
Refereeing Conflicts in
Hardware Transactional Memory

Arrvindh Shriraman
Sandhya Dwarkadas

Department of Computer Science

1

Tx 1

Tx 2

Conflict: concurrent accesses to the same location from
two different transactions where at least one is a write

In the absence of conflicts, Hardware TM provides
low latency and high scalability

With conflicts, performance can degrade significantly

Conflicts affect performance

2

0

3

6

9

12

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Threads

Low High
Vacation

Conflicts can be common

We anticipate that as TM becomes popular
large and long transactions will become common
new intricate sharing patterns will introduce conflicts

3

Application txs w/ conflicts
Bayes 85%

Delaunay 85%
Intruder 90%
Kmeans 15%
Vacation 73%

STMBench7 68%

Conflict Management Primer

4

T1

Store A

T
im

e

Conflict Management Primer
Conflict Type

what type of accesses ?
read-write, write-read, write-write

Conflict Detection
when to resolve ?
Eager (at access), Lazy (at commit)

4

T1

Store A

T2

Load A

T
im

e

Conflict Management Primer
Conflict Type

what type of accesses ?
read-write, write-read, write-write

Conflict Detection
when to resolve ?
Eager (at access), Lazy (at commit)

Contention Management
How to choose loser ?
priority, timestamp, etc.

Action
What action to take ?
stall, abort self, abort other etc.

4

T1

Store A

T2

Load A

T
im

e

Our Contributions

Comprehensive study of policy in HTMs
conflict detection and conflict management interplay
quantify effect on application performance

Is Lazy better than Eager ?
can we do better ?

How does the contention manager help ?
is it important ?

5

Experimental Platform
FlexTM [ISCA’08]

allows conflict detection to be controlled in software
permits pluggable software contention managers

TM Hardware: 16 core CMP, Private L1s, Shared L2
signatures for conflict detection
private L1s for speculative buffering

overflow handled by hardware controller
transaction commit protocol

allows parallel transaction commits
no centralized arbiter

6

Workloads

TM Workloads
STAMP (Stanford)
STMBench7 database (EPFL)
Web-cache and Graph stress tests (U.Rochester)

TM Policies
Conflict detection: Lazy, Eager, and Mixed
Contention Management: w/ and w/o stalling,
timestamps, access sets, aborts

7

Is Lazy better than Eager ?

Can we do better ? : Mixed

Is the contention manager important ?

8

Eager (manages conflict at access time)
Goal: If transactions can’t commit together, save work

to progress, transactions abort enemies
transactions can stall and try to elide the conflict

Lazy (manages conflict at commit)
Goal: postpone detection hoping conflict disappears

to commit, writers abort enemies
writers can stall to elide reader conflicts

Conflict Detection

9

Futile aborts waste work and hinder progress
stalling access may help avoid the conflict

Inability to overlap conflicting transactions

Eager’s Performance Limitations

10

T1

Store A

Abort

T2

Load A

Abort

T
im

e

T3

Store A

T1

load A

Abort

T
im

e

T2

load A

T3

Store AAbort

Eager w/ Stalling

Can reduce occurrence of futile aborts (livelock ?)
reduces wasted work due to aborts

Is it good enough ?
cannot exploit concurrency in application

11

0

2

4

6

8

Bay
es

Dela
un

ay

Int
ru

de
r

Va
ca

tio
n

STM
Ben

ch
7

LF
UCac

he

Grap
h

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Req. wins Req. wins+stalling

Li
ve

lo
ck

16 threads
1 thread = 1

Lazy’s Benefits (1/2)
Small Contention Window

Conflicts checked only at commit
reduces likelihood of conflict winner being aborted
can reduce the occurrence of futile aborts
prioritizing the commiter avoids livelock in practice

12

T1

Load A

Abort

T2

Store A

T
im

e

T3

Store B

Load B

Also observed in Software TMs by Spear et al. [PPOPP’09]

Lazy’s Benefits (2/2): More commits
Even transactions with overlapping accesses

can execute concurrently
can commit concurrently

13

T1

Load R

T2

load RT
im

e

T3

Load R

Load A Store RLoad B

Lazy’s Benefits (2/2): More commits
Even transactions with overlapping accesses

can execute concurrently
can commit concurrently

13

T1

Load R

T2

load RT
im

e

T3

Load R

Load A Store RLoad B

Caveat: Can waste more work than Eager
postponing conflict detection was futile (T2 commits first)
may be solved by stalling commit

extra work
wasted

Abort Abort

Lazy performs better than Eager

14

0

2

4

6

8

10

Bay
es

Dela
un

ay

Int
ru

de
r

Va
ca

tio
n

STM
Ben

ch
7

LF
UCac

he

Grap
h

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t Eager w/ Stalling Lazy w/ Stalling

Lazy improves performance over Eager (Avg. 40% , Max. 2x)
Ensures progress in non-scalable workloads
Lazy may lose performance due to wasted work (STMBench7)
 postponing dueling read-write conflicts is futile

Li
ve

lo
ck

Is Lazy better than Eager ?

Can we do better ? : Mixed

Is the contention manager important ?

15

Mixed Conflict Detection

Tunes detection based on conflict type
Detects Write-Write conflicts eagerly

may save wasted work, if winner commits
Detects Read-Write and Write-Read conflicts lazily

allows useful concurrency

16

Added Benefit: complexity-effective implementation
needs to support only single-writer and/or multiple-readers
at most two versions of data, speculative and non-speculative

Mixed

Mixed improves performance by ~40% in STMBench7
saves wasted work on conflicts between long and short writers
exploits reader-writer concurrency like Lazy

17

0

2

4

6

8

10

Bayes Delaunay Intruder Vacation STMBench7

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t Eager Lazy Mixed

Mixed’s Problem
Mixed can suffer from weaker progress conditions than Lazy

inherited from Eager write-write detection
can be solved with appropriate contention managers

18

0

0.2

0.4

0.6

0.8

1.0

1.2

LFUCache RandomGraph

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Lazy / Stalling Lazy w/ Age
Mixed w/ Stalling Mixed w/ Age

Li
ve

lo
ck

Is Lazy better than Eager ?

Can we do better ? : Mixed

Is the contention manager important ?

19

Contention Management

Is a priority scheme that chooses winner in a conflict
can help progress by prioritizing starving transactions
simplified in Hardware TMs since transactions are visible

Priority arbitration (our implementation)
always stall before making a decision
higher priority transaction always make’s progress
lower priority transaction can stall or abort itself
priority changed on various dynamic events,
hardware performance counters to reduce overheads

20

Priority Schemes
Age (similar to Greedy [Guerraroui, PODC’05])

global timestamp acquired by transaction at begin, retained
on aborts, discarded on commits
ensures progress of the oldest transaction

Aborts
local abort counter
tries to ensure progress of starving transaction
theoretically, transaction could always get beaten

Size (similar to Polka [Scherer, PODC’05])
local read set counter, retained on aborts (like Karma)
prioritizes transactions which have made progress

21

Centralized Priority (Age)

Implemented in software
Timestamp suffers from scalability issues
Hinders concurrency in Eager by convoying readers
behind a writer (performance drops ~10%)

22

0

2

4

6

8

Bay
es

Dela
un

ay

Int
ru

de
r

Va
ca

tio
n

STM
Ben

ch
7

LF
UCac

he

Grap
h

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Eager w/ Stalling Eager w/ Age

Distributed Priority (Size and Aborts)
Cheaper to implement, no centralized mechanisms
Weaker progress guarantees

no provable starvation or livelock freedom
Size is highest performing manager

maximizes parallelism ensuring reader sharers make progress
ensures writers don’t starve in practice

23

0

2

4

6

8

10

Bayes Delaunay Intruder Vacation STMBench7

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Eager w/ Age Eager w/ Aborts Eager w/ Size

Summary

Lazy performs better than Eager (Avg. 40% increase)
narrows contention window and ensures progress
exploits reader-writer parallelism to attain more throughput

Mixed is a good tradeoff between desire to exploit
concurrency and implementation complexity

Contention manager
less important in Lazy
can help with progress in Eager and Mixed

24

Policy important in HTMs, tradeoffs similar to STMs

Summary

24

Look at paper for details on
1) conflict patterns in our TM workloads
2) implementation tradeoff discussion

Acknowledgments
Multifacet Research group, Wisconsin

STAMP group, Stanford
Transaction Benchmark group, EPFL

http://www.cs.rochester.edu/research/synchronization

http://www.cs.rochester.edu/research/cosyn
http://www.cs.rochester.edu/research/cosyn

