MLS

Don't Start with Dekker's

Algorithm: Top-Down
Introduction of Concurrency

Michael L. Scott
UNIVERSITY of
vy ROCHESTER

Multicore Programming Education Workshop
8 March 2009

3/8/09

Bottom-Up Concurrency

e AKA Concurrency for Wizards

® Usuadlly taught in the OS course
» Dekker’s algorithm
» Peterson's algorithm
» (maybe) Lamport's bakery and fast (no contention) locks
» TAS
» T&TAS
» (maybe) MCS
» semaphores, monitors, (maybe) CCRs

MLS 3/8/09

But...

® Where did the threads come from?

e Why do I care?
(What are they for ?)

® Can mere mortals make
any of this work?

MLS 3/8/09

Concurrency First?

® Sequentiality as a special case
» See Arvind's talk after lunch
» A backlash, perhaps, against concurrency for wizards

e I'm going to suggest an intermediate approach
» Learn what you need when you need it
» “"Top-down", but not "concurrency first"

MLS 3/8/09

MLS

Suggested Principles

Integrate parallelism & concurrency into the whole
curriculum

Introduce it gradually where it naturally fits
Provide clear motivation and payoff at each step

Recognize that
everybody needs benefits from multicore
many need to deal with events (concurrency)
some heed to develop concurrent data structures

few need to implement synchronization mechanisms
or other race-based code

3/8/09

Thinking about Parallelism

e Is it more or less fundamental than sequentiality?

® May be a silly question
» Dependences among algorithm steps form a partial order
» I don't care if you call it
- a restriction of the empty order
- or a relaxation of some total order

® Both are ways of thinking about the ordering of
algorithmic steps (state transformers)

MLS 3/8/09

Concurrency as Control Flow

® My languages text/course talks about
» sequencing

» selection

» iteration

» procedural abstraction
» recursion

» concurrency

» exception handling
and speculation

» nondeterminacy

PROGRAMING
LANGUAGE
PRAGMATICS

Michael L. Scott

MLS 3/8/09

Top-Down Concurrency

deterministic parallelism

explicitly syncm

event-driven

MLS

thread-based

message-based

3/8/09

Straightforward

parallel libraries

|

event-driven

Use

par-do or spawn/sync w/compiler-
enforced dynamic separation

speculation in sequential programs
futures in pure functional languages
safe futures in impure languages

And maybe

par-do, spawn/sync, or unsafe futures,
w/out enforced separation

HPF for-all

MLS 3/8/09

deterministic parallelism

explicitly synchronized

thread-based message-based

Consider
locality
granularity
load balance
design patterns

MLS

parallel libraries

deterministic parallelism

explicitly syncm

event-driven

thread-based message-based

® Use

»

»

»

»

»

»

»

low-level races.
atomic blocks e Consider
PO-iterators
» progress

loop post-wait
map-reduce

condition sync

locks, monitors, CCRs
send/receive/rendezvous

»
»
»

»

3/8/09

happens-before
data race freedom
2-phase commit

cohsensus, self-
stabilization, Byzantine
agreement, etc.

10

par'allel libraries

deTer'mmls‘rlc parallelism

explicitly syncm

event-driven

thread-based message-based

e Build

»

»

»

MLS

implementation of threads,
locks, monitors, transactions,
etc.

nonblocking data structures
non-DRF algorithms

3/8/09

e Consider

» memory models/
consistency

» linearizability,
serializability

» conhsensus
hierarchy

11

Where in the Curriculum?

computer literacy —__

par'allel libraries

s data structures

de'rer'mmls‘rlc parallelism

explicitly syndm

/— event-driven thread- based message -based
graphics, HCI,
web computing networks,
dist. comp.
languages, SW engg., sci. comp.

OS, arch., par. comp., DBMS

MLS 3/8/09 12

Motivation and Rewards

Need clear payoff, at each step of the way,

to motivate further investment/refinement
speedup (even if modest, e.g., on 2-core machine)
clarity (for event-driven and naturally multithreaded
code)

Will benefit greatly from access

to parallel machines
Simulators are lousy motivation
Niagara boxes are cheap

MLS 3/8/09

What Language Do We Use?

® Lamport: This is the wrong question.

» "Imagine an art historian answering ‘how would you
describe impressionist painting?' by saying ‘in French'."

® MLS: This is the
wrong analogy.

» Imagine an art
teacher answering
“how would you
introduce pointillism?"
by saying "in oils".

® Notation matters!

MLS 3/8/09 14

MLS

Algol 68

[JREAL M = (0.0, 0.0);

BEGIN

MLO] := t(M[OD),
ML1] := g(ML11)

END

3/8/09

note comma

15

Java 5

static class A implements Runnable { static class B implements Runnable {
double M[]; double M[];
A(double m[]) {M = m;} B(double m[]) {M = m;}
public void run () { public void run (O {
M[@] = f(M[@1); M[1] = g(M[1D);
hy ¥
¥ ¥

double M[] = new double[2];
ExecutorService pool = Executors.newFixedThreadPool(2);
pool .execute(new A(M));
pool .execute(new B(M));
pool .shutdown();
try {
boolean finished = pool.awaitTermination(1@, TimeUnit.SECONDS);
} catch (InterruptedException e) { }

MLS 3/8/09 16

CH# 3.0

double[] M = new double[2];

Parallel.Do(
delegate { M[0]
delegate { M[1]

fMLo1); &,
gML1D); &

),

Where are the other options?
production quality (with good IDE)
widely used (for practical-minded students)

MLS 3/8/09

17

MLS

Summary Recap

Integrate parallelism & concurrency into the whole
curriculum

Introduce it gradually where it naturally fits
Provide clear motivation and payoff at each step
Assignh projects on real machines

In real programming languages

3/8/09

18

B0

&
ROCHESTER

www.cs.rochester.edu/research/synchronization/

