen orec case
...
...

}

Figure 6. Fast path for speculative (transactional) writes.

In the fast path for speculative (transactional) writes a transac-
tion: computes the target location’s orec address, reads the entire
orec atomically in registers, makes the two ownership tests, builds
the new orec contents in two 32-bit registers,CASes the new orec
in the target orec, and logs the new value in the write set. Fig-
ure 6 depicts the fast path in C-like pseudocode form. Effectively,
as compared to recent blocking STMs, the fast path requires two
extra 32-bit registers (one each for the old and new orec values),
some computation to determine the correct value ofrow, and mem-
ory accesses, which are usually cache hits, for the fields (my ID,
row, andmy version) of the writer’s descriptor. However, the sub-
sequentCAS acts as a memory barrier (our experimental machine
contains UltraSPARC processors where theCAS instruction results
in a memory barrier) and tends to hide the latency of many ear-
lier operations. Our experiments indicate that the resulting fastpath
overhead for writes is quite low.
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6. Performance Evaluation
6.1 Methodology

All our STMs were implemented as C language libraries. We im-
plemented the Phase-1 blocking and nonblocking STMs (both em-
ploying eager orec acquisition policy), the redo log based eager
and lazy variants, and the undo log based variant of our Phase-2
design. For comparison purposes we used the publically available
HF-STM [6] and the TL2 library [3], both of which employ redo
logs and lazy orec acquisition policy. Both these STM libraries are
also implemented in C. In all cases we used thePolite contention
manager, which employs exponential backoff during a conflict.

TL2 has been carefully engineered to minimize possibility of
preemption when a transaction is in the process of releasingac-
quired locks. This was done by addingschedctl calls at the begin-

ning of the lock-release phase. In our benchmarks, this strategy has
been very effective for TL2 – in the absence of suchschedctl calls,
TL2’s performance rapidly deteriorates with increasing preemption
rate. Even though these strategies may be effective in general (as
they are in our benchmarks), they rely on external system specific
functionality and may not be easily portable.

We used four microbenchmarks to study performance of all
these STMs.

Counter (cntr): is a simple shared counter that all threads continu-
ously try to increment via transactions. This benchmark reflects
behavior of high contention workloads consisting of extremely
short transactions.

Array Counter ( array cntr): is a shared array of 16 counters,
where all counters are incremented (starting from the small-
est index) by transactions. It represents highly contendedwork-
loads with more realistic write set sizes.

Hash Table (hashtable): is a concurrent hash table consisting of
64 buckets and 256 keys. Each bucket contains an overflow
linked list. A transaction either does aninsert, a delete, or a
lookup of a given key; we present results with 10/10/80 percent
distribution of the three operation types respectively.

Binary Search Tree (bst): is a simple binary search tree. The set
of operations and their distribution onbst were the same as
that of hashtable. We tested thebst with two different sizes:
256 keys and 32K keys. The small size increases contention,
whereas the larger size depicts performance in more realistic
low-contention scenarios.

Note that our choice of microbenchmarks was deliberate. We
believe such workloads amplify performance tradeoffs among
blocking and nonblocking STM design choices. Due to their ten-
dency of aggravating contention, they are more like “stresstests”
for these systems. For low thread counts however, they also illus-
trate the behaviour of these STMs under the common contention
free case. As a result, our microbenchmarks serve to study the
behaviour of our STMs across a wide range of scenarios.

We conducted experiments on two machines: (i) a 16-processor
Sun Fire 6800, a cache-coherent multiprocessor with 1.2 GHz
UltraSPARC III processors; (ii) a Sun Fire T1000 UltraSPARC
T1[13]-based single-chip multiprocessor (T1000) with 8 cores and
4 multiplexed threads per core. Results on the two machines were
qualitatively similar. Due to space restrictions, we present results
from the 16-processor system. All the libraries were compiled
usingGCC v4.2.0at -O3optimization level.

Memory Management. STM implementations impose some in-
teresting restrictions on memory management systems [4, 12, 17].
In this paper, we do not address these issues, and use pre-allocated
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Figure 9. Throughput on Binary Search Tree (bst) with 256 keys and 32K keys.

data structures for our experiments (specifically for nodesin bst
andhashtable). Although primitive, we believe that our approach
isolates the effect of memory allocation performance/scalability on
our results to a great extent, allowing us to more directly compare
different STM designs.

6.2 Performance Results

Figures 7 through 9 show throughput in transactions per second
with concurrent thread count ranging from 1 to 64 in all the mi-
crobenchmarks. Each thread executes10

5 transactions in each test
run. Throughput was averaged over 3 test runs. As may be clear
from the performance curves, our Phase 2 extensions have boosted
performance of our nonblocking STMs to the level of being com-
petitive with state-of-the-art blocking STMs (TL2 in our results).
We believe these results indicate the success of our effortsin sig-
nificantly reducing the performance gap between blocking and non-
blocking STMs, contrary to the commonly perceived notion that
nonblocking STMs are “inherently” much slower than the block-
ing ones. Moreover, withoutschedctl support, TL2’s throughput
degrades significantly in several benchmarks, indicating the poten-
tial performance hazards of blocking STM implementations with-
out scheduler support [22].

Specifically, Figure 7 compares performance of all STMs under
very high contention workloads. Bothcntr andarray cntr are write
intensive benchmarks. These benchmarks show the still existing
fastpath overhead in the write operation in our STMs. We believe
these to be examples of “worst case” behavior for our STMs. In
more realistic benchmarks the ratio of reads to writes is expected to
be higher thus reducing this performance gap. Notice that our undo
log STM performs slightly better than the redo log, eager acquire
based nonblocking STM. This is because of the extra memory
operations required in the latter STM to redo its speculative updates
from its write set to the target locations. The lazy acquire version
incurs slightly more overhead of replicating the write set at commit
time, which manifests in the throughput curves.

Notice that the throughput of our undo log STM degrades
slightly after hitting preemption in thearray cntr experiments.
Figure 10 gives an insight into the reason behind the degradation.
Recall that transaction aborts may trigger stealing in our undo log
STM. The abort rate inarray cntr peaks at about 25% for all STMs
by the time we reach 16 threads, and remains there with increasing
thread count. This relatively high abort rate, coupled witharbitrary
delays due to preemption are responsible for a drastic increase in
the orec stealing rate in our undo log STM, to up to 35%. In com-
parison, the stealing frequency is not as dramatically affected in the
redo log STMs as shown in Figure 10.

The impact on throughput ofarray cntr, although not really sig-
nificant, is noticable in Figure 7. Since stealing was the primary

reason for performance degradation of our undo log STM inar-
ray cntr, we experimented with alternate means of delaying the
stealing process, e.g. a transaction exponentially backs off before
stealing an orec. Although the stealing frequency dropped,the over-
all throughput did not change noticably. Interestingly, thoughcntr
does not permit any scaling, we observed that the abort rate is not
high (lower than 2%). The transactions are short enough thatthe
window for aborting conflicting transactions is too small.

Our observation brings out an interesting new tradeoff between
undo and redo log based STMs from the perspective of nonblocking
progress guarantees: too much contention may result in worse
performance degradation in undo log STMs.

The hash table and the binary search tree are scalable workloads
that exhibit low contention. As is clear from all three graphs, our
nonblocking STMs are competitive with TL2. In fact, our STMs
scale better than TL2 on thehashtable benchmark.

7. Discussion
Nonblocking progress conditions have some interesting interac-
tions with some aspects of transactional memory runtimes such as
privatization [26] and condition synchronization [7].

Privatization. To allow memory to be accessed both transaction-
ally and non-transactionally, and to support dynamic memory al-
location [3], STMs should generally supportprivatization[25, 26,
28]. Most privatization solutions known to date are blocking, and it
seems likely that practical solutions will be blocking. Nonetheless,
some purposes of privatization can be supported in a nonblocking
manner, for example, dynamic memory allocation can be supported
by deferring freeing of blocks of memory until they have beenpri-
vatized, without blocking the thread that frees memory. Further-
more, some applications may not require privatization. Therefore,
although some restrictions may be needed, the privatization prob-
lem does not prevent the construction of useful nonblockingSTMs.

Conditional Waiting. Harris et al. [7] introduced theretry con-
struct for condition synchronization in memory transactions. Al-
though conditional waiting may seem in direct conflict with non-
blocking STMs, we argue that there is no real conflict here – con-
ditional waiting is a part of application semantics where a thread
intentionally waits for an event, and nonblocking STMs guarantee
forward progress in the absence of such intentions.

8. Conclusion
Although there may be some fundamental design tradeoffs between
blocking and nonblocking STMs, we claim that their common case
performance may not be inherently different. To support that claim,
we showed how to decouple fast path transactional code from the



infrastructure that enables nonblocking progress in our STMs. This
decoupling enables more recent optimizations of blocking STMs
in our nonblocking STMs with surprisingly simple extensions. Our
work has shown that most key optimizations applied to state-of-
the-art blocking STMs can also be applied to nonblocking STMs.
Moreover, nonblocking STMs are naturally tolerant of pathologies
such as preemption, priority inversion, and thread failures. To our
knowledge, our work is the first to show that one can build an
undo log based nonblocking STM. Empirical results show thatall
variants of our nonblocking STM are competitive with state-of-
the-art blocking STMs. Future directions include more rigorous
experimentation with larger workloads and migrating our ideas to
object-based nonblocking STM designs.
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