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ABSTRACT
Nonblocking implementations of software transactional mem-

ory (STM) typically impose an extra level of indirection when ac-
cessing an object; some researchers have claimed that the cost of
this indirection outweighs the semantic advantages of nonblocking
progress guarantees. We consider this claim in the context of a sim-
ple hardware assist, alert-on-update (AOU), which allows a thread
to request immediate notification if specified line(s) are replaced or
invalidated in its cache.

We show that even a single AOU line allows us to construct
a simple, nonblocking STM system without extra indirection. At
the same time, we observe that per-load validation operations, re-
quired for intra-object consistency in both the new system and in
lock-based (blocking) STM, at least partially negate the resulting
performance gain. Moreover, inter-object consistency checks, also
required in both kinds of systems, remain the dominant cost for
transactions that access many objects. We therefore present a sec-
ond nonblocking STM system that uses multiple AOU lines (one per
accessed object) to eliminate validation overhead entirely, result-
ing in a nonblocking, zero-indirection STM system that outperforms
competing systems by as much as a factor of 2.

Categories and Subject Descriptors: D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming C.1.2
[Processor Architectures]: Multiprocessors

General Terms: Performance, Design, Languages

Keywords: Software transactional memory, Obstruction freedom,
Event-based systems

1. INTRODUCTION
Although multicore processors are rapidly gaining acceptance in

the commodity computer market, few existing programs are capa-
ble of exploiting thread-level parallelism. Lock-based code remains
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difficult to write correctly, and much evidence suggests that it is un-
reasonable to require all programmers to specify fine-grained locks
explicitly. A growing consensus holds that transactions, long the
foundation of database concurrency control, are the most promising
near-term means to simplify the construction of multithreaded pro-
grams. To first approximation, the programmer specifies the blocks
of code that must appear to execute atomically, and the underlying
system assumes responsibility for running these in parallel with one
another whenever possible.

Pure software implementations of transactional memory (STM)
can be divided into two main camps: those that use locks under
the hood (hidden from the user) and those that are nonblocking
(typically obstruction-free [10, 11]). Several groups have found
lock-based implementations to be faster in practice [2, 4, 9, 18], but
nonblocking implementations have other advantages: they are im-
mune to priority inversion in event-based code, and to performance
anomalies caused by inopportune preemption or page faults. They
also tend to avoid convoying, in which threads repeatedly contend
for the same resources because waiting at locks has encouraged
them to “fall into step” with one another. Finally, nonblocking im-
plementations ensure consistency even if a thread can die in the
middle of a transaction—a potentially compelling advantage if data
are shared among threads with independent failure modes.

Indirection v. Locking. Lock-based STM systems typically
modify data “in place”. A transaction that aborts because of conflict
with a peer may need to perform a certain amount of “cleanup” (e.g.
application of an undo log) before the peer can continue. Similarly,
a transaction may sometimes be unabortable (e.g., while applying
a redo log to transfer updates from a private buffer to the master
copy of the data). Lock-based STM systems include LibLTx [4],
McRT [1, 17, 18], the Microsoft Bartok system [9], and TL2 [2].

While it is possible to build a nonblocking STM system with
in-place updates [7, 14], such systems are generally quite com-
plex. A more common approach is to introduce an extra level of
indirection (Figure 1): all modifications to objects are performed
on private copies; when a transaction commits, it uses a single
compare-and-swap (CAS) on the transaction descriptor (to
which all objects point) to logically redirect all relevant pointers
to the corresponding private copies, which then become public and
immutable. Indirection-based nonblocking STM systems include
DSTM [11], OSTM [5], SXM [6], ASTM [12], and RSTM [22].

The indirection of nonblocking systems ensures that committing
and aborting are both lightweight operations, and that objects read
during a transaction are immutable. Unfortunately, the extra indi-
rection also increases both capacity and coherence misses in the
cache, by increasing the number of lines required to represent an
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Figure 1: Metadata of RSTM, a representative nonblocking STM
system. All references go through the indirection pointer (header),
which is easily changed to install a new version.

object and the number of lines that are modified when changes to
an object are committed.

The impact of these misses can be dramatic. On our local Sun-
Fire machine, even a one-thread, coarse-lock implementation of the
benchmarks presented in Section 4 slows down by as much as 90%
(over 20% on average) when we introduce an extra level of indi-
rection. This result is consistent with the work of Ennals [4] and
of Dice et al. [3], who find cache misses to be a major factor in
the speed of STM. While coherence misses (satisfied from a shared
on-chip cache) will be cheaper on a chip multiprocessor than they
have been on traditional SMPs, they are unlikely to decrease in cost
over time, and large-scale machines will continue to be built from
multiple processor chips, with very high cache miss penalties.

We use lightweight hardware support to eliminate indirection
while retaining nonblocking semantics. In the process, we lose
the guarantee of immutability for objects read by transactions. As
in lock-based STM, we compensate by arranging for transactions
to validate an object (double-check its version number) every time
they read one of its fields. As discussed in previous work [22], val-
idation is essential for correctness: absent compiler-enforced sand-
boxing of every operation that cannot be rolled back on abort, fail-
ure to validate can lead to arbitrary erroneous behavior in doomed
transactions, breaking the programming model.

Cache-Thrashing v. Quadratic Validation. Whether a system
uses locks or indirection, it is also necessary to verify mutual con-
sistency across objects over time. This validation may be imple-
mented by attaching an explicit reader list to each object, or by
performing incremental validation of private lists of objects.

Systems that employ reader lists (also known as visible read-
ers) require transactions to modify per-object metadata before the
first read of an object, usually with an expensive atomic operation
such as CAS. Some systems also require transactions to modify the
metadata again at the end of the transaction. In return, the reading
transaction is guaranteed that no other transaction will change the
object without first notifying the reader. When a new object is ac-
cessed, the reader must only ensure that it hasn’t been notified, via
a constant-time comparison to a single location. The total cost to
read n objects in this manner is n×(Clist-add+Clist-remove+Ccheck-self).
This asymptotic O(n) cost carries a high constant (Clist-add) due to
cache misses: with a random access pattern and any concurrency,
the list is likely to reside exclusively in another thread’s cache when
the current thread adds itself to the list.

An STM system that does not use reader lists (also known as
invisible readers) can avoid the cache misses associated with meta-
data updates. Every time a new object is encountered, however, the
active transaction T must verify that no other transaction has mod-

ified any object previously read by T . Thus to read n objects, the
transaction must perform

Pn
i=1 i = O(n2) validation operations.

In addition, information about the n objects must be stored locally
to the transaction. For small transactions, this O(n) bookkeeping
and O(n2) validation overhead is still smaller than the O(n) over-
head of a reader list [13, 22].

Contributions and Roadmap. In recent work we have pro-
posed a simple hardware mechanism, alert-on-update (AOU), that
allows a thread to request immediate notification if certain lines are
evicted from its cache. We have described [21, 23] how this mech-
anism can be used to detect transaction conflicts without requiring
either visible reader lists (with their attendant cache misses) or in-
cremental validation (with its O(n2) aggregate cost). In the current
paper we show that AOU can also be used to enable in-place up-
date without abandoning nonblocking semantics. In addition, using
full-system simulation of a single-chip multiprocessor, we quantify
the performance impact of using AOU for conflict detection.

We describe the AOU mechanism in Section 2. In Section 3, we
describe how it can be used to implement a new zero-indirection
STM. This system requires only that a single line be tagged alert-
on-update in the cache. (AOU-based conflict detection requires one
line for every object accessed in a transaction, but we can easily fall
back to detection based on reader lists or incremental validation in
the event of cache overflow.)

Our performance results appear in Section 4. We first evaluate
the impact of indirection by comparing our new system to coarse-
grain locking, to a similar zero-indirection system based on locks,
and to our previous RSTM system, which imposes one level of in-
direction [22]. We then consider more extensive use of AOU, com-
paring the new system and RSTM with and without AOU-based
conflict detection, and with and without our previously-described
commit counter heuristic [22], which reduces the asymptotic com-
plexity of validation when transactions rarely overlap. We discuss
future work and conclude in Section 5.

On a suite of commonly used microbenchmarks, AOU-based
conflict detection dramatically improves the performance of both
RSTM and the new zero-indirection system. With any given
choice of conflict detection, however, AOU-based zero-indirection
STM provides performance very similar to that of both RSTM and
the lock-based STM system. This suggests that the overhead of
(constant-cost) per-load validation is roughly equal to the cost of
extra indirection in our experiments. Clearly, the relative cost of
per-load validation will depend in general on the average number
of transactional accesses per object; full evaluation of this tradeoff
awaits a broader set of benchmarks. Several other factors, however,
suggest that our simulated system constitutes something of a “worst
case” for systems with per-access validation, and that the balance
may tilt in favor of zero-indirection STM in future systems.

2. ALERT-ON-UPDATE
Validation imposes significant overhead on STM implementa-

tions. While validation of a single location is simple, the number
of distinct locations, and the frequency at which they must be val-
idated, adds up to one of the principal components of overall sys-
tem work. Consistency violations occur when memory is changed
by another thread, but are typically not detected until a validation
point, where the modified location is polled. Consequently there is
a delay between when a transaction becomes inconsistent and when
it becomes aware of its inconsistency. Atomicity and isolation de-
pend on never performing an erroneous, externally visible opera-
tion during the delay. The key to AOU-based STM is the observa-



Registers
%aou_handlerPC: address of handler to be called on a

user-space alert
%aou_oldPC: PC immediately prior to call to

%aou_handlerPC
%aou_alertType: remote write, lost alert, or capacity/

conflict eviction
%alert_enable: set if alerts are to be delivered; unset

when they are masked
interrupt vector table one extra entry to hold address of

handler for kernel-mode alerts

Instructions
set_handler %r move %r into %aou_handlerPC
clear_handler clear %aou_handlerPC and

flash-clear alert bits for all cache lines
aload %r set alert bit for cache line containing

the address in %r; set overflow
condition code to indicate whether the
bit was already set

arelease %r unset alert bit for line containing the
address in %r

arelease_all flash-clear alert bits on all cache lines
enable_alerts set the alert-enable bit

Cache
one extra bit per line (the alert bit), orthogonal to the usual state bits

Table 1: Alert-on-update hardware requirements.

tion that for a transaction whose working set fits in the processor’s
cache, a consistency violation will always be preceded by a cache
eviction, triggered by a remote transaction to ensure coherence.

Since hardware cache coherence protocols already manage evic-
tions and respond to the very same events that indicate consistency
violations, AOU has a simple implementation [21,23]. No changes
are required to the coherence protocol or to the processor/memory
interface; AOU simply exposes cache eviction events to user code
as spontaneous subroutine calls. To use AOU, a thread registers
an alert handler address with the hardware, and then loads lines of
interest using a special aload instruction. When the cache con-
troller evicts the line for any reason (typically for coherence, but
potentially due to capacity or conflict), it notifies the local proces-
sor, which then causes an immediate call to the current thread’s alert
handler. For the sake of generality, we propose a special register,
set by the hardware, that allows the handler to distinguish between
coherence, capacity, and conflict evictions, and to tell when events
that occur in close temporal proximity may have been rolled into a
single alert. Our STM system, however, does not need this infor-
mation; it suffices simply to know that an alert has occurred.

Full Implementation. Alert-on-update does not require a par-
ticular coherence protocol, although it relies on cache coherence
events. For our evaluation, we use a modified MESI protocol. Ta-
ble 1 summarizes hardware requirements: a special register to hold
the address of the user-mode alert handler, a register describing
the current alert; an interrupt vector table entry (for alerts received
while running in kernel mode); instructions to mark and unmark
cache lines; instructions to set and unset the user-mode handler; and
an instruction to re-enable alerts when the handler has finished ex-
ecution. The aload instruction returns a value indicating whether
the line was already marked.

Lightweight Implementation. The full implementation asso-
ciates a bit with each line in the cache, providing the programmer
with the ability to receive notification from many different sources
at once (although all notifications are still handled by the same han-
dler). Since using AOU for only a single line at a time can enable
interesting algorithms, we consider a simpler hardware implemen-

tation in which bits are not associated with individual lines. Instead,
we augment the cache controller with a register storing a single lo-
cation that is marked AOU (one could easily imagine implementa-
tions with some small fixed number of such registers; one suffices
in our particular STM implementation). The controller signals the
processor if it observes (via a coherence event) a remote write to
the stored line.

In a snooping coherence protocol, this lightweight implemen-
tation obviates the need for the %aou_alertType register; on
a capacity or conflict eviction, the cache controller can continue
to watch for remote writes on the aloaded line, even though
the line is not cached locally. Additionally, the arelease and
clear_handler instructions could be merged, if desired. The
simpler implementation requires only three registers, three instruc-
tions, and a single entry in the interrupt vector table.

3. BUILDING STM WITH AOU
In this section we present a three-step evolution of TM sys-

tems, enabled by increasing reliance on AOU. The first is a zero-
indirection lock-based STM system. The API and some aspects of
the code are inherited from our C++ STM library, RSTM [25]. The
second system uses one aloaded line per thread to guarantee non-
blocking progress; the third uses one aloaded line per object to
avoid incremental validation without requiring visible readers.

3.1 A Zero-Indirection, Locking STM
We have sought in our work to maintain all of the beneficial

features of RSTM while eliminating indirection. In particular, our
new Lock-and-Redo framework supports both eager and lazy acqui-
sition, provides early release, uses the RSTM API, supports user-
provided allocators, and is code-compatible for contention manage-
ment [19] and validation heuristics [22]. We maintain metadata
and check for conflicts at the granularity of language-level objects,
rather than individual words, which minimizes the number of words
that must be aloaded in the AOU-based system of Section 3.2 and
increases opportunities for compiler optimizations (not considered
here) to elide redundant bookkeeping operations.

Our framework can be viewed as a modification of RSTM em-
ploying three transformations:

(1) Lock-and-Redo. As in RSTM, transactions perform all
speculative writes on private object clones. Each clone serves, in
effect, as a “redo log”, to be applied to the master copy in the wake
of a successful commit.1 A thread must perform this copy-back (or
verify that some other thread has done so) before it can start a new
transaction. In the absence of hardware support, log application is
performed under the protection of per-object locks. If a transaction
attempts to read a locked object, it must wait. If a transaction at-
tempts to read an unlocked object whose redo log has not yet been
applied, the reader locks the object and applies the log on behalf of
the writer. Deadlock is not possible in the absence of thread failure,
since no transaction is permitted to hold more than one lock at any
time.

(2) Per-Access Validation. Because objects are updated in
place, a transaction is not guaranteed that the (copy of an) object
it reads is immutable. To ensure that all reads come from the same
consistent version of the object, we attach a version number to each
object. Applying a redo log increments the version number, and
reading transactions ensure the consistency of the version number
1Other implementations of the log are of course possible. Cloning will be
expensive if only a small part of an object is modified, but it has the advan-
tage of simplicity, particularly for transactions that read their own writes.
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Figure 2: Metadata for a locking, zero-indirection, object-based
STM. Object pointers all refer to the box on the left.

before using any field read from an object. Ideally, this mechanism
would be implemented by the compiler; we currently embed it in
accessor methods.

(3) Indirection Reduction. Given the above modifications, the
RSTM indirection header is unnecessary. Pointers to shared objects
need not pass through an extra object to mediate conflicts and indi-
cate acquisition. Instead we pack lock status, version number, and
acquisition status into a single word in the object itself.

Metadata Manipulations. Figure 2 depicts the per-object meta-
data for our system. Every object contains two header words, which
we modify only using atomic two-word compare-and-swap

(CAS) instructions.2 In the common case, an object is not owned:
its redo log pointer is null and its version number is odd. In this
case, the object contents can be read directly, so long as the version
number has not changed since the first time the object was accessed
by the current transaction.

As in RSTM, writers must acquire every written object. They
can do so eagerly (at the time of the first access) or lazily (just
before commit). An object in the acquired state contains a pointer
to the owner in the first header field, and a pointer to the redo log in
the second. The first word of the redo log contains the old version
number of the object. The second word contains a back-pointer
to the public version of the object. If the first word of an object
holds the special value 2, then the object is locked and can only be
accessed by the lock holder, who is presumed to be actively copying
its log back to the master copy.

When a transaction aborts, any object it has acquired is rolled
back by zeroing the redo log pointer and resetting the version num-
ber. The lock is not required. Aborts are thus nonblocking: any
transaction can clean up an object owned by an aborted transaction
in a single instruction.

Any reader who encounters an unlocked object with a non-null
redo log pointer and a committed owner may attempt to lock the ob-
ject and apply the redo log; the committed transaction attempts to
do the same for each of its updated objects. After completing a log
application, a thread zeros the redo log pointer and sets the version
number word to the old version number + 2, effectively releasing
the lock. Though we do not explore the possibility in our experi-
ments, it may be desirable to use scheduler hooks to discourage the
preemption of threads performing copy-back.

Validation. Since acquisition and locking both modify the same
header field, it is straightforward for a transaction to ensure that
an object has not changed; it need only compare the first word of
the header to a private copy of that field that was read the first
2The 2-word CAS is helpful but not necessary; the redo log pointer could
take the place of the owner variant of the overloaded first word, in which
case the owner field could move into the redo log. This would allow use of
a single-word CAS, at the expense of an additional level of indirection to
determine the object’s owner.

time the object was accessed. In the common case, this field has
not changed, and for small transactions all necessary information
is stored in the cache. If the object is locked, then a change has
been successfully committed, and the reader must abort. Simi-
larly, if the object is owned by an active or aborted transaction, the
reader must assume that it lost a contention management decision
and must abort. Thus upon any field access a single comparison is
sufficient for validation. When a new object is first read, all previ-
ously read objects are validated using this same simple comparison.
As in RSTM with invisible readers, the aggregate cost of validation
for an N -object transaction is O(n2).

Costs. The lock-and-redo framework has two drawbacks rela-
tive to RSTM. First, without hardware support the framework sac-
rifices obstruction freedom. Second, it sacrifices the guarantee that
committed objects are immutable. Without this guarantee, trans-
actions must perform lightweight validation on every access to a
field of an object (in addition to the all-previous-objects validation
described in the preceding paragraph). Though the cost of each
intra-object validation is low, the total cost may be high if fields of
the same object are read many times. Static analysis may elimi-
nate some redundant per-access validations; the naive implementa-
tion used in our experiments induces an overhead of 10% in single-
threaded code when compared to RSTM.

Comparison to Other STMs. Our TM design most closely re-
sembles TL2 [2]; both perform all speculative writes out of place,
perform incremental validation, and use per-access validation to en-
sure that user code never observes inconsistent values. The chief
differences are that our system does not rely on a global clock
mechanism (instead treating a global clock as an orthogonal valida-
tion heuristic [22]), and that our system permits both eager and lazy
acquire. Other similar systems include Microsoft’s Bartok TM [9]
and Intel’s McRT [18]. These systems perform updates in-place,
and do not permit lazy acquire. McRT additionally omits incre-
mental validation, relying on the programmer or compiler to invoke
validation explicitly before any potentially dangerous operation.

3.2 Restoring Nonblocking Guarantees
The sole purpose of the per-object lock in our framework is

to ensure that as soon as one thread has completed the applica-
tion of a redo log, no other thread continues attempting to ap-
ply that log. Since application of a redo log is idempotent, and
since the TM ensures that the lock is only used to apply redo logs,
we can restore nonblocking guarantees by making the lock revo-
cable. Using AOU we can construct a special-purpose revocable
lock much more simply than is possible in the general case on
conventional hardware [8]. We do not expect the use of a single
alert-on-update to significantly increase performance; the
code is equivalent in complexity to lock-based code, and with OS
support the lock-based code should not demonstrate pathological
preemption effects. The contribution of this section is rather to
demonstrate that AOU makes it easy to build nonblocking STM
without introducing indirection.

If all threads agree on the set of locations to be written (a condi-
tion guaranteed by the redo log), then the lock can be stolen as long
as the previous lock holder is certain not to continue writing once
it loses the lock. Figure 3 demonstrates how the redo lock can be
stolen using AOU. The AcquireRevocableLock() operation
can either lock an unlocked object or overwrite the lock of a locked
object. In the latter case, the current lock holder will receive an
immediate alert, ensuring that if the new lock holder completes, no
other threads are writing the object. To avoid pathological behav-
ior, AcquireRevocableLock() waits for a bounded period of



bool success = true
try

set_handler({throw Alert()})
if (log = o->HasRedoLog)

aload(o->lock);
if (o->AcquireRevocableLock(log))

o->ApplyRedoLog(log)
o->ReleaseLockAndClearLog()

arelease(o->lock)
clear_handler

catch (Alert)
success = false

AcquireRevocableLock(log):
do

v = versionNumber
while (v == 2 && backoff() < THRESHOLD)
return CASX(this, <v, log>, <2, log>)

Figure 3: A single aloaded line suffices to steal responsibility for
applying a redo log to object o.

time before attempting to steal the lock. As an optimization, a com-
mitted transaction that finds one of its objects “locked” can simply
skip that object, as if the log had been successfully applied. Since
threads never hold more than one lock, and since that lock is used
only to protect log application, a single aloaded line suffices to
restore obstruction freedom.

3.3 Reducing Validation Costs
We now focus on a more pervasive use of AOU to dramati-

cally improve performance. As in the previous subsection, we use
AOU to implement revocable locks. However, we also use AOU to
eliminate both quadratic-time inter-object validation and per-access
intra-object validation in the common case.

In the common case, a transaction reads and writes only a small
number of objects. If all transaction headers fit in cache, then once
an object O is read, its header ought to remain in the cache until the
transaction completes. Barring pathological cache overflows, inval-
idation of O’s header implies that O has been acquired by another
transaction and the current transaction should abort.

If the transaction registers an alert handler that immediately
aborts, and then each object header is initially loaded using
alert-on-update, all validation can be elided: An alert is cer-
tain to precede any modification to relevant metadata, and all forms
of validation fail only if some relevant metadata is modified. In
effect, AOU transforms the cache into a self-validating read set.

Overflow. Our proposal is somewhat idealized, since the capac-
ity of a cache is limited. If we have abundant but finite lines that can
be tagged alert-on-update, then we may tag up to K objects
(where K is based on the cache size) and then fall back to explicit
incremental and per-access validation for the remaining R−K ob-
jects in the read set. In our implementation, transactions estimate
K and decrease it when they are alerted due to overflow (detected
through the %aou_alertType register). The code path for the
first K objects still involves a conditional check to ensure that AOU
is in use, but this is a simple in-cache comparison. The branch that
follows the comparison is easily predicted, and the test itself should
execute in parallel with “real work” on an out-of-order processor.

Immediate Aborts. With abundant lines tagged for alert-
on-update, there are no explicit validation points at which a
transaction may abort. Instead, as soon as an alert is issued the
transaction immediately jumps to its abort handler. Certain opera-
tions (such as memory management) must be guarded so that they

are not interrupted by an alert; since these operations do not access
transactional data, there is no risk of consistency violations if alerts
are deferred during these blocks. We currently implement deferred
aborts through a hardware instruction, although a software-based
implementation is straightforward.

Comparison to HASTM. RTM was originally introduced
(without performance results) in a 2005 technical report and a paper
at TRANSACT ’06 [21]. Researchers in the McRT group at Intel
subsequently published a variant of AOU that uses synchronous
polling instead of asynchronous events to detect cache line evic-
tions. Their HASTM system [17] uses eager acquire and in-place
updates, and again relies on the compiler [24] or programmer to
invoke validation before any potentially dangerous operation. Be-
cause it polls for evictions, it cannot guarantee immediate aborts,
and relies on blocking semantics.

4. EVALUATION
In this section we present experimental results that measure the

impact of alert-on-update on TM performance. We consider
both throughput and the cache miss rate, which we use as a measure
of the benefit of removing indirection. All results were obtained
through full-system simulation.

4.1 Simulator Framework
We simulate a 16-way chip multiprocessor (CMP) using the

GEMS/Simics infrastructure [15], a full system functional simu-
lator that faithfully models the SPARC architecture. The alert-
on-update hardware specified in Section 2 is accessed through
the Simics “magic instruction” interface; the AOU bit is imple-
mented using the SLICC [15] framework. Simulation parameters
are listed in Table 2.

16-way CMP, Private L1, Shared L2
Processor Cores 1.2GHz in-order, single issue, ideal IPC=1

L1 Cache 64KB 4-way split, 64-byte blocks, 1 cycle
latency, VB:32 entries

L2 Cache 8MB, 8-way unified, 64-byte blocks, 4
banks, 20 cycle latency

Memory 2GB, 100 cycle latency
Interconnect 4-ary totally ordered hierarchical tree, 1

cycle link latency, 64-byte links

Table 2: Simulation Parameters

We use the GEMS network model for bus and switch contention.
Simics allows us to run an unmodified Solaris 9 kernel on our tar-
get system; its “user-mode-change” and “exception-handler” inter-
face provides a mechanism to detect user-kernel mode crossings.
For TLB misses, register-window overflow, and other kernel activi-
ties required by an active user context, we defer alerts until control
transfers back from the kernel.

4.2 Benchmarks
We consider the following five benchmarks, designed to stress

different aspects of software TM. In all benchmarks, we execute a
fixed number of transactions in single-thread mode to advance the
data structure to a steady state. We then execute a fixed number of
transactions concurrently in multiple threads to evaluate scalability
and throughput. During the timed trial, we also monitor L1 cache
misses (read and write), as we expect them to decrease in systems
without indirection.



HashTable. Transactions use a hash table with 256 buckets and
overflow chains to lookup, insert, or delete a value in the range
0 . . . 255 with equal probability. At steady state, the table is 50%
full. HashTable transactions are very small and rarely conflict.

RBTree. Transactions attempt to insert, remove, or delete val-
ues in the range 0 . . . 4095 with equal probability. At steady state
there are about 2048 entries, with about half of the values stored in
leaves. RBTree transactions have tens of objects in their read sets,
but conflict infrequently.

LFUCache. LFUCache uses a large (2048) array-based index
and a smaller (255 entry) priority queue to track the most frequently
accessed pages in a simulated web cache. When re-heapifying the
queue, transactions always swap a value-one node with a value-
one child; this induces hysteresis and gives each page a chance to
accumulate cache hits. Pages to be accessed are randomly chosen
using a Zipf distribution: p(i) ∝ Σ0<j≤ij

−2. Conflicts are highly
likely, but transactions are very small.

LinkedList-Release. Transactions use early release to mini-
mize read-set size while performing inserts, lookups, and deletes
with equal probability in a sorted, singly-linked list holding val-
ues in the range 0 . . . 255. Early release is an application-specific
optimization that allows a transaction to indicate that writes to an
object no longer jeopardize its own ability to commit. Transactions
are long-running, but early release keeps the read set small and pre-
vents conflicts.

RandomGraph. Transactions insert or delete vertices from an
undirected graph represented with adjacency lists. Edges in the
graph are chosen at random, with each new vertex initially having
up to 4 randomly selected neighbors. RandomGraph transactions
are large (hundreds of objects) and conflict with high likelihood.

4.3 Runtime Systems Evaluated
We compare a total of 8 systems. As baselines, we consider

RSTM (RSTM), RSTM with our global commit counter heuristic
(RSTM+C) [22], and a coarse-grained lock library (CGL) that en-
forces mutual exclusion between all transactions through a single
test-and-test-and-set lock. CGL affords no parallelism, but intro-
duces no overheads for single-threaded code. The commit counter
is a global count of the number of transactions that have attempted
to commit. When a transaction acquires an object, it sets a local
flag indicating that it must increment the counter before attempting
to commit. Now when opening a new object, a reader can skip in-
cremental validation if the global commit counter has not changed
since the last time the reader checked it.

We also evaluate the STM systems of Sections 3.2 and 3.3.
The first, AOU_1, uses a single AOU line to eliminate indirection;
the second, AOU_N, uses one AOU line per object to eliminate
validation. For AOU_1, we also consider a variant that uses the
global commit counter (AOU_1+C). Lastly, we consider a variant
of RSTM (RTM-Lite3) that uses AOU to avoid validation over-
heads (like AOU_N) but without eliminating indirection. This li-
brary does not incur per-access validation, but has increased cache
pressure. Finally, we include the lock-based TM of Section 3.1
(LOCK). Its performance is within 5% of AOU_1 on average, which
is unsurprising, since AOU_1 differs from LOCK only when locks
are stolen; we do not discuss LOCK further here.

To ensure a fair comparison, we use the same benchmark code,
memory manager, and contention managers in all systems. For con-
3The name RTM-Lite is derived from its relationship to our hardware-
software hybrid TM, called RTM [21].

tention management we use the Polka manager [19]. All bench-
marks were compiled using gcc4.1.1 using O3 optimization,
and all TMs use eager acquire.

4.4 Indirection and Per-Access Validation
By eliminating indirection, our new TM reduces cache misses

by up to 31%, with read misses dropping by up to 55%. Figure 6
depicts this effect. In HashTable, RBTree, and LinkedList-Release,
a third of all transactions are read-only, and these benchmarks see
the biggest decrease in cache misses. Unfortunately, the impact of
copy-back in write-dominated workloads is substantial. In LFU-
Cache, where often only one object is accessed (and it is written),
the write misses due to copy-back increase by over 50%, and actu-
ally increase the total cache miss rate. The tradeoff in cache misses
is about even for RandomGraph.

Furthermore (Figure 4), we find very little improvement in over-
all throughput for our indirection-free TMs, despite a decrease in
overall cache misses. The write-back operation of lock-and-redo
introduces overhead (including write misses) on the critical path of
every committed writing transaction. For highly contended objects,
a reader encountering a locked object must pull the lock out of mod-
ified state in the writer’s cache in order to spin, and the writer then
must re-acquire exclusive access to continue the copy-back, since
the lock and data are colocated on the same cache line. This cache
thrashing exacerbates copy-back overhead, and increases the time
a lock is held in our LOCK system.

Lastly, we note that in separate experiments per-access val-
idation introduced a 10% slowdown for single-threaded execu-
tions. Absent compiler support to eliminate redundant checks,
indirection-free systems require checks of an object’s header field
on every access. This expense is particularly pronounced on our
simulated processors, which execute in-order and cannot perform
the checks in parallel with the application’s critical path.

In the end, trading indirection for validation and (possibly) more
write misses may or may not improve run time. In an attempt to
verify our simulator, we tested our all-software systems on a 16-
processor SunFire 6800. We observed speedups as high as 35%
over RSTM for HashTable running under the LOCK runtime, and
slowdowns as high as 30% for the same runtime and LFUCache.

4.5 Eliminating Read-Set Validation
By leveraging abundant AOU lines, both RTM-Lite and

AOU_N are able to improve TM performance by 1.4–2× in
HashTable, RB-Tree, LinkedList-Release, and LFUCache. Single-
thread RandomGraph improves by a factor of 5. Not only do these
systems outperform their unaccelerated counterparts (RSTM and
AOU_1, respectively) at all thread levels, they also outperform our
commit-counter heuristic in almost all cases.

In previous work we showed that the commit counter entails a
tradeoff: in return for a constant-time indication of whether any
transaction has committed, all transactions must serialize on a sin-
gle global counter. For HashTable, where transactions tend not to
conflict, this forced serialization is a bottleneck that slows perfor-
mance. However, both RTM-Lite and AOU_N avoid serializing
on a counter while still enabling validation calls to be skipped. As a
result, we see HashTable improve by over 20%, whereas the com-
mit counter actually degrades performance with respect to RSTM.

In LFUCache, where transactions conflict with high like-
lihood and consequently do not admit scalability, we still
see that removing validation without adding an expensive
fetch-and-increment enables an improvement of almost
40%. Furthermore, since AOU decreases the time required to com-
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Figure 4: Throughput of lock-based and nonblocking indirection-free TMs. Savings due to reduced indirection are frequently offset by
additional validation overheads. Results are normalized to RSTM, 1 thread.
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Figure 5: Using alert-on-update to eliminate validation improves performance by as much as a factor of 2 (a factor of 5 in Random-
Graph), and outperforms the global commit counter heuristic. Results are normalized to RSTM, 1 thread.
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Figure 6: Top:L1 cache misses per transaction at 1 thread. Bottom:L1 cache misses at 16 threads. Results are normalized to RSTM, 1 thread.

mit a transaction, performance degrades less at higher thread levels.
With faster transactions, the window of conflict is smaller.

In RBTree and LinkedList, the counter is not a bottleneck, but
it is imprecise. When a writing transaction increments the counter
and commits, all active transactions are forced to validate, even if
they do not conflict with the writer. Thus for longer transactions and
moderate concurrency (T threads), a transaction is likely to validate
T−1

2
= O(T ) times, even if there are no conflicts. Since AOU pre-

cisely tracks conflicts, it is not victim to false-positive events, and
thus it improves performance by a much larger amount. For RBTree
at 16 threads, AOU increases throughput by 70%, whereas the com-
mit counter improves throughput by less than 10%. LinkedList-
Release sees a 2× speedup with AOU, and only a 10% speedup
with the counter. The imprecision and false positives induced by
the counter mask the concurrency of these benchmarks.

As in other benchmarks, RandomGraph single-thread perfor-
mance is slightly higher with AOU than with the counter, since
AOU does not require an expensive CAS operation. However,
the counter enables reorderings that approximate mixed invalida-
tion [20, 22], which dramatically improves throughput in Random-
Graph. Briefly, the counter defers detection of conflicts between a
reader and a subsequent writer of an object until the writer com-
mits. If the reader commits first, the conflict is ignored. This be-
havior is not present when using AOU, since the writer’s acquisition

will immediately alert the reader. Since the window of contention
is long in RandomGraph, and since the counter shrinks this win-
dow considerably, the commit counter delivers substantially better
throughput than AOU.

Analysis of cache misses identifies an interesting trend: When
read set validation is avoided, cache misses decrease. This is a di-
rect result of the reduced bookkeeping afforded by AOU. Since
the transaction relies on the cache for notification of conflicts, it is
not necessary to maintain a large list of all objects read in order to
enable validation. Additionally, there is no costly validation step
that pulls metadata into the cache, possibly at the expense of ob-
jects read transactionally. By reducing bookkeeping, AOU reduces
cache pressure and avoids capacity evictions, decreasing the overall
miss rate. Since the commit counter is imprecise, it has a similar,
but less pronounced effect.

4.6 Latency and Overhead
Figure 7 quantifies the overheads incurred by our various TM

systems in single-thread execution. Among the principle over-
heads, only validation and bookkeeping vary significantly across
systems; other overheads are either negligible (due to the lack of
conflicts in single-threaded code) or constant.

Our latency measurements reflect some instrumentation arti-
facts. As in HASTM [24], since object metadata is located within
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Figure 7: Latency and Overhead for redo lock at 1 thread.

data objects, the cost of pulling an object into the cache is repre-
sented as bookkeeping rather than real work (App Tx). In RSTM,
this results in one level of indirection being assigned to App Tx
and the other to metadata manipulation (Bookkeeping), as desired.
However, for redo lock this artificially inflates bookkeeping. Sec-
ondly, since per-access validation is only a three-instruction se-
quence (cache hit, compare, branch), we treat that overhead as
App Tx rather than as validation, in order to limit the instrumen-
tation cost. This incorrectly adds all per-access validation in the
redo lock-based systems to App Tx overhead.

The combination of these effects paints a surprising picture. In-
direction and per-access validation overheads are roughly equal,
resulting in a slight slowdown in redo lock for most benchmarks
despite the removal of indirection. Furthermore, in the absence of
validation we see that metadata bookkeeping is the dominant over-
head. In our systems, this overhead is the cost of flexibility and
obstruction freedom: we must bookkeep eager and lazy writes sep-
arately, resulting in higher constant overhead per transaction, and
we must execute multiple branches when reading any object, in or-
der to choose between visible and invisible reads (in RSTM) and
eager or lazy acquire. We also collect extensive statistics to drive
contention management and adaptive policies (not employed here)
that choose between eager and lazy acquire, and between visible
and invisible readers. To support obstruction freedom and flexi-
ble contention management, our systems must obey a protocol for
stealing ownership, stealing locks, and aborting competitors that
places tens of instructions on the critical path. For large transac-
tions, this per-object cost is an obstacle to good performance.

Sensitivity to Cache Size. Our benchmarks present a best-case
scenario for AOU_N and RTM-Lite. Even RandomGraph fits en-
tirely in the L1 cache, and thus despite hundreds of transactional
objects, AOU can still be leveraged to avoid all incremental valida-
tion overhead. Under more taxing conditions (such as cache asso-
ciativity constraints or read sets dramatically larger than the num-
ber of cache lines and victim-buffer entries), the relative benefit of
AOU will decrease. Assuming no commit counter, for R >> C ob-
jects, where C is the cache size (in lines), the expected validation
overhead is O((R − C)2). Compared to the validation overhead
of RSTM or redo lock (O(R2)), the cost will be less in practice,
though still quadratic. For such workloads, combining AOU and
the commit counter would appear to be an attractive option.

5. CONCLUSIONS
We have shown that a simple hardware mechanism, alert-

on-update (AOU), can be used to (1) eliminate indirection in
nonblocking STM, and (2) avoid both intra- and inter-object vali-
dation. Using full-system simulation, we have quantified the per-
formance impact of these optimizations.

Somewhat to our surprise, we find that indirection elimination
alone (whether via locks or AOU) is largely performance neutral,
since it introduces the need to validate the consistency of objects
on second and subsequent loads. This may be an overly pessimistic
finding: compiler elimination of provably unnecessary validations
or out-of-order execution of those that are necessary may tip the
balance toward zero-indirection systems. On the other hand, appli-
cation of redo logs can induce significant numbers of cache misses
in the event of high contention (as in our LFUCache benchmark),
and the cost of these misses may go up in future systems. Using
undo logs instead of redo logs (as suggested by Moore et al. [16])
would avoid the extra miss overhead in successful transactions, but
it would also preclude the use of lazy conflict detection, which Dice
et al. argue is essential to good performance in lock-based TM [2].
On balance, we find that indirection elimination is a good idea, but
that its benefits may be overstated if one does not take into account
the need for per-access validation.

In an unequivocally positive result, we find that using AOU to
eliminate validation can dramatically improve performance, by fac-
tors of 1.4–2 in most of our microbenchmarks, and by as much as
5× in the “torture-test” case of RandomGraph. Our results indi-
cate that AOU is a major win for STM implementation, and sug-
gest the possibility of achieving nonblocking semantics in software-
managed TM at no penalty relative to blocking alternatives.

Within the TM runtime, we are exploring alternative implemen-
tations of the redo log, to avoid the cost of cloning in transactions
that modify small portions of large objects. We are also develop-
ing a system that uses AOU to protect in-place object updates, with
stealable undo logs to preserve nonblocking semantics. We intend
to address the overhead of per-access validation via compiler opti-
mizations that cache the results of validated reads and that eliminate
validation operations that are provably redundant, or that have no
feasible code path to a potentially dangerous (“un-roll-back-able”)
operation. Farther afield, we are exploring several nontransactional
uses of AOU, together with other hardware assists for STM.
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