
Implicit Acceleration of Critical Sections
via Unsuccessful Speculation ∗

Joseph Izraelevitz
University of Rochester
jhi1@cs.rochester.edu

Alex Kogan
Oracle Labs

alex.kogan@oracle.com

Yossi Lev
Oracle Labs

yossi.lev@oracle.com

Contact author: Joseph Izraelevitz, jhi1@cs.rochester.edu.
Department of Computer Science, University of Rochester, Rochester,
NY 14627-0226, USA. +1-585-275-2527.

Abstract
The speculative execution of critical sections, whether done using
HTM via the transactional lock elision pattern or using a software
solution such as STM or a sequence lock, has the potential to
improve software performance with minimal programmer effort.
The technique improves performance by allowing critical sections
to proceed in parallel as long as they do not conflict at run time.
In this work we experimented with software speculative executions
of critical sections on the STAMP benchmark suite and found that
such speculative executions can improve overall performance even
when they are unsuccessful — and, in fact, even when they cannot
succeed.

Our investigation used the Oracle Adaptive Lock Elision (ALE)
library which supports the integration of multiple speculative exe-
cution methods (in hardware and in software). This software suite
collects extensive performance statistics; these statistics shed light
on the interaction between these speculative execution methods and
their effect on performance. Inspection of these statistics revealed
that unsuccessful speculative executions can accelerate the perfor-
mance of the program for two reasons: they can significantly reduce
the time the lock is held in the subsequent non-speculative execu-
tion of the critical section by prefetching memory needed for that
execution; additionally, they affect the interleaving between threads
trying to acquire the lock, thus serving as a back-off and fairness
mechanism. This paper describes our investigation and demon-
strates how these factors affect the behavior of multiple STAMP
benchmarks.

1. Introduction
The speculative execution of critical sections (also called lock eli-
sion) allows threads to execute critical sections concurrently as
long as these executions do not conflict, and rolls them back oth-
erwise (see Figure 1). Running critical sections speculatively can
often accelerate parallel programs, especially those that use coarse
grained locking, unnecessarily serializing executions of critical sec-
tions that almost never conflict. However, as we show in this work,
speculative execution of critical sections can speed up programs
even when the speculation never succeeds (e.g., because all critical
sections conflict with each other on a shared memory access).

1.1 Speculation Techniques and the ALE library
Critical section speculation recently gained more popularity due
to the introduction of the Hardware Transactional Memory (HTM)

∗ This work was supported in part by NSF Grants CCF-1422649 and CCF-
1422649.

Figure 1: Lock Elision Transformation

feature in commercially available processors [12, 13, 14]. Indeed,
HTM can be used for critical section speculation with the Transac-
tional Lock Elision (TLE) [19] technique. With TLE, a hardware
transaction checks that the lock is not held, and then executes the
critical section’s code. Any conflict with a memory access done
by another thread, including an acquisition of the lock, will cause
the hardware transaction to fail (abort) and roll back the critical
section’s execution. On the other hand, if the hardware transaction
commits successfully, the critical section execution has completed
without needing to acquire the lock.

Critical section speculation can also be done using software
only techniques; we denote these with the general term “software
optimistic techniques” (SWOPT) [9]. Examples of SWOPT tech-
niques are software transactional memory mechanisms (STMs) [20],
and sequence locks. STM solutions track all memory accesses, at
some granularity, in order to detect conflict and roll back the trans-
action execution. Sequence locks [6], on the other hand, only allow
threads to run speculatively as long as they do not execute any
store to a shared memory location (see Figure 2). Once a thread
needs to execute a write, it has to acquire the lock and increment
a sequence number associated with it. Threads that are executing
speculatively need to keep checking the sequence number, making
sure that it has not changed since the beginning of the specula-
tive execution. If they find a change, they abort their execution.
Relative to HTM, sequence locks significantly limit the potential

Text Box
TRANSACT 2016



Figure 2: Sequence Lock SWOPT

parallelism between critical section executions, but they have rel-
atively very low overhead — sometimes even lower than that of
hardware transactions [9] — and require no special hardware. As
sequence lock SWOPT was the only SWOPT technique we used in
this work, we will refer to it for the remainder of this paper simply
as SWOPT.

Speculative methods for lock elision share characteristic strengths
and weaknesses. They all allow critical sections that are protected
by the same lock to execute in parallel as long as it is guaranteed
that no conflicts occurred. However, most speculative techniques
may abort the execution even when a conflict did not occur: both
SWOPT and HTM based solutions only detect conflict at some
granularity (and hence may abort the execution due to a false con-
flict). The techniques may also abort for non–conflict–related rea-
sons when the thread takes unsupported actions (e.g. I/O for HTM
or a shared write for SWOPT). Additionally, neither HTM nor
SWOPT guarantees that the critical section will complete under
the speculative execution. The existence of true conflicts or the ex-
istence of unsupported actions may prevent progress indefinitely,
necessitating “falling back” to a lock. Finally, care must be taken
by the programmer to ensure that all mutual exclusion techniques
actually mutually exclude one another.

Oracle’s Adaptive Lock Elision library [9] addresses these
shared properties and concerns by supporting lock elision tech-
niques for existing lock–based software via limited instrumenta-
tion. In particular, the library handles the details of supporting
mutual exclusion across several techniques: TLE using HTM, user
provided software speculation techniques, and locks. The library
also addresses the issue of strategy: which speculation techniques
should be used for which critical section? And how many times
should the techniques be tried before giving up and falling to the
lock? More relevant for our purposes, ALE tracks a number of
statistics for instrumented code; for each critical section, ALE
records total number of executions, number of attempted specu-
lative executions and their methods, average time for execution,
average time waiting for the lock, among others.

We adapted ALE for use on STAMP [18], a well known soft-
ware transactional memory benchmark suite that ports several real

world programs into a transactional paradigm. By using ALE’s
statistics, we were able to study when speculative execution is use-
ful for STAMP benchmarks and why. In particular, our exploration
revealed that even benchmarks in which the speculative path always
fail may be able to benefit from these failed speculative executions,
due to both cache warm-up effects and a changing contention pat-
tern on the fall-back lock.

While our exploration included experiments with and without
TLE, the phenomena of acceleration via failed SWOPT attempts
was most dominant in the experiments that did not involve HTM,
and used sequence locks as the SWOPT method of choice. For the
rest of the paper we will therefore focus on these experiments, and
on the analysis that led us to these observations.

Implicit acceleration via failed speculative executions results
from two base causes. First, the doomed speculative pass prefetches
data that will be used in the future once the lock is acquired. This
prefetch effect will help if the lock remains held for the duration
(the lock is sufficiently saturated). Otherwise, the prefetch effect
intrudes on the critical path, slowing execution. The prefetch pass
must also abort before prefetching too much data, otherwise it
might begin to evict cache lines needed at the critical section’s start,
effectively negating the gains.

Second, implicit acceleration occurs because the speculative
executions act as a back–off technique for contended locks. In this
case, speculative attempts can reduce contention on locks even if
they do no useful work (e.g. prefetching). Speculative attempts also
increase fairness in critical section execution across threads since
threads that attempt speculative passes release locks for longer
periods. Depending on the application, fairness can improve or
seriously hamper performance.

1.2 Related Work
Our work is part of the continuing effort to identify and quantify the
emergent effects of parallelism in shared memory software. Well
known examples include the convoy effect [1], false sharing [2,
11, 21], and busy-wait cache line contention [17]. More recent
examples include destructive interference across threads via cache
contention [3] and cache residency imbalance [8].

Speculation as prefetching has been documented in other
work. Sun’s Rock processor’s simultaneous speculative thread-
ing (SST) [5] uses a hardware scout thread [4] to speculatively
warm the cache ahead of the trailing fully specified thread. Xi-
ang and Scott note that speculative execution of critical sections in
hardware transactional memory can warm the cache [22] for later
executions under locks; this observation was also made by both
Dice et. al. and Kleen [7, 15].

2. Benchmark Integration
We chose STAMP [18] as a candidate for lock elision because its
concurrent structure is well annotated with macros, easing integra-
tion with ALE.

STAMP is a benchmark suite designed for software transac-
tional memory research. It annotates transaction begin and end, as
well as shared reads and writes with macros. The included bench-
marks are real world software adapted to use transactions from a
variety of disciplines and exhibit a wide variety of structural par-
allelism behavior. STAMP is a popular benchmark suite to evalu-
ate STM implementations [10], and was recently used to evaluate
HTM lock elision [16, 23].

2.1 Implementation
As a transactional memory benchmark suite, STAMP does not use
any locks, but conceptually has a single global lock on all shared
state. Our experiments in lock elision effectively elided this global



lock using sequence lock SWOPT, and used a global pthreads
lock for fall back. For integration between ALE and STAMP, our
critical section speculation implemented definitions for STAMP’s
transaction macros: BEGIN TXN, END TXN, SHARED READ, and
SHARED WRITE.

SWOPT Our sequence lock SWOPT pass was automatically gen-
erated using the STAMP macros. On lock acquire, we read the cur-
rent sequence lock and verify that it is not held. We call setjmp to
reserve our execution context, then enter the critical section. Using
STAMP’s SHARED READ, we instrument each read to verify that the
sequence lock has not changed. On a SHARED WRITE or verification
failure, we abort by calling longjmp.

Lock Unless otherwise specified, we used the default pthreads
mutex as the global lock. We chose this lock as it is widely used
and available implementation. Its performance with regards to con-
tention is roughly equivalent to a simple test-and-set lock. For com-
patibility with speculative passes, acquisitions and releases of the
global lock also increment the sequence lock. For some experi-
ments, we also compared against the MCS lock [17], which serves
waiting threads in a FIFO order.

2.2 ALE Policies
Even though ALE supports dynamic policies that adapt to the plat-
form and workload, in this work we mainly concentrate on simpler
static policies. In general we used static speculation policies, that
is, for every critical section we would execute a predecided set of
speculative actions, eventually falling to the lock. The policies we
will talk about most here are:

1. SWOPTLock: Attempt to execute the critical section in se-
quence lock SWOPT a set number of times (by default 10),
then fall to the global pthreads lock. If a speculative execution
encounters a write, immediately fall back to the global pthreads
lock.

2. LockOnly: Never attempt a speculative action, but rather only
use the global lock for mutual exclusion. The LockOnly policy
was used with both the standard pthreads lock and the MCS
lock [17].

2.3 Experimental Setup
All of our tests were done on a single socket Intel Haswell Core i7-
4770 containing four cores with two way hyperthreading (supports
eight hardware threads). Each core has its own L1 and L2 cache,
with the L3 cache being shared across the entire processor. For
all tests, turbo mode was turned on. The machine is powered by
Oracle Linux 7. Tests were run while we were the sole users of the
machine.

STAMP and ALE are written in C and C++ respectively. All
experiments were done using the g++ 4.8.1 compiler with the -O3
flag enabled.

3. Speculation as Prefetching
One of the first interesting effects we noted was that failed specula-
tive executions can act as software prefetchers for later successful
attempts. While other authors have noted this effect [5, 22], to our
knowledge none have investigated the use of software speculation
for prefetching.

3.1 Prefetching benefits
The prefetching effect of speculative SWOPT executions can be so
strong as to significantly improve run time performance and scala-
bility of the SWOPTLock policy over LockOnly, even when spec-
ulative executions rarely or never succeed. The clearest example of

9

11

13

15

2 4 6 8#Threads

Ru
nt

im
e Policy

Static: LockOnly, MCS
Static: LockOnly, pthread

Static: SWOPTLock

Figure 3: Runtime on vacationloas a function of thread count

CS:client.c.196 (client.c) CS:client.c.247 (client.c) CS:client.c.267 (client.c)

0e+00

1e+06

2e+06

3e+06

4e+06

1 2 4 8 1 2 4 8 1 2 4 8

#Threads

To
ta

l #
E

xe
cu

tio
ns

Execution Type
Lock
SWOPT

Figure 4: Policy of successful execution for critical sections in
vacationlo

this behavior is on the vacationlo benchmark, where failed specu-
lation improves performance by 1.5–2×.

The vacation benchmark simulates the transactional database
of a travel agency, where clients make vacation reservations for
flights, cars, and hotel rooms. For the duration of the benchmark,
each thread repeatedly takes actions on the database, and each
action is enclosed as a critical section. The vacation benchmark
comes with both high and low contention configurations (vaca-
tionhi and vacationlo), where the difference between the two is the
ratio of queries to writes.

The major action a thread takes is to make a set of reservations
for a customer. This critical section (client.c: line 196) repeatedly
queries for flights, cars, and rooms, recording the maximum price
for each. After all queries, the thread reserves each trip component.
This critical section dominates thread execution time. The other
(rare) transactions on the database a thread can take is to delete a
random customer (client.c: line 247) or update the available rooms,
cars, and flights (client.c: line 267).

The database structure is implemented as four red–black trees,
one each for customers, flights, rooms, and cars. Critical sections
almost always execute a write. However, about 1% of the time, the
vacation queries fail and no reservation is made.

As shown in Figure 3, despite the very rare read–only sec-
tions, the SWOPTLock policy outperforms both the MCS lock and
pthreads lock significantly (1.5–2×) in parallel executions and al-
lows the concurrent version to scale.

Figure 4 shows that the acceleration from SWOPT is not due to
parallelism. The figure counts successful critical section executions
for a SWOPTLock policy run. As shown, almost all critical section
executions (99%) fail to execute successfully under SWOPT, indi-
cating that SWOPT is not accelerating performance by parallelism.



CS:client.c.196 (client.c) CS:client.c.247 (client.c) CS:client.c.267 (client.c)

0

5

10

15

2 4 6 8 2 4 6 8 2 4 6 8
#Threads

To
ta

l T
im

e 
Un

de
r L

oc
k "TimeUnderLock"

TimeUnderLock
TimeUnderLock+SWOPT

Policy

Static: LockOnly, MCS

Static: LockOnly, pthread

Static: SWOPTLock

Figure 5: Time spent in critical section executions on vacationlo

10

20

30

2 4 6 8#Threads

R
un

tim
e Policy

Static: LockOnly, MCS
Static: LockOnly, pthread

Static: SWOPTLock

Figure 6: Execution times for various policies on genome

The mechanism by which prefetching improves performance is
straight–forward. Speculative read–only executions of the database
queries store relevant red–black tree paths in the waiting thread’s
cache. The execution aborts at the very end of the transaction when
attempting to reserve some query result. Upon acquiring the lock,
relevant red–black tree search paths and results are already stored
in cache, reducing the thread’s execution time under lock, and,
consequently, increasing lock throughput.

The total time spent in critical section executions is shown in
Figure 5. The “time under lock” records the total time spent ex-
ecuting critical sections under the lock (after the lock has been
acquired). The “time under lock + SWOPT” records the total
time spent executing critical sections under either lock or SWOPT.
Based on this chart, comparing the LockOnly policy with SWOPT-
Lock, we can see that threads spend approximately 60% less time
under the lock when given an opportunity to prefetch on the ma-
jor critical section of the benchmark, and that the savings cover
the overhead of the SWOPT pass. We can also see that for a sin-
gle thread, the failed speculation becomes an expensive overhead.
With a single thread, lock throughput is no longer a concern, and
the failed SWOPT pass enters the application’s critical path. This
observation can be seen in both Figures 3 and 5 for a single thread.

3.2 Prefetching hazards
It should be clear, however, that over aggressive SWOPT passes
may be detrimental. It is possible to entirely negate the benefits of
prefetching via SWOPT by prefetching too much data. By the time
the fall back to lock occurs, the cache lines from the beginning
of the critical section have been evicted, effectively over–fetching
data. In order to exploit the prefetching effect, care should be taken
to find the optimal prefetch distance.

An example of overfetching can be seen in STAMP’s genome
benchmark — overall runtime for the benchmark is shown in Fig-

CS:sequencer.c.292 (sequencer.c) CS:sequencer.c.374 (sequencer.c) CS:sequencer.c.400 (sequencer.c)

CS:sequencer.c.413 (sequencer.c) CS:sequencer.c.482 (sequencer.c)

0

10

20

30

0

10

20

30

2 4 6 8 2 4 6 8
#Threads

To
ta

l T
im

e

Policy
Static: LockOnly, MCS

Static: LockOnly, pthread

Static: SWOPTLock

Measure
TimeUnderLock

TimeUnderLock
+TimeUnderSWOPT

Figure 7: Time spent in critical section executions on genome

ure 6. The genome program does DNA assembly of a string from
its component substrings (segments). The program is executed in
four phases. The first phase removes duplicate segments from the
input (sequencer.c: line 292). The next phase, grouping, uses k dic-
tionaries to group segments by their prefixes and suffixes of length
k (sequencer.c: lines 374, 400, 413). The third phase, using this
grouping information, can link substring samples by their overlap-
ping keys. The linking phase is repeated for smaller and smaller k,
ensuring that high fidelity matches are linked first (sequencer.c: line
482). Finally, the fourth phase sequentially reconstructs the origi-
nal sequence by tracing linked segments. The phases are separated
by thread barriers, ensuring that each phase is completed before
the next one begins. In genome, when few samples are provided
(a more realistic scenario than the default oversampling [24]), the
grouping critical section dominates execution time.

Overfetching in genome manifests in this grouping subphase.
This subphase consists of long critical sections which, for each
sample, iterate down sorted buckets to find the correct insertion
point. These critical sections can be extremely long and do not
execute a write until the correct insertion point is found (possibly
near the end of the bucket).

For a single thread, the speculative execution does not result in
improved performance under the lock, even though a long period
is spent in the speculative pass. This lack of implicit acceleration
occurs due to overfetching: the bucket traversal critical section is
long enough that it evicts its early prefetches. When the lock fall-
back occurs, the incorrect lines have been prefetched and the “time
under lock” remains the same as the LockOnly policy. The lack of
a prefetching effect can be seen in Figure 7.

4. Lock Tuning
The addition of speculative executions can also affect lock per-
formance by adjusting lock contention and acquisition order, even
when prefetching effects are impossible.

4.1 Contention Control
Like the vacation benchmark, the kmeans benchmark comes in
both high and low contention variants. The kmeans benchmark ex-
ecutes an implementation of the well known k-means clustering
algorithm on sample data. The implementation is barriered – while
each iteration of kmeans is done in parallel, all threads must com-
plete before beginning the next iteration.

In each iteration of the kmeans benchmark, threads gradually
pull points off a shared task queue in a critical section. For each
point, after finding the nearest cluster center of the previous itera-



5.0

7.5

10.0

12.5

2 4 6 8
#Threads

R
u

n
tim

e Policy
Static: LockOnly, MCS
Static: LockOnly, pthread
Static: SWOPTLock

Figure 8: Runtime on kmeanshi

1e+09

2e+09

3e+09

4e+09

5e+09

2 4 6 8
#Threads

To
ta

l l
oc

k 
w

ai
t t

im
e 

(p
er

 th
re

ad
)

Policy
Static: LockOnly, MCS

Static: LockOnly, pthread

Static: SWOPTLock

Figure 9: Time to acquire locks on kmeanshi

tion, the point is assigned membership to that cluster. This update
is also done in a critical section. The final critical section of the it-
eration is done to update the total number of changed points across
all threads in this iteration. If few enough points have changed, the
clustering algorithm has converged.

After all points have been assigned, the master thread recalcu-
lates cluster centers based on membership information. After a bar-
rier, all threads begin the next iteration with all points unassigned
and in the task queue.

The kmeans benchmark is interesting in that every critical sec-
tion almost immediately executes a shared write, preventing both
SWOPT pass completion and negating any prefetching gains. How-
ever, SWOPT can even still improve performance (see Figure 8).

The inclusion of a short, doomed, SWOPT pass provides a small
amount of backoff to the default pthreads spinlock, effectively
adding contention control via SWOPT setup overhead. As a result,
the time to acquire the lock is reduced and overall performance at
eight threads improves. Figure 9 shows the time required to acquire
the lock for the various policies, and demonstrates the reduction in
contention for lock acquisition. When SWOPT is used, the lock is
acquired approximately 33% faster.

Obviously, a presumably better performing solution is to use
a different lock type more suitable to the situation. The use of
a locally spinning FIFO MCS lock on the kmeans benchmark
results in drastically better performance than either the default
pthreads lock or the pthreads lock with doomed SWOPT attempts
for contention control. The improvement can be seen in both lock
acquisition latency (Figure 9) and overall performance (Figure 8).

4.2 Increasing Fairness
The inclusion of doomed SWOPT passes can also hurt performance
if the lock is properly tuned, and especially if the lock is unfair. In
general, for a saturated lock, fairness (FIFO) in servicing waiting

7

8

9

10

11

2 4 6 8#Threads

Ru
nt

im
e

Policy
Static: LockOnly, MCS
Static: LockOnly, pthread

Static: SWOPTLock

Figure 10: Execution runtime on yada

threads will result in decreased performance when compared to
unfair (LIFO) orderings. In the LIFO case, the active thread is likely
to have all necessary data already cached, whereas in FIFO cache
lines will need to migrate from the previously active thread.

When total throughput is concerned, unfair locks are especially
desirable when threads rapidly reacquire the lock upon releasing
it (i.e. the amount of work outside of critical sections is minimal).
This rapid reacquisition pattern occurs in the yada benchmark.

In the yada benchmark, threads execute a Delauney refinement
using a variation of Ruppert’s algorithm. After receiving an initial
triangular mesh as input, the algorithm finds “bad” triangles which
are too narrow and “bad” edges which are too close to neighboring
points. These elements (edges and triangles), and their potentially
bad surrounding neighbors, are refined by removing them and re-
doing the mesh for the region.

To do the refinement, each thread executes a tight loop, consist-
ing of five critical sections. In the first critical section, the thread
pops an element off the work queue. In the second critical section
it checks that the element is not garbage (that is, it was removed
by another thread doing retriangulation). In the third critical sec-
tion, the thread grows the region around the bad element, to include
neighboring elements and those within its diametrical circle, then
retriangulates the affected region – this critical section (yada.c: line
228) dominates runtime. In the fourth critical section, the thread
marks the removed element as garbage. Finally, in the fifth critical
section, the thread adds any bad elements from its new region into
the work queue.

Since each critical section is part of a single step in the algo-
rithm, they are all executed the same number of times (barring con-
flicts over garbage elements). Furthermore, there is almost no work
in between critical sections, meaning a thread is in a critical section
for practically the entire execution.

As a result of lack of work external to critical sections, threads
contend for the lock immediately after releasing it. Due to the
implementation of the default pthreads lock, this lack of external
work means that threads tend to reacquire the lock after releas-
ing, exhibiting massive unfairness and consequently significantly
improving caching effects. SWOPT usage equalizes access to the
lock by injecting wasted work in between lock release and acquire,
meaning that the lock becomes more fair and long run scenarios
are avoided. Similarly, the MCS lock enforces fairness. Conse-
quently, as seen in Figure 10, the unfair pthreads lock outperforms
the fairer alternatives, especially at eight threads once hyperthread-
ing is turned on.

Figure 11 shows the time it takes to acquire a lock for differ-
ent lock policies. A “nonbusy” lock acquisition indicates that the
lock was immediately acquired when requested (e.g. its first CAS
succeeded), either because the lock was uncontended, or because
a thread released and immediately reacquired it. The bar heights



57%

100%

100%

3%

3% 3%

5%
17%

29%

Static: LockOnly, MCSB Static: LockOnly, pthread Static: SWOPTLock, 10 Tr, pthread

0.0

2.5

5.0

7.5

1 2 4 8 1 2 4 8 1 2 4 8
#Threads

To
ta

l lo
ck

 w
ait

 tim
e 

(p
er

 th
re

ad
)

AcquisitionType
Busy
NonBusy

Figure 11: Lock acquisition times and busy proportions on yada

CS:yada.c.228 (yada.c)

0

5

10

2 4 6 8
#Threads

To
ta

l T
im

e

Policy
Static: LockOnly, MCS

Static: LockOnly, pthread

Static: SWOPTLock

Measure
TimeUnderLock
TimeUnderLock
+TimeUnderSWOPT

Figure 12: Time under lock on yadaś dominant critical section

show the time spent waiting for the lock, the percentages show the
percentage of “busy” acquires. The chart shows that the pthreads
lock is almost always acquired in a “nonbusy” manner, but the
overall lock acquire time is entirely dominated by the few “busy”
acquisitions — this signature is indicative of massive unfairness. In
contrast, both SWOPT and the MCS lock have a higher proportion
of “busy” acquisitions.

These fairer interleavings result in poorer cache performance
once executing under the lock, especially at eight threads, when
hyperthreading shrinks each thread’s effective cache by sharing
between hyperthreads. Figure 12 shows the time spent under the
lock for the dominant critical section in yada. At eight threads,
under the fair MCS lock and SWOPT policies, the time under
lock grows drastically. With a fair servicing of waiting threads, the
number of cache misses increase within the critical section.

5. Conclusion
With the results of this investigation we hope to provide some in-
sights into the various emergent performance effects of lock elision.
As should be clear, the correct speculative parameters for lock eli-
sion are often code and data dependent. The correct strategy may
be obscured or influenced by non-obvious impacts of speculative
actions, such as prefetching or contention control.

In future work, we hope to leverage these results to make better
lock elision decisions and improve existing code, and allowing
the adaptive policies of ALE to better predict performance. By
taking into account the presented effects, we feel it is likely we
can improve the performance of lock–elided software.

References
[1] Mike Blasgen, Jim Gray, Mike Mitoma, and Tom Price.

“The convoy phenomenon”. In: SIGOPS Oper. Syst. Rev. 13.2
(1979), pp. 20–25.

[2] William J. Bolosky and Michael L. Scott. “False sharing and
its effect on shared memory performance”. In: USENIX Sys-
tems on USENIX Experiences with Distributed and Multipro-
cessor Systems - Volume 4. Sedms’93. San Diego, California,
1993, p. 3.

[3] B. Brett, P. Kumar, Minjang Kim, and Hyesoon Kim. “Chip:
a profiler to measure the effect of cache contention on scal-
ability”. In: Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW), 2013 IEEE 27th Interna-
tional. 2013, pp. 1565–1574.

[4] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay. “High-
performance throughput computing”. In: Micro, IEEE 25.3
(2005), pp. 32–45.

[5] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Mar-
tin Karlsson, Anders Landin, Sherman Yip, Håkan Zeffer,
and Marc Tremblay. “Simultaneous speculative threading: a
novel pipeline architecture implemented in sun’s rock pro-
cessor”. In: Proceedings of the 36th Annual International
Symposium on Computer Architecture. ISCA ’09. Austin,
TX, USA, 2009, pp. 484–495.

[6] Jonathan Corbet. Driver porting: Mutual exclusion with se-
qlocks. lwn.net/Articles/22818/. Article. 2003.

[7] Dave Dice, Alex Kogan, and Yossi Lev. “Refined transac-
tional lock elision”. In: 10th ACM SIGPLAN Workshop on
Transactional Computing. TRANSACT ’15. Portland, OR,
USA, 2015.

[8] Dave Dice, Virendra J. Marathe, and Nir Shavit. “Brief an-
nouncement: persistent unfairness arising from cache resi-
dency imbalance”. In: Proceedings of the 26th ACM Sympo-
sium on Parallelism in Algorithms and Architectures. SPAA
’14. Prague, Czech Republic, 2014, pp. 82–83.

[9] Dave Dice, Alex Kogan, Yossi Lev, Timothy Merrifield, and
Mark Moir. “Adaptive integration of hardware and software
lock elision techniques”. In: Proceedings of the 26th ACM
Symposium on Parallelism in Algorithms and Architectures.
SPAA ’14. New York, NY, USA, 2014, pp. 188–197.

[10] Aleksandar Dragojević, Pascal Felber, Vincent Gramoli, and
Rachid Guerraoui. “Why STM can be more than a research
toy”. In: Commun. ACM 54.4 (2011), pp. 70–77.

[11] S. J. Eggers and T. E. Jeremiassen. “Eliminating false shar-
ing”. In: Proceedings of the 1991 International Conference
on Parallel Processing. Vol. I. 1991, Architecture:377–381.

[12] Per Hammarlund et al. “Haswell: the fourth-generation intel
core processor”. In: IEEE Micro 34.2 (2014), pp. 6–20.

[13] Maurice Herlihy and J. Eliot B. Moss. “Transactional mem-
ory: architectural support for lock-free data structures”. In:
Proceedings of the 20th Annual International Symposium on
Computer Architecture. ISCA ’93. San Diego, California,
USA, 1993, pp. 289–300.

[14] C. Jacobi, T. Slegel, and D. Greiner. “Transactional memory
architecture and implementation for IBM System Z”. In:
Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM
International Symposium on. 2012, pp. 25–36.

[15] Andi Kleen. “Scaling existing lock-based applications with
lock elision”. In: Commun. ACM 57.3 (2014), pp. 52–56.

[16] M. Machado Pereira, M. Gaudet, J.N. Amaral, and G.
Araujo. “Multi-dimensional evaluation of Haswell’s trans-
actional memory performance”. In: Computer Architecture



and High Performance Computing (SBAC-PAD), 2014 IEEE
26th International Symposium on. 2014, pp. 144–151.

[17] John M. Mellor-Crummey and Michael L. Scott. “Algorithms
for scalable synchronization on shared-memory multiproces-
sors”. In: ACM Trans. Comput. Syst. 9.1 (1991), pp. 21–65.

[18] Chi Cao Minh, Jaewoong Chung, C. Kozyrakis, and K.
Olukotun. “STAMP: Stanford transactional applications for
multi-processing”. In: Workload Characterization 2008,
IISWC. 2008, pp. 35–46.

[19] Ravi Rajwar and James R. Goodman. “Speculative lock eli-
sion: Enabling highly concurrent multithreaded execution”.
In: Proceedings of the 34th Annual ACM/IEEE International
Symposium on Microarchitecture. MICRO 34. Washington,
DC, USA, 2001, pp. 294–305.

[20] Nir Shavit and Dan Touitou. “Software transactional mem-
ory”. In: Proceedings of the 1995 ACM Symposium on Prin-
ciples of Distributed Computing. PODC ’95. Ottowa, On-
tario, Canada, 1995, pp. 204–213.

[21] J. Torrellas, M. S. Lam, and J. L. Hennessy. “Shared data
placement optimizations to reduce multiprocessor cache miss
rates”. In: Proceedings of the 1990 International Conference
on Parallel Processing. Vol. II. 1990, Software:266–270.

[22] Lingxiang Xiang and Michael L. Scott. “Software partition-
ing of hardware transactions”. In: Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. PPoPP 2015. San Francisco, CA,
USA, 2015, pp. 76–86.

[23] R.M. Yoo, C.J. Hughes, K. Lai, and R. Rajwar. “Perfor-
mance evaluation of Intel transactional synchronization ex-
tensions for high-performance computing”. In: High Perfor-
mance Computing, Networking, Storage and Analysis (SC),
2013 International Conference for. 2013, pp. 1–11.

[24] Wenyu Zhang, Jiajia Chen, Yang Yang, Yifei Tang, Jing
Shang, and Bairong Shen. “A practical comparison of de
novo genome assembly software tools for next-generation se-
quencing technologies”. In: PLoS ONE 6.3 (2011), e17915.




