
12	 ; LO G I N : 	VO L . 	3 4, 	N O. 2			

A r r v i n d h S h r i r A m A n ,
S A n d h yA d w A r k A d A S , A n d
m i c h A e l l . S c o t t

tapping into
parallel ism with
transactional memory
Arrvindh Shriraman is a graduate student in
computer science at the University of Rochester.
Arrvindh received his B.E. from the University of
Madras, India, and his M.S. from the University of
Rochester. His research interests include multipro-
cessor system design, hardware-software interface,
and parallel programming models.

ashriram@cs.rochester.edu

Sandhya Dwarkadas is a professor of computer
science and of electrical and computer engineering
at the University of Rochester. Her research lies at
the interface of hardware and software with a par-
ticular focus on concurrency, resulting in numerous
publications that cross areas within systems. She
is currently an associate editor for IEEE Computer
Architecture Letters (and has been an associate edi-
tor for IEEE Transactions on Parallel and Distributed
Systems).

sandhya@cs.rochester.edu

Michael Scott is a professor and past Chair of the
Computer Science Department at the University of
Rochester. He is an ACM Fellow, a recipient of the
Dijkstra Prize in Distributed Computing, and author
of the textbook Programming Language Pragmat-
ics (3d edition, Morgan Kaufmann, 2009). He was
recently Program Chair of TRANSACT ’07 and of
PPoPP ’08.

scott@cs.rochester.edu

M u lt i c o r e s y s t e M s p r o M i s e t o
deliver increasing performance only if
programmers make thread-level paral-
lelism visible in software. Unfortunately,
multithreaded programs are difficult to
write, largely because of the complexity
of synchronization. Transactional memory
(TM) aims to hide this complexity by raising
the level of abstraction. Several software,
hardware, and hybrid implementations
of TM have been proposed and evalu-
ated, and hardware support has begun to
appear in commercial processors. In this
article we provide an overview of TM from
a systems perspective, with a focus on
implementations that leverage hardware
support. We describe the principal hard-
ware alternatives, discuss performance and
implementation tradeoffs, and argue that
a classic “policy-in-software, mechanism-in-
hardware” strategy can combine excellent
performance with the flexibility to accom-
modate different system goals and work-
load characteristics.

For more than 40 years, Moore’s Law has packed
twice as many transistors on a chip every 18
months. Between 1974 and 2004, hardware ven-
dors used those extra transistors to equip their pro-
cessors with ever-deeper pipelines, multi-way issue,
aggressive branch prediction, and out-of-order exe-
cution, all of which served to harvest more instruc-
tion-level parallelism (ILP). Because the transistors
were smaller, vendors were also able to dramati-
cally increase the clock rate. All of that ended
about four years ago, when microarchitects ran out
of independent things to do while waiting for data
from memory, and when the heat generated by
faster clocks reached the limits of fan-based cool-
ing. Future performance improvements must now
come from multicore processors, which depend on
explicit, thread-level parallelism. Four-core chips
are common today, and if programmers can figure
out how to use them, vendors will deliver hun-
dreds of cores within a decade. The implications
for software are profound: Historically only the
most talented programmers have been able to write
good parallel code; now everyone must do it.

; LO G I N : 	A pr I L 	20 0 9	 tA ppI N G	I NtO	pA r A LLe LI sm	wIth	tr A N sAc tI O N A L	m emO ry	 13

Sadly, parallel programming is hard. Historically it has been limited mainly
to servers, with “embarrassingly parallel” workloads, and to high-end sci-
entific applications, with enormous data sets and enormous budgets. Even
given a good division of labor among threads (something that’s often diffi-
cult to find), mainstream applications are plagued by the need to synchro-
nize access to shared state. For this, programmers have traditionally relied
on mutual exclusion locks, but these suffer from a host of problems, includ-
ing the lack of composability (one can’t nest two lock-based operations in-
side a new critical section without introducing the possibility of deadlock)
and the tension between concurrency and clarity: Coarse-grain lock-based
algorithms are relatively easy to understand (grab the One Big Lock, do
what needs doing, and release it) but they preclude any significant parallel
speedup; fine-grained lock-based algorithms allow independent operations
to proceed in parallel, but they are notoriously difficult to design, debug,
maintain, and understand.

Transactional Memory (TM) aims to simplify synchronization by raising the
level of abstraction. As in the database world, the programmer or compiler
simply marks a block of code as “atomic”; the underlying system then prom-
ises to execute the block in an “all-or-nothing” manner isolated from similar
blocks (transactions) in other threads. The implementation is typically based
on speculation: It guesses that transactions will be independent and executes
them in parallel, but watches their memory accesses just in case. If a conflict
arises (two concurrent transactions access the same location, and at least one
of them tries to write it), the implementation aborts one of the contenders,
rolls back its execution, and restarts it at a later time. In some cases it may
suffice to delay one of the contending transactions, but this does not work if,
for example, each transaction tries to write something that the other has al-
ready read.

TM can be implemented in hardware, in software, or in some combination
of the two. Software-only implementations have the advantage of running on
legacy machines, but it is widely acknowledged that performance competi-
tive with fine-grain locks will require hardware support. This article aims
to describe what the hardware might look like and what its impacts might
be on system software. We begin with a bit more detail on the TM program-
ming model and a quick introduction to software TM. We then describe sev-
eral ways in which brief, small-footprint transactions can be implemented
entirely in hardware. Extension to transactions that overflow hardware
tables or must survive a context switch are considered next. Finally, we
describe our approach to hardware-accelerated software-controlled transac-
tions, in which we carefully separate policy (in software) from mechanism
(in hardware).

Transactional Memory in a Nutshell

Although TM systems vary in how they handle various subtle semantic is-
sues, all are based on the notion of serializability: Regardless of implementa-
tion, transactions appear to execute in some global serial order. Writes by
transaction A must never become visible to other transactions until A com-
mits, at which time all of its writes must be visible. Moreover, writes by
other transactions must never become visible to A partway through its own
execution, even if A is doomed to abort (for otherwise A might perform
some logically impossible operation with externally visible effects). Some TM
systems relax the latter requirement by sandboxing A so that any erroneous
operations it may perform do no harm to the rest of the program.

14	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	2

The principal motivation for TM is to simplify the parallel programming
model. In some cases (e.g., if transactions are used in lieu of coarse-grain
locks), it may also lead to performance improvements. An example appears
in Fig. 1: If X ≠ Y, it is likely that the critical sections of Threads 1 and 2 can
execute safely in parallel. Because locks are a low-level mechanism, they pre-
clude such execution. TM, however, allows it. If we replace the lock...unlock
pairs with atomic{...} blocks, the typical TM implementation will execute the
two transactions concurrently, aborting and retrying one of the transactions
only if they actually conflict.

Thread 1 Thread 2
lock(hash_tab.mutex) lock(hash_tab.mutex)
 var = hash_tab.lookup(X); var = hash_tab.lookup(Y);
 if(!var) if(!var)
 hash_tab.insert(X); hash_tab.insert(Y);
unlock(hash_tab.mutex) unlock(hash_tab.mutex)

F i g u r e 1 : L o s s o F p a r a L L e L i s m a s a r e s u Lt o F L o c k s [1 3]

iMpleMeNTaTioN

Any TM implementation based on speculation must perform at least three
tasks: It must (1) detect and resolve conflicts between transactions execut-
ing in parallel; (2) keep track of both old and new versions of data that are
modified speculatively; and (3) ensure that running transactions never per-
form erroneous, externally visible actions as a result of an inconsistent view
of memory.

Conflict resolution may be eager or lazy. An eager system detects and re-
solves conflicts as soon as a pair of transactions have performed (or are
about to perform) operations that preclude committing them both. A lazy
system delays conflict resolution (and possibly detection as well) until one
of the transactions is ready to commit. The losing transaction L may abort
immediately or, if it is only about to perform its conflicting operation (and
hasn’t done so yet), it can wait for the winning transaction W to either abort
(in which case L can proceed) or commit (in which case L may be able to
occur after W in logical order).

Lazy conflict resolution exposes more concurrency by permitting both
transactions in a pair of concurrent R-W conflicting transactions to commit
so long as the reader commits (serializes) before the writer. Lazy conflict res-
olution also helps in ensuring that the conflict winner is likely to commit: If
we defer to a transaction that is ready to commit, it will generally do so, and
the system will make forward progress. Eager conflict resolution avoids in-
vesting effort in a transaction L that is doomed to abort, but it may waste the
work performed so far if it aborts L in favor of W and W subsequently fails
to commit owing to conflict with some third transaction T. Recent work [17,
22] suggests that eager management is inherently more performance-brittle
and livelock-prone than lazy management. The performance of eager sys-
tems can be highly dependent on the choice of contention management (arbi-
tration) policy used to pick winners and losers, and the right choice can be
application-dependent.

Version management typically employs either direct update, in which specula-
tive values are written to shared data immediately and are undone on abort,
or deferred update, in which speculative values are written to a log and re-
done (written to shared data) on commit. Direct update may be somewhat
cheaper if—as we hope—transactions commit more often than they abort.

; LO G I N : 	A pr I L 	20 0 9	 tA ppI N G	I NtO	pA r A LLe LI sm	wIth	tr A N sAc tI O N A L	m emO ry	 15

Systems that perform lazy conflict resolution, however, must generally use
deferred update, to enable parallel execution of (i.e., speculation by) conflict-
ing writers.

a brief look aT sofTware TM

To track conflicts in the absence of special hardware, a software TM (STM)
system must augment a program with instructions that read and write some
sort of metadata. If program data are read more often than written (as is
often the case), it is generally undesirable for readers to modify metadata,
since that tends to introduce performance-sapping cache misses. As a result,
readers are invisible to writers in most STM systems and bear full responsi-
bility for detecting conflicts with writers. This task is commonly rolled into
the problem of validation—ensuring that the data read so far are mutually
consistent.

State-of-the-art STM systems perform validation on every nonredundant
read. The supporting metadata varies greatly: In some systems, a reader in-
spects a modification timestamp or writer (owner) id associated with the
location it is reading. In other systems, the reader inspects a list of Bloom
filters that capture the write sets of recently committed transactions [21]. In
the former case, metadata may be located in object headers or in a hash table
indexed by virtual address.

Figure 2 shows the overhead of an STM system patterned after TL2 [5],
running the STAMP benchmark suite [12]. This overhead is embedded in
every thread, cannot be amortized with parallelism, and in fact tends to
increase with processor count, owing to contention for metadata access.
Here, versioning adds 2%–150% to program run time, while conflict detec-
tion and validation add 10%–290%. Static analysis may, in some cases, be
able to eliminate significant amounts of redundant or unnecessary valida-
tion, logging, and memory fence overhead. Still, it seems reasonable to ex-
pect slowdowns on the order of factors of 2–3 in STM-based code, relative to
well-tuned locks, reducing the potential for their adoption in practice.

F i g u r e 2 : e x e c u t i o n t i m e b r e a k d o w n F o r s i n g L e - t h r e a d
r u n s o F a t L 2 - L i k e s t m s y s t e m o n a p p L i c a t i o n s F r o m s t a m p,
u n i n s t r u m e n t e d c o d e r u n t i m e = 1

16	 ; LO G I N : 	VO L . 	3 4, 	N O. 	2

Hardware for small Transactions

On modern processors, locks and other synchronization mechanisms tend
to be implemented using compare-and-swap (CAS) or load-linked/store-
conditional (LL/SC) instructions. Both of these options provide the ability
to read a single memory word, compute a new value, and update the word,
atomically. Transactional memory was originally conceived as a way to ex-
tend this capability to multiple locations.

HerliHy aNd Moss

The term “transactional memory” was coined by Herlihy and Moss in 1993
[9]. In their proposal (“H&M TM”), a small “transactional cache” holds spec-
ulatively accessed locations, including both old and new values of locations
that have been written. Conflicts between transactions appear as an attempt
to invalidate a speculatively accessed line within the normal coherence pro-
tocol and cause the requesting transaction to abort. A transaction commits
if it reaches the end of its execution while still in possession of all specula-
tively accessed locations. A transaction will always abort if it accesses more
locations than will fit in the special cache, or if its thread loses the processor
as a result of preemption or other interrupts.

oklaHoMa updaTe

In modern terminology, H&M TM called for eager conflict resolution. A
contemporaneous proposal by Stone et al. [23] envisioned lazy resolution,
with a conflict detection and resolution protocol based on two-phase com-
mit. Dubbed the “Oklahoma Update” (after the Rogers and Hammerstein
song “All er Nuthin’ ”), the proposal included a novel solution to the doomed
transaction problem: As part of the commit protocol, an Oklahoma Update
system would immediately restart any aborted competing transactions by
branching back to a previously saved address. By contrast, H&M TM re-
quired that a transaction explicitly poll its status (to see if it was doomed)
prior to performing any operation that might not be safe in the wake of in-
consistent reads.

aMd asf

Recently, researchers at AMD have proposed a multiword atomic update
mechanism as an extension to the x86-64 instruction set [6]. Their Ad-
vanced Synchronization Facility (ASF), although not a part of any current
processor roadmap, has been specified in considerable detail. As H&M TM
does, it uses eager conflict resolution, but with a different contention man-
agement strategy: Whereas H&M TM resolves conflicts in favor of the trans-
action that accessed the conflicting location first, ASF resolves it in favor of
the one that accessed it last. This “requester wins” strategy fits more easily
into standard invalidation-based cache coherence protocols, but it may be
somewhat more prone to livelock. As Oklahoma Update does, ASF includes
a provision for immediate abort.

suN rock

Sun’s next-generation UltraSPARC processor, expected to ship in 2009 [7],
includes a thread-level speculation (TLS) mechanism that can be used to
implement transactional memory. As do H&M TM and ASF, Rock [24] uses
eager conflict management; as does ASF, it resolves conflicts in favor of the

; LO G I N : 	A pr I L 	20 0 9	 tA ppI N G	I NtO	pA r A LLe LI sm	wIth	tr A N sAc tI O N A L	m emO ry	 17

requester. As do Oklahoma Update and ASF, it provides immediate abort. In
a significant advance over these systems, however, it implements true pro-
cessor checkpointing: On abort, all processor registers revert to the values
they held when the transaction began. Moreover, all memory accesses within
the transaction (not just those identified by special load and store instruc-
tions) are considered speculative.

sTaNford Tcc

Although still limited (in its original form) to small transactions, the Trans-
actional Coherence and Consistency (TCC) proposal of Hammond et al.
[8] represented a major break with traditional concepts of memory access
and communication. Whereas traditional threads (and processors) interact
via individual loads and stores, TCC expresses all interaction in terms of
transactions.

Like the multi-location commits of Oklahoma Update, TCC transactions
are lazy. Individual writes within the transaction are delayed (buffered) and
propagated to the rest of the system in bulk at commit time. Commit-time
conflict detection and resolution employ either a central hardware arbiter or
a distributed two-phase protocol. As in Rock, doomed transactions suffer an
immediate abort and roll back to a processor checkpoint.

discussioN

A common feature of the systems described in this section is the careful le-
veraging of existing hardware mechanisms. Eager systems (H&M TM, ASF,
and Rock) leverage existing coherence protocol actions to detect transaction
conflicts. In all five systems, hardware avoids most of the overhead of both
conflict detection and versioning. At the same time, transactions in all five
can abort simply because they access too much data (overflowing hardware
resources) or take too long to execute (suffering a context switch). Also, al-
though the systems differ in both the eagerness of conflict detection and
resolution and the choice of winning transaction, in all cases these policy
choices are embedded in the hardware; they cannot be changed in response
to programmer preference or workload characteristics.

unbounded Transactions

Small transactions are not sufficient if TM becomes a generic programming
construct that can interact with other system modules (e.g., file systems and
middleware) that have much more state than the typical critical section.
It also seems unreasonable to expect programmers to choose transaction
boundaries based on hardware resources. What is needed are low-overhead
“unbounded” transactions that hide hardware resource limits and per-
sist across system events (e.g., context switches, system calls, and device
 interrupts).

To support unbounded transactions, a TM system must virtualize both con-
flict detection and versioning. In both cases, the obvious strategy is to mimic
STM and move transactional state from hardware to a metadata structure in
virtual memory. Concrete realizations of this strategy vary in hardware com-
plexity, degree of software intervention, and flexibility of conflict detection
and contention management policy. In this section, we focus on implemen-
tation tradeoffs, dividing our attention between hardware-centric and hy-
brid hardware-software schemes. Later, we will turn to hardware-accelerated

18	 ; LO G I N : 	VO L . 	3 4, 	N O. 	2

schemes that are fundamentally controlled by software, thereby affording
policy freedom.

Hardware-ceNTric sysTeMs

Several systems have extended simple hardware TM (HTM) systems with
hardware controllers that iterate through data structures housed in vir-
tual memory. For example, the first unbounded HTM proposal, UTM [1],
called for both an in-memory log of transactional writes and an in-memory
descriptor for every fixed-size block of program data (to hold read-write
permission bits). The descriptors (metadata) constituted an unbounded ex-
tension of the access tracking structures found in bounded (small-transac-
tion) HTM. The log constituted an unbounded extension of bounded HTM
versioning. Although located in virtual memory, both structures were to be
maintained by a hardware controller active on every transactional read and
write.

Subsequent unbounded HTM proposals have typically employed a two-level
strategy in which a hardware controller implements small transactions in the
same way as bounded HTM, but invokes firmware (or low-level software)
handlers when space or time resources are exhausted. VTM [14], for exam-
ple, uses deferred update and buffers speculative writes in the L1 cache as
long as they fit. If a speculative line must be evicted owing to limited capac-
ity or associativity, firmware (microcode) moves the line and its metadata to
a data structure in virtual memory and maintains both a count of such lines
and summary metadata (counting Bloom filters) for all evicted lines. On a
context switch, a handler iterates through the entire cache and moves all
speculative lines to this data structure. Subsequent accesses (when the count
is nonzero) trigger firmware handlers that perform lookup operations of the
in-memory data structures and summary metadata in order to detect con-
flicts (or fetch prior updates within the same transaction). Unfortunately, the
cost of lookups is nontrivial.

Bloom-filter–based access-set tracking has also been used in direct-update
systems. In LogTM-SE [25], a hardware controller buffers old values in an
undo log residing in virtual memory, while speculative values update the
original locations (which requires eager conflict resolution in order to avoid
atomicity violations). Bloom filters are easy to implement in hardware and
can be small enough to virtualize (save and restore) easily. Their drawback is
imprecision. Although erroneous indications of conflict are not a correctness
issue (since in the worst case, transactions can still execute one at a time),
they may lead to lower performance [3].

Hardware-centric systems such as VTM and LogTM-SE hide most of the
complexity of virtualization from the system programmer, resulting in a
relatively simple run-time system. This simplicity, however, gives rise to se-
mantic rigidity. Special instructions are needed, for example, to “leak” infor-
mation from aborted transactions (e.g., for performance analysis). Similarly,
policies that have first-order effects on performance (e.g., conflict resolution
time, contention management policy) are fixed at system design time.

Hybrid approacHes

Hardware-centric approaches to unbounded TM demand significant invest-
ment from hardware vendors. Hybrid TM systems [4, 10] reduce this in-
vestment by adopting a two-level strategy in which the second level is in
software. They begin with a “best-effort” implementation of bounded HTM;
that is, they attempt to execute transactions in hardware, but the attempt

; LO G I N : 	A pr I L 	20 0 9	 tA ppI N G	I NtO	pA r A LLe LI sm	wIth	tr A N sAc tI O N A L	m emO ry	 19

can simply fail owing to implementation limitations. Software is then ex-
pected to pick up the pieces and ensure that all transactions are supported.
The key idea is to generate two code sequences for transactions: an STM-
compatible version that can run on stock processors and a second version
that invokes the best-effort HTM. To ensure high performance, the STM is
deployed only when HTM fails. The challenge is to ensure that HTM and
STM transactions interoperate correctly. This is achieved by instrumenting
the HTM transactions so that every memory operation also checks for con-
current, conflicting STM transactions. If one exists, then the HTM transac-
tion fails, since it lacks the ability to perform conflict resolution with respect
to the STM transaction.

Although hybrid systems keep the hardware simple, the instrumentation for
interoperability may add significant overhead to HTM transactions. More
ambitious hybrid systems [2] may improve performance by implementing
conflict detection entirely in hardware (using extra bits associated with main
memory), while performing versioning in software. As did hardware-centric
unbounded TM, hybrid TM suffers from policy inflexibility inherited from
the all-hardware case, and from significant overhead whenever overflow oc-
curs.

Hardware-accelerated software-controlled Transactions

Experimental evidence suggests that although eager conflict management
may avoid wasted work, lazy systems may exploit more parallelism, avoid
performance pathologies, and eliminate the need for sophisticated (and po-
tentially costly) contention management [11, 17, 22]. Intermediate strategies
(e.g., mixed conflict management, which resolves write-write conflicts ea-
gerly and read-write conflicts lazily) may also be desirable for certain appli-
cations. Unfortunately, the hardware-centric and hybrid TM systems that we
have discussed so far embed the choice of both conflict resolution time and
contention management policy in silicon.

Hardware-accelerated but software-controlled TM systems [15, 16, 20] strive
to leave such policy decisions under software control, while using hardware
mechanisms to accelerate both bounded and unbounded transactions. This
strategy allows the choice of policy to be tuned to the current workload. It
also allows the TM system to reflect system-level concerns such as thread
priority. As in the designs covered earlier, existing hardware mechanisms
must be carefully leveraged to avoid potential impact on common-case non-
transactional code.

The key insight that enables policy flexibility is that information gathering
and decision making can be decoupled. In particular, data versioning, access
tracking, and conflict detection can be supported as decoupled/separable
mechanisms that do not embed policy. Conflict resolution time and conten-
tion management policy can then be decided dynamically by the application
or TM runtime system.

decoupled versioNiNg

To support lazy conflict resolution, we proposed a deferred-update version-
ing mechanism we call Programmable Data Isolation (PDI) [15]. PDI allows
selective use of processor-private caches as a buffer for speculative writes or
for reading/caching the current version of locations being speculatively writ-
ten remotely. PDI lines are tracked by augmenting the coherence protocol
with a pair of additional states. Data associated with speculative writes is
not propagated to the rest of the system, allowing multiple transactions to

20	 ; LO G I N : 	VO L . 	3 4, 	N O. 	2

speculatively read or write the same location. However, coherence actions
are propagated, allowing remote caches to track the information necessary to
return them to a coherent state, without resolving the detected conflict im-
mediately.

To support cache overflow of speculative state, a hardware-based overflow
table (akin to a software-managed translation lookaside buffer) is added
to the miss path of the L1 cache. Replacement of a speculatively modified
cache line results in it being written back to a different (software-specified)
region of the process’s virtual memory space. A miss in the overflow table
results in a trap to software, which can then set up the necessary mapping.
In other words, software controls where and how the speculative modifica-
tions are maintained while hardware performs the common case (in the crit-
ical path) operation of copying data into and out of the cache.

decoupled coNflicT deTecTioN aNd resoluTioN

Access tracking can be performed in hardware by adding extra bits in the
private cache to indicate a speculatively modified copy. However, this track-
ing is bounded by the size of the cache. Alternative forms of tracking for an
unbounded amount of metadata include Bloom-filter signatures [3] and ECC
bits in memory [2]. Our hardware [16] provides one set of Bloom filters on
each processor to represent the read and write sets of the running thread
and another to summarize the speculative read and write sets of all cur-
rently preempted threads. These signatures and, in some cases, the PDI state
bits are checked on coherence protocol transitions in order to detect con-
flicts among concurrently executing transactions.

To decouple conflict detection from resolution time, we provide conflict sum-
mary tables (CSTs) that record the occurrence of conflicts without necessarily
forcing immediate resolution. More specifically, CSTs indicate the transac-
tions that conflict, rather than the locations on which they conflict. This in-
formation concisely captures what a TM system needs to know in order to
resolve conflicts at some potentially future time. Software can choose when
to examine the tables and can use whatever other information it desires (e.g.,
priorities) to drive its resolution policy.

When a transaction commits, its speculative state is made visible to the rest
of the system. To avoid the doomed transaction problem without software
polling or sandboxing, conflicting transactions must be alerted and aborted
immediately. We enable such aborts with a mechanism known as alert-on-
update (AOU). This mechanism adds one extra bit, set under software con-
trol, to each tag in the cache. When the cache controller detects a remote
write of a line whose bit is set, it notifies the local processor, effecting an
immediate branch to a previously registered handler. This mechanism can
be very lightweight, since the handler invocation is entirely at the user level.
By ensuring immediate aborts, AOU avoids the need for validation, thereby
eliminating a large fraction of the cost for the metadata checks shown in
Figure 2. By choosing what (data, metadata, or transaction status word) and
when (at access or commit time) cache lines are tagged as AOU, software can
choose between object-based and block-based granularity and among eager,
mixed, and lazy conflict resolution.

Using AOU, PDI, signatures, and CSTs, we have developed a series of soft-
ware-controlled, hardware-accelerated TM systems. RTM-Lite [15, 20] uses
AOU alone for validation and conflict detection in a software TM framework
(RSTM [18]). RTM-Lite is able to achieve up to a 5x speedup over RSTM on a
single thread. RTM [15] uses both AOU and PDI to eliminate validation and

; LO G I N : 	A pr I L 	20 0 9	 tA ppI N G	I NtO	pA r A LLe LI sm	wIth	tr A N sAc tI O N A L	m emO ry	 21

versioning/copy overhead for transactions that fit in the cache. RTM is able
to achieve up to an 8.7x speedup over RSTM. At the same time, it achieves
only 35%–50% of the single-thread throughput of coarse-grain locks. The
remaining overhead is due to software metadata updates and to the indi-
rection needed for compatibility with transactions that fall back to software
after overflowing the cache space available to PDI.

FlexTM [16] uses all four mechanisms to achieve flexible policy control
without the need for software-managed metadata. The resulting single-
thread performance is close to that of coarse-grain locks, demonstrating that
eliminating per-access software overheads is essential to realizing the full
potential of TM. Scalability is also improved relative to RTM-Lite and RTM.
In contrast to other systems supporting lazy conflict resolution (e.g., TCC),
FlexTM avoids the need for commit-time conflict detection: A processor’s
CSTs, which are purely local structures, identify the transactions with which
the running transaction conflicts. Software can easily iterate through those
transactions, aborting each. Experimental results [15–17, 22] confirm the
ability to improve throughput by tailoring conflict resolution time and con-
tention management policy based on application access patterns and over-
all system goals. The decoupled nature of the various hardware mechanisms
also allows them to be used for a variety of non–TM-related tasks, including
debugging, security, fast locks, and active messages.

conclusion

The goal of Transactional Memory is to simplify synchronization in shared-
memory parallel programs. Pure software approaches to implementing TM
systems suffer from performance limitations. In this article, we presented
an overview of emerging hardware support for TM that enhances perfor-
mance, but with some limitations. The technology is still in its infancy, and
widespread adoption will depend on the ability to support a wide spectrum
of application behaviors and system requirements. Enforcing a single policy
choice at design time precludes this flexibility. Hence, we advocate hardware
acceleration of TM systems that leave policy in software. We described a set
of mutually independent (decoupled) hardware mechanisms consistent with
this approach and presented a series of systems that use this hardware to
eliminate successive sources of software TM overhead. Decoupling facilitates
incremental development by hardware vendors and leads to mechanisms
useful not only for TM, but for various other purposes as well [15, 16, 19].

Several challenges remain. We need developers to integrate TM with existing
systems, introduce new language constructs, and develop the necessary tool-
chains. We also need to support composability and allow existing libraries
to coexist with TM. Finally, we need to resolve a variety of challenging se-
mantic issues, through a combination of formalization and experience with
realistic applications. We hope this article will help to foster that process by
stimulating broader interest in the promise of transactional memory.

ackNowledgMeNTs

This work was supported in part by NSF Grant Nos. CCF-0702505, CNS-
0411127, CNS-0615139, CNS-0834451, and CNS-0509270 and by NIH
Grant Nos. 5 R21 GM079259-02 and 1 R21 HG004648-01.

22	 ; LO G I N : 	VO L . 	3 4, 	N O. 	2

refereNces

[1] C.S. Ananian, K. Asanovic, B.C. Kuszmaul, C.E. Leiserson, and S. Lie,
“Unbounded Transactional Memory,” Proc. of the 11th Int’l Symp. on High Per-
formance Computer Architecture, San Francisco, CA, Feb. 2005.

[2] L. Baugh, N. Neelakantan, and C. Zilles, “Using Hardware Memory Pro-
tection to Build a High-Performance, Strongly Atomic Hybrid Transactional
Memory,” Proc. of the 35th Int’l Symp. on Computer Architecture, Beijing, China,
June 2008.

[3] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas, “Bulk Disambiguation of
Speculative Threads in Multiprocessors,” Proc. of the 33rd Int’l Symp. on Com-
puter Architecture, Boston, MA, June 2006.

[4] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum, “Hybrid Transactional Memory,” Proc. of the 12th Int’l Conf. on Archi-
tectural Support for Programming Languages and Operating Systems, San Jose,
CA, Oct. 2006.

[5] D. Dice, O. Shalev, and N. Shavit, “Transactional Locking II,” Proc. of the
20th Int’l Symp. on Distributed Computing, Stockholm, Sweden, Sept. 2006.

[6] S. Diestelhorst and M. Hohmuth, “Hardware Acceleration for Lock-Free
Data Structures and Software-Transactional Memory,” presented at Work-
shop on Exploiting Parallelism with Transactional Memory and Other Hard-
ware Assisted Methods (EPHAM), Boston, MA, Apr. 2008 (in conjunction
with CGO).

[7] A. Gonsalves, “Sun Delays Rock Processor by a Year,” EE Times, 7 Feb.
2008: http://www.eetimes.com/rss/showArticle.jhtml?articleID=206106243.

[8] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M. Prabhu,
H. Wijaya, C. Kozyrakis, and K. Olukotun, “Transactional Memory Coher-
ence and Consistency,” Proc. of the 31st Int’l Symp. on Computer Architecture,
Munich, Germany, June 2004.

[9] M. Herlihy and J.E. Moss, “Transactional Memory: Architectural Support
for Lock-Free Data Structures,” Proc. of the 20th Int. Symp. on Computer Archi-
tecture, San Diego, CA, May 1993. Expanded version available as CRL 92/07,
DEC Cambridge Research Laboratory, Dec. 1992.

[10] S. Kumar, M. Chu, C.J. Hughes, P. Kundu, and A. Nguyen, “Hybrid
Transactional Memory,” Proc. of the 11th ACM Symp. on Principles and Practice
of Parallel Programming, New York, March 2006.

[11] V.J. Marathe, W.N. Scherer III, and M.L. Scott, “Adaptive Software
Transactional Memory,” Proc. of the 19th Int’l Symp. on Distributed Computing,
Cracow, Poland, Sept. 2005.

[12] C.C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stan-
ford Transactional Applications for Multi-Processing,” Proc. of the 2007 IEEE
Int’l Symp. on Workload Characterization, Seattle, WA, Sept. 2008.

[13] R. Rajwar and J. R. Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution,” Proc. of the 34th Int’l Symp. on
Microarchitecture, Austin, TX, Dec. 2001.

[14] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing Transactional Mem-
ory,” Proc. of the 32nd Int’l Symp. on Computer Architecture, Madison, WI, June
2005.

[15] A. Shriraman, M.F. Spear, H. Hossain, S. Dwarkadas, and M.L. Scott,
“An Integrated Hardware-Software Approach to Flexible Transactional Mem-
ory,” Proc. of the 34th Int’l Symp. on Computer Architecture, San Diego, CA, June

; LO G I N : 	A pr I L 	20 0 9	 tA ppI N G	I NtO	pA r A LLe LI sm	wIth	tr A N sAc tI O N A L	m emO ry	 23

2007. Earlier but expanded version available as TR 910, Dept. of Computer
Science, Univ. of Rochester, Dec. 2006.

[16] A. Shriraman, S. Dwarkadas, and M.L. Scott, “Flexible Decoupled
Transactional Memory Support,” Proc. of the 25th Int’l Symp. on Computer Ar-
chitecture, Beijing, China, June 2008. Earlier version available as TR 925,
Dept. of Computer Science, Univ. of Rochester, Nov. 2007.

[17] A. Shriraman and S. Dwarkadas, TR 939, Dept. of Computer Science,
Univ. of Rochester, Sept. 2008.

[18] M.F. Spear, V.J. Marathe, W.N. Scherer III, and M.L. Scott, “Conflict De-
tection and Validation Strategies for Software Transactional Memory,” Proc. of
the 20th Int’l Symp. on Distributed Computing, Stockholm, Sweden, Sept. 2006.

[19] M.F. Spear, A. Shriraman, H. Hossain, S. Dwarkadas, and M.L. Scott,
“Alert-on-Update: A Communication Aid for Shared Memory Multiproces-
sors” (poster paper), Proc. of the 12th ACM Symp. on Principles and Practice of
Parallel Programming, San Jose, CA, Mar. 2007.

[20] M.F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and M.L.
Scott, “Nonblocking Transactions without Indirection Using Alert-on-
Update,” Proc. of the 19th Annual ACM Symp. on Parallelism in Algorithms and
Architectures, San Diego, CA, June 2007.

[21] M.F. Spear, M.M. Michael, and C. von Praun, “RingSTM: Scalable
Transactions with a Single Atomic Instruction,” Proc. of the 20th Annual ACM
Symp. on Parallelism in Algorithms and Architectures, Munich, Germany, June
2008.

[22] M.F. Spear, L. Dalessandro, V.J. Marathe, and M.L. Scott, “Fair Conten-
tion Management for Software Transactional Memory,” Proc. of the 14th ACM
Symp. on Principles and Practice of Parallel Programming, Raleigh, NC, Feb.
2009.

[23] J. M. Stone, H.S. Stone, P. Heidelberger, and J. Turek, “Multiple Reser-
vations and the Oklahoma Update,” IEEE Parallel and Distributed Technology,
1(4):58–71, Nov. 1993.

[24] M. Tremblay and S. Chaudhry, “A Third-Generation 65 nm 16-Core
32-Thread Plus 32-Scout-Thread CMT,” Proc. of the Int’l Solid State Circuits
Conf., San Francisco, CA, Feb. 2008.

[25] L. Yen, J. Bobba, M.R. Marty, K.E. Moore, H. Valos, M.D. Hill, M.M.
Swift, and D.A. Wood, “LogTM-SE: Decoupling Hardware Transactional
Memory from Caches,” Proc. of the 13th Int’l Symp. on High Performance Com-
puter Architecture, Phoenix, AZ, Feb. 2007.

