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Abstract

The development of “intelligent” dialogue assistants and conversational agents,
capable of being transferred from one domain to another with minimal engineering
necessary, has been consistently high on the priority queue of AI research. Nonethe-
less, progress towards this achievement has been slow and incremental, with the
problem remaining one of the many unsolved puzzles of the field. One crucial sub-
problem that must first be addressed is the development of an underlying dialogue
manager capable of seamlessly coordinating several interacting elements: the inter-
pretations of utterances that the system hears, the system’s own desires and beliefs,
and other external events that happen in the world. Furthermore, the system must
perform this coordination in a way that is robust to unexpected events and that is
not inherently tied to any particular task - much like human dialogue participants
are capable of.

This paper surveys various theoretical tools that have been proposed to model
the way that humans and systems can interpret and produce dialogue - from plans
to schemas - as well as a selection of notable dialogue manager implementations that
in some way contribute to the goal of developing a fully general dialogue system.
Furthermore, it introduces preliminary steps towards the creation of a novel dialogue
manager that relies on dialogue schemas (symbolic representations of prototypical
sequences of events in a dialogue), and deep understanding using a type-coherent,
expressive logical form resembling surface English.
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Chapter 1

Introduction

In some sense, creating a truly general, human-like spoken dialogue system is an
“AI-hard” task: at least as hard as the hardest problems in AI. Such a system would
require vast amounts of world knowledge across various domains; about both pro-
cedures and objects in the world. It would also require dynamically acquiring such
knowledge. It would require advanced perceptual and interpretive capabilities, to
transform auditory or imagistic inputs to latent symbolic (or sub-symbolic) repre-
sentations. It would require extensive abilities to reason using those representations
and stored knowledge, and the ability to plan or execute actions with the intent of
achieving its own desires and objectives.

To reach a more achievable (though still lofty) goal, some of these problems
can, and should, be abstracted away. What remains is the problem of dialogue
management: how an automated system should mediate between its interpretations
of the utterances of interlocutors, its own private cognitive state (goals, obligations,
memories, knowledge, etc.), the context of the dialogue (facts that are assumed to
be “common ground” between participants), and exogenous events that it observes
in the world. Along these lines, Traum and Larsson, 2003 define a dialogue manager
as consisting of the following (minimal) responsibilities:

1. Updating the dialogue context on the basis of the system’s interpretations of
communication.

2. Using the dialogue context [as well as knowledge or memories possessed by the
system] to guide interpretation of communication or observed external events.

3. Interfacing with domain-specific reasoners (e.g., a planner, ontology, or knowl-
edge base) to coordinate dialogue and non-dialogue behavior and reasoning.

4. Deciding what action or utterance the system should perform next, and when
it should perform it.
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In this paper, I present an overview of dialogue management techniques for
human-computer conversational systems, with a focus on open-domain systems that
contribute in some way to the aforementioned goal of general AI - as opposed to
systems that rely on limited frameworks applicable only in narrow tasks.

In Chapter 2, I discuss some of the theoretical prerequisites necessary to con-
textualize later dialogue manager implementations - these principally include the
notions of plans, and schemas. Traditionally, theories of human dialogue have fo-
cused on the former concept - plans, i.e., sequences of actions that people take to
achieve particular goals. Indeed, plans seem to take on first-order significance in
human behavior: we can construct and execute them, simulate them in our minds,
“debug” them, and infer plans of others (Cohen and Perrault, 1979). Additionally,
we can communicate about plans and even “share” joint plans with other people.

However, in natural human conversation, people seem to be capable of adaptive
reasoning beyond what this traditional view of plans can afford us. Turner, 1994
provides several characteristics of adaptive reasoning, including the ability to meld
between both detailed planning and more “reactive” behavior, the ability to modify
ongoing actions, to react to unanticipated events, and to seize opportunities. The
human comportment of flexible, reactive behavior can be captured by the second
concept: schemas, i.e., learned representations of “prototypical” patterns of events
that people can construct and use to flexibly guide action, in a manner that is
sensitive to unexpected events and that does not necessarily rely on detailed planning.

In Chapter 3, I discuss a collection of notable open-domain dialogue manager
implementations that contribute in some way to the goal of developing a general
dialogue manager which is domain-independent - in that one can have semantically
broad conversations with it irrespective to any particular task - while also competent
in applied tasks, i.e., those involving collaborative planning or domain-specific rea-
soning. Though no system has yet accomplished this, the last few decades have seen
the development of a number of both integrated systems - end-to-end conversational
systems competent in some applied task - and general dialogue shells - semantically
broad domain-independent dialogue managers that are not “complete”, but are po-
tentially usable as a sub-module in some practical system. I restrict my attention in
this chapter to a handful of systems that have been impactful in the literature, and
that appear to be a step towards a fully general dialogue manager.

Finally, in Chapter 4, I present my own preliminary efforts in this direction,
predicated on the concept of dialogue schemas and the development of a dialogue
manager that uses schemas as a basis for adaptive planning. I first describe the
overall architecture of the dialogue manager being developed - Eta - and then discuss
some virtual agents that have been developed using Eta, applied in specific practical
domains. Some possible directions of future work are briefly highlighted.
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Chapter 2

Theories of Plan and
Schema-Based Dialogue

Before there were human-computer dialogue systems, there were attempts to explain
and analyze human-human dialogue. Perhaps unsurprisingly, the former systems
often had their roots in the models developed as a result of the latter efforts - the goal
of a human-computer dialogue system is, after all, to replicate the richness of natural
human conversation. Thus, before presenting a survey of human-computer dialogue
systems, it is helpful to provide a conceptual base by first reviewing a selection of
foundational theoretical works that contributed formal models of dialogue.

Most theoretical dialogue models to date have relied on dialogue plans: sequences
of dialogue actions that are dynamically chained together by an agent in order to
satisfy some dialogue goal, potentially subject to a changing dialogue context. Theo-
retical models of dialogue planning, in turn, can be characterized either as relying on
reasoning over dialogue states (typically involving agents’ internal cognitive states)
to find a sequence of actions satisfying a goal state, or as relying on more reflexive
or analogical reasoning based on learned patterns of behavior. In particular, plan-
ning systems reliant on the latter style of reasoning have often utilized the concept
of schemas: structured representations capturing stereotypical patterns of events,
objects, or concepts.

In this chapter, I first review the classical STRIPS state-space search planning
formalism (Fikes and Nilsson, 1971) and discuss attempts to apply it to dialogue
planning, drawing on theories of speech acts from linguistics. Next, I discuss a
conceptual shift towards having plans represent internal cognitive attitudes of agents,
and eventually towards collaborative plans that agents jointly enact. I then describe
a generalization of this approach based on “information states”, which encompass
various aspects of common ground as well as dialogue plans and cognitive states.
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Finally, I introduce the notion of schemas in greater detail and discuss a precursory
theory of schema-based dialogue planning developed by Roy Turner (Turner, 1994)
that uses schemas in conjunction with context to form dialogue plans.

2.1 Hierarchical Plans

2.1.1 STRIPS-like Operators
The earliest theories of planning-based dialogue are in essence extensions of the
STRIPS planning formalism (Fikes and Nilsson, 1971). A STRIPS planning problem
defines a set of operators, or actions, which operate on states of the world. Theories of
dialogue based on the STRIPS framework use operators to represent speech acts (for
instance, for “request” or “inform” speech acts), and include in their representations
of world states the individual cognitive states of dialogue participants, such as beliefs
and intentions.

STRIPS Planning Formalism

Before showing how STRIPS-like operators can be used to model speech acts, I first
briefly review the classical first-order STRIPS planning framework introduced by
Fikes and Nilsson, 1971. Formally, a STRIPS problem is a tuple ⟨P , O, I, G⟩, where:

• P is a set of propositions, i.e. ground atomic formula from a first-order vocab-
ulary.

• O is a set of operators (or action types).

• I ⊆ P is the initial state.

• G ⊆ P is the goal state.

STRIPS employs a closed world assumption (CWA), such that for each state s ⊆ P
and for any P ∈ P , if P ̸∈ s, then ¬P is assumed to be true.

Furthermore, each operator o ∈ O is a tuple o = ⟨header, pre, eff⟩, where:

• header specifies an operator name and a subset of variables in the first-order
vocabulary.

• pre is a set of preconditions, i.e. literals whose arguments are constants in the
first-order vocabulary or variables occurring in header. Let pre+ and pre−

be the set of atoms corresponding to positive and negative literals, respectively.
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• eff is a set of effects, i.e. literals whose arguments are constants in the first-
order vocabulary or variables occurring in header. Let eff+ and eff− be
the set of atoms corresponding to positive and negative literals, respectively.

The effect of applying an operator o to a state s is defined by the successor function
succ:

succ(o, s) =

(s \ eff−(o)) ∪ eff+(o) pre+(o) ⊆ s and pre−(o) ∩ s = ∅
s otherwise

Applying a sequence of operators can be defined recursively as follows:

succ([], s) = s

succ([o1, o2, ..., on], s) = succ([o2, ..., on], succ(o1, s))

A STRIPS plan is therefore a sequence of operators ∆ = [o1, ..., on] such that
G ⊆ succ(∆, I). There are multiple algorithms for plan construction, but a typi-
cal algorithm is backward chaining: starting at G, find an operator o that has G as
an effect, and then add unsatisfied preconditions of o as new goals, and repeat until
the initial state is reached or some other termination criterion.

Two extensions to this formalism are commonly made, in order for it to be more
readily applicable to real-life planning problems. First, plans often have a hierarchical
structure: performing an “open door” action, for instance, might decompose into a
bunch of sub-actions or sub-goals - moving towards the door, grasping the handle,
etc. The operator then becomes a tuple ⟨header, pre, eff, body⟩. body may be a
sequence of operators [o′

1, ..., o′
n], or another goal state G ′ to be achieved. As operator

oi in the top-level plan is executed, body(oi) is recursively executed (in the former
case), or the plan construction algorithm is run on the new goals to find a subplan
which is then executed (in the latter case).

The second extension concerns the fact that plans often aren’t strictly linear, but
can consist of actions whose order may be flexible or interleaved. This is addressed by
imposing a partial ordering on actions, rather than a total order. The modified plan
construction algorithm induces a directed acyclic graph (DAG) where nodes consist
of predicates and operators (and subplan graphs, in the hierarchical case), and edges
represent the precondition and effect relations between nodes (and operator/body
links, in the hierarchical case).
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Adapting Operators for Speech Acts

A seminal work in dialogue theory by Cohen and Perrault, 1979 presents a relatively
direct application of STRIPS-like operators to model dialogue as a sequence of speech
acts.

The classical theory of speech acts developed by philosophers of language (Austin,
1962; Searle, 1969) posited that any locutionary act (an utterance of some sentence
with definite meaning) corresponds to an associated illocutionary act (the act per-
formed in making the utterance) and perlocutionary act (the act realized by per-
forming the utterance). For instance, the locutionary act of uttering “It is cold in
here.” to you might have an associated illocutionary act of requesting you to close a
window, and an associated perlocutionary act of convincing you to close a window.

Searle, 1969 suggests several categories of necessary and sufficient conditions for
the successful, or felicitous, performance of illocutionary acts. These conditions
are presented below, illustrated using the example of speaker S uttering T (with
propositional content p) to request that hearer H do action A.

• Normal input/output conditions include that H is not deaf, S is not joking,
etc.

• Propositional content conditions state restrictions on the propositional
content of utterances corresponding to specific speech acts. E.g., in expressing
that p by utterance T, S predicates a future action of H.

• Preparatory conditions state preconditions for a speaker felicitously per-
forming a speech act. E.g., H is able to do A; S believes that H is able to do
A; it’s not obvious to S and H that H will do A in the normal course of action.

• Sincerity condition states the condition for a speech act being sincere. E.g.,
S must want H to do A.

• Essential condition states the condition that a speech act must count as an
act to achieve something. E.g., S intends that the utterance T will convince H
to do A.

• Reflexive intention condition states that (i1) S intends for H to believe that,
by uttering T, S intends for them to do A; (i2) S intends for H to recognize
their intention i1, and (i3) S intends for H to be convinced to do A by means
of recognition of i1.

In order to translate Searle’s conditions to STRIPS-like operators, a first-order
modal logic is assumed, with AGT BELIEVE P (henceforth abbreviated as BEL) and
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INFORMREF(S, H, λxDx):

CANDO.PR: ∃y S BEL (ixDx)=y
WANT.PR: S BEL S WANT informref-instance
EFFECT: ∃y H BEL S BEL (ixDx)=y

Figure 2.1: Example of “informref” speech act operator from (Cohen and Perrault, 1979).

CONVINCEREF(AGT1, AGT2, λxDx):

CANDO.PR: ∃y AGT BEL AGT1 BEL (ixDx)=y
EFFECT: ∃y AGT BEL (ixDx)=y

Figure 2.2: Example of an operator allowing the perlocutionary effect of “informref”.

AGT WANT P denoting the propositions that AGT believes that P is true, and that
AGT intends that P, respectively. A state in the planning model therefore includes
the beliefs and intentions of each agent. The preconditions of operators are divided
into WANT.PR preconditions and CANDO.PR preconditions, which represent the “non-
obviousness‘ preparatory condition and any remaining preparatory conditions of the
speech act, respectively. The EFFECT of the operator reflects the essential condition
of the speech act (i.e., S believes that S intends some instantiation of the speech act).
Other conditions of Searle’s, Cohen argues, emerge out of the process of planning
itself and are not represented in the particular speech act operators.

Furthermore, to enable complete planning, the perlocutionary acts must be mod-
elled as operators as well - for instance, the inform speech act produces in the hearer
a belief that the speaker believes some proposition, but an accompanying convince
operator must be added to reach the state where the hearer believes the proposition.

Examples of operators for informref (informing a hearer of the value of some def-
inite description, such as in a ‘wh-question’) and convinceref are shown in Figures
2.1 and 2.2, respectively. The preconditions and effects of these operators contain
free variables which get ‘filled in’ as the plan is constructed. Note that “ixDx” rep-
resents the definite description “the x which is D”, where D is a predicate with one
free variable.

Further details of this theory are developed by Allen and Perrault, 1980, who
provide a tractable algorithm for collaboratively constructing and executing dialogue
plans as a conversation proceeds. The logical representation and operator syntax are
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the same as in (Cohen and Perrault, 1979), except that operators are augmented
with body decompositions, thereby resulting in the DAG plan structures described
in the overview of STRIPS and its extensions. Operators may also specify a set
of constraints on the instantiation of the parameters occurring in the header of the
operator.

For a goal-oriented dialogue to proceed, an agent will often have to infer the plans,
beliefs, and goals of the other agent before continuing their own plan. This inference
process is modelled as a search through a set of partial plans, each represented as
tuples π = ⟨∆alt, ∆exp, r⟩, where:

• ∆alt is an alternative plan graph, created by chaining plan inference rules from
an observed action by the other agent.

• ∆exp is an expected plan graph, created by chaining plan construction rules
from an expected goal of the other agent.

• r ∈ R is a rating for the partial plan π, initialized to 1 and updated using a
set of heuristics.

A non-exhaustive list of examples of plan inference rules are provided in eqs. (2.1)
to (2.3), and plan construction rules in eqs. (2.4) to (2.6). Application of each rule
yields the addition of an additional node and arc in the corresponding plan graph.

[Precondition-Action Rule] S BEL A WANT P ⇒ S BEL A WANT ACT
if P is a precondition of ACT (2.1)

[Body-Action Rule] S BEL A WANT B ⇒ S BEL A WANT ACT
if B is part of the body of ACT (2.2)

[Action-Effect Rule] S BEL A WANT ACT ⇒ S BEL A WANT E
if E is an effect of ACT (2.3)

[Action-Precondition Rule] X WANT ACT ⇒ X WANT P
if P is a precondition of ACT (2.4)

[Action-Body Rule] X WANT ACT ⇒ X WANT B
if B is part of the body of ACT (2.5)

[Effect-Action Rule] X WANT E ⇒ X WANT ACT
if E is an effect of ACT (2.6)
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Note that the plan construction rules are simply reciprocals of the plan inference
rules (with the caveat that the belief operators may be dropped, as plan construction
rules represent the process by which an agent constructs their own plan, rather than
beliefs about the plans of others). Indeed, the underlying intuition behind the plan
inference algorithm is that this process can be made tractable by simultaneously
simulating both forward chaining from an observed action and backward chaining
from an expected goal, finding pairs that ‘meet in the middle’ with unifiable actions
or subgoals, and prioritizing the expansion of partial plans which are more likely to
efficiently lead to a unification.
Examples of heuristics used to assign ratings in the model include rules such as:

• Decrease the rating of a partial plan if it contains an action whose preconditions
are false at the time of the action’s execution.

• Increase the rating of a partial plan if its alternative contains propositions
which are unifiable with propositions in its expectation.

At each step of the plan inference algorithm, the partial plan with the high-
est rating is selected and an appropriate “task” is selected - the primary tasks are
identifying applicable inference rules for the partial plan, expanding the partial plan
according to the identified inference rules, finding referents for descriptions in plans,
or accepting a partial plan and terminating plan inference. The plan inference process
yields a plan graph which can then be executed by the agent.

A full treatment of the various inference rules, heuristics, and control of the plan
inference process used in Allen’s model will not be presented here; interested readers
may find those details in (Allen and Perrault, 1980).

2.1.2 Revising Plans for Collaborative Dialogue
Though the classical STRIPS-based theories of dialogue presented a powerful tool
for analysis of task-specific goal-oriented dialogues, they faced major limitations for
analyzing many types of collaborative dialogues:

• These models assumed that the inferring agent has both complete and correct
knowledge of available actions - this prevents analyses of dialogues where one
agent may have an invalid plan, and the other agent has to issue a correction
to them.

• A certain asymmetry in dialogue was also assumed: the speaker has private de-
sires and produces utterances, while the hearer attempts to infer the speaker’s
beliefs and intentions from the utterance and use them to construct their own
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plan. Grosz and Sidner, 1990 term this assumption the “master-slave assump-
tion”, and make the point that collaboration typically isn’t merely the combi-
nation of the individual plans of two or more agents, but rather is the result
of construction and execution of a joint plan.

Plans as Cognitive Attitudes

The first of these limitations was addressed by Pollack, 1990, who considered dia-
logues where participants attempted to communicate about potentially invalid plans.
For instance, a speaker might request the phone number of a hospital, under the im-
pression that her sibling is there, only to be corrected by the hearer that the sibling
has been discharged and can be reached at their home number. The assumption that
available plan operators are shared and mutually understood to both participants
fails in this case, and so Pollack proposes a recalibration: treating plan operators as
themselves private cognitive attitudes, with beliefs about plan operators that can be
correct or incorrect.

Pollack first notes that for agent A to have a plan to do act β, that consists of a
set of acts ∆, is really to have the following set of conditions:

1. A believes that A can execute each act α ∈ ∆.

2. A believes that executing the acts α ∈ ∆, in their (possibly partial) temporal
order, will entail A’s performance of β.

3. For each α ∈ ∆, A believes that by doing α, he will contribute to doing β or
some other act γ that plays a role in the plan.

4. A must intend to execute each act α ∈ ∆, in their (possibly partial) temporal
order.

5. A must intend to execute ∆ as a way of doing β.

6. For each α ∈ ∆, A must intend by doing α to contribute to doing β or some
other act γ that plays a role in the plan.

To further operationalize the conditions in 2 and 6, a more careful definition of
“contributing to an action” is required. Pollack considers two senses in which α
might contribute to β. First, α might generate β, in that by doing α, A would have
done β. For example, by uttering “It is cold in here” under certain conditions, A
would have generated the act of requesting a window to be closed. Second, α might
enable β. Though A searching a phone book for B’s number might enable A calling
B, it is certainly not the case that the former generates the latter.
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Pollack focuses primarily on SimplePlans, which are assumed to only have gen-
erate relations between acts within the plan, and no enable relations. Furthermore,
a first-order temporal logic (Allen, 1984) is assumed, with predicates HOLDS(P,t) and
OCCURS(α, A, t) denoting respectively that P holds throughout time t, and that
A performs act α during time t. The following predicates are additionally defined
(the former two have logical definitions given in the paper, while the remainder are
primitives):

• CGEN(α, β, C) : α conditionally generates β under certain conditions C.

• GEN(α, β, A, t) : A’s doing α at time t generates A’s doing β.

• EXEC(α, A, t) : A’s doing α at time t is executable.

• BEL(A, P, t) : A believes P throughout time t.

• INT(A, α, t1, t2) : Throughout time t1, A intends to do α at time t2.

Finally, a function by(α, β) is also defined, which maps its arguments to the act of
doing β by α. With this in hand, Pollack refines the previous conditions to define
A having a SimplePlan at time t1 to do αn, consisting of doing acts [α1, ..., αn−1] at
time t2:

SIMPLE-PLAN(A, αn, [α1, ..., αn−1], t2, t1) ⇐⇒
(1) BEL(A, EXEC(αi, A, t2), t1) for i = 1, ..., n ∧
(2) BEL(A, GEN(αi, αi+1, A, t2), t1) for i = 1, ..., n − 1 ∧
(3) INT(A, αi, t2, t1) for i = 1, ..., n ∧
(4) INT(A, by(αi, αi+1), t2, t1) for i = 1, ..., n − 1 ∧

(2.7)

The primary insight behind this new plan definition is that it allows us to talk
precisely about what it means for an agent A to have an invalid plan (as in the
phone number example above): A has the set of beliefs and intentions given by
the definition of SIMPLE-PLAN, and one or more of the beliefs is incorrect, or the
corresponding intentions unrealizable. Furthermore, A can believe that another agent
B has an invalid SIMPLE-PLAN if A attributes to B beliefs about the relations between
actions in a plan which A believes to be false. Unlike the STRIPS-based models,
these facts allow us to analyze conversations that deviate from “perfect” dialogue
behavior where agents operate according to mutually understood, well-formed plans.
Modelling plans as complex cognitive attitudes allows us, for instance, to analyze
dialogues where an agent issues a correction to another, or suggests some sort of
plan modification.
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Figure 2.3: The three components in the tripartite model of discourse structure.

SharedPlan Approach

Though Pollack’s work addressed the first of the aforementioned limitations, her
plan model ultimately still required hearers to reason about and adopt the goals
and beliefs of speakers in a way which is unrealistic in many collaborative dialogues.
The SharedPlan formalism attempts to address some of these limitations. Though
the SharedPlan theory is similar to the previous theories in that it employs a logical
planning approach and focuses primarily on reasoning about agents’ mental states, it
“differs significantly from the process of reasoning with plan operators” (Lochbaum,
1998): rather than each agent merely building and reasoning about individual plans,
the SharedPlan approach views dialogue participants as collaboratively building and
augmenting a joint plan by contributing information about their beliefs, wants, and
individual plans through utterances.

The SharedPlan theory was developed and refined over the course of many pub-
lications (Grosz and Sidner, 1990; Grosz and Kraus, 1996; Lochbaum, 1998); in the
following presentation, I will focus on the theory as outlined by Lochbaum as it
presents the most complete version of the theory.

At the core of the SharedPlan approach is a tripartite model of discourse structure
first introduced in Grosz and Sidner, 1986, consisting of a hierarchical structure of
utterances in the discourse, a “dominance hierarchy” of discourse-level intents (i.e.,
discourse purposes or DSPs) corresponding to discourse segments, and an attentional
state (represented as a stack of focus spaces, with each focus space containing relevant
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properties, objects, relations, as well as the discourse-level intent for that discourse
segment). These three components are illustrated in Figure 2.3. The components in
this model, particularly the dominance hierarchy of discourse-level intents, directly
correspond to relations among SharedPlans for dialogue acts.

Agents involved in a conversation can have Individual Plans (IP), defined analo-
gously to the SIMPLE-PLAN definition provided above, as well as Shared Plans (SP).
Each of these types of plans receives a full definition in Allen’s temporal logic (Allen,
1984); for brevity’s sake, only the high-level description of a SharedPlan will be given.

The conditions that must be met for a group of agents GR to have a SHARED-PLAN
for α are as follows:

0. GR is committed to performing α

1. GR has a recipe for α

2. For each single-agent constituent act βi in the recipe, there is an agent Gβi
∈

GR such that:

(a) Gβi
intends to perform βi

Gβi
believes that it can perform βi

Gβi
has an individual plan for βi

(b) The group GR mutually believe (2a)
(c) The group GR is commited to Gβi

’s success

3. For each multi-agent constituent act βi in the recipe, there is a subgroup of
agents GRβi

⊆ GR such that:

(a) GRβi
mutually believe that they can perform βi

GRβi
has a SharedPlan for βi

(b) The group GR mutually believe (3a)
(c) The group GR is commited to GRβi

’s success

In the above definition, a “recipe” for α is a set of constituent acts {β1, ..., βn},
parameters, and constraints. The truth of the ability-related conditions (e.g., (2a)
and (3a)) depends crucially on whether the agent has a recipe for an action, whether
it’s able to identify the parameters for the action, and whether it’s able to satisfy
the constraints of the recipe.

Agents can also have partial Individual Plans or Shared Plans (PIPs or PSPs,
respectively), which are IPs or SPs in which only a subset of the necessary conditions
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hold. Plans in which all conditions hold are also called full Individual Plans (FIPs)
or SharedPlans (FSPs). The process of collaborative reasoning with SharedPlans
involves augmenting a partial plan to build a full plan, with individual utterances
contributing to the augmentation process. Assuming that agents G1 and G2 already
have a PSP to do α, if G1 observes G2 make utterance U communicating proposition
P, then G1 will assume MB({G1,G2}, BEL(G2, P)), where MB is a predicate denoting
mutual belief. Subsequently, G1 will attempt to determine the relation of P to the
current SharedPlan based on the following conditions:

1. If G1 believes that U or P indicates the initiation of a subsidiary SharedPlan
for an act β, then G1 will assume Int.Th(G2, FSP({G1, G2}, β)) (where
Int.Th denotes an intention by an agent that something be true, and FSP
denotes that an agent has a full SharedPlan for act β), and decide whether he
is also willing to adopt the same intention.

2. If G1 believes that U or P indicates the completion of the current SharedPlan,
then G1 will assume BEL(G2, FSP({G1, G2}, α)), and determine if he has
the same belief.

3. Otherwise, G1 will ascribe to G2 a belief that P is relevant to the current
SharedPlan, and determine if he also believes that to be the case.

If the above is successful, then G1 will signal his agreement (possibly implicitly) and
augment his PSP.

We can now indicate the link between SharedPlans and the DSPs in the discourse
model more precisely: if DSP1 dominates DSP2, then there’s a subsidiary relationship
between the SharedPlans corresponding to these discourse segments. Similarly, com-
pleted discourse segments have full SharedPlans associated, while incomplete ones
have partial SharedPlans associated. Plan augmentation, as well as manipulations of
the focus stack, are therefore “reduced” to recognizing whether the user’s utterance
or proposition initiates, completes, or contributes to a discourse segment. Lochbaum
describes how this process may be implemented through a set of conversational de-
fault rules (i.e., inference rules that apply in absence of evidence to the contrary) and
a recipe graph constructed by composing individual recipes (essentially, production
rules with associated constraints).

In closing, Lochbaum notes several directions of future research: first, the plan
augmentation process needs to be further researched and developed; the exposition
given in the paper, though formal, was incomplete. Second, the analysis assumed
that DSPs always involved SharedPlans, though this need not always be the case.
Finally, there is the question of the utility of the SharedPlans theory for creating

16



practical collaborative systems - a topic that is discussed further in Section 3.1,
where I discuss dialogue systems created using the SharedPlans formalism.

2.1.3 Incorporating Grounding and Discourse Obligations
Though the SharedPlans approach addresses some limitations of the pure plan-based
approach, it still requires a strong degree of collaboration and reasoning in dialogue
which restricts its applicability. Other factors may be more apt in explaining many
‘day-to-day’ interactions. Traum and Allen, 1994, for instance, discuss the role of
social discourse obligations: an agent asked “Do you have the time?” by a stranger
likely doesn’t establish a shared plan or reason extensively about the stranger’s be-
liefs and goals, but rather simply reacts according to a learned social obligation or
convention related to such requests.

Perhaps more gravely, many aspects of ordinary conversation (including the col-
laborative kind) are difficult or impossible to analyze using classical theories of di-
alogue planning. Utterances do not merely represent speech acts, but often com-
prise of multiple actions at the sub-utterance level related to turn-taking, repairs,
backchannels (“yeah”, “I see”, etc.), etc. Furthermore, a classical speech act such
as a request may not necessarily correspond to a single utterance, but may consist
of a larger discourse unit, such as an “adjacency pair” consisting of a proposal and
acknowledgement. Such discourse units are often necessary for the successful ground-
ing information, i.e., adding a piece of information, and the mutual understanding
thereof, to the common ground (Clark and Brennan, 1991; Clark, 1996). In fact, the
role of common ground in the previous theories has typically been left implicit and
minimal - consisting of the observation of speech acts by both participants, and the
reflexive inferences about beliefs and intentions which follow from that.

The Information State approach to dialogue (Poesio and Traum, 1998; Traum
and Larsson, 2003) provides a way to explicate the concept of common ground,
and to account for non-plan-based utterances (e.g., those based on discourse obliga-
tions). An information state consists of “wrapping” the cognitive states and plans
of the previous theories, along with other aspects of the dialogue such as common
ground/context, linguistic structure, obligations and commitments, etc., into a sin-
gle dialogue representation, which gets updated according to particular rules. The
initial formulation of the information state approach by Poesio and Traum, 1998
relied on Discourse Representation Structures (DRSs) (Kamp et al., 2011), but this
was later generalized to provide a more flexible framework. An Information State
dialogue framework consists of the following components:

1. An information state consisting of informational components (participants,
common ground/context, discourse structure, previous move(s), obligations
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and commitments, beliefs, intentions, user models and individual plans, etc.).
These are represented formally using lists, sets, typed structures, records,
DRSs, propositions or modal operators, etc.

2. A set of dialogue moves that update the information state, and rules for
recognizing/realizing performance of these moves (for instance, those provided
by contemporary natural language understanding and generation systems).

3. A set of update rules governing how the information state is updated, given
the conditions of the current information state and any observed dialogue
moves. Update rules have a set of preconditions specifying conditions on the
values of particular components of the information state (possibly including
variables to be unified), and a set of effects to be applied to particular com-
ponents of the information state (possibly using any variables bound by the
preconditions).

4. An update strategy for deciding which rule(s) to apply from a set of applica-
ble ones. Can range from straightforward strategies such as choosing the first
applicable rule, to more complex strategies such as choosing rules according to
assigned probabilities.

Note that the information state may contain both shared/public components (e.g.,
the common ground, participants, discourse structure and history, etc.) and private
components (e.g., individual beliefs and intentions), allowing it to subsume some of
the previous mental state-based theories that were discussed. The model can also
contain static domain knowledge, which may be used in checking the preconditions
of update rules.

A simple toy example of this approach is shown in Figure 2.4, with a set of update
rules being shown on the left, and the analysis of a question-answer pair being shown
on the right. This example consists of a very simple information state containing
sets of private and shared beliefs, private agendas (stacks of intentions), and shared
knowledge of the previous move and a stack of “questions under discussion” (QUD)
- all initially empty except for the private agendas.

In step (1), the only applicable rule is selectAsk, which selects an ask speech act
as the expected next move given the agenda of the turn-holding agent (in this case, a
computer system). As the agent makes the question utterance, the integrateSysAsk
rule in step (2) pops the agent’s agenda stack, and pushes the question that was
asked onto the QUD stack. Under this context, any utterance the user makes is
assumed to be an answer speech act, and if the utterance passes certain domain
checks (such as relevance to the question), the propositional content of the answer is
integrated into common ground in step (3) via integrateUserAnswer. Finally, since
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Figure 2.4: An information state is updated according to a set of update rules as a
dialogue proceeds (Traum and Larsson, 2003). System utterances are shown in red, and
user utterances in blue. Application of update rules are shown in green.

the propositional content in common ground resolves the question under discussion,
the QUD stack is popped in step (4) using downdateQUD.

Although this example is simplistic, the representation is quite flexible and can be
extended with additional constructs such as those discussed previously. It provides
a powerful and transparent framework for dialogue analysis or management, and has
been used to create task-specific dialogue systems (Larsson et al., 2002; Matheson
et al., 2002) as well as later systems aimed at more open-ended domains, such as
those discussed in Section 3.3.

2.2 Discourse Schemas
Though plan-based models, including those embedded within an “information state”,
can be used to analyze a wide range of collaborative and task-oriented dialogues, these
models still face challenges in accounting for the robustness of everyday human dia-
logue where discursive behavior and unanticipated events are common. In a system
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where the information state is modified according to update rules, designing a set
of rules sufficiently general to handle such unanticipated events remains a difficult
problem, requiring significant hand-engineering efforts (see discussion in (Morbini
et al., 2014), for instance). More generally, making possible changes in contextual
knowledge endogenous to the dialogue planning process (i.e., as conditions/effects
within rules or operators) imposes a trade-off between an agent exhibiting the same
behavior regardless of context on one extreme, and on the other extreme resulting
in a combinatorial explosion of rules/operators with each instance conditioned on a
different context (Wilson and Turner, 2017).

An alternative approach to modelling dialogue relies on the concept of “schemas”.
Schemas are similar to hierarchical plans, but representing descriptions of stereotyp-
ical events or situations, rather than recipes that directly entail sequences of actions
necessary to accomplish some goal (in fact, hierarchical plans can be seen as a spe-
cial case of schemas (Turner, 1994) where a goal has been explicitly specified, and
every step within the schema specifies an act by a participant). The prototypical
nature of schemas makes them more amenable to unexpected events and “on-the-fly”
modifications to the dialogue. It also allows a schema-based model to find a flexible
middle ground between rigid but thorough plan-based behavior, and more “reactive”
but robust behavior. In this section, I provide some background on schemas, and
review some previous work which uses schemas in dialogue processing. In Chapter
4, I discuss my group’s specific schema language.

2.2.1 Schema Background
The concept of a “schema” has lived a relatively interdisciplinary history, having
first been popularized in psychology as a construct for analyzing cultural variation
in stereotypical perceptions (Bartlett and Kintsch, 1995), and later adapted by cogni-
tive science and artificial intelligence researchers as a proposed means of representing
general prototypical knowledge about events and objects. In particular, Schank and
Abelson, 1977 introduced scripts to represent prototypical patterns of events (such
as the sequence of steps and conditions typically involved in going to a restaurant),
while Minsky, 1974 introduced frames to represent prototypical objects or concepts.
The concept of schemas is understood to encompass both types of prototypical repre-
sentations, which are sometimes also referred to as event schemas and object schemas
respectively (the latter terminology will be adopted in this paper).

While the specific representation of schemas varies across theories, they are gener-
ally characterized by several properties they share in common: first, the information
they represent is prototypical and abstract. An actual instance of an event or object
need not satisfy all properties in a schema to be “matched” to that schema. Part
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of the power of this representation is that a partial schema match of an observation
can be used to abductively infer other properties of that observation - for instance,
observing a person in a bank with a gun might trigger a “bank robbery” schema,
causing the observer to infer other properties associated with the event, such as that
the robber intends to steal money. These inferences are fallible, however, and partial
schema matches may be discarded as other schemas become more appropriate - for
instance, the person with a gun may turn out to be a security guard.

Second, schemas may be hierarchically organized at different levels of granularity.
For instance, a “going to restaraunt” schema may have associated subschemas, such
as “going to a buffet”, “getting fast food”, etc. These lower-level schemas inherit the
properties of the subsuming schema, though may also override particular properties
(for instance, a fast food restaurant will typically not have waiters).

The latter property also implies that the processes of generalization and special-
ization likely play an important role in how humans learn and modify schemas to
begin with - with people forming new schemas as they encounter similar experiences
that warrant generalization. Though the topic of schema learning lies outside the
scope of this paper 1, it’s important to note the appeal of having a model of dialogue
whose components are learnable by analyzing corpora of dialogue, while still allowing
for goal-directed behavior.

2.2.2 Discourse Schemas
One of the earliest attempts to use schemas in discourse analysis appeared in (Van
Dijk and Kintsch, 1983). The model presented assumes that participants in a dis-
course actively construct mental representations (in some intensional logical form) of
the events being communicated by a speaker, and in turn use these representations
to generate utterances. The construction of these mental representations is governed
by a set of “strategies” that concern multiple levels of understanding - from interpret-
ing utterances as propositions, to establishing local coherence between utterances, to
forming a macrostructure of the discourse.

A macrostructure is a hierarchical semantic description of a discourse, with the
lowest level consisting of the utterance-level (or sub-utterance-level) propositional
forms, and the highest level representing the topic or global meaning of the discourse.
The model describes higher levels of the macrostructure as being derived from se-
quences of propositions in lower levels through three context-dependent macrorules:

1. DELETION: Delete each proposition that is not an interpretation condition (e.g.,
a presupposition) for another proposition in the sequence.

1See (Lawley et al., 2019) for more details.
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2. GENERALIZATION: Substitute the sequence by a proposition that is entailed by
each proposition in the sequence.

3. CONSTRUCTION: Replace the sequence by a proposition that is entailed by the
joint set of propositions in the sequence.

If macrostructures describe the global semantic structure of a particular discourse,
schematic structures (or “superstructures”) are analogous to conceptual patterns of
macrostructures - for instance, the macrostructures of rhetorical arguments are of-
ten similar to each other in form even if they differ in content; likewise for story
narratives, etc. The form of a schematic structure mirrors those of macrostructures,
but contains categories that act as global functions to specific macropropositions in
a particular macrostructure. In this way, a subset of the categories of a schematic
structure can be “matched” to macropropositions as a discourse proceeds, allowing
other categories to be inferred, and imposing further constraints on interpretation.
The relation between schematic structures and macrostructures also acts in the op-
posite direction: the construction of new macrostructures can serve to generalize,
specialize, or modify existing schematic structures.

Van Dijk and Kintsch sketch how various types of contextual and schematic
knowledge combine to produce speech acts and dialogue; this diagram is shown in
Figure 2.5. Though this work was widely influential and contributed powerful insights
into the role of schematic knowledge in discourse understanding, the ideas presented
were fairly high-level and difficult to formalize in a computational system.

The concept of schematic knowledge is also applied to dialogue analysis in (Poesio
and Traum, 1997), albeit in the narrower form of discourse scripts - in the same vein
as Schank’s procedural event scripts. In this model, discourses follow a “thread”
- an event that decomposes into constituent events, represented using tools from
Discourse Representation Theory (DRT) (Kamp et al., 2011). A discourse script
represents stereotypical knowledge that people have about certain kinds of threads.
Similarly to Schank’s scripts, if one can recognize the discourse script that a given
speech act is a part of - for instance, by matching previous speech acts, or contextual
features - one can predict future speech acts, and use these expectations to constrain
the interpretation of subsequent utterances.

2.2.3 Schema-Based Dialogue
An early attempt to address the challenge of handling unexpected events using a
schema-based approach to dialogue was due to Turner, 1994. The proposed model
relies on the notion of context-mediated behavior, wherein possible contexts are them-
selves first-class objects represented as schematic knowledge.
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Figure 2.5: A diagram of the theory of dialogue presented by Van Dijk and Kintsch,
1983.

More precisely, the author introduces three subtypes of schemas:

• Procedural schemas (p-schemas) consist of an actor, a goal, and a set of
steps. Each step may be a primitive action, a subgoal, or another p-schema. A
p-schema may be specialized or generalized, are interruptable/resumable, and
are only expanded as much as necessary.

• Contextual schemas (c-schemas) represent specific contexts or situations
an agent may encounter, and encode domain-dependent aspects of that context
(such as information about responding to events). Specifically, a c-schema can
have the following components:

– Features of the context used to determine when the c-schema is applicable.
– Standing orders that cause the agent to perform certain acts automatically

when a c-schema is selected.
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– Event information mapping specific event occurrences to new goals that
should be adapted in response.

– Event importance thresholds for specific events determining how reactive
the system should be to those events within a particular context.

– Attention focusing information that determines which goals an agent
should attend to when in a particular context.

– Action selecting information linking goals to specific actions (p-schemas)
that can be used to achieve those goals when in a particular context.

• Strategic schemas (s-schemas) represent information about an agent’s domain-
independent problem-solving strategies across contexts. An s-schema can set
the agent’s goal importance information, i.e. order different types of goals by
precedence, as well as set an overall event importance threshold determining
how sensitive the agent is to reacting to unexpected events in general.

Examples of these three types of schemas are shown in Figure 2.6. Though the
c-schema is taken from a non-dialogue domain (an autonomous underwater vehicle
(AUV) domain where the context is the AUV being within a harbor), the represen-
tation that it illustrates is consistent with that used in dialogue-based domains.

The schema-based reasoning process allows for dynamic modification of a dialogue
or plan as exogenous events are observed. This process is diagrammed in Figure 2.7.
Only one s-schema is assumed to be active at a time, but multiple c-schemas may be
active simultaneously. Starting from step (1), the reasoner is initialized with a list
of active goals. In step (2), the reasoner focuses attention on a particular goal using
the s-schema’s goal importance information, and the c-schema’s attention-focusing
information. In step (3), a p-schema is selected conditionally on the chosen goal and
the action selecting information in the c-schema mapping goals to actions within
that context. In step (4), the p-schema is applied while simultaneously updating the
environment and monitoring for external changes. If no external change is detected,
the process returns to step (2) and repeats; otherwise the reasoner proceeds through
the event handler component. The change is first diagnosed/classified in (5a), and
assessed as important or unimportant using the c-schema and s-schema’s event im-
portance thresholds in (5b). If a change is deemed important, it is used to select a
new goal according to the c-schema’s event information, which is added to the list
of active goals. The process then repeats at step (2).

A separate process is also used to select an appropriate s-schema and c-schemas
based on observation of the current situation. The author does not give a detailed
description of the process of retrieving schemas from memory, but notes that any
schema memory capable of dynamically adding/removing schemas, or changing the
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Figure 2.6: Examples of a p-schema, c-schema, and s-schema from Turner, 1994. The
p-schema and s-schema are taken from a medical consulting domain, while the c-schema is
taken from an AUV planning domain.
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Figure 2.7: The schema-based reasoning process diagrammed by Turner, 1994, with
annotated steps.

way that they’re organized, can be used. The model presented above uses Schank’s
dynamic conceptual memory (Schank and Burstein, 1985).

This schema-based dialogue model demonstrates several features which will ulti-
mately be important in future schema-based systems - for example, an algorithm to
dynamically fetch candidate schemas whenever external observations match certain
conditions within those schemas. However, the schema language used by the model is
greatly limited, relying on simple propositional slot values rather than semantically
rich logical representations. Furthermore, it’s questionable to what extent certain
contextually-relevant actions by the user should be separated from the concept of
a procedural schema (or more generally, an episode schema). Ordinary procedures,
such as the classic Schankian “restaraunt” example, often do encompass conditional
behavior associated with the procedure (e.g., whether or not to leave a tip), rather
than any inherent aspect of the context.
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Chapter 3

Open-Domain Dialogue Systems

In this chapter, I turn my attention towards reviewing seminal efforts in creating
open-domain, mixed-initiative dialogue systems. These systems are distinguished
from dialogue systems reliant on task-specific finite-state transition systems (McTear,
1998) or slot-filling approaches (Xu and Rudnicky, 2000), which tend to be useful in
narrow, terse, system-initiated dialogues, but too rigid for open-domain dialogues.
On the other hand, the open-domain systems discussed here are also distinguished
from chatbots (such as Weizenbaum’s ELIZA (Weizenbaum, 1966) and contemporary
deep learning-based analogues) which, while capable of topically broad discussion,
are not capable of goal-directed behavior and thus are generally insufficient for many
practical open-domain applications. Nevertheless, I do discuss a state-of-the-art deep
learning-based dialogue system in Section 3.5 that uses specialized models and train-
ing procedures to achieve some degree of local coherence, making it potentially useful
in some narrow open-domain applications (e.g., conversational practice systems) or
as a sub-component in a dialogue manager.

With the exception of the end-to-end deep learning system, most of the dialogue
systems presented in this chapter are rooted in one of the theoretical models discussed
in Chapter 2. This is perhaps unsurprising, as the ultimate goal of an open-domain
human-computer dialogue system is to achieve the level of linguistic complexity and
dynamicity present in the natural human-human dialogues that those models were
developed to explain. Though many of the systems presented in this chapter are
applied or tested in specific domains, they are still distinguished by an underlying
dialogue model which is capable of being extended to more general domains (in
the ideal case, just requiring an augmentation of declarative world knowledge - the
automation of which is an as-of-yet unsolved task in AI).
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3.1 SharedPlan Architectures

3.1.1 COLLAGEN
One of the first influential open-domain dialogue architectures was the COLLAGEN
dialogue manager (Rich et al., 2001), which emerged somewhat straightforwardly
out of the SharedPlans approach to modeling dialogue. The overarching goal of
the project was to create a general dialogue manager, portable to many different
applications, capable of answering open-ended questions about application domains
- for instance, “What should I/we do next?”, “Why did you/we (not do) ...?”, “How
do I/we/you do ...?”, etc. For an example of a COLLAGEN virtual agent acting as
a video cassette recorder (VCR) assistant, see Figure 3.1.

The COLLAGEN system maintains a discourse state, which is a “mental
model” of the collaborative task that tracks beliefs and intentions of all participants.
The discourse state is represented using a partial implementation of the tripartite
dialogue model proposed by Grosz and Sidner, 1986. Specifically, a discourse state
consists of a focus stack of goals, a plan tree (implementing an incomplete version of a
SharedPlan), and a structured discourse representation linked to the plan tree (with
nodes annotated for plan status, i.e. past, pending, and expected future events). An
example discourse state is shown in Figure 3.2

The discourse state is updated after each utterance/primitive action by an agent
(after being parsed into a description logic using standard-at-the-time NLU algo-
rithms) according to Lochbaum’s SharedPlan interpretation mechanism (Lochbaum,
1998), with an extension to allow for abductively inferring user plans from observed
actions, and for handling plan interruptions (Lesh et al., 2001). Each discourse event
is interpreted as either starting a new discourse segment whose task forms a subtask
to the current task (pushing a new goal onto the stack), continuing the current task,
or as completing the current task (popping the goal from the stack). Discourse gen-
eration works in the opposite direction as interpretation - given the current discourse
state, it produces an ”agenda” of utterances and actions by the agent which would
contribute to the current task.

The means by which a discourse event might contribute, continue, or complete
a task are determined by a recipe corresponding to that task. Recipes are similar
to traditional plan operators - containing parameters, constraints on parameter val-
ues, partially ordered steps, preconditions, postconditions, etc. An example recipe
corresponding to the RecordProgram task is shown in Figure 3.3.

One further innovation of the COLLAGEN system was its plan recognition mod-
ule, which allowed the system to abductively infer the user’s plan based on the user’s
observed actions (whereas previously the dialogue manager would require the user
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Figure 3.1: A virtual agent built using the COLLAGEN dialogue manager, acting as an
assistant to help a user set up and program a video cassette recorder (VCR). An example
dialogue is shown below.
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Figure 3.2: An example of a COLLAGEN dialogue state, showing the three components
of the SharedPlans tripartite model (focus stack, plan tree, and discourse structure).

public recipe RecordRecipe achieves RecordProgram {
step DisplaySchedule display;
step AddProgram add;
optional step ReportConflict report;
constraints {

display precedes add;
add precedes report;
add.program == achieves.program;
report.program == achieves.program;
report.conflict == add.conflict;

}
}

Figure 3.3: Example of a COLLAGEN recipe for recording a program (in a Java-based
syntax).

to explicitly state their intentions prior to acting, preventing natural conversation).
This process can be made tractable due to a couple hypothesized properties of col-
laborative dialogue: the focus of attention on a particular goal or task at any given
time, limiting the search space of possible plans, as well as the fact that the plan
recognizer only operates on plans that are minimally elaborated (i.e., expanded only
as much as necessary to account for observed actions). Given the current plan and
the task on top of the focus stack, the plan recognizer can try to extend the plan
by applying recipes (which act as production rules) to the task in focus until a set
of observed events is matched. If multiple plans are obtained, the system can insert
a clarification request to narrow down the possible plan continuations. This process
is depicted in Figure 3.4. Finally, the overall system architecture combining these
components is shown in Figure 3.5.

COLLAGEN was in many respects groundbreaking, representing the first in-
stance of formal theories of human dialogue (namely, the SharedPlans formalism)
being used to create a generic computational dialogue manager. Furthermore, the
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Figure 3.4: A simple example demonstrating the COLLAGEN plan recognition algorithm.

plan inference system allowed plans to only be minimally elaborated insofar as ob-
served actions are matched to plan actions, giving the system some degree of flexi-
bility. Nonetheless, the system’s ability to handle unexpected inputs was limited in
practice due to the fact that plan modification could only be done by chronological
backtracking. Furthermore, the semantic interpretations used by the system were
limited - user inputs were only interpreted insofar as was necessary to classify the
user’s utterance as a speech act and identify parameter values, which is insufficient
for the general case.

3.1.2 Adapting for Health Counselling Dialogues
One notable extension of the COLLAGEN architecture is the health counselling
dialogue system designed by Bickmore et al., 2011. This work addressed the problem
of extending the generic COLLAGEN system with specialist domain knowledge - in
this case, the relational facts and strategies used by health professionals to counsel
patients on healthy exercise and eating habits.

The system made two significant improvements to the COLLAGEN system.
First, the hierarchical planner used by the system - DTask - allowed for the use of a
declarative domain ontology in the planning process, in addition to the task hierar-
chy. The domain ontology (essentially, a knowledge or concept graph) provided the
system with domain-specific knowledge and strategies, facilitating re-usability and
generality of the system components. The ontology used by the health counselling
system included several types of knowledge:
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Figure 3.5: A diagram of the architecture of the COLLAGEN dialogue system.

1. Theory model: knowledge of theories of behavioral medicine, such as the re-
lationship between a particular construct of a behavior change theory and a
related counselling technique.

2. Behavior model: knowledge of how behavior change theories are applied to a
specific health behavior. e.g., whether an intervention is acquisition or cessation
oriented, or which tips are related to a particular behavior.

3. Protocol model: knowledge about fixed parameters of a behavior change inter-
vention. e.g., duration, expected number of client contacts, etc.

4. User model: knowledge about a particular client, including ”fixed” parameters
(age, ethnicity, etc.), as well as information dynamically updated over time.

5. External data model: describes the format of inputs (e.g., medical data) to the
system and outputs (e.g., measurement, status information, transcripts, etc.)
from the system.
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6. Task model: specifies the procedural “recipes” (as in the COLLAGEN system)
that guide the health counselling dialogue task.

Second, the recipes used in the task model specified adjacency pairs (Clark and
Brennan, 1991) (i.e., a question followed by a response), which allowed the dialogue
manager to specify system responses conditionally on the context of the user’s pre-
vious utterance.

However, the system also had several limitations - first, the natural language
understanding and generation in the system was highly limited; the former was
essentially non-extant, as user inputs were menu-based, and the latter relied on hand-
designed templates. Second, the authors noted a disconnect between the ontology
and the task model, as certain parts of the task model are not included in the ontology
(task goals, for instance), limiting the re-usability of the task model.

3.1.3 RavenClaw Dialogue Manager
One other system worth briefly mentioning under the SharedPlans approach is the
RavenClaw Dialogue Manager (Bohus and Rudnicky, 2009); though developed inde-
pendently to the COLLAGEN system, it employs a very similar dialogue model with
hierarchical plan trees to represent the interaction, along with a discourse stack that
gets modified at runtime. Unique to the RavenClaw dialogue system, however, was
an expectation agenda capturing what inputs the system expects from the user at
any point, and allowing for complex error-handling. Many useful applications were
developed using this framework due to the simplicity of engineering the task-specific
dialogue trees and the system’s support for mixed-initiative dialogue. However, hav-
ing behavior determined by simple task-specific dialogue trees ultimately limited the
system’s abilities in more complex planning domains, and hampered the reusability
of the system - as dialogue trees had to be implemented anew for every application.

3.2 TRIPS Dialogue System
The original TRIPS system was designed contemporaneously with the COLLAGEN
system described in 3.1. One issue with the COLLAGEN system is that, despite
a fairly robust module for abductively inferring plans, the system only supports
plan modification through chronological backtracking, rendering it inflexible. The
natural language capabilities of the system were also limited due to the lack of a
clear separation between interpretation and the plan manager/behavioral agent.

The TRIPS project was initially an attempt to create an integrated collaborative
planning system, with the functionality of the system demonstrated in a hypothet-
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ical emergency response task: a simulated island is experiencing a natural disaster
such as a hurricane, and the user needs to work with the system (in natural lan-
guage) to plan evacuation of the island against various constraints (Ferguson and
Allen, 1998). Later improvements to the TRIPS system were aimed at improving
portability by separating general discourse behavior and task-specific behavior, as
well as improving turn-taking and goal-driven replanning by the system (Allen et al.,
2001). Later work is aimed at abstracting parts of the TRIPS system to create a fully
domain-independent dialogue shell capable of supporting various application-specific
extensions, as discussed in Subsection 3.2.2.

3.2.1 TRIPS Architecture
In this section, I present the TRIPS architecture outlined in (Allen et al., 2001). The
high-level architecture is divided between independent and asynchronous components
for interpretation, behavior management, and generation; within these components
are various interacting sub-components. A schematic diagram of the system archi-
tecture is shown in Figure 3.6 and described in the remainder of this subsection.

The various sub-components of the TRIPS system are based upon the Abstract
Problem Solving Model, a shared planning model that employs the KQML lan-
guage/protocol (Finin et al., 1994) for communication between components. The
model is formalized as a set of problem-solving objects including objectives (i.e.,
goals), solutions (i.e., proposed sequences of actions intended to achieve an objec-
tive), resources (i.e., any domain objects used in a solution), and situations (i.e., the
world settings in which solutions are being created). These objects are operated on
using a set of collaborative problem-solving actions displayed in Table 3.1, along with
examples of each from a hypothetical TRIPS dialogue.

Discourse Context

The Discourse Context used by the TRIPS system is fairly information-rich; similar
in some respects to the Information State model reviewed in Chapter 2. Specifically,
the Context contains the following information:

• Salient discourse entities previously extracted by the interpretation module,
used to support the interpretation and generation of anaphora.

• The structure and structural representation of the immediately preceding ut-
terance, to support ellipsis resolution or clarification.

• The current turn-holder, for use in turn-taking decisions.
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Figure 3.6: The overall architecture of the TRIPS dialogue manager.
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Create We need to get the people from Exodus to Delta ASAP.
Select Let’s use the bus plan, then.

Evaluate How long will it take?
Compare What if we used a helicopter instead?
Modify Let’s use the helicopter to evacuate Bath instead.
Repair The buses from Exodus need to be rerouted across the bridge.

Abandon Oh, the weather’s changed, forget the whole thing.
Describe What is the bus plan, again?
Explain What does moving the people to Delta accomplish?
Identify Are airplanes available?

Table 3.1: Possible problem-solving actions supported by the Abstract Problem Solving
Model, along with examples from the TRIPS planning domain. The first part of the table
describes plan-related acts, while the second part describes communicative acts.

• The discourse history consisting of speech-act interpretations of utterances so
far, with indication of which have been grounded.

• Current discourse obligations, typically used by the generation manager to
form responses to the user’s last utterance.

Task Manager

The Task Manager is responsible for acting as a medium between the domain-
independent Abstract Problem Solving Model and domain-specific recognition and
execution of actions within a particular domain. The Task Manager’s responsibilities
include:

• Answering queries about objects and their roles in the task/domain at hand.

• Being an interface between the generic collaborative problem-solving actions
used by the Behavioral Agent (e.g., “create a solution”), and the actual task-
specific performance of those actions.

• Assists the Interpretation Manager in recognizing user intents when the user
performs a particular action.

Interpretation Manager

The Interpretation Manager uses an incremental chart parser to process user input
in an online fashion. As it does so, it produces information used to update the turn-
taking status of the dialogue context, as well as identifying intended speech acts by
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the user and the generic collaborative problem-solving action that the act furthers.
Finally, any discourse obligations corresponding to the user’s utterance are added to
context.

Since interpretations may be conditional on situational context, the identification
of speech acts is governed by rules based on the Abstract Problem Solving Model
and potentially queries made to the Task Manager. For example, interpretation of
the utterance “the bridge over the Genesee is blocked” could be interpreted as the
problem-solving act of identifying a problem with the goal of replanning, or as the
introduction of a new goal to reopen the bridge. One of these two interpretations
would be chosen by querying the task manager about whether there exists a plan
using the bridge already, and whether making the bridge available is a reasonable
high-level goal to adopt.

Generation Manager

The Generation Manager is responsible for high-level response planning, while the
Response Planner is responsible for lower-level response generation. The former
system uses abstract problem-solving goals from the Behavioral Agent and discourse
obligations from Context to produce plans for the system’s responses. The latter
system can produce surface-level responses using a number of different strategies:
superficial template-based generation, a TAG-based grammar, or output selection
and coordination.

Behavioral Agent

The Behavioral Agent is in some respects the “core” module of the system, as it
governs the system’s problem-solving behavior by balancing several aspects of the
dialogue: the interpretation of the user’s inputs, the system’s own goals and obli-
gations, and external events observed by the system. In each case, the Behavioral
Agent is responsible for making choices about how much initiative the system should
take in its response, according to its prioritized goals and obligations. For instance,
if the user’s utterance initiates creating a new objective, a low initiative response by
the system might be adopting a new problem-solving obligation to find a solution,
while a high initiative response might be computing a solution and proposing it to
the user.

3.2.2 Collaborative Problem Solving (CPS) Dialogue Shell
Subsequent work on the TRIPS dialogue manager involved further developing the
collaborative planning model used by the system (Allen and Ferguson, 2002), and
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abstracting away the problem-solving model from the particular planning domain
used by the original TRIPS system. The culmination of these efforts was the CO-
GENT dialogue shell, which provides a fully domain-independent dialogue manager
based on the collaborative planning model, useful as a tool for people developing
task-specific systems (Galescu et al., 2018).

The architecture of COGENT is a minimal TRIPS-like system, in the sense that it
excludes any TRIPS modules with domain-specific properties, such as the Behavioral
Agent, Natural Language Generation, and the Domain Ontology. Included within the
COGENT framework is the task-independent TRIPS parser (which relies on a general
lexicon and ontology and produces logical forms), a Natural Language Understanding
module which maps TRIPS logical forms to communicative acts, and a Collaborative
Problem Solving agent that maps communicative acts to abstract communicative
intentions. These intentions form the standard format for communication between
the domain-independent COGENT system and any custom Behavioral Agent that a
designer might create for a particular domain.

CSP acts are represented as tuples ⟨ACI, CONTEXT⟩, where ACI represents the
abstract communicative intention and CONTEXT represents the semantic content of
the associated act, in a knowledge representation language. The ACI is represented
as a name corresponding to the CPS act type, followed by slot-value pairs related to
that act type. For example, a proposal to jointly pursue some new objective - e.g.,
start working on goal O1 by a subgoal O2 of placing a block on the table - would
create the following ACI:

(PROPOSE :content (ADOPT :id O2 :what C2 :as (SUBGOAL :of O1)))

Where C2 points to some slot value in the CONTEXT for that act, e.g., a representation
of the event of placing a block on the table.

Many systems, across a diverse set of applications, have been designed on top of
the COGENT dialogue shell. One particularly notable system built on top of CO-
GENT is a multimodal collaborative agent in the “Blocks World” setting capable of
interactively learning spatial concepts through being provided positive and negative
examples by users (Perera et al., 2017; Perera et al., 2018).

3.3 Information State Architectures
One more general class of open-domain dialogue managers to be discussed are those
based on the Information State approach to dialogue management. In this section, I
discuss a couple dialogue systems applied in specific conversational practice domains
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- though based on dialogue management models which are in principle extensible to
different topics or domains - as well as a system intended to support mixed-initiative
dialogue using a reward-seeking planner.

3.3.1 Conversational Practice Domains
‘How was your day?’ System

The ‘How was your day?’ (HWYD) system (Pulman et al., 2010) was designed to
create a supportive and empathetic system capable of discussing open-ended work-
related topics with a user. The underlying dialogue manager is notable for two novel
contributions: the use “short loop” feedback, i.e., verbal and nonverbal backchannels
by the system to keep the conversation engaging, an “interruption manager” allowing
the system to dynamically replan behavior if the user interrupts, and the ability to
account for multiple multimodal forms of affective input from the user (e.g., senti-
ment/emotion detection, nonverbal behavior, etc.). The overall system architecture
is shown in Figure 3.7.

The input module combines three input sources - Affect Annotation (AA), Au-
tomatic Speech Recognition (ASR), and emotional speech recognition using the
EmoVoice system (EV). The first of these sources is used to detect turn-taking in-
formation (ATT), which is combined with the ASR output, segmented, and tagged
with dialogue acts (DAT). These segmented dialogue acts are further sent to the
natural language understanding (NLU) module, and then to a sentiment analysis
(SA) module, to produce a final “emotional model” (EM).

The emotional model and interpreted dialogue act are sent to the dialogue man-
ager(DM), which interacts with a knowledge base/user model (KB/UM) to produce
an affective strategy (ASM) that’s passed to the natural language generation (NLG)
module. Finally, the output is sent to a multimodal control module (MFM) which
determines the verbal (TTS) and non-verbal (ECA) behavior of the avatar.

Specifically, the DAT module segments input into sub-constituents corresponding
to individual dialogue acts (since one utterance may consist of several), and then
performs part-of-speech tagging and named entity recognition using a Hidden Markov
Model and hand-engineered patterns, respectively. In the NLU module, these chunks
are combined compositionally using a chart parser to form parse trees, and reference
resolution is performed for pronouns and definite noun phrases.

The DM maintains an information state containing all objects mentioned during
the conversation (to decide whether or not objects are salient for interpretation),
as well as conversation goals. If a new entity is recognized and introduced by the
user input, the DM adds a goal to talk about it. For each turn, the DM chooses
a topic/goal to pursue by rating goals in the current information state in order
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Figure 3.7: The dialogue manager architecture for the ‘How was your day?’ system, along
with an example dialogue with the system. The architecture is repeated in the bottom of
the figure, showing the flow of information when the system receives an interrupt from the
user - as in the example dialogue.

of importance, using heuristics like recency of the topic in dialogue history, general
importance, and the emotional value of the goal. The DM is responsible for gradually
filling in slots in a task-specific template (generating short responses as it does so),
as well as creating a longer emotive response once the template is filled using the
ASM module.

INOTS Conversational Practice System

A similar system reliant on the Information State approach is INOTS (the Immer-
sive Naval Officer Training System), a virtual avatar for training army officers with
interpersonal communication skills based on cognitive task analysis (Campbell et al.,
2011). The underlying conversation manager - the bilateral negotiation training sys-
tem, or BiLAT - uses a branching narrative representation, where each utterance
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represents a decision point with a fixed number of possible responses by the human,
forming edges to new decision points representing the virtual human’s reaction. The
system architecture is shown in Figure 3.8, with the dialogue manager backend in-
dicated by the green boxes.

Figure 3.8: The dialogue manager architecture for the INOTS system.

Though the natural language understanding in this system is fairly rudimentary
(input was given in natural language, but the system provided the user with a list
of suggested responses), the response planning module used by the system - “NPC
Editor” provided a convenient way for dialogue designers to modify agent behavior
across a potentially wide variety of topics (Leuski and Traum, 2011), employing a
statistical retrieval system to generate appropriate responses.

At a high level, the NPC Editor program allows designers to specify semantic
frames (i.e., a set of slot-value pairs), and a set of system utterances. Given the
semantic frame representation of the user’s input, the system selects a response
utterance by computing language models for the frame and utterance - P (F ) and
P (W ) respectively - scoring each utterance by Kullback–Leibler divergence between
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the two probability distributions (DKL(P (F ) || P (W ))), and choosing the minimum
scoring utterance. The KL-divergence is computed by treating the translation be-
tween semantic frame and the utterance as analogous to a standard cross-language
information retrieval task.

In cases where no utterance is a good fit, the system can also opt to make a
clarification speech act. Otherwise, the closest matching utterance is output and
BiLAT advances to the next appropriate node in the dialogue tree.

3.3.2 Integrating Reward-Seeking Behavior
Many systems developed with the Information State approach (including those pre-
sented above) tend to have architectures which are biased towards either strong
system-initiative or strong user-initiative, which can work effectively for limited con-
versational tasks but encounter issues in more general settings. The former quickly
becomes insufficient when the user has a possibility to question the system, change
the topic, or otherwise act in unexpected ways. The latter forces the dialogue design
to rely on very superficial dialogue policies; essentially just impulsively reacting to
the user rather than deeply interpreting the user’s utterance within the context of a
collaborative dialogue.

The FLoReS (Forward Looking, Reward Seeking) dialogue manager combines
several methods of dialogue reasoning, as well as a reward-seeking algorithm for
determining dialogue policy, to support complex mixed-initiative dialogue (while still
allowing for the ease of customization that characterized precursors) (Morbini et al.,
2014). The resulting dialogue manager has been used successfully to create virtual
agents in mixed-initiative tasks, such as holding healthcare counselling dialogues with
military personnel (Rizzo et al., 2011).

This objective was facilitated through combining local subdialogue networks (i.e.,
operators) for specific conversation topics, whose specific structure can be crafted by
virtual agent creators, with a higher-level dialogue structure (i.e., flow of initiative
and topics) determined dynamically at runtime according to a probabilistic reward-
seeking paradigm. More precisely, the dialogue manager consists of the following
components:

1. An information state, containing information about dialogue history and
salient contextual information. Each information state also contains goals and
a numerical reward associated with each goal.

2. A set of inference rules, i.e. implication rules that can be used to infer new
knowledge given the current information state. For example, an inference rule
might specify that if the information state indicates that a user has nightmares,
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then they have sleeping problems more generally. Any time the information
state is updated, inference rules are repeatedly applied until the information
state is stable.

3. An event handling system capable of handling events including user inputs,
system decisions/actions, and other external events. Events are associated with
names and content, e.g., for user events the name would be a dialogue act that
the utterance gets classified as, and the content would be a set of key-value
pairs representing the semantic content. Corresponding event listeners would
be defined, each having a regular expression matching event names being lis-
tened for, and either the assertion of a variable value or if-then-else conditional
modifying the information state.

4. A set of operators modelling local dialogue structure. Operators are repre-
sented as subdialogue networks, i.e. a tree of system and/or user actions and
resulting states. A system action can consist of an update to the information
state, a generated utterance to perform back to the user, or a command to
send an event to the dialogue manager, to be handled by an event handler.

As events are received, the dialogue manager makes changes to the information
state, and then decides which operator to use to deal with the received event. At
any point, operators are classified as currently active, paused, or inactive (i.e., not
yet initiated). If the event can be handled by the active operator, the dialogue man-
ager continues with execution of that subdialogue network. Otherwise, the system
needs to decide between ignoring the event and continuing with the current operator,
switching to another system initiative operator, or finding a promising paused/inac-
tive operator to handle the event. This decision is calculated using a probabilistic
reward-seeking algorithm.

The expected reward of choosing a given operator Oi while at an information
state I is calculated by constructing a DAG of possible future dialogues that can
happen if Oi is selected. Nodes in this graph represent information states, while
edges correspond to operators. Construction of the graph continues until either a
maximum depth or a timeout is reached. Next, each node Ii is assigned a probability
P (Ii), calculated by computing a uniform probability distribution across paths and
then merging paths that lead to identical information states. The expected reward
of choosing operator Oi at state I is thus calculated as:

E[Oi, I] =
∑

Ii∈Ir

(αP (Ii)R(Oi, Ii) + argmaxO(E[O, Ii]))
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Where R(Oi, Ii) is the reward associated with reaching the final state Ii, and
argmaxO(E[O, Ii]) is the maximum expected reward from operators that could be
reached after following Oi, included to encourage exploration over exploitation in
some cases. The dialogue manager proceeds by picking the operator with the highest
expected reward.

One strength of the FLoReS system, as well as the other systems described in this
section, is the ease in which dialogue systems can be designed for various counselling
and conversational practice domains, with agent behavior readily customizable by
non-experts. Furthermore, aspects of the Information State approach have been
integrated in various ways with statistical NLP techniques, such as probabilistic topic
retrieval or reward-seeking policy decisions for choosing dialogue policies, which can
allow for more robust behavior than a rule-based system can. However, the natural
language representations used by the systems are in general fairly limited. The NPC
Editor program used to create the INOTS dialogue manager, for instance, uses only
slot-value frames as semantic representations, which cannot capture many important
elements of human language (e.g., quantification). Another potential drawback of
such systems is that, as the number of information state update rules increases,
the various interactions between these rules and their overall effects on the dialogue
become more difficult to anticipate.

3.4 Incorporating Topic-Detection Techniques
In this section, I briefly discuss some recent dialogue systems that try to improve
the system’s ability to respond to domain-specific or “out-of-domain” responses by
integrating statistical topic-detection models. The first system I discuss uses topic-
detection to help improve response generation by choosing between many special-
ized generation modules, while the second system does the converse and uses topic-
detection at the interpretation stage to improve speech recognition and parsing.

3.4.1 Athena Dialogue Manager
The Athena dialogue system was created to support topically-broad casual conver-
sation, based on a novel approach that “dispatches” response generation capabilities
to multiple diverse sub-modules, and also grounds responses using a topic detector
and entity recognition (Harrison et al., 2020). The dialogue manager architecture is
shown in Figure 3.9.

The NLU component of the Athena system strongly relies on Named Entity
Recognition (NER) for dialogue management and response generation, which is im-
plemented using a custom statistical NER model. Entities are additionally linked
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Figure 3.9: The architecture of the Athena dialogue system.

to external knowledge graphs derived from Wikipedia. The NLU component addi-
tionally parses the user input and classifies it as a dialogue act, from an ontology of
dialogue acts.

The Action Manager uses a rule-based method (relying on inputs from the NLU
component, as well as template-based keyword matching) to select one of several
system actions. A system action might be something like a greeting, a clarification
question, or by default, simply ‘conversing’. The system’s responses are decomposed
into three ordered segments: GROUND, OPENER, and BODY. The GROUND is strictly
backwards-looking, in that it reiterates “given” information using previously recog-
nized entities and generic templates determined by the Grounding Strategy module.
The OPENER is flexible, and typically used to signal a topic change. The BODY is where
the system provides “new” information. The latter two segments are determined ac-
cording to the Constraint Manager, which specify several constraints on the system’s
response - for instance, these constraints might specify the topic under discussion,
named entities recognized in the user’s previous utterance, and the classified user
speech act (e.g., “opinion question”).

Any topical constraints are determined by the Topic Detector, which uses a com-
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bination of keyword-matches and recognized entities to assign one of a set of sup-
ported topics. Furthermore, the Topic Manager also tracks topic history and a dis-
tribution over number of turns per topic. Under some circumstances, the Initiative
Manager can trigger a change of topic by the system. Finally, the list of constraints is
used by the RG Dispatcher to select one of several Response Generators (RG) to use,
depending on the topic and nature of the user’s speech act - these generators include
a rule-based system for generating utterances related to the avatar’s backstory, a
news summarization RG, a neural RG trained on Wikipedia knowledge graphs, etc.
The generated responses from one or several RGs are ranked, and used to construct
the system’s utterance.

Overall, the system was able to produce engaging conversations, and was com-
petitive in the 2019 “Alexa Prize” competition to create systems that could hold
natural and human-like conversations with humans. However, the natural language
understanding and planning capabilities of the system were minimal, greatly limiting
its usefulness outside of chatbot applications.

3.4.2 Spoken Dialogue with Statistical Topic Detection
The dialogue system described in (Valenti et al., 2020) extends a plan-based dialogue
manager with a sophisticated, multi-level approach to interpretation. The architec-
ture of the system is shown in Figure 3.10. The ASR subsystem outputs a list of
scored hypotheses (i.e., transcriptions of the user’s spoken utterance). Rather than
naïvely choosing the top-scoring hypothesis, which may result in errors for atypical
or out-of-domain utterances, the system uses a topic selection model (shown in blue
in the architecture diagram) to select one of several topic-dependent language models
- probabilistic models trained within that particular domain. The chosen language
model is then used to re-score the hypothesis.

After an ASR hypothesis is selected according to the modified scores, the ut-
terance is interpreted using two sub-modules simultaneously. First, a rule-based
syntactic parser, chosen from a set of topic-specific expert parsers or a general fall-
back parser, is applied. Second, a statistical classifier (an extension of the NPC
Editor model (Leuski and Traum, 2011)) is applied, which classifies the utterance
as once of the semantic frames occurring in its training set. The outputs of these
two branches are scored; if both scores are below some threshold and a topical lan-
guage model was used, the system attempts to repeat interpretation with a general
language model, otherwise the highest scoring interpretation is used by the pragmat-
ics module to analyze intentions. Finally, the dialogue manager sends a contextual
bias signal to the ASR system that causes it to change prior probabilities on words,
making certain hypotheses more likely based on recognized context.
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Figure 3.10: The architecture of the dialogue system in (Valenti et al., 2020). Dotted lines
indicate connections that are not currently present in the system, but which are possible
as future improvements.

Though the resulting system improves on previous systems in its ability to han-
dle “out-of-domain” inputs (with potential for continued improvements indicated in
Figure 3.10 by dotted lines), it shares many of the same limitations that the Informa-
tion State based planning systems presented previously have, e.g., a limited semantic
representation.

3.5 End-to-End Transformer-Based Dialogue Sys-
tems

To conclude this chapter, I briefly examine the state-of-the-art in open-domain (used
in the sense of “topically broad”) conversational systems based on end-to-end deep
learning, specifically Transformer architectures. Recent state-of-the-art systems in-
clude Google’s Meena system (Adiwardana et al., 2020) and FAIR’s Blenderbot sys-
tem (Roller et al., 2020). I will focus on the latter system, as it edges out the former
system in various metrics due to particular choices made in model design and training
procedure.

Though neither system uses any form of planning or goal-driven behavior, the
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Figure 3.11: A “meta-cherrypicked” example dialogue with FAIR’s Blenderbot system.

motivation for including them in this survey is that these systems, by training on
billions of examples of human dialogues, were able to exhibit robust topically broad
conversational behavior, something which no previous dialogue system was able to
truly accomplish. While it’s unlikely for a system based purely on mimicry to be
useful in domains where complex mixed-initiative behavior is necessary (as opposed
to user-initiated entertainment-based systems), it is a live possibility that future
work could use such a system as a language generation module over a goal-based
planner. An example of a dialogue with the Blenderbot system is shown in Figure
3.11.
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3.5.1 Transformer Architectures for Dialogue
Roller et al., 2020 compare three model architectures for the dialogue system, de-
scribed below:

1. A Generator model implements a standard Seq2Seq Transformer architecture;
the authors experiment with a 90M parameter model, a 2.7B parameter model,
and a 9.4B parameter model.

2. A Retriever model uses the dialogue history as context to select the next
dialogue utterance out of a candidate set (typically, all possible training set
responses) by scoring all candidates and outputting the candidate with the
highest score. This is implemented using a Poly-encoder Transformer model
(Humeau et al., 2020), depicted in Figure 3.12. The dialogue context and can-
didate responses are separately encoded using a standard Transformer-based
encoder (such as BERT). The context features are further transformed into n
context representation embeddings through attending by n learned “codes”,
which are finally attended to by the candidate response embedding to produce
a context embedding. The context embeddings and candidate embeddings are
used to compute a final score for that candidate response.

3. A Retrieve and Refine model combines the previous two models - the re-
trieval model is first used to select either a candidate response or piece of
knowledge from a dataset, which is then appended to the input to the genera-
tor model, along with a special separator token.

In a sense, both retrieval-based models present a more sophisticated way to perform
the sort of response retrieval seen previously in discussion of the “NPC Editor”
response planner (Leuski and Traum, 2011), with the trade-off of requiring vastly
larger amounts of data to train.

3.5.2 Effective Training and Decoding for Dialogue
Each model is pre-trained using dataset derived from Reddit discussions, filtered
according to various conditions, resulting in 1.5B training examples. The authors
experiment with fine-tuning on several datasets, each aimed at inducing different
behavior from the trained dialogue agent:

• The ConvAI2 dataset includes 140k utterances involving paired crowd-workers
having casual conversations where they get to know their partner, based on an
assigned role.
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Figure 3.12: The architecture of the Poly-encoder Transformer retrieval model.

• The Empathetic Dialogues (ED) dataset consists of 50k utterances of crowd-
workers where one participant describes a personal situation, and the other
responds empathetically.

• The Wizard of Wikipedia (Wow) dataset consists of 194k utterances over 1250
topics, where crowd-workers were expected to hold conversations while utilizing
Wikipedia facts drawn from a randomly assigned topic.

• The Blended Skill Talk consists of 76k utterances, where conversations involved
a “guided” participant and an “unguided” participant. The “guided” crowd-
workers were able to select utterances from bots trained on the previous three
datasets.

The authors evaluate model, training, and decoding strategies using the ACUTE-
Eval protocol, which involves crowd-workers making blind pairwise comparisons of
dialogue transcripts and answering the following two questions: “Who would you
prefer to talk to for a long conversation?”, and “Which speaker sounds more human?”.
They find that the Blended Skill Talk dataset produces the highest-scoring dialogues,
and that using beam-search decoding with an enforced minimum length of responses,
and blocking repeated 3-grams, yields large gains in perceived engagingness.

3.5.3 Limitations
Despite the monumental realism of the system’s responses in the “cherry-picked”
sample transcripts, the authors note several limitations of their system (as well as

50



providing “lemon-picked” transcripts illustrating these limitations); a relevant subset
of these are listed below:

• The system occasionally contradicts itself or “forgets” a fact mentioned pre-
viously in the conversation, despite having it in the dialogue context used to
select responses.

• The model tends to make factual errors or “hallucinate” false knowledge.

• Conversation length is fairly short, and the system’s “memory” is inherently
limited by the 128 BPE token limit on Transformer inputs; thus the system
cannot remember facts that it’s learned about the user.

• The system lacks deep understanding, i.e., it has trouble establishing semantic
connections between objects, and it lacks “grounding” to entities or actions in
the world.

In addition to these limitations, I’d add the lack of a plan, conversation goals, or
underlying task manager, which prevents the system from being useful in true mixed-
initiative tasks beyond the simple alternating-utterance format of online chatbots.

These limitations are notable because they precisely coincide with the strengths of
traditional plan-based systems, as discussed in the rest of this paper. For instance,
a plan-based dialogue system with some sort of explicit knowledge store (ideally)
wouldn’t contradict itself (provided sound inference rules), is capable of interpreting
the semantic contents of the user’s utterances to some extent, and can support mixed-
initiative tasks with a flexible enough system architecture. Ultimately, it would seem
that the goal is to combine the advantages of these types of systems with the robust,
topically broad conversational behavior that deep-learning systems exhibit.
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Chapter 4

Towards a Schema-Based
Open-domain System

In Chapters 2 and 3, I discussed several dialogue models and computational systems
aimed at open-domain dialogue. Though these systems have proven successful at a
wide range of practical tasks, they still suffer from particular limitations such as diffi-
culty handling unexpected inputs, an over-reliance on complex hand-engineered data
structures, and a lack of modularity necessary to combine behaviors into a single sys-
tem (as opposed to porting the system from one domain to another). Schema-based
dialogue systems (Turner, 1994) provided a means of addressing some of these limi-
tations, but these schema representations generally relied on slots with agglutinated
propositional values (e.g. “obstacle-avoidance-active”) or simple extensional logics,
both of which are insufficient for various kinds of reasoning from natural language.

In this chapter, I present work that I have done to create a general schema-based
dialogue manager that uses Episodic Logic (EL) (Schubert and Hwang, 2000) - a
type-coherent, expressive intensional logical form designed to closely resemble the
surface form of English - as an underlying representation for its schema language.
This dialogue manager, Eta, in some sense resembles both the information state
approach - in that it has a dialogue state containing common ground/context, system
memory, dialogue history, etc. which is updated by observations and agent actions -
as well as Turner’s schema-based dialogue model in that the dialogue plan is guided
by a schemas, and may be modified “on the fly” as unexpected events are observed
or a new schema is selected.
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4.1 Previous Work
The Eta dialogue manager is a direct extension of the LISSA (Live Interactive Social
Skill Assistance) dialogue system (Razavi et al., 2016; Razavi et al., 2019). LISSA
consisted of a virtual conversational agent that could hold topically broad conversa-
tions with users, while simultaneously providing dynamic feedback on various types
of social skills (e.g., eye contact, posture, etc.). The dialogue design was conceptu-
ally similar to the ‘How was your day?’ dialogue manager (Pulman et al., 2010), in
that the dialogues were designed to cover a wide range of casual topics, with topics
varying in emotional content over time to elicit user disclosure. The conversations
that LISSA held were system-driven, with LISSA proceeding through a series of con-
versational questions and reacting appropriately to the user’s replies (or potential
follow-up questions).

Figure 4.1: An overview of the LISSA dialogue manager.

The technologies used by the LISSA dialogue manager are described in detail
in (Razavi et al., 2017); I will return to these in Section 4.2 when describing their
implementation in the Eta dialogue manager. A high-level overview of the LISSA
dialogue manager is shown in Figure 4.1, depicting a scenario where LISSA has just
asked a question, and is interpreting the user’s reply in the context of that question.
The basic interpretive unit used by the system is the gist-clause - an explicit, context-
independent “natural language” sentence representing the gist of the user’s reply. The
fundamental idea behind LISSA’s dialogue management is that given the linguistic
context of the previous utterance, relatively superficial patterns could be matched to
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the user’s input in order to transduce a gist-clause, which the system can then use to
generate a reaction in a context-independent way. For instance, the utterance “Thai
is nice” might mean many things in different contexts, but within the context of the
question (gist-clause) “What type of foods do you like?”, the possible meanings of
the utterance are narrowed down to indicating the user’s preferred cuisine. Only a
relatively small number of pattern-matching rules were therefore required to allow
the system to interpret and react to certain topics, facilitating the process of dialogue
design.

The LISSA virtual agent demonstrated promising results in studies involving
conversational practice for teenagers with Autistic Spectrum Disorder (ASD) Razavi
et al., 2017, as well as elderly patients at risk of isolation Razavi et al., 2019. Conver-
sations involving the automated system, when rated blindly by 8 research assistants,
were found to be comparably natural and on-track as “Wizard of Oz” conversations,
where a human operates the virtual agent behind-the-scenes.

However, the LISSA system faced several limitations. First, the schema-based
planning system was relatively rigid; user inputs were only observed by the system
when anticipated by a step in the schema and had to be processed for the plan to
continue, making it impossible for the system to handle unexpected inputs (in the way
that schema-based planning is intended to handle). Second, the interpretive process
was relatively shallow, using only “natural language” gist-clauses based on superficial
pattern-matching and having no structured semantic interpretations. Third, the
system lacked a context and episodic memory, limiting its ability to establish long-
term coherence or contextual awareness besides information directly encoded in its
pattern-matching rules. Overall, the system worked well for topically broad but
superficial system-initiated dialogues, but clearly something more general is required
for realistic mixed-initiative and collaborative planning domains.

4.2 Eta Dialogue Manager

4.2.1 Dialogue Schemas
Central to the Eta Dialogue Manager are dialogue schemas, represented using the
formal schema language developed by my advisor and colleagues. Each dialogue
schema is uniquely identified by a schema header specifying the predicate and par-
ticipant roles of the episode variable characterized by the schema 1, which is followed
by sections containing Episodic Logic (EL) formulas (Schubert and Hwang, 2000).

1Characterization is indicated using the episodic “**” operator; see (Schubert and Hwang, 2000)
for more details about the syntax and semantics of Episodic Logic.
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(event-schema :header ((^me teach-BW-concept-to.v ^you) ** ?e)
;``````````````````````````````````````````````````````````````````

:types (
!t1 (?cc (plur BW-concept-structure.n)) ; a set of concept schemas
!t2 (^you person.n)
!t3 (^me robot.n))

:static-conds (
?s1 (^me understand.v ?cc))

:pre-conds (
?p1 (some ?c ((?c member-of.p ?cc) and (not (^you understand.v ?c)))))

:goals (
?g1 (^me want.v (that (^you understand.v ?c))))

:episodes (
?e1 (^me say-to.v ^you '(Hi, my name is David.

I'm ready to teach you some spatial concept.))

; Agent chooses a concept that the user doesn't understand.
?e2 (^me choose.v (a.d ?c (and (?c member-of.p ?cc)

(not (^you understand.v ?c)))))

; Agent guides the user through construction of concept.
?e3 (^me guide-BW-construction.v ^you ?c)

?e4 (^me say-to.v ^you '(Do you think you understand the concept?))
?e5 (^you respond-to.v ?e4)

?e6 (:try-in-sequence
(:if ((^you say-yes.v) * ?e5)

?e7 (^me say-to.v ^you '(Great. Thanks for playing pupil!))
?e8 (^me commit-to-STM.v (that (^you understand.v ?c)))
?e9 (^me say-bye.v))

; If user doesn't understand concept, try building another example.
(:else [...] ))

[...]
)

:certainties (
!c1 (!e5 0.4)))

Figure 4.2: Example of a (simplified) dialogue schema, from the Blocks World concept
tutoring task discussed in Section 4.3.
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The sections that a dialogue schema may contain are as follows 2:

• episodes: the minimal requirement for a dialogue schema is a list of episode
variables (technically Skolem functions of the main episodic variable) and as-
sociated formulas. Episodes typically reflect speech acts by participants, but
do not necessarily do so - they could in principle be any anticipated event,
a proposition expected to become true, or more complex procedural behavior
such as repeating an episode until a contextual condition is met.

• episode-relations: temporal relations between episode variables specified in
the episodes section. The default ordering between episodes is sequential in the
order they occur in the schema, but other constraints can be specified (such as
“consec” for two directly consecutive episodes, or “same-time” for simultaneous
episodes).

• types: non-fluent type predications for individuals occurring in the schema,
e.g., that the speaker participant is type robot.n, the hearer is type person.n,
or that some variable ?x has type block.n.

• rigid-conds: any non-fluent predications about individuals occurring in the
schema apart from the types, e.g., that ?x is yellow.

• static-conds: fluent predications which are expected to hold throughout the
schema episode, e.g., that the hearer is located near the speaker.

• pre-conds: fluent predications that are expected/required to be true at the
initiation of the episode represented by the schema.

• post-conds: fluent predications that are expected/required to be true at the
conclusion of the episode represented by the schema.

• trigger-conds: fluent predications which, if true, signal that the schema
should be instantiated or at least marked as a candidate for instantiation.
Likely overlaps with other fluent schema conditions.

• goals: formulas corresponding to the goals of participants in the schema.

• necessities: associate values in [0,1] with schema conditions indicating how
necessary it is that those conditions hold. For instance, if some precondition is
necessary to degree 1, then it is strictly required to hold for the schema to be

2The section names are slightly modified from, but mostly analogous to, those discussed in
(Lawley et al., 2019)
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instantiated. If a precondition is necessary to degree 0.5 and doesn’t hold, the
schema might be dispreferred but could still be instantiated if other conditions
are sufficiently compelling.

• certainties: associate values in [0,1] with schema episodes indicating how
certain it is that those episodes will be observed. If an episode is certain to
degree 1, then that episode must be matched to an observation for the schema
to proceed. If an episode is certain to degree 0.5, the agent might try for a
while to match the expectation to an observation, but otherwise may move on
with the rest of the schema.

A simplified example of a dialogue schema is shown in Figure 4.2, taken from a
“concept tutoring” task in the Blocks World domain (discussed more in Section 4.3).
Note that variable symbols in the example schema take on three different prefixes:
‘^’, ‘?’, and ‘!’. The first of these represents indexical variables, whose values point
to some object within the context (for example, ^you, ^me, or ^now). ‘?’ and ‘!’ are
used to represent individual variables and sentential variables, respectively. In the
case where ‘?’ is used with a fluent (time-dependent) formula, such as an episodic
variable ‘?e2’, the variable ‘!e2’ stands for the full proposition that the fluent formula
characterizes the episode variable, i.e. (<formula> ** ?e2).

Some of the episodes in the schema, such as ‘?e1’, correspond to primitive actions
that can be directly executed by the agent, while others such as ‘?e3’ correspond
to sub-schemas that get expanded when instantiated. Episodes attributed to the
user are expected, but do not necessarily have to come to pass - ‘?e5’ for instance
is assigned a certainty of 0.4, since the user may just remain silent in response, in
which case the system would follow up with another example of the concept. Finally,
the action ‘?e6’ represents a conditional episode where the agent tries a sequence of
actions depending on contextual knowledge (such as whether the respond-to.v event
is (partially) characterized by the user assenting). These types of episodes modify
the plan structure when instantiated.

4.2.2 System Architecture
A diagram of the overall architecture of Eta is shown in Figure 4.3 and described
in the following subsections. The curr plan structure is shown at a state where
the system utterance (highlighted in red) has just been executed, and the user reply
(highlighted in blue) is expected. The core Eta dialogue manager consists of a central
fact store, consisting of a context (grounded knowledge assumed to be true ‘now’),
an episodic memory, and a knowledge base for general non-fluent world knowl-
edge. Also contained in Eta’s dialogue state, though not shown in the diagram, is a
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structure of discourse entities and corresponding ‘aliases’, used mainly for reference
resolution. The dialogue manager has access to a store of schemas that can be
instantiated and used to construct hierarchical plans (containing subplan/superplan
links when applicable). These plans, however, are flexible and can be modified or
abandoned “on-the-fly” when an unexpected input triggers a new schema.

Eta is designed to interface with external subsystems of two types: perceptual
subsystems that provide perceptual knowledge (e.g., visual or auditory information)
in propositional form to Eta, and specialist subsystems that are capable of special-
ized, domain-specific reasoning (e.g., spatial planning, mathematical reasoning, etc.).
Each subsystem listed in the system’s configuration corresponds to a single input and
output file, and communication with Eta uses ULF propositions.

Figure 4.3: A diagram of the architecture of the Eta dialogue manager. The current
(expected) and previous steps of the plan are highlighted in blue and red, respectively.
The five tasks in the system’s task queue (see Subsection 4.2.6) are numbered in green.
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4.2.3 Semantic Interpretation
As the system receives inputs from perceptual subsystems, these facts are added
directly to context, as well as pushed onto a “new perception” queue for further
semantic interpretation. Semantic interpretation is performed at two levels in the
case of speech acts: gist-clause interpretation and ULF interpretation. In
both cases, the assumption is made that to effectively “ground” the user’s utterance
and resolve ellipsis (as well as many case of anaphora), the system only needs to
interpret the utterance in the context of the adjacency pair (Clark and Brennan,
1991) consisting of the user’s utterance and the immediately preceding speech act.

The first level, gist-clause interpretation, is performed using the hierarchical pat-
tern transduction tree method previously introduced in the LISSA system. Trans-
duction trees specify patterns at their nodes, with branches from a node providing
alternative continuations as a hierarchical match proceeds. Terminal nodes have as-
sociated directives indicating whether the node provides a result template, specifies
a subschema to be activated, sends input to some subordinate transduction tree,
or some other outcome. The pattern nodes use simple template-like patterns that
look for particular words or word features, and allow for “match-anything”, length-
bounded word spans. For example, a feature-annotated word might be (spring
season time-period noun name), and “match any number of words” is indicated
by 0, and “match at most two words” is indicated by 2. A simplified generic example
of a gist clause transduction tree is shown in Figure 4.4.

After extracting gist-clauses, Eta also can derive an unscoped logical form (ULF)
from the gist-clauses. ULF is closely related to the EL syntax used in schemas -
it is a preliminary form of that syntax, when mapping English to logic. For in-
stance, a gist-clause such as “Which blocks are on two other blocks?” would be in-
terpreted as the ULF (((Which.d (plur block.n)) ((pres be.v) (on.p (two.d
(other.a (plur block.n)))))) ?). As can be seen from this example, the result-
ing ULF retains much of the surface structure, but uses semantic typing and adds
operators to indicate plurality, tense, aspect, and other linguistic phenomena.

Eta extends the hierarchical pattern transduction mechanism used in LISSA by
introducing phrase-based recursion into hierarchical transduction trees. This en-
abled a form of compositional interpretation that is quite efficient and accurate for
the domains that Eta has been applied in so far, and has proved to be readily ex-
tensible. A top-level transduction tree identifies different types of input sentences
and accordingly sends them off to more specialized trees. These trees again use hier-
archical pattern matching based on words and their features to identify meaningful
(generally phrasal) segments of the input, such as an NP segment or a VP segment.
They then dispatch the corresponding (feature-annotated) word sequences to trans-
duction hierarchies appropriate for their phrasal types; these recursively derive and
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Figure 4.4: An example pattern transduction tree for gist clauses, with a trace for specific
example inputs shown.

return ULF formula constituents, which are then composed into larger expressions
by the “calling” tree, and returned. At the level of individual words (or certain
phrases), a lexicon and lexical routines supply word ULFs. The efficiency and ac-
curacy of the approach lies in the fact that hierarchical pattern matching can quite
accurately segment utterances into meaningful parts, often relying on automatically
added syntactic and semantic features, so that the need for recursive backtracking
rarely arises.

An example of a transduction tree being used for parsing a historical question
into ULF is shown and described in Figure 4.5. As in the example mentioned above,
the resulting ULF retains much of the surface structure, but uses semantic typing
and adds operators to indicate plurality, tense, aspect, and other linguistic phenom-
ena. Additional regularization is done with a limited reference resolution module,
which can resolve anaphora and referring expressions such as “it”, “that block”, etc.,
by detecting and storing discourse entities in context and employing recency and
syntactic salience heuristics. The resulting interpretations are added to dialogue
context.
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Figure 4.5: An example ULF parse, with the input shown in red, and the resulting ULF
(at each composition step) shown in green. The nodes with rectangles represent ULF
composition nodes, where the numbers in the upper box correspond to the indices of the
lower boxes (if there is no upper box, the constituent ULFs are simply concatenated). All
other nodes are patterns to be matched to the corresponding span of input text.

4.2.4 Plan Execution
If the currently pending step in the plan is an expected user action, the system
attempts to match the expectation to a “currently true” fact in context, unifying
any variables in the schema formula. If no fact is matched, the plan will not proceed
unless some waiting threshold (i.e., elapsed time since the last plan modification)
determined by the certainty of the expected episode is exceeded. Certainties are
mapped to waiting thresholds according to the function T (c) = −α ∗ log(1 − c),
where α is a global parameter controlling the scale of the resulting times. This
choice of function causes T (0) = 0 and limc→1 T (c) = ∞, as desired. In the case
where c = 1, the system will halt indefinitely for the expected input.

In the case of a system action, the system will execute the action. If the action
is non-primitive, it will select the appropriate subschema (if applicable) and add it
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as a subplan to the currently active plan, or otherwise modify the plan directly. If
the action is primitive, it can have any of a number of effects depending on the
implementation of the execution function for that action: it might modify facts in
the context or memory; it might request domain-specific reasoning from a specialist
subsystem; it might request a perceptual subsystem to attend to a specific entity; or
it might trigger response generation.

In both cases, any plan variables bound during the process of matching an ex-
pected episode or executing an action will be substituted in the current plan, as well
as an attached copy of the schema used to instantiate the plan (if applicable).

Finally, the goal of a schema may be used to modify the plan in two respects:
first, if facts stored in context already satisfy the goal of some subschema in the
plan, the system will consider that episode ‘obviated’ and skip over it. Second, if
the end of a schema is reached and the goal of the schema still isn’t satisfied, the
system can attempt to replan according to some backup strategy (currently, the
backup strategies are specified using a pattern transduction tree, and may consist
of generating a response, activating a new subschema, or by default simply moving
on).

4.2.5 Response Generation
In the simplest setting, the response generation module uses the same hierarchical
pattern transduction methods that are used for gist-clause interpretation, except a
system reaction is selected in the context of the user’s previous gist-clause. As in
the case of interpretation, the terminal nodes of transduction trees specify directives,
which may include directly outputting some template, or selecting a subschema to
activate and react with.

In more complex settings where the system derives deeper ULF semantic in-
terpretations of the user, response generation may require interaction with context
and memory (in the case of queries about historical states of the world, for in-
stance) to generate reactions, as well as requiring other syntactic transformations
prior to conversion to surface-form utterances. This process is currently handled
by a domain-specific module capable of using episodic memory to answer historical
questions about objects in a physical “Blocks World” domain, details of which can
be found in (Kane et al., 2020). Note that the conversion from ‘final’ ULF represen-
tations of responses to surface-form utterances is itself pretty straightforward due to
the close correspondence between ULF and natural English; a distinct advantage of
ULF over other more opaque semantic representations.
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4.2.6 Task Queue
The Eta dialogue manager relaxes the assumption of strictly sequential plan execu-
tion and observation that hampered the LISSA system. Plan execution and obser-
vation, as well as inferences of various types, may be interleaved in the Eta dialogue
manager through the use of a task queue that repeatedly cycles between the tasks
labelled in green in Figure 4.3, and described in more detail below:

1. perform-next-step: handles the currently pending step in the dialogue, per-
forming each of the functions described in Subsections 4.2.4 and 4.2.5 (if ap-
plicable).

2. perceive-world: collects perceptions about the external world (as symbolic
logical representations) from all perceptual subsystems. Perceptions are added
to the fact store, as well as added to a queue of new perceptions for further
interpretation.

3. interpret-perceptions: the system attempts to arrive at a semantic inter-
pretation of new perceptions, using the context of the relevant previous action
in the current plan, via the methods outlined in 4.2.3. The interpretations are
added to the fact store.

4. infer-facts: the system applies an inference process to its fact store to derive
new facts in a bottom-up manner. To make this tractable with larger fact
stores, the system may use particular strategies to narrow down candidates
for inference. Currently, the system only applies inference rules once to “new”
perceptions and semantic representations. Transduction trees are also used
for inference currently, though in the future this process may involve formal
inference rules, or a more data-driven approach.

5. find-schemas: the system’s fact store is used to select new candidates for
the active schema, and/or to instantiate a candidate as the active schema.
The new active schema may either replace the old one completely, or form a
subplan. This process is unimplemented in the current version of the system,
and remains future work.

4.3 Virtual Human Applications using Eta
The functionality of the Eta dialogue manager is tested in two practical domains,
both of which require capabilities beyond those of the LISSA system. The first do-
main is the virtual avatar David, a spatially-aware conversational agent capable of
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carrying out various collaborative tasks in a physical “Blocks World” setting. These
tasks include question-answering, concept tutoring, and (as an anticipated future
goal) concept learning. The second domain is the SOPHIE avatar - a Standard-
ized Online Patient for Healthcare Interaction Education, aimed at allowing medical
students to practice having difficult conversations with patients.

4.3.1 Blocks World Avatar (David)
The David virtual agent is intended to hold collaborative dialogues with a user
within a physical “Blocks World” setting, depicted in Figure 4.6a. Blocks can be
referred to by company names as well as by color (indicated by the tape around
the blocks); the scene is captured by two Kinect sensors and reconstructed in the
Blender 3D modelling program. The full dialogue pipeline, shown in 4.6b, builds
upon the core Eta architecture (diagrammed in 4.3) in a fairly straightforward and
standardized way: both the ASR module and the “vision”/state-tracking component
of the Blocks World system are connected to Eta as perceptual subsystems, while the
“spatial component” is connected to Eta as a specialist subsystem, capable of task-
specific reasoning (e.g., determination of spatial relations between blocks, spatial
planning, etc.).

(a) (b)

Figure 4.6: The blocks world apparatus setup (a), and dialogue pipeline (b). In (b), the
arrows indicate the direction of interaction between the modules.

The initial implementation of the David virtual agent was intended to support
open-ended natural language question-answering (QA) about the blocks on the table
(Platonov et al., 2020), or about historical states of the blocks or actions by users
(Kane et al., 2020). This system is in some sense a spiritual successor to the seminal
SHRDLU program (Winograd, 1972), but differs in at least a couple respects: first,
the SHRDLU system used a virtual Blocks World, while our system is intended
to operate with a physical Blocks World (though it is compatible with a simulated
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David: Would you like to ask me a spatial question?
User: (moves a block)
User: David, which block did I just move?
David: You moved the Toyota block.
User: Where was the Toyota block before?
David: The Toyota block was between the Mercedes block

and the Burger King block.
User: Where is it now?
David: The Toyota block is on top of the Texaco block.
User: (moves another block)
User: How many blocks have I moved since the beginning?
David: You moved two blocks.
User: Was the Twitter block always behind the Mercedes block?
David: No.
User: Did I move the Twitter block after I moved the Toyota block?
David: Yes.
User: When did I move the Toyota block?
David: You moved the Toyota block three minutes ago.

Figure 4.7: Example of the sort of dialogue that David can engage in (in the QA setting).

world as well); this setting introduces a number of challenges that are not encountered
within a simulated setting. Second, our project is intended to answer questions using
fully general mathematical models of spatial relations (such as “near” or “behind”)
that can be re-used in more realistic domains. Our work also differs from more recent
work on collaborative Blocks World dialogues such as (Perera et al., 2018), which
focuses on interactively learning concepts through positive and negative examples.

Meeting the requirements imposed by the Blocks World QA task required mak-
ing many improvements to the underlying dialogue manager. First, as discussed in
Section 4.2, being able to accurately answer spatial questions required moving from
superficial gist-clause transduction to implementing deep (though domain-specific)
compositional semantic parsing using transduction trees. Second, for the system to
be able to answer questions about historical states of the world (relevant for, e.g.,
returning to a previous state or diagnosing a past misstep), it had to be extended
with the episodic memory shown in Figure 4.3, and the response generator had to
be modified to use a (fairly general) backtracking algorithm over the memory; see
(Kane et al., 2020) for more details.

An example of a transcript from the David avatar in the QA task is shown in
Figure 4.7. Current work on the David avatar is focused on allowing it to hold
collaborative concept tutoring dialogues, where the David avatar has in mind some
abstract concept (e.g., an arch), and attempts to interactively teach the user the con-
cept through having them create examples with blocks. Furthermore, we’re working
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SOPHIE: One thing I've noticed is that I haven't been sleeping well.
Do you know why I keep waking up at night?

User: What happens when you try to sleep?
SOPHIE: Sometimes I wake up in the middle of the night and notice an

ache in my back and near my chest. I have to take the pain
medication to fall back to sleep.

User: What pain medication?
SOPHIE: I'm just taking the Lortab for the pain right now.
User: I see.
SOPHIE: It sounds like my pain is the root of my sleeping problems.

Do you think having stronger pain medication would help?
User: We can certainly try putting you on a stronger medication.
SOPHIE: It would be nice to be able to sleep soundly again. What would

the side effects of a stronger pain medication be, though?
User: You might face some problems with nausea.
SOPHIE: I think I should try the medicine and see if I have any

problems with nausea. Could you prescribe me some?
User: Sure, I can do that.
SOPHIE: Thank you very much, I hope that will help with the pain.

Let's talk about my test results...

Figure 4.8: Example of part of a dialogue with the SOPHIE avatar.

on allowing David to explain why it gave particular answers in the QA task; this in-
volves decomposing the spatial relations into various low-level factors that the system
is able to reason with.

4.3.2 Standardized Patient Avatar (SOPHIE)
The SOPHIE (Standardized Online Patient for Healthcare Interaction Education)
avatar is a virtual patient recently diagnosed with lung cancer and seeking medical
advice, allowing medical students and oncologists to practice having difficult con-
versations with patients (Ali et al., 2021). In a similar vein as the LISSA study,
the SOPHIE system provides post-conversation feedback to the user on several met-
rics that have been found to be positively correlated with patient prognosis under-
standing: lecturing vs. non-lecturing, speaking rate, number of questions asked,
and sentiment trajectory of the conversation. The dialogue contents were meticu-
lously designed based on guidance from palliative care experts, and transcripts from
previous training sessions involving human actors. An example conversation with
SOPHIE is shown in Figure 4.8.

On the dialogue manager backend, the system is similar to LISSA and operates
mostly on the level of gist-clause interpretation. However, unlike LISSA where dia-
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logues were mostly system-initiated, SOPHIE dialogues tend to be mixed-initiative:
sometimes the user asks questions with a particular goal in mind, and sometimes
SOPHIE needs to ask questions with her particular goal in mind (and ensure that
she gets a satisfactory answer). In order to support this, the dialogue manager was
extended with limited goal-driven replanning capabilities: dialogue schemas (e.g.,
asking what one’s prognosis is) may be associated with goals, and if the goal is not
satisfied by context at the conclusion of the schema, a transduction tree is used to
select some appropriate follow-up behavior (if any; by default the system simply
moves on with the current plan). Currently, the only type of goals supported are
ones that state that the agent wants to know the answer to a particular utterance.

4.4 Conclusion and Future Work
In this chapter, I discussed the preliminary development of a dialogue manager which
is highly modular and portable - generally requiring only modification of hierarchical
pattern transduction trees, in a simple English-based templatic language, to create
a virtual agent in a new domain - while still capable of deeper understanding and
adaptive behavior through the use of a type-coherent, expressive logical form, and
flexible dialogue schemas.

Though the core Eta dialogue manager has already shown to be readily applicable
to several dialogue domains, much work still needs to be done in order to allow the
system to be a fully general, open-domain dialogue system. Some planned future
directions of research are as follows:

1. Though the process of producing a semantic interpretation (ULF) from a gist-
clause is quite reliable in the Blocks World setting, using a hand-engineered
domain-specific compositional parser, it is difficult to extend the parser to
other domains. In general, the hand-engineered pattern trees used for gist-
clause and ULF interpretation require careful design and can be somewhat
rigid. Ultimately, one goal is to use a generic machine learning-based English
to ULF parser for interpretation (perhaps with the ability to “override” with
reliable domain-specific parsers); to this end, a cache-transition ULF parser is
concurrently being worked on by colleagues within my group. The same also
applies to response generation.

2. The historical backtracking algorithm used for historical QA in (Kane et al.,
2020) was fairly simplistic, relying on an assumption of a linear temporal order
of episodes. A more general algorithm would involve traversing a topologically
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sorted DAG of episode bounds (i.e., start and end points). A Lisp imple-
mentation of this structure - a Timegraph - is currently in the works by a
collaborator.

3. The ability of the system to react to unexpected inputs is still somewhat lim-
ited. To exploit the advantages of schema-based planning in handling such
events, an algorithm needs to be developed to continuously update a set of
candidate schemas according to certain trigger conditions of the schemas, and
to instantiate a new active schema from the set of candidate schemas when
appropriate. A related goal, though falling outside the scope of my research,
would be automatically learning/extracting a discourse schema library that’s
broad enough to cover various types of unanticipated behavior.

4. More robust inference rules. Inference currently relies on ’superficial’ pattern
transduction trees of the same sort used to do gist-clause and ULF interpre-
tation. Support should be added for formal implicational inference rules that
derive the conclusion whenever the premise is found to be true (in fact, such
inference rules can be represented by pattern transduction trees, but requiring
a more expressive tree-transduction language than the “flat” pattern language
used currently).

5. Similarly, it might be useful to employ statistical natural language inference
(NLI) models within the inference pipeline. One task in which NLI models
could be useful, for instance, is in deriving “want” and “believe” propositions
- ubiquitous as goals and conditions in schemas - from user utterances. For
instance, if a user replies to the SOPHIE system with “I think the cancer has
spread.”, the system should automatically infer “You believe that the cancer has
spread.”, which can then be used to instantiate a schema with a corresponding
precondition. Some separate research that I’m doing with Prof. Aaron White
is aimed at training statistical models to analyze such belief/desire inferences.

Finally, and in conclusion, a future research objective is to combine the capabili-
ties exhibited by the Blocks World avatar with those exhibited by the SOPHIE and
LISSA systems in a single agent with multiple cross-domain competencies. Stated
more generally, the ultimate goal of the project is to develop a system which is ca-
pable of both broad conversational behavior about casual or domain-specific topics,
while simultaneously being “spatially aware” and capable of grounded collaborative
discussion about objects in the world. Though many existing dialogue systems are
open-domain in the sense that the underlying modules can be easily ported to multi-
ple domains, there are (to my knowledge) no systems which integrate behavior across
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multiple domains as just described. Although the goal just described is a highly am-
bitious one, I believe that the current and future research described in this chapter
constitute significant, and attainable, contributions to this goal.
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