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Abstract

Generalist conversational agents are a longstanding goal for dialogue researchers;

however, this goal remains elusive owing to the often divergent roles of robust “analogi-

cal” reasoning and rigorous formal reasoning in computer dialogue. This dissertation

proposes a general dialogue management framework, Eta, for creating conversational

agents using an explicit schema representation that subsumes both modes of behavior.

The schemas used by Eta represent expected or prototypical dialogue events, and can be

used to dynamically guide dialogue through incremental matching of schemas to Eta’s

observed dialogue context. Deploying an agent to a particular domain requires only the

creation of a set of schemas and the integration of modular, portable pattern transduction

methods; the latter allows for the flexible integration of both symbolic methods and

large language models in processes such as interpretation, reasoning, planning, and

generation.

I demonstrate the generality of this approach by presenting a chronology of case

studies of conversational agents created using Eta across three highly diverse domains:

beginning with a friendly peer for social skill assistance; then turning to a spatially

situated collaborative agent in a physical “blocks world” domain; and finally I present a

virtual standardized cancer patient for end-of-life communication practice, representing

the most elaborate application of Eta to date. I conclude the dissertation by shifting to an

empirical investigation of how prototypical knowledge about cognitive attitudes – such

as that contained within dialogue schemas – is reflected in natural language itself, laying

the groundwork for more precise methods of inference about such event knowledge.
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1

1 Introduction

Natural language dialogue, in either spoken or written form, is the primary method

by which humans transmit information about their underlying mental states in order

to collaborate effectively on joint activities. It is therefore unsurprising that a sizable

body of research on human and computer collaboration concerns the creation of virtual

conversational agents – systems that can collaborate with a user principally through

natural language interaction. Such systems can assist a user in completing everyday

tasks; can tutor a user or answer questions about some topic; can automate costly

communication training programs, among many more valuable applications.

Our ability to simulate truly human-like conversational agents is still nascent, requir-

ing one to solve such difficult problems as theory of mind; massive-scale knowledge

acquisition across various domains; design of advanced algorithms for perception and in-

terpretation; transforming auditory or imagistic inputs to latent symbolic or sub-symbolic

representations; and robust reasoning and planning methods utilizing those representa-

tions and knowledge. Indeed, it is for this reason that natural language dialogue is often

considered an “AI-hard” task: at least as hard as the hardest problems in AI.

Nevertheless, some of these problems can, and should, be abstracted away in the

pursuit of practical conversational agents. What remains is the problem of dialogue

management: how an automated system should mediate between its interpretations of
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the utterances of interlocutors, its own private mental state (goals, obligations, memories,

knowledge, etc.), the context of the dialogue (facts that are assumed to be “common

ground” between participants), and exogenous events that it observes in the world. Along

these lines, Traum and Larsson (2003) define a dialogue manager as consisting of the

following (minimal) responsibilities:

1. Updating the dialogue context on the basis of the system’s interpretations of

communication.

2. Using the dialogue context (as well as knowledge or memories possessed by the

system) to guide interpretation of communication or observed external events.

3. Interfacing with domain-specific reasoners or resources (e.g., a planner, ontology,

or knowledge base) to coordinate both dialogue and non-dialogue behavior.

4. Deciding what action or utterance the system should perform next, and when it

should perform it.

Numerous systems for dialogue management have been developed over several

decades, and have varied widely in the generality of the virtual conversational agents

that they instantiate. The great majority of conversational virtual agents to date have

been specialist agents: Through the use of suitable task representations, plan recipes,

and/or pattern-matching rules, they were able to achieve a high degree of competency in

narrow domains. Seminal specialist agents included SHRDLU – a conversational agent

allowing natural language interaction in a physical blocks world (Winograd, 1972) –

ELIZA – a chatbot that played the role of a Rogerian psychotherapist (Weizenbaum,

1966) – and TRIPS – an assistant for solving logistics problems in an island simulation

(Ferguson and Allen, 1998).

Specialist conversational agents are often sufficient for many practical applications,

and thus remain an active area of research with numerous architectures and techniques

having been proposed to enable task-specific dialogue (Zhang et al., 2020b; Jacqmin
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et al., 2022). However, in many more open-ended domains, where a conversation

may veer unpredictably in various topical directions, it becomes more critical for an

agent to have generalist as opposed to specialist capabilities. Recent advances in large

language models (LLMs) and the expansion of available computational power have

led to a renewed attention toward generalist agents. For instance, transformer models

trained on a combination of natural language and diverse task representations have

been able to demonstrate basic competency across a variety of natural language tasks

(Reed et al., 2022; Bubeck et al., 2023). However, while these models appear to have

impressively generalist linguistic capabilities, they fall short of achieving functional

competency; particularly within tasks involving planning or reasoning (Mahowald et al.,

2023; Valmeekam et al., 2023). Furthermore, autoregressive language models have been

shown to exploit superficial linguistic cues while solving problems, suggesting that their

performance in closed task evaluations is likely an overestimate of their performance in

open-ended collaborative dialogues (Levy et al., 2023; Du et al., 2023).

The challenge in progressing from specialist agents to generalist agents can be better

understood by considering a hypothetical dialogue agent as implicitly mapping from

the space of possible “situations” to primitive actions (including dialogue actions, but

also other cooperative actions in physically situated dialogues). As domains become

more general, the complexity of the function implementing this mapping scales ex-

ponentially with the number of possible variables that describe a situation (Ginsberg,

1989) – precluding many of the search-based planning and reasoning methods that are

successful in narrow domains. Therefore, in more general domains, this mapping needs

to be decomposed into expectations about possible situations, allowing for tentative

dialogue plans to be constructed through analogy between the observed situation and

an expected situation. The apparent successes of LLMs as generalist agents can be

attributed in part to their robust analogical capabilities, often compared to the “System

1” in the dual-system theory of cognition (Yao et al., 2023; Kambhampati et al., 2024);

the apparent failures of LLMs can similarly be attributed to their lack of a “System 2”
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capable of more deliberate reasoning on the basis of explicit world models.

In this dissertation, I aim to demonstrate that the missing link between these two

modes of behavior is precisely an expressive knowledge representation for expected

patterns of dialogue situations, coupled with automated mechanisms for extrapolating

dialogue actions from these expectations. Specifically, I propose the use of structured

prototypical event representations henceforth referred to as schemas in the tradition of

psychologists who, nearly a century ago, first theorized the role of such prototypical

knowledge in human behavior (Piaget and Cook, 1952; Bartlett, 1932). Intuitively, these

schemas (which may be learned or designed by domain experts) represent a hierarchical

clustering of the full space of dialogue situations in a particular domain, allowing for

analogy from the current situation to the closest matching prototype. This enables an

agent to reflexively act by simply carrying out the expected actions in the matched

schemas, as well as to engage in goal-driven planning based on the goals and conditions

associated with the matched schemas – thus providing a useful generalization of plans

(Turner, 1994) as well as other related concepts such as event or discourse scripts

(Schank and Abelson, 1977; Poesio and Traum, 1997).

This dissertation introduces a schema-based dialogue framework – Eta – that can be

deployed in a wide variety of tasks or domains through the creation of dialogue schemas

and the integration of modular adapters/plugins for performing pattern transduction in

the process of extrapolating appropriate actions from schemas (e.g., for mapping natural

language inputs to an underlying semantic representation, or vice-versa).

I present a compilation of case studies in which Eta is used to develop conversa-

tional agents in three separate applied domains – each demanding a very different set

of capabilities and providing unique insights towards the further development of Eta.

The LISSA conversational agent – a virtual human for social skills practice – served

as the genesis of the Eta dialogue manager, and subsequently served as a test of Eta’s

abilities to handle casual, open-domain conversation across a broad set of topics. The

DAVID conversational agent was designed to support situated question-answering and
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collaborative tutoring dialogues in a physical “blocks world” domain, requiring the coor-

dination of multimodal perception, deep semantic understanding, spatial and temporal

reasoning, and planning. The SOPHIE conversational agent – a virtual standardized

patient that allows doctors to practice end-of-life communication scenarios – is the most

recent, and most elaborate, application of Eta. The challenges in this domain range from

managing the mixed-initiative and goal-directed nature of conversation, to being able to

understand the wide variety of responses that a user might provide, to detecting complex

attributes such as empathy in the user’s responses, to generating emotionally appropriate

reactions. As these case studies illustrate, the Eta dialogue management framework is,

to our knowledge, unique in its ability to balance fluency in miscellaneous domains with

control of the structure and goals of dialogue.

A secondary topic that I explore in this dissertation concerns the semantic interface

between natural language and particular forms of schematic knowledge associated with

events – such as inferences pertaining to beliefs, desires, and intentions of agents. While

in dialogue management we are typically concerned with complex events, even atomic

events at the lexical scale appear to associate with prototypical semantic knowledge

(Dowty, 1991; Heim, 1992; Anand and Hacquard, 2013, 2014). For example, given an

event of a speaker ordering a hearer to perform some action, it is typical that the hearer

consequently intends to perform that action, modulo context that may counteract this

expectation (such as if the speaker has no relevant authority, or if the hearer is particularly

disobedient). Perhaps surprisingly, the patterns of prototypical inferences associated

with particular event predicates appear to be associated with constraints over the types

of syntactic constructions that these predicates may appear in – suggesting that natural

language itself is, in some sense, structured around this prototypical knowledge. I discuss

the MegaIntensionality project – an effort to crowdsource lexical-scale annotations of

prototypical belief, desire, and intention inferences associated with English verbs – and a

subsequent analysis that aims to uncover the lexicosemantic components that give rise to

syntactic variation in natural language. Not only is this analysis of theoretical import, but
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a model of such prototypical inferences might also be used to augment natural language

inference (NLI) models, allowing for more precise dialogue management in frameworks

such as Eta where tracking belief, desire, and intention is of utmost importance.

1.1 Chapter Descriptions

Chapter 2 begins by situating my work in the context of prior approaches to dialogue

management, comparing and contrasting them with the approach presented in this

dissertation.

Chapter 3 provides background on essential theoretical constructs upon which my

work is premised – namely, episodic logic and dialogue schemas.

Chapter 4 provides a complete technical description of our dialogue management

framework, Eta, and the dynamic schema-based planning algorithm that it uses to guide

dialogues. Section 4.1 describes the components of the dialogue state used by Eta, while

Section 4.2 describes the parallel processes of the Eta architecture that operate over this

dialogue state. Section 4.3 describes the use of transducers – plugin-like functions that

can transduce tree representations into new representations – within the Eta architecture,

allowing for portability between domains, adaptation to new domains, and flexible

integration of various NLP techniques.

Chapter 5 discusses the development of the LISSA conversational agent – a virtual

human for social skills practice in casual open-domain conversation that served as the

origin point of the Eta framework. The schema and transducer design of the system is

discussed, and results from initial user evaluations are summarized. Section 5.6 presents

an experiment that finds that, when integrated with LLMs, systems like LISSA can

generate more engaging and personable responses using habitual schemas – a particular

type of schema encoding knowledge about habitual agent activities.

Chapter 6 presents the DAVID conversational agent – a spatially-aware collaborative

agent situated in a physical blocks world domain. I discuss the schema and transducer
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design for spatial question-answering sessions, as well as a novel method for registering

historical states of the dialogue and reasoning about temporal queries (Section 6.4), and

present results from experiments with both spatial and historical question-answering. I

also discuss an extension of this agent to concept tutoring dialogues, where the agent

attempts to teach the user some spatial concept through the collaborative construction of

examples (Section 6.6).

Chapter 7 presents the SOPHIE conversational agent, which is the most elaborate and

impactful application of Eta to date. SOPHIE is a standardized virtual patient capable

of affective and goal-directed conversation in a medical domain, allowing medical

practitioners to practice end-of-life communication scenarios and receive dynamic

feedback. The schema and transducer design enabling this application are discussed. I

present the results of a pilot experiment showing that SOPHIE can help users improve

in some medical communication abilities (Section 7.4) and a follow-up evaluation of

the conversation transcripts from this experiment (Section 7.5). Finally, I discuss recent

improvements to the SOPHIE system through integration of the schema-based approach

with an LLM (Section 7.6).

Chapter 8 takes a turn away from the Eta framework, and towards an exploration

of how the expected cognitive attitudes implicit in dialogue management, and often

explicit in dialogue schemas – such as beliefs, desires, and intentions – are related to the

structure of natural language itself. We describe the collection of a lexicon-scale dataset

of belief, desire, and intention inferences (Section 8.3), and then present a clustering

model that we use to derive a taxonomy of English predicates based on several lexicon-

scale inference datasets (Section 8.4). Finally, we conduct an exploratory analysis of

the semantic components underlying patterns in these inference judgments, and their

relation to syntactic features (Section 8.5).
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2 Related Work

Several prior branches of research have proposed general task-agnostic frameworks for

dialogue management. In this chapter, I discuss several of these approaches and discuss

their strengths and limitations relative to our framework.

2.1 Recipe-based Dialogue

Early approaches to dialogue management emerged out of formalisms developed for

discourse analysis. One such formalism – SharedPlans – was created to model discourses

involving joint collaborative tasks between two or more agents (Grosz and Sidner,

1986, 1990; Pollack, 1990; Lochbaum, 1998). In the SharedPlans formalism, discourse

participants collaboratively build and augment a joint plan by contributing information

about their beliefs, wants, and individual plans through utterances. In doing so, each

agent expands a tree of intentions using recipes – i.e., steps for achieving a particular

intention – with each intention corresponding to a particular section of the discourse.

2.1.1 COLLAGEN

The SharedPlans formalism was directly implemented in the COLLAGEN dialogue

manager (Rich et al., 2001). The overarching goal of the project was to create a general
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Figure 2.1: An example of a COLLAGEN dialogue state, showing the three components
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Figure 2.2: A diagram of the architecture of the COLLAGEN dialogue system.

dialogue manager, portable to many different applications, capable of answering open-

ended questions about application domains – for instance, “Why did you/we (not do)

...?”, “How do I/we/you do ...?”, etc. One early application of COLLAGEN, for instance,

was a virtual agent acting as an assistant to help a user set up and program a video

cassette recorder (VCR). The user could ask questions such as “What next?”, and the

system might respond with “Now press Play on your camcorder...”.

At the core of the SharedPlan formalism, and the COLLAGEN dialogue manager, is a

tripartite model of discourse structure consisting of a hierarchical structure of utterances

in the dialogue, a “dominance hierarchy” or plan tree of intentions corresponding to
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dialogue segments, and a focus stack representing the attentional state, with each focus

space containing relevant properties, objects, relations, as well as the intention for that

dialogue segment. These three components are illustrated in Figure 2.1. The components

in this model directly correspond to relations among SharedPlans for dialogue acts –

specifically, if some intention dominates another intention, then there’s a subsidiary

relationship between the SharedPlans corresponding to these dialogue segments. Simi-

larly, partial and complete SharedPlans correspond to partial and incomplete dialogue

segments. Plan augmentation, as well as manipulations of the focus stack, are therefore

“reduced” to recognizing whether the user’s utterance or proposition initiates, completes,

or contributes to a dialogue segment.

The discourse state is updated after each utterance/primitive action by an agent (after

being parsed into a description logic using standard-at-the-time NLU algorithms) accord-

ing to an interpretation mechanism proposed by Lochbaum (1998), with extensions to

allow for abductively inferring user plans from observed actions, and for handling plan

interruptions (Lesh et al., 2001). Each dialogue event is interpreted as either starting

a new dialogue segment whose task forms a subtask to the current task (pushing a

new goal onto the stack), continuing the current task, or as completing the current task

(popping the goal from the stack). Dialogue generation works in the opposite direction

as interpretation – given the current dialogue state, it produces an “agenda” of utterances

and actions by the agent which would contribute to the current task. The means by

which a discourse event might contribute, continue, or complete a task are determined

by a recipe corresponding to that task. Recipes are action descriptions containing pa-

rameters, constraints on parameter values, partially ordered steps, preconditions, and

postconditions.

One further innovation of the COLLAGEN system was its plan recognition module

used for discourse interpretation, which allowed the system to abductively infer the user’s

plan based on the user’s observed actions (whereas previously the dialogue manager

would require the user to explicitly state their intentions prior to acting, preventing
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natural conversation). This process can be made tractable by leveraging a couple

hypothesized properties of collaborative dialogue: the focus of attention on a particular

goal or task at any given time, limiting the search space of possible plans, as well as

the fact that the plan recognizer only operates on plans that are minimally elaborated

(i.e., expanded only as much as necessary to account for observed actions). Given the

current plan and the task on top of the focus stack, the plan recognizer can try to extend

the plan by applying recipes (which act as production rules) to the task in focus until a

set of observed events is matched. If multiple plans are obtained, the system can insert a

clarification request to narrow down the possible plan continuations. The overall system

architecture combining these components is shown in Figure 2.2.

2.1.2 Notable Applications and Extensions of the COLLAGEN Ap-

proach

One notable extension of the COLLAGEN architecture is the health counselling dialogue

system designed by Bickmore et al. (2011). This work addressed the problem of

extending the generic COLLAGEN system with specialist domain knowledge – in this

case, the relational facts and strategies used by health professionals to counsel patients on

healthy exercise and eating habits. The system made two significant improvements to the

COLLAGEN system. First, the hierarchical planner used by the system – DTask – allowed

for the use of a declarative domain ontology in the planning process, in addition to the

task hierarchy, providing the system with domain-specific knowledge and strategies.

Second, the recipes used in the task model specified adjacency pairs (Clark and Brennan,

1991) (i.e., a question followed by a response), which allowed the dialogue manager to

specify system responses conditionally on the context of the user’s previous utterance.

Though developed independently to the COLLAGEN system, the RavenClaw dialogue

manager (Bohus and Rudnicky, 2009) employs a very similar dialogue model based

on hierarchical plan trees to represent the interaction, along with a discourse stack that
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is modified at runtime. Unique to the RavenClaw dialogue system, however, is an

expectation agenda capturing what inputs the system expects from the user at any point,

and allowing for complex error-handling. Many useful applications were developed

using this framework due to the simplicity of engineering the task-specific dialogue trees

and the system’s support for mixed-initiative dialogue.

2.1.3 Discussion

COLLAGEN and related systems were in many respects groundbreaking, representing the

first instance of formal theories of human dialogue (namely, the SharedPlans formalism)

being used to create a generic computational dialogue manager. Furthermore, the plan in-

ference system allowed plans to only be minimally elaborated insofar as observed actions

are matched to plan actions, giving the system some degree of flexibility. Nonetheless,

the system’s ability to handle unexpected inputs was limited in practice because plan

modification could only be done by chronological backtracking; agents created using

plan recipes tended to be restricted to domains where a constrained task model could be

devised. Moreover, the semantic interpretations used by the system were limited – user

inputs were only interpreted insofar as was necessary to classify the user’s utterance as a

speech act and identify parameter values, which is insufficient for the general case.

The schemas used in the Eta dialogue framework are comparable to hierarchical

recipes in that they include procedural knowledge about particular tasks or dialogue

events; however, unlike recipes, dialogue planning need not strictly follow hierarchical

expansion of schemas, since dialogue is driven primarily by matching the expectations

in schemas to observations.
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2.2 Plan-based Dialogue

The plan-based approach to dialogue management developed in parallel to the recipe-

based framework, with the goal of developing conversational tools in domains that

demanded more complicated problem-solving abilities. Whereas the recipe-based

approach primarily composes actions based on hierarchical expansion of recipes, the

plan-based approach involves systematic search over possible sequences of actions in

order to achieve some goal state.

2.2.1 Speech Act Planning

The earliest systems for planning-based dialogue were primarily an application of the

STRIPS planning formalism (Fikes and Nilsson, 1971) to classical theories of speech

acts in dialogue. A STRIPS problem defines a set of operators, or actions, which

operate on states of the world (sets of logical propositions) – these operators can specify

preconditions that must to be true in order for the operator to be applied and effects that

modify the state of the world after application of the operator. A STRIPS plan consists of

a chain of operators that, when applied to some initial state, transform the state into a

desired goal state. Typically, this basic formalism is extended with hierarchical planning,

i.e., the ability to decompose operators into several sub-actions or sub-goals.

The classical theory of speech acts advanced by Searle (1969) posited several

categories of necessary and sufficient conditions for the successful performance of

any speech act. For instance, a successful act of informing a person about some fact

requires that the speaker believes the fact, the speaker wants the hearer to believe the fact,

and that the hearer consequently believes the fact. A seminal work in dialogue theory

by Cohen and Perrault (1979) formalizes these conditions in the STRIPS formalism,

allowing dialogue to be modelled as a sequence of speech acts that operate on individual

cognitive states of dialogue participants, such as beliefs and intentions, represented using

a first-order modal logic.
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A tractable algorithm for dialogue management based on this plan representation

was developed by Allen and Perrault (1980). For a collaborative goal-oriented dialogue

to proceed, an agent will often have to infer the plans, beliefs, and goals of the other

agent before continuing their own plan. This inference process is modelled as a search

through a set of partial plans, each represented as tuples π = ⟨∆alt,∆exp, r⟩, where:

• ∆alt is an alternative plan graph, created by chaining plan inference rules from

an observed action by the other agent.

• ∆exp is an expected plan graph, created by chaining plan construction rules from

an expected goal of the other agent.

• r ∈ R is a rating for the partial plan (i.e., the current pair of plan graphs), initialized

to 1 and updated using a set of heuristics.

Plan inference rules consist of ‘if-then’ rules that are used by an agent to form beliefs

about the interlocutor’s intents. For example, if S BELIEVE A WANT P and P is

a precondition of some ACT, then S will by default infer that S BELIEVE A WANT

ACT. Similar rules exist for reasoning about action bodies and effects. Plan construction

rules are used by an agent to construct their own plan (as opposed to inferring beliefs of

the interlocutor) and are essentially the reciprocals of plan inference rules. For example,

if S WANT ACT and P is a precondition of ACT, then S will infer that S WANT P.

The underlying intuition behind the plan inference algorithm is that planning can

be made tractable by simultaneously forward chaining from an observed action and

backward chaining from an expected goal, finding pairs that ‘meet in the middle’ with

unifiable actions or subgoals, and prioritizing the expansion of partial plans which

are more likely to efficiently lead to a unification. At each step of the plan inference

algorithm, the partial plan with the highest rating (according to multiple heuristics) is

selected, and expanded according to the plan inference rules. The resulting plan graph is

executed by the agent.
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2.2.2 The TRIPS system

The TRIPS system (Ferguson and Allen, 1998; Allen et al., 2001) is a modular dialogue

management architecture built on the collaborative speech act planning framework, and

was intended to integrate the abstract problem-solving capabilities of this framework

with domain-specific behavior and task management – as demonstrated in a hypothetical

emergency response task on a simulated island.

The architecture of TRIPS, as outlined by Allen et al. (2001), is shown in Figure 2.3

and briefly described in the following section. The various sub-components of the TRIPS

system are based upon the Abstract Problem Solving Model, a shared planning model
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containing a set of problem-solving objects including objectives (i.e., goals), solutions

(i.e., proposed sequences of actions intended to achieve an objective), resources (i.e.,

any domain objects used in a solution), and situations (i.e., the world settings in which

solutions are being created). These objects are operated on using a set of collaborative

problem-solving actions including both plan modifications (e.g., creating an objective,

selecting or evaluating a solution, etc.) and speech acts (e.g., describing a plan).

The Discourse Context contains rich information about: (a) Salient discourse enti-

ties previously extracted by the interpretation module for reference resolution; (b) The

structural representation of the immediately preceding utterance, to support ellipsis reso-

lution or clarification; (c) The current turn-holder; (d) The discourse history consisting

of speech-act interpretations of utterances so far, with indication of which have been

grounded; (e) Current discourse obligations, typically used by the generation manager

to form responses to the user’s last utterance.

The Task Manager is responsible for acting as a medium between the domain-

independent Abstract Problem Solving Model and recognition and execution of actions

within a specific domain. The Task Manager’s responsibilities include answering queries

about objects and their roles in the task at hand; being an interface between the generic

problem-solving actions used by the Behavioral Agent (e.g., “create a solution”) and

the actual task-specific performance of those actions; and assisting the interpretation

manager in recognizing user intents when the user performs an action.

The Interpretation Manager uses an incremental chart parser to process user input in

an online fashion. As it does so, it produces information used to update the turn-taking

status of the dialogue context, as well as identifying intended speech acts by the user

and the generic collaborative problem-solving action that the act furthers. Finally, any

discourse obligations corresponding to the user’s utterance are added to context. Since
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interpretations may be conditional on situational context, the identification of speech

acts is governed by rules based on the Abstract Problem Solving Model and potentially

queries made to the Task Manager. For example, interpretation of the utterance “the

bridge over the Genesee is blocked” could be interpreted as the problem-solving act of

identifying a problem with the goal of replanning, or as the introduction of a new goal

to reopen the bridge. One of these two interpretations would be chosen by querying the

task manager about whether there exists a plan using the bridge already, and whether

making the bridge available is a reasonable high-level goal to adopt.

The Generation Manager is responsible for high-level response planning, while

the Response Planner is responsible for lower-level response generation. The former

system uses abstract problem-solving goals from the Behavioral Agent and discourse

obligations from Context to produce plans for the system’s responses. The latter system

can produce surface-level responses using a number of different strategies: superficial

template-based generation, a grammar, or output selection and coordination.

The Behavioral Agent is in some respects the “core” module of the system, as it

governs the system’s problem-solving behavior by balancing several aspects of the

dialogue: the interpretation of the user’s inputs, the system’s own goals and obligations,

and external events observed by the system. In each case, the Behavioral Agent is

responsible for making choices about how much initiative the system should take in its

response, according to its prioritized goals and obligations. For instance, if the user’s

utterance initiates creating a new objective, a low initiative response by the system might

be adopting a new problem-solving obligation to find a solution, while a high initiative

response might be computing a solution and proposing it to the user.
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2.2.3 Collaborative Problem Solving (CPS) Dialogue Shell

Subsequent work on the TRIPS dialogue manager involved abstracting away the

problem-solving model from the particular planning domain used by the original TRIPS

system. The culmination of these efforts was the COGENT dialogue shell (Galescu

et al., 2018), which is a minimal TRIPS-like system, in the sense that it excludes any

TRIPS modules with domain-specific properties, such as the Behavioral Agent, Natu-

ral Language Generation, and the Domain Ontology. Included within the COGENT

framework is the task-independent TRIPS parser (which relies on a general lexicon

and ontology and produces logical forms), a Natural Language Understanding module

which maps logical forms to communicative acts, and a Collaborative Problem Solving

agent that maps communicative acts to abstract communicative intentions (ACIs). These

intentions form the standard format for communication between the domain-independent

COGENT system and any custom Behavioral Agent that a designer might create for a

particular domain.

2.2.4 Discussion

The planning-based approach to dialogue, augmented with the TRIPS/COGENT ar-

chitecture, is particularly useful in domains where complex problem-solving tasks are

required. Many systems across a diverse set of applications have been designed on

top of the COGENT dialogue shell. One particularly notable system built on top of

COGENT is a multimodal collaborative agent in the “Blocks World” setting capable

of interactively learning spatial concepts through being provided positive and negative

examples by users (Perera et al., 2017, 2018).

Thorough planning and plan recognition, however, entail a search problem that

can also become computationally intractable in complex scenarios. Moreover, many

commonplace conversational interactions – such as asking an acquaintance how they’re

doing, or about their opinion on recent news reports, or getting to know someone –
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are not based on systematic planning, but rather are reflexive, based on learned social

obligations or norms related to such requests. Dialogue schemas in the Eta framework

typically represent knowledge about prototypical dialogue events, enabling a more

reflexive and computationally efficient method of dialogue management than plan-based

architectures.

2.3 Information State-Based Dialogue

The information state update (ISU) dialogue management framework (Traum and Lars-

son, 2003) was created to provide a more flexible approach to dialogue management suf-

ficient for simulating virtual humans. Both the recipe-based and plan-based approaches

to dialogue require relatively strict adherence to complex action models, limiting their

flexibility. Other factors may be more apt in explaining many ‘day-to-day’ interactions.

Traum and Allen (1994), for instance, discuss the role of social discourse obligations:

an agent asked “Do you have the time?” by a stranger likely doesn’t establish a shared

plan or reason extensively about the stranger’s beliefs and goals, but rather simply reacts

according to a learned social obligation or convention related to such requests.

Moreover, many aspects of ordinary conversation (including the collaborative kind)

are difficult or impossible to analyze using these classical theories of dialogue planning.

Utterances do not merely represent speech acts, but often comprise of multiple actions

at the sub-utterance level related to turn-taking, repairs, backchannels (“yeah”, “I see”,

etc.), etc. Furthermore, a classical speech act such as a request may not necessarily

correspond to a single utterance, but may consist of a larger discourse unit, such as an

“adjacency pair” consisting of a proposal and acknowledgement. Such discourse units

are often necessary for the successful grounding of information, i.e., adding a piece

of information, and the mutual understanding thereof, to the common ground (Clark

and Brennan, 1991; Clark, 1996). In fact, the role of common ground in the previous

theories has typically been left implicit and minimal – consisting of the observation of
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speech acts by both participants, and the reflexive inferences about beliefs and intentions

which follow from that.

The ISU approach to dialogue posits a structured formal representation of the

“conversational score” including both information that’s been grounded by participants

(i.e., added to common ground) and ungrounded “contributions” or discourse units

(Poesio and Traum, 1998). A dialogue manager therefore consists of the following

elements:

1. An information state consisting of informational components – participants,

common ground/context, discourse structure, previous move(s), obligations and

commitments, beliefs, intentions, user models and individual plans, etc.

2. A set of dialogue moves that update the information state, and rules for recogniz-

ing/realizing performance of these moves.

3. A set of update rules governing how the information state is updated, given the

conditions of the current information state and any observed dialogue moves.

Update rules have a set of preconditions specifying conditions on the values of

particular components of the information state (possibly including variables to

be unified), and a set of effects to be applied to particular components of the

information state (possibly using any variables bound by the preconditions).

4. An update strategy for deciding which rule(s) to apply from a set of applicable

ones. This can range from straightforward strategies such as choosing the first

applicable rule, to more complex strategies such as choosing rules according to

assigned probabilities.

A simple example of this approach is shown in Figure 2.4, with a set of update rules

being shown on the left, and the analysis of a question-answer pair being shown on

the right. This example consists of a very simple information state containing sets of

private and shared beliefs, private agendas (stacks of intentions), shared knowledge of
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the previous move, and a stack of “questions under discussion” (QUD). In step (1), the

only applicable rule is selectAsk, which selects an ask speech act as the expected

next move given the agenda of the turn-holding agent (in this case, a computer system).

As the agent makes the question utterance, the integrateSysAsk rule in step (2)

pops the agent’s agenda stack, and pushes the question that was asked onto the QUD

stack. Under this context, any utterance the user makes is assumed to be an answer

speech act, and if the utterance passes certain domain checks (such as relevance to the

question), the propositional content of the answer is integrated into common ground

in step (3) via integrateUserAnswer. Finally, since the propositional content in

common ground resolves the question under discussion, the QUD stack is popped in

step (4) using downdateQUD.

Figure 2.4: An information state is updated according to a set of update rules as a

dialogue proceeds (Traum and Larsson, 2003). System utterances are shown in red, and

user utterances in blue. Application of update rules are shown in green.
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2.3.1 Notable Applications and Extensions of the ISU Approach

Several notable virtual human applications and dialogue management systems have

made use of the ISU approach.

The ‘How was your day?’ (HWYD) system (Pulman et al., 2010) was designed

to create a supportive and empathetic system capable of discussing open-ended work-

related topics with a user. The system maintains an information state containing all of the

dialogue acts and named entities detected by a natural language understanding pipeline,

as well as conversation goals. If a new entity is recognized and introduced by the user

input, the DM updates the information state with a goal to talk about it – the generation

module uses a variety of strategies to generate empathetic responses, including sentiment

analysis, templates, and a knowledge base. The underlying dialogue manager is notable

for several novel contributions including the use of verbal and nonverbal backchannels

by the system to keep the conversation engaging, and the ability to dynamically replan

behavior if the user interrupts.

The “NPC Editor” software (Leuski and Traum, 2011) was designed to provide a

convenient interface for dialogue designers to customize agent behavior using the ISU

approach. It employs a statistical retrieval system to generate appropriate responses – at

a high level, designers can specify semantic frames (i.e., a set of slot-value pairs), and a

set of system utterances. Given the semantic frame representation of the user’s input, the

system selects a response utterance by computing language models for the frame and

utterance – P (F ) and P (W ) respectively – scoring each utterance by Kullback–Leibler

divergence between the two probability distributions (DKL(P (F ) || P (W ))), and

choosing the minimum scoring utterance. The KL-divergence is computed by treating

the translation between semantic frame and the utterance as analogous to a standard

cross-language information retrieval task. The NPC Editor framework can be combined

with an information state to guide dialogue; for instance, the INOTS (Immersive Naval

Officer Training System) virtual human – a virtual avatar for training army officers with
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interpersonal communication skills – was created using the NPC Editor software in

conjunction with a branching dialogue state representation.

The FLoReS (Forward Looking, Reward Seeking) dialogue manager was created

to overcome a limitation of prior information state systems – their dependence on

predictable dialogue flows (Morbini et al., 2013). The FLoReS system addresses this

issue (while still allowing for the ease of customization that characterized precursors) by

combining several methods of dialogue reasoning as well as a reward-seeking algorithm

for determining dialogue policy. Specifically, the information state is extended with

local subdialogue networks (i.e., operators) for specific conversation topics. As events

are received, the system chooses the operator that maximizes the expected reward given

a particular information state, computed by propagating rewards over a graph of possible

future dialogues. The resulting dialogue manager has been used successfully to create

virtual agents in mixed-initiative tasks, such as holding healthcare counselling dialogues

with military personnel (Rizzo et al., 2011).

2.3.2 Discussion

One strength of the ISU approach is the ease in which dialogue systems can be designed

for various counselling and conversational practice domains, with agent behavior readily

customizable by non-experts. Furthermore, aspects of this approach are amenable to

various methods of integration with statistical NLP techniques, such as probabilistic

topic retrieval or reward-seeking policy decisions for choosing dialogue policies, which

can allow for more robust behavior than a rule-based system can. However, the natural

language representations used by the systems are in general fairly limited. The NPC

Editor program used to create the INOTS dialogue manager, for instance, uses only

slot-value frames as semantic representations, which cannot capture many important

elements of human language (e.g., quantification). Another potential drawback of such

systems is that, as the number of information state update rules increases, the various
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interactions between these rules and their overall effects on the dialogue become more

difficult to anticipate.

The ISU approach shares many similarities with the Eta framework presented in this

dissertation; Eta defines several parallel processes that each update a shared dialogue

state based on the output of transduction methods, much like the information state update

rules in the ISU approach. However, Eta performs these updates on the basis of an

explicit dialogue schema representation, in some sense synergizing the advantages of the

ISU approach with the advantages of the plan-based approaches discussed previously.

2.4 Deep Learning-Based Dialogue

Since the advent of deep learning, many recent dialogue systems try to improve the

system’s ability to generate robust and realistic responses by leveraging statistical models

trained on massive dialogue corpora. Although such systems fall mostly outside of the

scope of this review due to their lack of dialogue management capabilities, I discuss

some systems that were able to achieve robust behavior through either specialized

training procedures or specialized architectures.

2.4.1 Chatbot Models

The Blenderbot chatbot model (Roller et al., 2020; Shuster et al., 2022) was able to

achieve robust, topically broad conversational abilities through a combination of spe-

cialized Transformer architectures and particular conversation-oriented training datasets.

Roller et al. (2020) compare three model architectures for the dialogue system: a

Generator model that implements a standard Seq2Seq Transformer architecture; an

attention-based Retriever model that uses the dialogue history as context to select

the next dialogue utterance from a candidate set (typically, all possible training set
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responses)1; and a Retrieve and Refine model that combines the previous two models –

a retrieval model is first used to select a candidate response, which is then paraphrased

by the generator model.

Each model is pre-trained using 1.5B training examples derived from online message

board discussions. The authors fine-tune with several datasets: the ConvAI2 dataset

where crowd-workers have casual “getting to know you” conversations; the Empathetic

Dialogues dataset where one crowd-worker describes a personal situation and the other

responds empathetically; the Wizard of Wikipedia dataset where crowd-workers hold

conversations while utilizing wikipedia facts from a randomly assigned topic; and the

Blended Skill Talk, where a “guided” participant is able to select utterances from chatbots

trained on the previous three datasets. Using a crowdsourced transcript comparison

protocol for evaluation, the authors find that using the Blended Skill Talk dataset, along

with minimum length beam-search decoding with repetition penalties, produces the

highest-scoring dialogues.

The Athena dialogue system (Harrison et al., 2020) was another effort to create a

chatbot with topically-broad casual conversational abilities; rather than following an end-

to-end approach, as in the case of Blenderbot, this system was based on a novel approach

that “dispatches” response generation capabilities to multiple diverse sub-modules, and

also grounds responses using a topic detector and entity recognition.

The natural language understanding pipeline of the Athena system strongly relies on

Named Entity Recognition (NER) for dialogue management and response generation,

which is implemented using a custom statistical NER model. Entities are additionally

linked to external knowledge graphs derived from Wikipedia. The NLU component

additionally parses the user input and classifies it as a dialogue act, from an ontology

of dialogue acts. The dialogue manager uses a rule-based method (relying on inputs

1In a sense, this model is a “higher firepower” version of the statistical retrieval system used by the

NPC Editor response planner (Leuski and Traum, 2011), with the trade-off of requiring vastly larger

amounts of data to use effectively.
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from the NLU component, as well as template-based keyword matching) to select one

of several response generators to use, depending on the topic and nature of the user’s

speech act – these response generators (RGs) include a rule-based system for generating

utterances related to the avatar’s backstory, a news summarization RG, a neural RG

trained on Wikipedia knowledge graphs, etc. The generated responses from one or

several RGs are ranked, and used to construct the system’s utterance.

2.4.2 Generative Agents

Some recent work has attempted to create generalist conversational agent frameworks

using end-to-end deep learning approaches. Reed et al. (2022) train a multimodal

transformer architecture on a diverse set of tasks, and observe that the resulting agent

attains relatively high performance on a variety of tasks, while communicating through

natural language.

Park et al. (2023) propose generative agents – i.e., agents that perceive, plan, reflect,

and act using text streams and generative LLMs. Their overall agent architecture is

shown in Figure 2.5, and consists of four primary processes that each involve querying an

LLM with particular prompts. To enable this, they maintain a memory stream containing

a comprehensive record of all observations, plans, and belief states, represented as

natural language sentences. In order to make LLM prompting tractable, they retrieve a

subset of memories by ranking them using a weighted average of their recency – their

most recent access time – their importance – the impact of a memory as assessed by an

LLM – and their relevance – their similarity to a particular query memory.

They perform a simulation of their framework in a life simulation video game setting

with multiple agents. The memory stream is initially populated with observations of

the world state. The process of reflecting involves recursively prompting an LLM to

synthesize a tree of abstract knowledge, beginning with initial observations of the world.

The process of planning involves prompting an LLM to create an agenda of actions,
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Figure 2.5: The generative agent architecture proposed by Park et al. (2023).

given a summary of the agent’s previous day, at multiple levels of granularity – the LLM

first provides an agenda for the full day, then recursively breaks down each activity into

hour-long actions, etc. At each time step in the simulation, the agent acts by prompting

the LLM to either act on the current plan action (for instance, generating a dialogue

utterance), or reacting with a new, modified plan.

2.4.3 Discussion

Deep learning-based systems and generative agents excel in open-ended chatbot-like ap-

plications, owing to their powerful pattern-based analogical abilities, while also showing

some promise as generalist frameworks. However, these approaches are often hallucina-

tion prone, computationally expensive, and often achieve worse performance in complex

tasks where deeper reasoning or planning is necessary (such as the logistical planning

handled by the TRIPS system); Roller et al. (2020), for instance, note a tendency of their

system to contradict itself or forget a previously mentioned fact2. These limitations

are notable because they precisely coincide with the strengths of the approaches dis-

cussed previously. For example, a plan-based dialogue system with some sort of explicit

2It is possible, however, that the latter limitations may be improved by recent advances in long context

window models (see e.g. Gu and Dao, 2023).
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knowledge store wouldn’t contradict itself (provided sound inference rules), is capable

of interpreting the semantic contents of the user’s utterances to some extent, and can

support mixed-initiative tasks with a sufficiently flexible system architecture. Ultimately,

it would seem that the goal is to combine the advantages of these types of systems with

the robust analogical abilities that deep learning systems exhibit.

The core processes and episodic memory used by Eta – discussed in Chapter 4 –

resemble the components in the generative agent framework proposed by Park et al.

(2023). Indeed, because of its flexibility in incorporating various pattern transduction

methods, Eta is a “generative agent” in the limiting case, with purely LLM-based

transduction methods – but in contrast, Eta supports the interpretation of inputs into a

deeper logical form, as well as the integration of both symbolic methods and LLM-based

methods for pattern transduction, while providing dialogue control via explicit schemas.

2.5 Schema-Guided Dialogue

There is some precedent for systems that use schemas to guide dialogue in collaborative

tasks. While these systems were limited in scope relative to the framework presented in

this dissertation, they sprung from the same motivation of enabling adaptive dialogue

planning based on expectations, as opposed to strict planning or information state

updates.

2.5.1 Schemas for Context-Mediated Behavior

An early attempt to address the challenge of handling unexpected events using a schema-

based approach to dialogue was due to Turner (1994). The proposed model relies on the

notion of context-mediated behavior, wherein possible contexts are themselves first-class

objects represented as schematic knowledge. More precisely, the author introduces three

subtypes of schemas:
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• Procedural schemas (p-schemas) consist of an actor, a goal, and a set of steps.

Each step may be a primitive action, a subgoal, or another p-schema. A p-

schema may be specialized or generalized, is interruptable/resumable, and is only

expanded as much as necessary.

• Contextual schemas (c-schemas) represent specific contexts or situations an

agent may encounter, and encode domain-dependent aspects of that context (such

as information about responding to events). A c-schema can contain knowledge

about features of the context (used to determine when the schema is applicable),

actions that are performed when a c-schema is selected, mappings from specific

events to goals that should be adapted in response, and links between goals and

p-schemas that achieve them in a particular context. This also includes attention

focusing information that determines which goals an agent should attend to when

in a particular context.

• Strategic schemas (s-schemas) represent information about an agent’s domain-

independent problem-solving strategies across contexts. An s-schema can set

the agent’s goal importance information, i.e. order different types of goals by

precedence, as well as set an overall event importance threshold determining how

sensitive the agent is to reacting to unexpected events in general.

Turner (1994) describes an algorithm for using these schemas to dynamically carry

out an interaction. This process is diagrammed in Figure 2.6. Only one s-schema is

assumed to be active at a time, but multiple c-schemas may be active simultaneously.

These schemas are retrieved using the dynamic conceptual memory proposed by Schank

and Burstein (1985).

Starting from step (1), the reasoner is initialized with a list of active goals. In step (2),

the reasoner focuses attention on a particular goal using the s-schema’s goal importance

information, and the c-schema’s attention-focusing information. In step (3), a p-schema

is selected conditionally on the chosen goal and the action selecting information in the



30

Focus
Attention

Select 
P-schema

Apply 
P-schema

Diagnose 
Change

Assess 
Event

Select 
Response

Initialization
goals

goal

p-schema

done

c-schema s-schema

new goal

change

event 
handler

not
important

ENVIRONMENT

(1)
(2)

(3)

(4)

(5a)

(5b)

(5c)

Figure 2.6: The schema-based reasoning process diagrammed by Turner (1994), with

annotated steps.

c-schema mapping goals to actions within that context. In step (4), the p-schema is

applied while simultaneously updating the environment and monitoring for external

changes. If no external change is detected, the process returns to step (2) and repeats;

otherwise the reasoner proceeds through the event handler component. The change is

first diagnosed/classified in (5a), and assessed as important or unimportant using the

c-schema and s-schema’s event importance thresholds in (5b). If a change is deemed

important, it is used to select a new goal according to the c-schema’s event information,

which is added to the list of active goals. The process then repeats at step (2).
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2.5.2 Schemas for Task-Oriented Dialogue

More recently, the schema-guided approach to dialogue has been proposed as a method

for guiding statistical dialogue models in task-oriented domains by determining align-

ment between observations and explicit dialogue schemas (Rastogi et al., 2020; Mosig

et al., 2020; Mehri and Eskénazi, 2021). These schemas take the form of dialogue

flow charts – DAGs encoding possible system responses and expected user responses

– for specific practical tasks such as booking a hotel reservation. Where this approach

differs from the recipe-based approach is in the fact that these schemas are interpreted as

expectations about the flow of a dialogue; the actual execution of a dialogue, however, is

to be determined using a statistical model that attempts to align the conversation with a

schema.

To enable this, the authors use a schema attention model (SAM) that computes

attention weights between nodes in the schema (specifically, their textual representations)

and the dialogue history, with the objective of predicting the node in the schema that

best corresponds to the current dialogue context. They train this model on a dataset of

crowdsourced dialogue flow annotations and are able to achieve improved performance

in narrow task-oriented domains, while also demonstrating zero-shot transfer to held-out

domains.

2.5.3 Discussion

These schema-guided dialogue models demonstrate several features which will ulti-

mately be important in systems such as our own – for example, an algorithm to instantiate

plans from schemas whenever external observations match certain conditions within

those schemas. However, the schema representations used by both frameworks are

greatly limited.

The schemas of Turner (1994) rely on simple propositional slot values rather than

semantically rich logical representations. Furthermore, it’s questionable to what extent
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certain contextually-relevant actions by the user should be separated from the concept

of a procedural schema (or more generally, an event schema). Ordinary procedures,

such as the classic Schankian “restaraunt” script (Schank and Abelson, 1977), often do

encompass conditional behavior associated with the procedure (e.g., whether or not to

leave a tip), rather than any inherent aspect of the context.

The schema attention model, on the other hand, focuses primarily on task-oriented

dialogue systems for tasks such as booking or scheduling events, and represents dialogue

schemas as simple conversation trees. In contrast, the schemas used by Eta contain

knowledge about not only expected dialogue flows, but also various types of expected

conditions associated with dialogue events, and are used to dynamically plan a dialogue

rather than to directly select the next action to take. This allows for a greater degree of

topical flexibility and generality in the dialogues supported by Eta.
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3 Background

The concept of a “schema” as an expected or prototypical event or object draws from

a long interdisciplinary history1: the concept was first popularized in psychology as

a construct for analyzing cultural variation in stereotypical perceptions (Bartlett and

Kintsch, 1995), and was later adapted – under various labels – by cognitive science and

artificial intelligence researchers as a proposed means of representing general knowledge.

Examples include frames, introduced by Minsky (1974) to represent prototypical objects

or concepts; event scripts, introduced by Schank and Abelson (1977) to represent

prototypical patterns of events (such as the sequence of steps and conditions typically

involved in going to a restaurant); schematic structures used by Van Dijk and Kintsch

(1983) to analyze strategies used in human discourse comprehension; and discourse

scripts, proposed by Poesio and Traum (1997) as a representation of stereotypical

discourse knowledge (comparable to Schank’s event scripts) to be used in discourse

analysis. We consider all of these concepts as subsumed by the concept of a schema,

and henceforth use “object schema” to refer to prototypical object knowledge, “event

schema” to refer to prototypical patterns of events, and “dialogue schema” to refer to

1In fact, the earliest known concept of schematic knowledge traces back to writings of the Chinese

philosopher Mozi, who postulated ethics, reasoning, and argumentation to be guided by analogy to fa, i.e.,

prototypical models that aid in pattern recognition and decision making (Garrett, 1993).
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prototypical patterns of discourses/dialogues2.

While the formal representation of schemas varies across theories, they are generally

characterized by several properties they share in common: first, the information they

represent is prototypical and abstract. An actual instance of a type of event or object

need not satisfy all properties in a schema to be “matched” to that schema. Part of the

power of this representation is that a partial schema match of an observation can be

used to abductively infer other properties of that observation – for instance, observing a

person in a bank with a gun might trigger a “bank robbery” schema, causing the observer

to infer other properties associated with the event, such as that the robber intends to

steal cash. These inferences are fallible, however, allowing for deviations from the

stereotyped pattern in specific cases – for instance, if the gun toter demands valuables

from the bank vault rather than cash; and partial schema matches may be discarded

altogether if other schemas become more appropriate – for instance, if the gun toter is

revealed to be a security guard.

Second, schemas may be hierarchically organized at different levels of specificity. For

example, an event schema for “going to a restaraunt” may have associated subschemas,

such as “going to a buffet”, “getting fast food”, etc. These lower-level schemas inherit

the expectations within the subsuming schema, though they may also specialize or

modify particular properties (for instance, a fast food restaurant will typically not have

waiters).

This property also implies that the processes of generalization and specialization

are likely play an important role in how humans learn and modify schemas to begin

with: As we encounter similar experiences, we often generalize from them; on the other

hand, when we encounter situations that contradict our generalizations, we may refine

2We note that, insofar as dialogues are just a particular type of event, all dialogue schemas are in

fact a special case of event schemas. However, since knowledge about expected dialogues may contain

knowledge not relevant to external events – such as expectations about discourse obligations (Traum and

Allen, 1994) – it is useful to distinguish them.
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our expectations to be more specific to particular contexts (Van Dijk and Kintsch, 1983).

Although the topic of schema learning lies outside the scope of this dissertation, we note

that any generalist agent must ultimately be capable of updating and refining its world

model based on experience, and that the hierarchical nature of schemas allows for this

(Lawley et al., 2019).

3.1 Episodic Logic

Before discussing our formal schema representation, it is necessary to provide some

preliminary background on the semantic representation that we use throughout our

dialogue framework: Episodic Logic (EL). EL is a type-coherent, expressive intensional

logical form designed to closely resemble the surface form of English. The full syntax

and a proposed semantics of EL can be found in (Schubert and Hwang, 2000)3; in this

section we provide only a high level overview.

EL represents formulas as S-expressions in which lexical symbols are annotated with

suffixes resembling the part-of-speech (e.g., .v, .n, and .pro for verbs, nouns, and

pronouns, respectively). Each suffix denotes a set of possible semantic types, e.g., .v

denotes an n-ary predicate whereas .pro denotes an entity. A closed set of operators or

special predicates are conventionally left without suffixes, such as temporal relations,

quantifiers, and type-shifting operators. Atomic formulas follow an infix notation – for

example, in the formula (|Jo| give.v |Bo| |Book1|), the predicate give takes

the arguments Jo, Bo, and Book1, where pipe notation is used to represent proper names

of entities. A variety of type-shifting operators allow for phenomena such as predicate-to-

modifier conversion, as in ((mod-n white.a) wine.n); predicate modification,

as in (k snow.n) (i.e., the kind of stuff, snow); or sentence reification using the

3Subsequent publications reflect some minor syntactic changes and more significant semantic revisions

(e.g., Schubert, 2000; Kim and Schubert, 2019).
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operator that, as in (|Jo| tell.v |Bo| (that (|Mo| leave.v))); for the

moment neglecting the roles of events and their relations.

Three types of variables are allowed in EL expressions: a symbol prefixed with

? indicates a variable of type entity – e.g., (|Jo| give.v |Bo| ?x) – while a

symbol prefixed with ! indicates a variable of type sentence (i.e., it is an alias for a

sentence) – e.g., (|Jo| tell.v |Bo| (that !s)). A symbol prefixed with ˆ

indicates an indexical variable whose value is some entity in the current dialogue context,

e.g., (ˆme tell.v ˆyou (that !s)).

Most importantly, events, situations, or states, broadly referred to as episodes, are

first-class individuals in EL, and can be represented using explicit episodic variables or

constants. These episodic terms are linked to formulas that describe them through the

use of the characterization operator **. For instance, the formula ((|Jo| give.v

|Bo| |Book1|) ** E1) asserts that the episode E1 is characterized by an event

of Jo giving Book1 to Bo. This allows episodes to be explicitly related to other episodes

in terms of part-whole, temporal, and causal relations.

As an intermediate level of interpretation between natural English and EL, we also

employ an Unscoped Logical Form (ULF) representation (Kim and Schubert, 2019).

ULF is an initial variant of EL that, while still being fully type-coherent, leaves certain

phenomena such as quantifier scope, word sense, temporal relations, and anaphora

unresolved. ULF also employs several macros in order to handle surface phenomena

such as WH-movement. This provides the advantage of allowing for a simpler mapping

between surface English and ULF, while still providing a sufficient representation that

allows for certain types of natural language inference (Kim et al., 2019).

In certain dialogue applications – for instance, a shallow chatbot for entertainment

purposes – it may not be necessary to use a representation beyond natural language

at all. It is therefore useful to think of these multiple levels of representation as form-

ing a hierarchy, with natural language (NL) at the most shallow level and EL at the

deepest level. Such a hierarchy is shown in Figure 3.1, along with an example of each
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Eventuality

Natural Language (NL)

Unscoped LF (ULF)

Episodic LF (ELF)

“Jo went to the store yesterday”

(|Jo| ((past go.v) (to.p (the.d store.n)) yesterday.adv-e))

((|Jo| go-to.v |Store1|) ** E3)
(E3 during ^yesterday)

E3

semantic
parsing

1. scoping
2. word-sense disambiguation
3. reference resolution
4. temporal deindexing

ulf-to-
english

reference substitution + 
adverbialization of temporal 
operators

Figure 3.1: The hierarchy of semantic representations that may be used to describe a

particular “eventuality”, i.e., an event denoted by an episode variable or constant (in this

case, E3. Examples are shown for each level of representation. The arrows between

each level show the processes for converting from one representation to another.

representation. Converting from NL to ULF is a matter of semantic parsing (Kim et al.,

2021), while converting from ULF to EL follows a multi-step pipeline that includes

scoping, word-sense disambiguation, reference resolution, and temporal deindexing.

In the other direction, converting from EL to ULF requires an inverse pipeline (e.g.,

reference substitution, insertion of tense and temporal adverbs), while converting from

ULF to NL is a relatively straightforward process because of the close similarity between

the two representations4.

In our dialogue framework, we encapsulate all three levels of representation within

the concept of an eventuality – a representation of a particular event characterized by the

expressions contained within5. Minimally, an eventuality consists of an episodic variable

4The library that we use for mapping ULF to English can be found here:

https://pypi.org/project/ulf2english/
5The term “eventuality” has previously been suggested by Hobbs (1985) as a way to conflate events and

reified propositions, as is also implicit in other popular meaning representations such as Abstract Meaning
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or constant denoting the event (such as “E3” in Figure 3.1) and a natural language string.

If warranted by a particular dialogue application, an eventuality may furthermore contain

ULF and EL interpretations of the NL expression.

3.2 Schema Representation

A schema is represented by a schema header – a logical formula characterizing the

prototypical object or event of the schema – followed by a list of schema sections, each

representing a particular kind of stereotypical knowledge associated with that object or

event. Each schema section contains a list of eventualities, i.e., episode variables6 paired

with NL/ULF/EL expressions that characterize them7. The sections allowed within a

dialogue schema are shown in Table 3.18.

We illustrate the schema representation with a hypothetical example for a “job

interview” dialogue in Figure 3.2. The schema header specifies the arguments of the

schema – an interviewer, a candidate, and a particular job. The schema contains sections

such as PRECONDS and GOALS – containing ULF/EL eventualities in this case – for

expectations associated with this event, such as that the interviewer wants to assess the

candidate’s qualifications. The EPISODES section contains intended or expected steps

Representation, Minimal Recursion Semantics, etc. While EL maintains an ontological distinction

between events and reified propositions, we borrow the term as a means of capturing the flexibility

between shallow natural language representations and formal episodic representations.
6Technically, the episode variables within a schema are Skolem functions of the main episodic variable

characterized by the schema header.
7One may make a distinction between schema sections that contain fluent and nonfluent formulas –

for instance, the expected preconditions of an event versus the nominal types of participants in the event.

Rather than denoting episodes, the variables associated with nonfluent predications – indicated using

!-variables – denote sentence meanings, i.e., (as already noted) they act as aliases for those sentences,

allowing us to form terms such as (that !p).
8These sections are the same as those for event schemas in general, with the exception of the “obliga-

tions” section. Object schemas contain a different set of sections that we do not cover in this paper.
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(dial-schema :header ((?interviewer conduct-interview.v ?candidate ?job) ** ?e)

;‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

:types (

!t1 (?job job.n))

:preconds (

?p1 (?candidate want.v ?job)

?p2 (?job have.v (an.d opening.n)))

[...]

:goals (

?g1 (?interviewer want.v (to (assess.v

((?candidate ’s) (n+preds qualifications.n (for.p ?job))))))

?g2 (?candidate want.v (to (display.v

(k (n+preds qualifications.n (for.p ?job)))))))

:episodes (

?e1 (?interviewer say-to.v ?candidate ’(Please tell me about yourself .))

?e2 (?candidate reply-to.v ?e1)

?e3 (:repeat-until (?e3 finished.a)

?e4 (?interviewer ask-interview-question.v ?candidate))

[...]

))

Figure 3.2: A simplified example of a dialogue schema corresponding to an expected

job interview dialogue, with the eventualities in each schema section represented

as ULF/EL formulas. The schema illustrates an example of a repeating episode,

where ask-interview-question.v may itself correspond to a separate dialogue

schema.



40

by the user in the dialogue, including an example of a questioning episode that repeats

until the interview is complete. Steps within schemas – such as ?e4 – may themselves

correspond to other dialogue schemas9.

A schema may be matched if there is a sufficiently strong similarity between the

eventualities contained within a schema and the eventualities observed within a dia-

logue. When a schema is successfully matched, its contents are instantiated, allowing

additional knowledge to be inferred from the eventualities contained within the schema.

Our proposed dialogue management framework drives dialogue through incremental

instantiation of the episodes within a selected schema.

9It is also possible to represent the episodes in the primary schema at a finer level of granularity; for

the purpose of illustration, we provide only a coarse representation.
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Section Explanation

EPISODES Expected sub-events that occur within a dialogue – most commonly

speech acts by participants, but may be any anticipated event or more

complex procedural behavior such as repeating an episode until a

contextual condition is met.

EPISODE-RELATIONS Temporal relations between episode variables specified in the episodes

section. The default ordering between episodes is sequential in the

order they occur in the schema, but other constraints can be specified

(such as “consec” for two directly consecutive episodes, or “same-time”

for simultaneous episodes).

TYPES Non-fluent type predications for individuals occurring in the schema,

e.g., that the speaker participant is type robot.n, the hearer is type

person.n, or that some variable ?x has type block.n.

RIGID-CONDS Any non-fluent predications about individuals occurring in the schema

apart from the types, e.g., that ?x is yellow.

STATIC-CONDS Fluent predications which are expected to hold throughout the schema

episode, e.g., that the hearer is located near the speaker.

PRECONDS Fluent predications that are expected/required to be true at the initiation

of the episode represented by the schema.

POSTCONDS Fluent predications that are expected/required to be true at the conclu-

sion of the episode represented by the schema.

GOALS Formulas corresponding to the goals of participants in the schema.

OBLIGATIONS Discourse obligations associated with particular episodes in the

schema, e.g., a request speech act may oblige the hearer to accept

or reject the request.
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NECESSITIES Predications associating schema conditions with values in [0,1] indi-

cating how necessary it is that those conditions hold. For instance,

if some precondition is necessary to degree 1, then it is strictly ex-

pected to hold in order for the schema to match an observed event. If a

precondition is necessary to degree 0.5 and doesn’t hold, the schema

might be dispreferred but could still be matched if other conditions are

sufficiently compelling.

CERTAINTIES Predications associating schema episodes with values in [0,1] indi-

cating how certain it is that those episodes will be observed. If an

episode is certain to degree 1, then that episode must be matched to

an observation for the schema to proceed. If an episode is certain to

degree 0.5, the agent might proceed with a schema even if that episode

is not matched to an observation.

Table 3.1: Dialogue schema sections and explanations.
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4 The Eta Dialogue Management

Framework

In this chapter, we provide a technical description of our schema-based dialogue man-

agement framework, Eta1. At a high level, Eta consists of four parallel processes:

perception, reasoning, planning, and execution. Each process operates on a shared

dialogue state that includes a schema library, episodic memory, dialogue context, and

a dynamic dialogue plan. Within each process are several subtasks that involve trans-

duction over structured data – for instance, natural language input to an eventuality, an

eventuality to a (sub)plan, etc. These mappings are enabled using modular transducers –

developer-defined functions with pre-specified input and output types – allowing for a

flexible combination of techniques to be used in their concrete implementation. In order

to create a conversational agent using Eta, a designer need only create a set of dialogue

schemas and transducers; as we show in the subsequent case studies, many aspects of

these are portable across domains.

4.1 Dialogue State

We begin by describing the components of the dialogue state used by Eta. The dialogue

state contains records storing information for the overall session – such as names of the

1“Eta” echoes the 3 most frequent letters in English text (cf. Winograd’s SHRDLU), and the phonetics

of “Ada”.
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Dialogue State

Schema Knowledge Episodic Memory
…

E1: (^me wake-up.v (from.p ((^me ‘s) sleep.n))

E2: (^me schedule.v Appointment1 (with.p ^you))

…

E9: (^you say-hello-to.v ^me)

E10: (^me say-to.v ^you ‘(Hi Doctor …))

E11: (^you say-to.v ^me ‘(How are you feeling?))

…

Conversation History

…

Eta: Doctor, my pain has been getting 
worse recently. What does it1 mean 
for me?

Doctor: Where does it hurt?

Eta: I feel it1 mostly in my chest and 
back.

Doctor: Have you had any trouble 
sleeping recently?

Eta: Yes, it’s been difficult to sleep 
due to the pain I’ve been having.

Doctor: That sounds like it2 must be 
very difficult, I’m sorry to hear [...]

…

Reference List
1. ((^me ‘s) pain.n)
2. (trouble.n (with.p (ka sleep.v)))

…

Dialogue Context
…

E17: (^me ask-about-pain.v ^you)

E22: (^you say-to.v ^me ‘(That sounds …))

E22: (^you paraphrase-to.v ^me
        ‘(You are sorry to hear about my pain.))

E22: (^you reply-to.v E21)

E22: (^you be.v empathetic.a)

Dialogue Plan

E23 ?e5 ?e6 …

Object Schemas

(:header (?x medicine.n) …)
(:header (?x pain.n) …)
…

Event Schemas

(:header ((?p have-trouble-sleeping.v) …)
(:header ((?p receive-treatment.v) …)
…

Dialogue Schemas

(:header ((?p ask-about-pain.v ?d) …)
(:header ((?d express-empathy.v ?p) …)
…

…

Figure 4.1: The main components of Eta’s dialogue state, shown with a simplified

example from a medical domain.

agents involved, buffered outputs, etc. – as well as dialogue state. We focus on three

primary components of the dialogue state: the schema library and record of instantiated

schemas, the agent’s episodic memory and dialogue context, and the current dialogue

plan. In addition to these, Eta also maintains a conversation log (a record of utterances by

each agent) and a reference list containing prior entity mentions for reference resolution.

A snapshot of a dialogue state is shown in Figure 4.1, using a simplified interaction

between a doctor and a simulated patient (similar to the actual case study discussed in

Chapter 7) as an illustrative example.

4.1.1 Schema Library

An Eta agent is initially endowed with a schema library containing abstract object, event,

and dialogue schemas. In the example shown in Figure 4.1, the schema library contains

knowledge about objects such as medicine, events such as receiving treatment, and
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prototypical dialogues such as a patient asking a doctor about their pain. The behavior of

the dialogue manager is driven principally by the selection and incremental instantiation

of dialogue schemas from this schema library, beginning with a top-level schema for the

overall interaction.

Instantiating a schema creates a copy of that schema, and if any variables within

the schema were unified with constants upon matching the schema to observations,

those variables are bound throughout the schema. For instance, if a schema with

header ((?s say-hello-to.v ?h) ** ?e) is matched to the observation

(ˆme say-hello-to.v ˆyou), the variable ?s is bound to the indexical vari-

able ˆme (i.e., Eta), and likewise ?h is bound to ˆyou (i.e., the user) throughout each

schema section. Each instantiated schema is maintained in a separate database; note

that the same abstract schema may result in multiple distinct instantiations as a dialogue

progresses.

Schema Retrieval

Eta, in its current state, allows two methods for retrieving relevant schemas from its

schema library. First, it allows for efficient retrieval of particular schemas (or relevant

knowledge from schemas) through an associatively indexed array of schema headers –

allowing, for instance, the schema corresponding to an observed or intended event to be

retrieved and instantiated.

Second, Eta allows for retrieving schemas (or knowledge from schemas) through

computing statistical similarity with some query string2. Specifically, Eta implements

a multi-level retrieval system that uses an embedding function (e.g., a pre-trained

transformer model) to pre-compute embeddings for each schema, each fact within each

schema, and the given query string q:

2The query string may be, for example, the previous conversation turn, or a textual representation of

the full dialogue context.
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eSi
= T (Si) ∀Si ∈ S

eSi,fj = T (fj) ∀fj ∈ Si,∀Si ∈ S

eq = T (q)

Where T is the embedding function, S is the full set of schemas, fj ∈ Si is the full set

of facts contained within each section of schema Si.

We then retrieve the schema most relevant to q using a cosine similarity measure.

If particular knowledge within the schema is desired, we additionally score the facts

within that schema based on computed similarity, returning the top n facts.

score(fj) = sim(eSR,fj , eq) ∀fj ∈ SR

SR = argmax
Si∈S

sim(eSi
, eq)

sim(e1, e2) =
e1 · e2

∥e1∥∥e2∥

4.1.2 Episodic Memory and Dialogue Context

While schemas encode general knowledge about prototypical concepts (i.e., semantic

memory), Eta also retains knowledge about specific events that occur prior to or over

the course of a dialogue. Eta stores this knowledge in an episodic memory – a set of

memories in which each memory (a particular event represented by an eventuality) is

associated with a start time, an end time, the time of the most recent “access” of that

memory, and potentially an importance score assigned to the memory upon creation. In

the case where a memory encapsulates a current event, the end time of that memory is

not defined.
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A subset of Eta’s episodic memory – those memories that are currently true, and

assumed to be part of the common ground (Clark, 2006) for both agents – are of

particular importance for the schema instantiation process. We maintain these memories

in a separate dialogue context, where it is assumed that all memories in the dialogue

context correspond to current events or facts that are currently true. Memories are

removed from context when the events are observed or inferred to no longer be true.

Additionally, some telic verbs are monitored and flushed from context periodically –

e.g., “say-to.v” events within a dialogue are essentially instantaneous and therefore

are removed from context as soon as Eta is able to plan its next dialogue turn (but are

retained in memory).

In the example shown in Figure 4.1, Eta’s episodic memory includes events experi-

enced by the agent prior to the start of the dialogue (e.g., waking up from sleep) and

events that occur during the dialogue (e.g., past speech acts). The dialogue context

includes current speech acts as well as currently true facts inferred from those speech

acts (e.g., that the doctor is being empathetic).

Memory Retrieval

To enable efficient lookup of particular memories, memories are stored in associative

arrays indexed on both episode constants and predicate-argument combinations of the

encapsulated eventualities.

Furthermore, we allow for statistical retrieval of memories using a scoring function

S : M → R. Inspired by the retrieval mechanism proposed by Park et al. (2023), we

choose this scoring function to be S(m) = α1R(m) + α2I(m) + α3S(m, q), where for

each memory m ∈ M: R(m) is the recency of that memory, i.e., the most recent access

time; I(m) is the importance score assigned to that memory; and S(m, q) is the salience

of that memory to a query string q, if provided, using embedding cosine similarity3.

3If a query string is not provided, or an embedding function is not defined for an Eta agent, this term is

0.
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E6 E7 E8 E9 E10

E2
E4 E5

E3

E1

E6 E12 E8 E9 E10E7

E11E2 E4 E5

Insert(E12)

E6 E13 E8 E9 E10E11 E12

E2

E7

E4 E5

Expand(E7)

E6 E7 E8 E10 E9

E2 E4 E5

E6 E7 E11

E2

E8 E9 E10

E4 E5

Merge(E8,E9,E10)Reorder(E9,E10)

Figure 4.2: An example of an Eta dialogue plan and underlying graph of plan steps

(center), and examples of each of the four types of possible modifications to the dialogue

plan. Boxed nodes indicate the plan nodes in Eta’s current dialogue plan, which form

the frontier of the graph of plan steps. The nodes affected by each modification are

highlighted (note that parts of the original graph are omitted for space). Expansion is

shown as “upward” to the more specific level, i.e., the frontier of the graph.

Each subscore is first normalized across all candidate memories to a value in [0, 1]. α1,

α2, and α3 are tuneable hyperparameters; by default α1 = α2 = α3 = 1. After ranking

all candidate memories using the scoring function, the top n may be retrieved.

4.1.3 Dialogue Plan

The overall course of an Eta dialogue is determined by dynamic and incremental opera-

tions over Eta’s dialogue plan. A dialogue plan is a sequential list of plan nodes, each of

which is either an intended action by the Eta agent or an expectation. This is a plan in the

sense that the agent attempts to schedule actions that further the interaction according

to its expectations about a particular dialogue. Unlike classical approaches to dialogue

planning, however, these actions are not necessarily chosen using systematic search
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Modification Explanation Example

INSERT Add a new plan node

to the dialogue plan be-

tween two existing plan

nodes, additionally insert-

ing a subgraph with a

new source vertex into the

DAG of plan steps.

In a collaborative dialogue with a robot

in a “blocks world” domain, the user

accidentally knocks a block off the table.

Matching a schema for an “knocking

over block” event, the robot reacts by

inserting an action to pick up the block.

MERGE Create a new plan node

that combines several ex-

isting plan nodes, such

that the new plan node be-

comes a substep of each

merged step. The new

plan node replaces the

merged steps in the dia-

logue plan.

An agent may have an intention to greet

a user in a schema for casual conver-

sation. However, if the user greets the

agent first, the agent may react by in-

serting a reaction into the plan. Since

reacting to the user’s greeting satisfies

the original intention to greet the user,

these nodes may be merged in the plan.

EXPAND Decompose a plan node

into several substeps; the

substeps replace the orig-

inal node in the dialogue

plan, and the original node

becomes the superstep of

the new plan nodes in the

DAG.

A train-booking agent may have an

intention to help a user book a train.

By matching a schema for booking a

train, this plan step may be decomposed

into several intentions and expectations,

such as the expectation that the user re-

quests a ticket, the intention to show the

user ticket options, etc., which replace

the original intention in the dialogue

plan.
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REORDER Swap the position of two

nodes in the dialogue plan

according to an agent’s

temporal constraints or pri-

orities.

A healthcare education agent may dis-

cuss topics with a user. The agent may

initially intend to discuss the topics in

a specific order; however, if the user

informs the agent that they wish to dis-

cuss a particular topic first, the agent

may reorder the intended actions in its

dialogue plan to satisfy the new tempo-

ral constraint.

Table 4.1: Descriptions of each type of plan modification, and examples of where they

might occur in hypothetical agent interactions.

towards a particular goal, but instead are driven primarily by incrementally matching

expectations and intentions in schemas in a manner that is subject to modification based

on new observations.

In the example shown in Figure 4.1, Eta had just executed the step E23, instantiating

that event throughout the plan and corresponding schema instances (i.e., binding the

episode variable to a new episode constant). The step ?e5 is now pending.

Since steps in Eta’s dialogue plan are often substeps of a more abstract schema (e.g.,

a primitive say-to.v action may be a step within a more abstract say-hello.v

schema), steps must also be related hierarchically in order to allow for behavior such

as modifying the plan to account for failed actions. Formally, the plan nodes in Eta’s

dialogue plan form the “frontier“ of a directed acyclic graph (DAG) of plan steps, where

an edge from plan step s1 to plan step s2 indicates that s2 is a substep of s1 (we also

maintain backpointers from substeps to supersteps). Therefore, all sink vertices in

the graph are in the current dialogue plan, and source vertices correspond to top-level

schemas. Each plan step in the DAG contains a particular eventuality, any discourse
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obligations associated with that step, and a list of pointers to dialogue schema instances

containing that step as an expectation, allowing schema instances to be updated as a plan

is modified (for instance, variables within the schema and plan may be bound to values

in the course of executing an action or matching an observation). An example plan is

shown in the center of Figure 4.2; boxed nodes indicate the plan nodes in Eta’s dialogue

plan, which are the frontier of the overall DAG of plan steps.

We allow for four types of modifications to Eta’s dialogue plan, illustrated in Figure

4.2. We provide descriptions for each type of modification in Table 4.1, along with

examples of these modifications in hypothetical interactions.

4.2 Dialogue Manager Architecture

One challenge particular to generalist agent architectures is that goals pertaining to

multiple different tasks, or observations from multiple sources, may potentially be

interleaved in the same interaction. Consequently, pipelined architectures in which

natural language understanding, planning, and generation occur sequentially will struggle

in more complex domains where interleaving is appropriate (Yu et al., 2017). We instead

opt to use a multiprocess architecture consisting of four parallel processes – perception,

reasoning, planning, and execution – allowing for these processes to be interleaved in any

order. Each process consists of several subtasks that use transducers to modify aspects

of the dialogue state. These processes are depicted in Figure 4.3, and the subtasks within

each are elaborated further in the following sections.

Two additional difficulties emerge from the use of multiprocessing. First, since each

process operates on a shared dialogue state, there is a risk of two processes attempting

to modify the dialogue state simultaneously and creating a race condition. To solve this,

we use a mutual exclusion lock to ensure that only one process can modify the dialogue

state at any time.

Second, since a process may consume external resources (for instance, computing
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OutputInput

Schema Knowledge

Dialogue Context & Episodic Memory

Reasoning ExecutionPlanning

1 2 3

Perception

Figure 4.3: The Eta architecture consists of four parallel processes that operate over

a shared dialogue state (schema library, dialogue context, episodic memory). The

perception process collects observations from multimodal perception servers interprets

them in context, resulting in new eventualities (indicated by a tree). The reasoning

process attempts to infer new eventualities from existing eventualities. The planning

process uses the dialogue context and schema library to modify the dialogue plan.

The execution process attempts to advance the dialogue plan by executing actions or

matching expectations, possibly resulting in multimodal outputs.

power for model inference, or monetary cost for external APIs), it is important that

a process only executes if some aspect of the dialogue state has changed to warrant

the execution of that process (with the exception of the perception process, since the

external world may change at any point). Therefore, we use a set of data buffers – i.e.,

priority queues – to store recently updated observations, inferred knowledge, plans, and

potential actions. Each process will pop items from the relevant data buffers, and will be

skipped in the case where those data buffers are empty.
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4.2.1 Perception

The perception process allows Eta to collect observations from the external world,

including both speech acts from the user and other types of observations depending on

the particular agent configuration (such as physical actions by the user, visual inputs,

etc.). Upon each execution of this process, Eta collects observations from perceptual

servers, i.e., external servers that collect input across modalities such as speech, text,

and video and communicate with Eta through either natural language strings or ULF/EL

formulas.

If an observation is not a speech act, it will be directly converted to an eventuality. If

an observation is a speech act, Eta will attempt to interpret the observed utterance in the

context of the current conversation using a multi-stage NLU pipeline.

First, a gist transducer will attempt to map the utterance, given the context of the

previous turns in the conversation history, to one or more explicit, minimal, context-

independent “gist clauses” that capture the contextual meaning of the original utterance –

a process known as decontextualization (Choi et al., 2021). For example, if an agent asks

the user “What do you do for fun?”, and the user replies “well, maybe playing volleyball

with friends, and then there’s Dungeons and Dragons”, then using the question it

asked (itself possibly in some regularized form) as context, the agent might obtain gist

clauses like “I enjoy playing volleyball with friends” and “I enjoy playing Dungeons

and Dragons.”. Since these are no longer dependent for their meaning on the question

that elicited them, they are portable across multiple contexts and may be directly useful

(e.g., for generating responses) even without further levels of interpretation.

In subsequent interpretation steps, a semantic transducer will attempt to map the

extracted gist clauses to their underlying semantic representations (e.g., ULF/EL interpre-

tations of the gist clauses in the prior examples). Likewise, a pragmatic transducer will

attempt to extract the pragmatic meaning of an extracted gist clause (i.e., any meaning

that the gist clause may carry apart from its literal semantic meaning). A reference list
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containing previously mentioned entities may also be used for coreference resolution,

as illustrated by subscripts in the conversation history in Figure 4.1. All eventualities

created in this process are added to the dialogue context, as well as to the buffer of new

observations.

4.2.2 Reasoning

The reasoning process allows Eta to infer new facts and possible courses of action

from observations and existing knowledge; it executes whenever new facts are added

to the inferred knowledge data buffer. Since facts inferred during one iteration may be

grounds for further inferences, Eta tracks the inference depth of each eventuality in the

inferred knowledge buffer. New observations are given depth 0, and if a fact c is inferred

from facts p1, p2, ..., pk with respective depths dp1 , dp2 , ..., dpk , then c is assigned depth

dc = min(dp1 , dp2 , ..., dpk) + 1. Any facts with a depth greater than a maximum depth

threshold are removed from the buffer in order to prevent indefinite recursion4.

Two separate methods of reasoning are employed to infer new facts: a top-down

method that attempts to infer new facts using the context of the current intended or

expected plan step, and a bottom-up method that attempts to infer new facts from

relevant facts in Eta’s episodic memory. Each method of inference is accomplished

using a specific transducer.

In addition to inferring new facts, Eta may also use reasoning to suggest possible

courses of action from observed events. A separate reaction transducer is used to infer

possible actions from each buffered observation; these actions are then added to the data

buffer of potential actions.

4By default, we set this threshold to 3.
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4.2.3 Planning

The planning process will attempt to modify the current dialogue plan using the modifi-

cation strategies shown in Figure 4.2. First, Eta will pop all actions from the buffer of

potential actions, and attempt to insert a subset of them into the current dialogue plan5.

Second, if a modified plan exists in the plan data buffer, Eta will sequentially attempt

to expand the current plan node, merge plan nodes, and reorder plan nodes, updating

the plan data buffer if any change is made. Each plan modification type allows the use

of a transducer that operates over a serialized form of the dialogue plan; however, the

expansion step also supports multiple special cases. Special branching eventualities

– namely conditional and repetition plan steps, such as the example in Figure 3.2 –

will cause Eta to query the current dialogue context for the truth of the corresponding

conditions, potentially expanding the current step with the matching conditional branch

or a new copy of the repeating subplan, respectively. If a plan step matches the header

of a dialogue schema in Eta’s schema library, a copy of that schema will be instantiated

and used to expand the current plan step. Finally, the plan step may be a member of

a fixed set of special actions that use specific transducers to determine an appropriate

expansion. For example, a paraphrase-to.v step by the agent will be expanded

to form a primitive say-to.v action using a paraphrase transducer that maps a gist

clause to a surface utterance, given the conversation history and relevant facts from

memory as context; a respond-to.v step is handled using a similar transducer in

cases where a gist clause is not specified.

5For simplicity, we currently only insert the highest priority action and abandon the rest. However,

more complex methods for selecting actions for insertion may potentially be devised, such as determining

the overall compatibility of each action with the current plan.
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4.2.4 Execution

The execution process will attempt to either execute the current intended plan step, or

attempt to match an expected plan step. In the case of an intended plan step, Eta will

execute the step if it belongs to a set of primitive actions available to a particular agent,

and the conditions for executing that action are satisfied by the current dialogue context.

Each primitive action is associated with a procedural implementation that is invoked

upon execution of that action; for instance, a say-to.v action will cause Eta to output

an utterance (which may be associated with a particular affect (i.e., emotion) class using

an affect transducer), as well as reflexively deriving a gist clause from the resulting

utterance.

In the case of an expected plan step – either by the user, or pertaining to the envi-

ronment – Eta will attempt to match the step to an eventuality in dialogue context, until

some time period has elapsed. The time period that Eta may wait for an expectation is

derived from the certainty score c associated with that step (see 3.1) using the formula

T = −δlog(1− c), where we set the coefficient δ = 30 so that a certainty of about 0.632

corresponds to a 30 second delay. If an expected step has a certainty of 1, Eta will wait

indefinitely to match that step. If the time period is exceeded without a successful match,

Eta will characterize that step as a failure and advance the plan.

In any the case where an execution or match is successful (or in which the time period

for a match was exceeded), the plan is advanced, and a list of variable bindings obtained

from the execution or match is applied throughout the dialogue state. Additionally, if

the plan was advanced, the plan data buffer is updated with the modified plan, allowing

the planning process to make further modifications.

Analogously to the perceptual servers used by the perception process, Eta also

supports integration with external specialist servers that implement narrow domain-

specific reasoning – including temporal models, spatial models, and type ontologies.

The specialist servers communicate with the core dialogue manager through natural
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language, ULF, or EL queries; these “server communication acts” are also enacted

through primitive actions that may appear in the dialogue plan.

4.3 Transducers

All mechanized dialogue agents in some sense employ pattern matching and generation

systems. In the case of autoregressive transformers, the matching and generation

processes are hidden in the operation of the multiple layers of the encoder and decoder

and their associated attention mechanisms; whereas in symbolic approaches the matching

process seeks to match particular patterns, which may be at the word or part-of-speech

level or at the level of more abstract phrasal constituents; and output may be template-

based or generated in some more flexible way. We propose the use of generalized pattern

transduction as a way to retain the robustness of early systems like ELIZA (Weizenbaum,

1966), while enabling the use of utterance context and responsiveness to the content and

intent of user inputs at a much more specific level, setting the stage for construction of

more relevant, more meaningful outputs.

A transducer in the Eta framework is a standalone module responsible for mapping

from one representation (e.g., utterance, logical form, plan sequence, etc.) to another

representation; Eta invokes several transducers throughout the processes described in

Section 4.2 to carry out subtasks. We distinguish between the type of a transducer –

the unique function signature of a transducer relevant to a particular subtask – and the

implementation of a transducer. For example, a gist transducer takes an utterance and

a conversation history as arguments and returns a list of gist clauses, but this mapping

may be implemented using a variety of methods (or potentially an ensemble of methods

whose results are combined). In Table 4.2, we summarize the types of transducers

currently supported by the Eta framework.

Each process in Section 4.2 invokes particular types of transducers, but leaves the

exact implementation of these transducer to be supplied in a specific agent configuration.
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…

…

…

Gist clause trees for input

Weather input
Weather questions

General input

Food input
Food questions

General input

…
…

…
(0 .SNOW 0)

(0 get 2 lot 2 .RAIN 0)

(0 .SPORT 0)
…

(0 .NEG 1 like 0)
…

Gist: I do not like that 
the weather where I live 
is snowy .

Gist: The weather where 
I live is rainy during 2 .

(0 .SEASON 0)
…

→ Sports input

Eta (Gist): “How do you like the weather where you live?”

User: “We get a lot of rain during the spring.”

User (Gist): “The weather where I live is rainy during spring.”

……
…

Templatic Gist Clause Prompt

Eta (Gist): “How do you like the weather where you live?”

User: “We get a lot of rain during the spring.”

K gist clause examples

Gist Validator 

≤ n 
resamples

Gist: We get a lot of rain 
during the spring where I 
live.

User (Gist): “We get a lot of rain during the spring
                       where I live.”

Figure 4.4: Examples of transducers for gist clause extraction implemented using

hierarchical pattern transduction (left) and a large autoregressive language model (right).

Although the implementations of each transducer differ, both map an utterance and a

conversation history (only the gist of the prior turn is shown for brevity) to a gist clause

capturing the decontextualized meaning of the original utterance.

While any method that satisfies the given function signature may be used to implement

a transducer, the case studies that we present primarily rely on two methods that we

describe in greater detail: hierarchical pattern transduction and large language model

(LLM) transduction.

4.3.1 Hierarchical Pattern Transduction

The hierarchical pattern transduction method uses transduction trees based on inexact

feature-based pattern matching to map an input expression to an output expression6.

Transduction trees specify patterns at their nodes, with branches from a node provid-

6The library that we use for pattern matching can be found here: https://pypi.org/project/transduction/
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Transducer Argument Types Return Type Process

GIST
utterance +

conversation history
gist clauses

Perception,

Execution

SEMANTIC gist clause
eventualities

(semantic meaning)
Perception

PRAGMATIC gist clause
eventualities

(pragmatic meaning)
Perception

REASONING (TD)
plan step +

eventualities (premises)

eventualities

(inferred facts)
Reasoning

REASONING (BD)
memory +

eventualities (premises)

eventualities

(inferred facts)
Reasoning

REACTION
eventuality

(observation)

eventualities

(possible actions)
Reasoning

SUBPLAN plan step
plan steps

(subplan)
Planning

MERGE PLAN plan
plan step

(merged step)
Planning

REORDER PLAN plan reordered plan Planning

PARAPHRASE

gist clause +

conversation history +

eventualities (relevant facts)

utterance Planning

RESPONSE
conversation history +

eventualities (relevant facts)
utterance Planning

AFFECT
utterance +

conversation history
affect class Execution
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Table 4.2: Types of transducers used within the Eta framework, their argument types,

their return types, and the top-level Eta processes that invoke them. “TD” and “BU”

abbreviate top-down and bottom-up, respectively.

ing alternative continuations as a match proceeds, following a recursive backtracking

algorithm. Terminal nodes have associated directives indicating whether they provide a

gist clause template, send input to some subordinate tree, or some other outcome. The

pattern nodes use template-like S-expressions, allowing for arbitrary tree transduction.

Atomic symbols in each pattern expression specify particular words, lexical features

assigned to words, length-bounded “match-anything” sub-sequence spans, or special

evaluable predicates matching one or more sub-sequences7.

A simplified example of hierarchical pattern transduction for gist clause interpretation

in a casual conversation domain is shown in Figure 4.4 (left). A top-level tree first

matches keywords in Eta’s previous gist clause to select a set of relevant subtrees

to match to user input – in this case, the system selects trees for matching inputs

and reciprocal questions related to weather that the user might give, as well as a tree

containing general fallback rules for off-topic replies. Next, the system attempts to

match the patterns within a selected subtree to the user’s input in a depth-first order. In

matching (0 get 2 lot 2 .RAIN 0), 0 may match a word span of any length,

while 2 may match at most two words. .RAIN may match any word assigned the lexical

feature “rain”, and likewise for .SEASON in the child pattern. Thus, this single pattern

may match a number of different wordings of the user’s response. In this example, the

matching process results in the selection of a gist clause template directive that uses

positional indices to borrow words that were matched by the previous pattern, producing

the gist clause shown beneath. Directives at terminal nodes may also redirect input

7Following regular expression notation, for any given predicate we generate variants prefixed with ?,

!, +, and * that respectively match 0 or 1 sequences, exactly 1 sequence, 1 or more sequences, and 0 or

more sequences.
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to some other subtree, for instance if the user answered the question by talking about

winter sports, matching the (0 .SPORTS 0) pattern instead.

4.3.2 Large Language Model Transduction

While hierarchical pattern transduction provides a flexible method of pattern transduction

that can be quickly modified or extended by domain experts, it also requires hand

engineering and may be brittle in the case of unanticipated phrasings of inputs. We

also explore the use of autoregressive LLMs to implement various types of transducers,

providing wider coverage at the expense of reliability and interpretability.

Each LLM-based transducer is equipped with a templatic prompt containing variables

to be filled using the arguments of the transducer, as well as possibly k agent-specific

examples for in-context learning. The LLM is conditioned on the filled-in prompt, and

the generated response is passed through an explicit validator function. The LLM will

be repeatedly prompted until it generates a valid response for that transducer type or a

limit of n retries has been reached, in which case an empty result will be returned. An

example of a LLM-based transducer for gist clause interpretation is shown in Figure 4.4

(right).
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5 LISSA Virtual Agent for

Conversational Practice

5.1 Domain

Social interaction is critical for maintaining meaningful relationships and overall well-

being. Demographics that experience impairments in communication – such as individu-

als with autism spectrum disorder (ASD) or elderly adults with impairments in cognitive

functioning – are at increased risk for social isolation and lower quality of life (Segrin,

2019, among others).

Spoken dialogue systems, together with simulated virtual humans, have been used

to create digital companions and assistants (Vardoulakis et al., 2012; Yaghoubzadeh

et al., 2013; Bernardini et al., 2021, among others) and virtual conversational coaches

(Hopkins et al., 2011; Torres et al., 2019, among others) to allow at-risk groups of

people to practice communication skills and reduce social isolation. However, these

systems typically simulate narrow interaction scenarios that may not reflect everyday

interactions.

We discuss a particular digital companion and social skills coach – LISSA – created

with the goal of simulating natural, casual conversations, allowing users to improve

their social skills in the comfort of their own home (Razavi et al., 2016, 2019). A

primary challenge in this domain is that a digital companion system must be able to
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ASR Virtual Human 
+ TTS

Perceptual Server 
(Audio)

observed utterances

text outputtext input Eta

REACTION

GIST

TransducersSchemas

(:header
  discuss-
  activities.v
…)

…

Figure 5.1: The full agent configuration used for the LISSA domain.

converse naturally and meaningfully across a broad variety of topics, keeping the user

engaged in the conversation. Addressing this challenge served as the impetus behind

the Eta dialogue framework, and consequently LISSA became the first application of

the framework as it was used to design conversations targeting teenagers with Autism

Spectrum Disorder and elderly adults at risk of isolation. The full configuration of Eta

used to develop the LISSA agent is shown in Figure 5.1.

5.2 Schema Design

We developed two sets of schemas for two variants of the LISSA agent – one representing

a younger adult (shown in Figure 5.1) and equipped with dialogue schemas that are

relevant to ASD teenagers, and the other representing an elderly adult and equipped with

dialogue schemas that are relevant to other elderly adults1. While some of these schemas

1The LISSA system was initially prototyped as a speed-dating conversational coach (Ali et al., 2015).

Evaluations showed showed that feedback on facial and verbal behavior by the practice system indeed
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overlap, many are unique (e.g., the former agent may have schemas for discussing

school, whereas the latter may have schemas for discussing independent living).

Two dialogue sessions were developed for the LISSA variant used in the experiment

with ASD teenagers, each containing 3 dialogue schemas that LISSA progresses through

in sequence; 6 schemas in total. These dialogue schemas were greatly expanded in the

case of the elderly LISSA variant; for that experiment, we designed 10 dialogue sessions,

each with 3 dialogue schemas – 30 schemas in total. Each dialogue schema focused

on a particular topical dialogue (e.g., “activities”, “getting to know you”, “pets”, etc.),

and contained 3-5 expected dialogue turn pairs wherein LISSA asks the user a particular

question and the user responds to LISSA’s question (implicitly, with LISSA adding a

reaction to the user’s response). Two examples of dialogue schemas for the elderly

variant of LISSA are shown in Figures 5.2a and 5.2b.

5.3 Transduction Methods

Our symbolic approach in the initial LISSA variants employed the use of hierarchical

pattern transduction – described in Section 4.3.1 – to allow for robust responses while

enabling the understanding of utterance contexts and user intents. For maximum gener-

ality and transportability, we do not use a single search tree to transduce inputs (along

with prior context) directly to outputs. Rather, we first apply our hierarchical pattern

transduction method to derive a gist clause, which will typically decontextualize the

input to a great extent and “clean up” and simplify the input. Then a further processing

stage applies pattern transduction trees to the gist clause(s) to produce an appropriate

reaction to their contents, just as if the user had directly produced the gist clause(s).

Since these are no longer dependent for their meaning on the question that elicited them,

improved subjects’ skill, as judged by clinical science graduate students; however, this prototype was

based on a human-operated Wizard of Oz (WOZ) agent, so we omit it from the present discussion.
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(dial-schema :header (((set-of ˆme ˆyou)

discuss-activities.v) ** ?e)

;‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

:episodes (

?e1 (ˆme say-to.v ˆyou ’(Do you have any

hobbies or anything in particular you

like to do for fun ?))

?e2 (ˆyou reply-to.v ?e1)

?e3 (ˆme say-to.v ˆyou ’(I haven’t been

able to play sports recently, but I

love to read . Do you like to read?))

?e4 (ˆyou reply-to.v ?e3)

[...]

))

(a)

(dial-schema :header (((set-of ˆme ˆyou)

discuss-technology.v) ** ?e)

;‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

:episodes (

?e1 (ˆme say-to.v ˆyou ’(Lets talk about

the new technology these days . Do you

have a smartphone? If so, what do you

use it for ?))

?e2 (ˆyou reply-to.v ?e1)

?e3 (ˆme say-to.v ˆyou ’(What do you

think is the best part of new

advances in technology ?))

?e4 (ˆyou reply-to.v ?e3)

[...]

))

(b)

Figure 5.2: Two examples of topical dialogue schemas created for the elderly LISSA

agent; each consisting of 3-4 dialogue pairs beginning with a question by LISSA.

the transduction trees producing appropriate reactions are often portable across different

kinds of conversation and conversational contexts.

5.3.1 Gist

The gist clause transduction method used for LISSA resembles the example shown in

Figure 4.4 (left). A top-level tree first selects a set of topical subtrees based on LISSA’s

prior utterance using keyword-based patterns. For example, if LISSA’s prior utterance

were ?e1 in the schema shown in Figure 5.2a, the method would select a subtree for

interpreting user responses related to activities, another for interpreting user questions

related to activities (including reciprocal questions such as “How about you?”), and a

fallback tree for interpreting miscellaneous inputs.
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Each subtree is then matched to the user input in order to extract a gist clause,

potentially borrowing terms from the input through templatic placeholders, such as in

Figure 4.4. Any resulting gist clauses from each subtree are combined.

We created subtrees for each topic contained within the LISSA schemas; about 120

subtrees in total in the case of the elderly variant of LISSA. 3 dialogue developers were

responsible for creating these subtrees, and each individual topic took about half a day

to complete.

5.3.2 Reaction

We employed hierarchical pattern transduction to enable the selection of appropriate

reactions to the user’s input. In the case where the user’s input contains multiple gist

clauses – for example, a response followed by a question – we select and combine

multiple reactions, e.g., a short acknowledgement followed by an answer to the question.

Otherwise, LISSA selects a speech act reacting to the user’s input in a manner that

is consistent with LISSA’s persona. For example, if the user were to tell LISSA about

activities that they enjoy, LISSA might react by stating that she enjoys a particular activity

as well, stating that she’s never tried the activity but finds it interesting, etc. A fallback

rule in the case where LISSA fails to extract a gist clause allows LISSA to react with a

low-content acknowledgement of the user.

A reaction subtree was developed for each individual topic, along with the subtrees

for gist clause extraction. A separate subtree is used for selecting answers to questions

from the user based on LISSA’s persona.

5.4 Evaluation

The two variants of the LISSA agent were evaluated through user experiments with

the two respective demographic groups, in which users had multiple dialogue sessions
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Figure 5.3: Evaluation results for LISSA in the ASD experiment; the distributions of

survey responses for each question are shown. Responses whose means are statistically

significant from “neutral” are indicated with a star (*).

with LISSA while being provided dynamic feedback between each. Ali et al. (2020)

conducted an experiment with ASD teenagers, while Razavi et al. (2019) conducted an

experiment with elderly adults at risk of isolation. The conversational performance of

LISSA was primarily evaluated through post-session user surveys; we summarize these

results below.

5.4.1 ASD Teenagers

In the first experiment, 9 teenage participants with high functioning ASD diagnoses

were recruited to interact with the LISSA agent through the University of Rochester

Medical Center (URMC) Department of Pediatrics. Each participant interacted with

LISSA for a single session; within a session, a participant first conversed with LISSA for

five minutes, then took a break for two minutes, and then held another conversation with

LISSA for four minutes. Participants received real-time feedback on particular social

skills (e.g., eye contact) through a graphical interface as they interacted with LISSA, as
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well as post-session summary feedback.

In the debrief interviews following their session, each participant filled out a survey

that included questions about both the usability of the overall system and the conversa-

tional abilities of the LISSA agent. Users were asked to judge LISSA on each criterion

using a five-point Likert scale ranging from ”strongly disagree” (=1) to ”strongly agree”

(=5). These results are shown in Figure 5.3. Questions marked with a star (*) had re-

sponses that were significantly higher (p < 0.05) than “neutral” using a non-parametric

bootstrap test with Bonferroni corrections.

5.4.2 Elderly Adults

In the second experiment, 9 elderly adults (≥ 60 years old) were recruited to interact

with LISSA through the URMC facility, while an additional 10 participants were assigned

to a control group. In this experiment, participants in the treatment group interacted with

LISSA over 10 separate sessions, in order to evaluate the longer-term impact of LISSA

on communication skills. These interactions were held in the users’ own homes using

a personal computer or laptop, apart from the first and last sessions. Each interaction

consisted of three short conversations separated by breaks where the user received

feedback on their communication.

The transcripts from this experiment were compared to transcripts from a Wizard of

Oz (WOZ) baseline in which the LISSA dialogues were simulated by human operators

who were responsible for selecting appropriate responses (the topics were identical to

those in the LISSA experiment); 25 elderly adults participated in this experiment over

a single session. 8 transcripts were randomly sampled from both sets and were then

randomly assigned to 6 research assistants who were blind to the study condition. Each

RA was tasked to independently rate each assigned transcript on the following criterion

using a five-point Likert scale ranging from ”strongly disagree” (=1) to ”strongly agree”

(=5).
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Figure 5.4: Evaluation results for LISSA in the elderly adult experiment; means and

standard deviations of survey results are shown for LISSA and a Wizard of Oz (WOZ)

baseline.

Q1. How natural were LISSA’s contributions to the conversation?

Q2. LISSA’s questions/comments encourage the user’s participation.

Q3. The conversation stayed on track.

Q4. LISSA’s responses were relevant to the conversation.

Q5. LISSA understood what USER said.

Q6. LISSA’s responses were polite and respectful.

Figure 5.4 plots the mean responses and standard deviations for both the WOZ

baseline and the full experiment. The responses had high internal agreement (Cronbach’s

alpha = 0.89). The automated LISSA system performed comparably well to the WOZ

baseline; most of the mean responses were slightly higher for the LISSA system, but

none of the differences are statistically significant. We show a qualitative example of a

dialogue from the LISSA experiment in Figure 5.5.
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LISSA : Tell me about your day . For example , what did you have for breakfast?

User : Well I had a granola bar , a banana and a cheese stick . I didn ’t take the time

for cereal and milk which is my usual . Then I came over here to this to this

session and that ’s been my day so far . I didn ’t have any trouble with traffic .

LISSA : I try to have fruit for every breakfast . It ’s very healthy for me . Speaking of

food , what ’s your favorite flavor of ice-cream?

User : Oh , gosh . . . I like all sorts of ice-cream . Maybe . . . maybe coffee ice-cream

would be my favorite although chocolate is right up there too .

LISSA : I think coffee ice-cream is pretty tasty . Though I am a big fan of mint

chocolate chip . Do you have a favorite food? What is it and why do you like it?

User : Oh fruit . I eat all sorts of fruit . Um . . . I suppose the favorite is grapefruit .

Uh but I try to eat a banana , banana every day or almost every day .

LISSA : I like grapefruit . It ’s nice when food is healthy and tastes good . How did

you get here today? Did someone drive you or did you take the bus?

User : No , I drove my car here today . It ’s a good day to be out driving .

LISSA : That ’s good that you drive . It must be nice to have the freedom to go

somewhere when you want to .

User : It is .

. . .

Figure 5.5: Example dialogue from the LISSA aging and engaging experiment.

5.5 Discussion

In both experiments, we observe that LISSA was able to converse with users in a

manner that was judged to be fluent and that enabled useful social skills feedback to be

provided to the user. In particular, the participants in the ASD experiment felt that LISSA

understood them, while raters in the experiment with elderly adults felt that LISSA was

natural, on track, and demonstrated understanding of the user. Moreover, the results from

the latter suggest that LISSA was able to produce conversations that are approximately

as good as the human-operated WOZ agent, attesting to the ability of the Eta framework

to enable flexible, topically broad dialogue.

One advantage of the schema-based dialogue framework – as opposed to black box

statistical dialogue models – is the ability for dialogue designers to control the types of

topics, questions, and responses employed by an agent. The LISSA agent was developed
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using guidance provided by psychiatric experts, with particular care taken to build

rapport through incremental self-disclosure and to gradually increase emotional intensity

over subsequent sessions. We observe, likely as a consequence of this deliberate design,

that LISSA achieved particularly high scores for the ”Encouraging”, ”Polite”, and ”On

Track” metrics.

These initial experiments, however, were relatively small-scale; since participants

would only interact with LISSA for several sessions, we were able to use a restricted

set of schemas and topical knowledge, with LISSA’s reactions generated through hard-

coded pattern transduction trees. A major limitation of pattern transduction trees is

the effort required to scale them to a wider set of topics. In Section 5.6, we discuss a

technique that allows for an expansion of the topical knowledge available to LISSA –

particularly the habitual knowledge that constitutes LISSA’s persona, allowing LISSA to

use this knowledge to generate interesting and relevant reactions using LLMs instead of

transduction trees.

5.6 Improving Response Generation using Habitual

Schemas

A critical challenge in the design of conversational agents such as LISSA is endowing

them with a specific persona, and generating responses that are both natural and con-

sistent with this persona across a variety of topics. Systems that are able to do this are

both found to be more engaging by users (Zhang et al., 2018), and increase the level of

confidence and trust that users place in the system (Shum et al., 2018). Furthermore, in

many practical applications beyond chit-chat, there is a complementary need to control

the flow of dialogue; for example, ensuring consistency of generated responses with

hand-engineered templates may help to improve a dialogue system’s topical coherence

(Grassi et al., 2021). Recent work has focused on combining explicit representations of
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personas and knowledge with LLMs using retrieval-in-the-loop methods for generation

(Shuster et al., 2021). Typically, these approaches represent personas using unstructured

sets of natural language “facts” about an agent, possibly augmented with additional

knowledge from a knowledge base.

In casual human-human dialogue, however, personas are often revealed through

story-like narratives about experiences rather than one-off facts (Dunbar et al., 1997).

For example, if a speaker mentions something involving sports, the interlocutor might

respond by relating their typical experiences playing a sport in the past. These types

of narratives, typically taking the form of “generic passages” (Carlson and Spejewski,

1997), often capture habitual knowledge – knowledge about the kinds of events that an

agent participates in, or used to participate in. This knowledge includes the typical steps

of a habitual event, as well as the typical goals, preconditions, and postconditions of the

event. Event schemas, in addition to representing prototypical dialogue events, can be

used to capture the rich types of prototypical knowledge associated with generic and

habitual events, such as causal and enabling relations, temporal relations, etc. (Chambers,

2013; Lawley et al., 2021; Li et al., 2021).

In this section, we present novel approach to dialogue generation that uses a col-

lection of explicit event schemas to augment an agent’s persona, and that conditions

an LLM to generate narrative-like responses consistent with these schemas through

in-context prompting2. Furthermore, since it is often desirable for dialogue designers

to be able to specify a persona using a small number of simple natural language facts

– such as in the case of LISSA – we propose a method for bootstrapping the creation

of schemas from a set of simple facts. This method involves leveraging LLMs to first

generate “generic passages” from the given facts, and then to induce structured habitual

schemas from the passages – capturing both explicit steps from the passage and implicit

knowledge associated with the event described by the passage. A high-level diagram of

our approach is shown in Figure 5.6.

2Code can be found at https://github.com/bkane2/habitual-response-generation

https://github.com/bkane2/habitual-response-generation
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Hello.

Hey there! Recently I've been 
enjoying cooking. Do you cook?

That's cool! I cook sometimes, but 
I prefer baking.

That sounds great! My 
grandmother used to like to bake 
pies on Saturdays. She would 
gather the ingredients herself. It 
would always fill the house with 
an irresistible aroma.

Schema

:header
“My grandmother used to 
bake pies on Saturday”

:preconds
“My grandmother collected 
the ingredients for a pie”

…

:episodes
… 
“My grandmother puts the 
pies in the oven”
“An irresistible aroma wafts 
through my house”
…

Retrieval

In-context knowledge

……
… …

Sample generic passages

Event schema
induction

Persona

Figure 5.6: A diagram of our approach. (1) Given an unstructured persona dataset, we

first sample “generic passages” from the facts in the persona, and then induce structured

event schemas from the sampled stories. (2) We condition an LLM to generate dialogue

responses that are fluent with previous conversation – yet that make use of the rich

knowledge contained in the resulting schemas – by first using a retrieval model to select

a relevant schema, and then providing the schema to the LLM as in-context knowledge.

We present evaluation results showing that the generated schemas are generally high

quality, and can be used to condition LLMs to generate responses that are more diverse

and engaging, yet also controllable. In order to perform a large-scale evaluation, we turn

to the PersonaChat dataset (Zhang et al., 2018) to generate open-domain responses across

a variety of topics. However, this approach can also be used to create habitual schemas

given a particular LISSA persona, and in Chapter 7, we employ a similar mechanism for

response generation.
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5.6.1 Method

Given a dialogue context U = {u1, u2, ..., un−1} containing system and user utterances,

our goal is to generate a response un that utilizes knowledge from a relevant event schema

SR ∈ S = {S1, S2, ..., Sm} – this schema represents knowledge about a habitual activity

that is part of the speaker’s persona and that is relevant to the previous turn un−1. We

ensure that the selected schema is relevant using a multi-level information retrieval

system to embed both the event schemas (treated as individual documents) and the

knowledge contained within each event schema (treated as collections of documents),

and to rank the schemas in S based on similarity to the embedding for un−1.

Following Zheng and Huang (2022), we employ a prompting-based approach in

which a pre-trained LLM is used to produce a response utterance, provided a prompt

that is dynamically constructed from the dialogue history and the selected schemas.

Schema Induction

Since structured event schemas for habitual activities are typically expensive for dia-

logue designers to create, requiring reasoning about causal relations and other implicit

knowledge, we focus on the problem of automatically inducing event schemas from

an unstructured persona P = {p1, p2, ..., pn}, where pi are natural language “facts”

such as “I like to play tennis.”3. Formally, we represent an event schema as a tuple

⟨H, Pr, S, Po, G, E⟩. H is a schema header; a sentence characterizing the overall schema

event. Pr, S, and Po are sets containing schema preconditions, static conditions (condi-

tions expected to hold throughout the overall event), and postconditions, respectively.

G is a set containing typical goals of participants of the event, and E is a set containing

typical episodes (i.e., substeps) of the event. We show an example of an event schema in

Figure 5.7.

3These facts may be hand-designed by a dialogue designer, crowdsourced (as in (Zhang et al., 2018)),

or generated by an LLM.
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:header "I work in a bookstore."

:preconds (

"My shift has started.")

:static-conds (

"The bookstore is stocked with books."

"Customers visit the bookstore."

"I am knowledgable about books and customer service.")

:postconds (

"My shift at the bookstore is over."

"Some customers have purchased books.")

:goals (

"My goal is to assist customers in finding the books they are looking for."

"The customers’ goal is to find the books they want to purchase.")

:episodes (

"Customers come looking for new titles to add to their collection, or to browse."

"I welcome the customers and ask if they need any assistance."

"I help the customers find books by using my knowledge of the store’s inventory."

[...]

"I organize the bookshelves when the customers are not in the store.")

Figure 5.7: An example of an event schema for a habitual “work at bookstore” activity.

Note that some episodes are omitted for brevity.

In order to generate sufficiently interesting and accurate schemas, we employ the

method of latent schema sampling (LSS) introduced by Lawley and Schubert (2022)

– this method regards an LLM, when conditioned on a schema header, as implicitly

characterizing a distribution over stories sampled from that distribution. A full schema

can then be induced from the sampled stories.

Thus, for each pi ∈ P , we sample Np stories (specifically, generic passages (Carlson

and Spejewski, 1997) describing the typical process of a habitual event) using the
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GPT-3.5-TURBO LLM4. We use a few-shot prompt in which the LLM is supplied with

a short definition of a generic passage, followed by Kp examples. In contrast to the

neuro-symbolic pipeline in (Lawley and Schubert, 2022), we leverage the in-context

learning capabilities of GPT-3.5-TURBO to directly induce an event schema from a set

of Np passages, given an abstract schema template and Ks in-context examples5.

Dialogue Generation

We use the GPT-3.5-TURBO LLM to generate fluent responses, conditioned on a prompt

containing a subset of the knowledge contained within a retrieved schema. Additionally,

in order to allow controllable dialogue flow management – which is necessary for

usability in many applied domains (Grassi et al., 2021) – we allow for two modes of

generation: unconstrained generation, in which the LLM is prompted with the entire

dialogue history and generates the next utterance without any constraints (apart from

the retrieved knowledge); and few-shot paraphrase generation, where the LLM is

prompted with a given sentence to paraphrase along with several in-context examples. In

practice, the mode of generation may be mediated by a dialogue manager that manages

the conversation flow and provides “raw” utterances (which may, for instance, be

programmed by dialogue designers) to be selected for paraphrasing. For the purposes

of this evaluation, we assume that, in the case of paraphrase generation, we have raw

utterances available.

Schema Retrieval As a first step in constructing a prompt, we use the multi-level

schema retrieval algorithm described in Section 4.1.1 to retrieve relevant schema knowl-

edge. In our experiments, we use a pre-trained Sentence Transformer model6 (Reimers

and Gurevych, 2019) as an embedding function. As a query string, we embed the

4https://platform.openai.com/docs/models/overview
5In practice, we found Np = 1, Kp = 2 and Ks = 1 to be sufficient to produce accurate generations.
6https://huggingface.co/sentence-transformers/all-distilroberta-v1

https://platform.openai.com/docs/models/overview
https://huggingface.co/sentence-transformers/all-distilroberta-v1
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previous utterance un−1 for each dialogue turn. The top Nf facts are retrieved to be used

in the prompt.

Unconstrained Generation If the current episode of a dialogue schema corresponds

to a basic speech act (e.g., “say-to”, “tell”, etc.), we employ an unconstrained generation

mode where the response is sampled from the LLM by prompting with the full dialogue

history, after conditioning on facts from the relevant habitual schema and the current

dialogue schema:

un ∼ LLM(FR ++ FD ++ U),

where FR = {f1, ..., fNf
} ⊂ SR are the relevant facts retrieved in the previous step,

FD = SD \ E(SD) are all non-episodic facts from the current dialogue schema (i.e.,

preconditions, goals, etc.), and U = {u1, ..., un−1} is the dialogue history.

Few-shot Paraphrase Generation If the current episode of a dialogue schema speci-

fies a “paraphrase-to” act with a specific sentence as an argument, we employ a few-shot

prompting strategy to condition the LLM to paraphrase the given sentence in a manner

that is interesting, appropriate, and that makes use of the relevant facts. Specifically, in

addition to the inputs used in the unconstrained setting, we format several in-context para-

phrase examples along with a “raw” utterance to paraphrase, given the actual dialogue

context:

un ∼ LLM(FR ++ FD ++ E ++ U ++ ûn),

where ûn is the sentence to paraphrase, and E is a set of Ke in-context examples:

E = {(U1, û1
n, u

1
n), ..., (UKe , ûKe

n , uKe
n )}.
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5.6.2 Experiments

We first evaluate our response generation method according to the following desiderata:

(1) the generated responses improve diversity of output; (2) the generated responses are

engaging, interesting, and relevant given the previous conversation, and (3) the generated

responses are controllable; i.e., a dialogue designer can ensure that the responses still

correctly express an intended response.

Since an important advantage of our approach is the reusability of the generated

schemas for downstream tasks (e.g., for inferring additional facts from a dialogue agent’s

experiences), we also conduct an evaluation of the quality of the generated schemas –

specifically, whether the facts within the schema correctly represent typical knowledge

associated with the event that the schema describes.

Dataset We conduct our experiment using the PersonaChat dialog dataset7 (Zhang

et al., 2018). We generate schemas and evaluate the performance of our response

generation method using the test split, containing of 131,438 unique utterances. When

evaluating our paraphrase generation method, we use the gold response annotations from

the PersonaChat dataset for the raw utterances that are input to the model.

Baselines We consider two baselines for evaluating the performance of our approach:

First, we use the GPT-3.5-TURBO LLM without schema retrieval, provided only with

the base persona and dialogue history in the prompt (BASE). Second, we consider the

human-generated gold utterances from the PersonaChat dataset themselves (GOLD)

as a baseline for our diversity, engagement, and relevancy metrics. Against these, we

compare our two generation methods: unconstrained generation UNCS and paraphrase

generation PARA. The differences between the three generation methods are summarized

in Table 5.1 for reference.

7https://huggingface.co/datasets/bavard/personachat_truecased

https://huggingface.co/datasets/bavard/personachat_truecased
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BASE UNCS PARA

Base Persona ✓ ✓ ✓

Dialogue History ✓ ✓ ✓

Event Schema ✗ ✓ ✓

Raw Response ✗ ✗ ✓

Table 5.1: A summary of the differences in the resources available to each method that

we compare in our evaluations. Note that each method in the order presented has access

to all resources available to the previous method.

Response Generation Evaluation

Automatic Evaluation Following prior work (Majumder et al., 2021; Li et al., 2016),

we use several methods to measure the diversity of the generated outputs, per desideratum

(1). First, we compute the mean percentage of unigrams and bigrams in the generated

outputs that are distinct relative to the total number of generated words, reported as D-1

and D-2 respectively. We also report the mean lengths of the outputs as Length. Since

the distinct n-gram measures do not represent the actual frequency distributions of words

(and will tend to be penalized with longer responses), we also report the mean ENTR

score across outputs – calculated as the geometric mean of entropy values of n-gram

frequency distributions, for n ∈ {1, 2, 3}.

In order to test the controllability of our paraphrase generation method against other

baselines, per desideratum (3), we also report several text similarity methods computed

between a generated output and the gold PersonaChat response. We report widely-

used n-gram-based similarity metrics such as BLEU, ROUGE-L, and METEOR, as

well as the cosine similarity between contextualized embeddings produced by the ALL-

DISTILROBERTA-V1 Sentence Transformer model (Reimers and Gurevych, 2019) (ST).

However, since not all sentences in a generated response may be directly related to the

gold response (e.g., an acceptable paraphrase may consist of a story followed by the
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Method GOLD BASE UNCS PARA

Diversity

LENGTH 50.1 122 303 372

D-1 97.0 93.8 81.7 78.9

D-2 88.9 94.2 96.0 96.7

ENTR 2.20 2.91 3.61 3.84

Controllability

BLEU - 1.25 .843 8.60

ROUGE-L - 19.3 19.8 34.6

METEOR - 14.6 16.5 33.2

ST - 35.6 35.0 55.6

Table 5.2: Diversity and controllability metrics on the PersonaChat test set. D-1/2 are

the % of distinct uni- and bi-grams; ENTR is the geometric mean of n-gram entropy.

BLEU, ROUGE-L, and METEOR are standard n-gram-based similarity metrics, and

ST is the Sentence Transformer similarity measure. All similarities are calculated as

average maximum pairwise values across sentences in each response. Best scores are

bolded.

intended response), it is difficult to interpret these metrics on the level of the full response.

Hence, we compute the maximum pairwise similarity for each full sentence8 between

the generated and gold responses, and report the average value across all responses.

These results are shown in Table 5.2. We observe that the methods that use event

schemas for generation generate responses with higher diversity than the baseline

methods that do not have access to the schemas, as measured by D-2 and ENTR

(although D-1 tends to favor the methods that generate responses that are shorter and

therefore have a higher relative fraction of distinct uni-grams). Furthermore, we observe

8Split based on “.”, “?”, and “!” punctuation, filtering out sentences less than 5 words in length.
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PARA vs. UNCS BASE UNCS v BASE BASE v GOLD

Metric win loss win loss win loss win loss

Engaging 34.7 27.4 46.8* 21.1 39.5* 24.2 43.0* 23.0

Relevant 33.2 23.7 44.7* 24.2 37.4 22.6 40.5* 25.0

Table 5.3: Pairwise comparisons between responses generated from each method (%

win/loss, leaving ties out). Entries with * are statistically significant with p < 0.05 using

a non-parametric bootstrap test on 2000 subsets of size 50.

that the paraphrase generation method achieves considerably higher similarity to the gold

responses than both the baseline and unconstrained methods (which perform comparably

well on this metric).

Human Evaluation To assess desideratum (2), we conduct a human evaluation of 100

randomly sampled examples on two metrics associated with response quality, following

prior work (Majumder et al., 2021) – namely, whether the generated responses are

engaging and relevant given the dialogue context. Annotators are tasked to make

a pairwise comparison between responses from a pair of generation methods. We

first collect annotations comparing the two baseline methods; under the assumption of

transitive preferences, we then use the “winning” baseline as a comparison for each

proposed method. We hired two Anglophone annotators for every sample.

Our results are shown in Table 5.3, with starred values indicating differences that

are significant with p < 0.05, using non-parametric bootstrap tests on 2000 subsets

of size 50. The collected annotations are fairly noisy, with inter-annotator agreement

(Krippendorff’s alpha) being 0.21 and 0.23 for “engaging” and “relevant”, respectively.

Despite this, we were able to observe moderate and statistically significant prefer-

ences for both the paraphrase and unconstrained methods over the LLM baseline in terms

of engagement, and for the paraphrase method over the baseline in terms of relevancy.



82

The LLM baseline itself was, in turn, significantly preferred over the gold responses

for both questions. We believe that this can be attributed to the relatively short length

and low diversity of language of the gold responses (as indicated in Table 5.2), as well

as the ability of LLMs to interpolate smoothly with conversation history, even when

constrained by our proposed methods.

We note, however, that many annotators were indifferent between the different

generation methods. This is plausibly due to the fact that, generally, multiple response

strategies are considered acceptable for the open-ended conversations in the PersonaChat

dataset, and attests to the capability of LLMs to generate suitably engaging and relevant

responses across prompting strategies.

Schema Evaluation

We evaluate the quality of the schemas, in themselves, through another human evaluation.

We randomly select a subset of 200 individual schema facts from all generated schemas,

each paired with the header of the schema it was taken from. An equal number of facts

are selected for each type of schema relation. As a baseline, we select another 200 facts

from the generated schemas, but randomly swap schema headers so that facts are paired

with headers from unrelated schemas. For each type of schema relation, given a fact of

that type and a schema header, we hire two Anglophone annotators to rate, on a 5-point

Likert scale, how typical the fact is of an event described by the schema header. For

instance, for a “static-condition” fact, an annotator might be asked “How typical is it

that Sentence 2 is true throughout the duration of the event in Sentence 1?”.

The mean Likert ratings for the baseline and the generated schemas are shown in

Table 5.4. All differences are significant with p < 0.05 using a Mann Whitney U

test. We observe that the generated schemas are generally found to contain facts that

are typical of the described event, relative to the randomized baseline. The smallest

typicality differences were observed for the “postcondition” relation, suggesting that

inferences of this type may be more complex than other schema relations.
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Relation BASE SCHEMA

PRECONDITIONS 2.51 3.65

STATIC-CONDITIONS 2.89 3.74

POSTCONDITIONS 2.93 3.23

GOALS 2.99 3.55

EPISODES 2.80 3.36

ALL 2.82 3.50

Table 5.4: Mean Likert ratings for the baseline and generated schemas; both the aggregate

value and disaggregated values across schema relation types are shown. All differences

are statistically significant with p < 0.05.

Qualitative Analysis

Table 5.5 shows generated responses from different methods for a particular persona

and context. Qualitatively, we observe that the two models that are conditioned on the

habitual schema from Figure 5.7 are able to generate longer and more detailed responses,

making use of generic knowledge such as that people who work at bookstores can

generally help customers find books of interest. On the other hand, the baseline model

tends to generate responses that are fairly short and open-ended9. Furthermore, we

observe that the paraphrase method is more frequently able to preserve the meaning of

the intended raw utterance, as indicated.

Discussion

In this section, we demonstrated that habitual knowledge in the form of explicit event

schema representations could be used to condition LLMs to generate more diverse and

9One important caveat is that this behavior is not necessarily undesirable; short open-ended questions

can often be used in a conversation to demonstrate interest or empathy towards the interlocutor, although

in this section we are focused on the challenge of generating more engaging responses.
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Persona:

I do not care about fashion.

I work in a bookstore.

...

User: I worked at Petsmart for two years and then I got canned.

GOLD: Ah too bad! I work at a barnes and noble. Chemistry grad.

BASE: Oh really? Why did you get fired?

UNCS: Oh no, sorry to hear that. But hey, maybe your knowledge of pets could

come in handy if you’re interested in finding some books on the subject. As

someone who works at a bookstore, I’m pretty knowledgeable about different

books [...]

PARA: That’s tough. I actually work at a barnes and noble bookstore. Although,

I didn’t major in English or literature. I graduated from college with a chemistry

degree. When I’m not shelving books, I help customers find what they’re

looking for [...]

Table 5.5: Sample generations by different methods, using the schema from Figure 5.7.

Content in the gold utterance preserved by the paraphrase method are highlighted in red.

engaging dialogue responses. We experimented with two generation settings, one of

which furthermore allows for a greater degree of controllability by a dialogue designer

who may wish to provide intended utterances for the LLM to paraphrase. Moreover, to

ease the burden of schema design, we proposed a novel method of inducing schemas

from a base persona using an LLM through sampling “generic passages” about habitual

activities.

Although the inclusion of habitual knowledge can be used to produce more engaging

responses, it is not sufficient – often, conversations focus around more specific expe-

riences and memories, and the knowledge captured by schemas generated with our



85

approach can be somewhat banal. In future work, we aim to extend our approach to

generate schemas that capture atypical aspects of an agent’s experience with a particular

kind of event, as well as more ordinary memories or knowledge.

Moreover, although our method succeeds at generating more diverse, and engaging

responses, this can often be inappropriate in certain conversational contexts, such as in

a scenario that calls for a short affective response from the agent rather than a lengthy

narrative-like response. Such responses may become repetitive over the course of a full

conversation. When integrated into a broader dialogue management framework such as

Eta, however, this response generation method can be balanced with other strategies in

order to enable engaging conversation for agents such as LISSA.
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6 DAVID Spatially-Situated Blocks

World Agent

6.1 Domain

The “blocks world” domain has a rich history in AI research as a testing ground

for spatially-situated conversational agents and robots, beginning with the simulated

SHRDLU collaborative planning system (Winograd, 1972). Although the domain is

highly idealized, achieving high performance in complex blocks world tasks requires

capabilities such as deep semantic understanding and spatial reasoning – competencies

that are also critical for more general domains, such as a “room world” with everyday

objects.

We used the Eta framework to create a virtual conversational agent – DAVID – that

can hold collaborative dialogues with a user within a physical blocks world setting,

depicted in the top of Figure 6.1. Our setup consists of 9 blocks that can be referred to

by associated company names (e.g., “the Twitter block”) as well as by color (indicated

by the tape along the edges of the blocks); the scene is captured by two Kinect sensors

and reconstructed in the Blender 3D modeling program. In the full agent configuration

– shown in 6.1 – both the ASR module and “vision”/state-tracking component of the

Blocks World system are connected to Eta via perceptual servers that send relevant

observations to Eta, while the “spatial component” is connected to Eta as a specialist
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Figure 6.1: The full DAVID agent configuration used for the blocks world domain, with

the physical blocks world apparatus pictured in the top center.

server capable of task-specific reasoning (e.g., determination of spatial relations between

blocks, spatial planning, etc.) given queries from Eta. This specialist subsystem supplies

Eta with the ability to use fully general mathematical models of spatial relations (such as

“near” or “behind”) that can ultimately be re-used in more realistic domains (Platonov

and Schubert, 2018; Platonov et al., 2021b).

The DAVID virtual agent was initially configured for an interactive question-

answering (QA) task, with the aim of developing the reasoning capabilities necessary

for a full collaborative interaction. In this task, users are able to move blocks around on

the table while asking the agent free-form questions about the world. These questions

may include spatial questions about relations or properties of the blocks on the table and

historical questions about past world states or actions, such as the following examples:

• “What color is the leftmost block?”

• “Where is the Texaco block?”
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• “How many red blocks are below a blue block?”

• “Which blocks were near a red block in the beginning?”

• “What block have I moved three times?”

• “Where was the Twitter block before I moved it?”

6.2 Schema Design

Given the relatively structured dialogue flow of the QA task, development of the DAVID

agent required only a small set of dialogue schemas. A top-level schema, shown in

Figure 6.2a, specifies a repeating dialogue episode wherein DAVID prompts the user for

a question, followed by the expected event that the user will reply. This continues until

the user is observed to say goodbye to the agent. Throughout an interaction, DAVID may

react with several subschemas for handling particular types of user responses – including

answering spatial and historical questions, saying goodbye to the user, temporarily

pausing the conversation, and reacting to “smalltalk”.

An example of a subschema for reacting to a spatial question is shown in Fig-

ure 6.2b. The schema first matches an expectation that the user articulates a spatial

query to DAVID1. This is followed by DAVID querying a spatial specialist server and

receiving a set of relations satisfying the query. The spatial specialist server uses the

constraint satisfaction algorithm described by Platonov et al. (2020) to obtain the set

of relations satisfying a query logical form, along with associated confidence scores

(allowing DAVID to insert hedge words into its paraphrased responses in the case of

low confidence). For example, given a spatial query such as ((|NVidia Block|

(be.v where.pro)) ?) and the block configuration in Figure 6.1, the specialist

server may return the relations (|NVidia Block| next to.p |McDonald’s

1We use articulates-to.v to represent a verbalization of an underlying semantic meaning, cf.

the use of paraphrase-to.v to represent paraphrasing of a gist clause.
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(dial-schema :header (((set-of ˆme ˆyou)

have-QA-dialogue.v) ** ?e)

;‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

[...]

:episodes (

?e1 (ˆme say-to.v ˆyou

’(Hi, I’m David. I’m ready to answer

your spatial questions.))

?e2 (:repeat-until (ˆyou say-bye.v ˆme)

?e3 (ˆme say-to.v ˆyou

’(Do you have a question for me?))

?e4 (ˆyou reply-to.v ?e3))))

(a)

(dial-schema :header

((ˆme react-to-spatial-question.v) ** ?e

;‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

:episodes (

?e1 (ˆyou articulate-to.v ˆme ?ulf)

?e2 (ˆme query.v |Spatial-Server| ?ulf)

?e3 (ˆme receive-from.v

|Spatial-Server| ?relations)

?e4 (ˆme paraphrase-to.v ˆyou

(answer-to.f ?ulf ?relations))))

(b)

Figure 6.2: The main dialogue schema used for the blocks world QA task (a) and a

schema for reacting to a spatial question (b).

Block|) and (|NVidia Block| left of.p |Texaco Block|) with cer-

tainties 0.9 and 0.8, respectively. Finally, DAVID uses the relations and query ULF to

generate an answer to paraphrase to the user; answer-to.f is an evaluable function

that substitutes satisfying relations for a WH-term in the query ULF and applies syntactic

transformations to generate an answer clause. For example, given the above relations,

DAVID might output “The NVidia block is next to the McDonald’s block and to the left

of the Texaco block”.

DAVID is able to react to historical questions using a similar subschema that instead

queries a temporal specialist server based on the temporal constraint solver described in

Section 6.4.
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6.3 Transduction Methods

The DAVID agent is configured with several transducers depicted in Figure 6.1 and

elaborated in the following section.

6.3.1 Gist

Given a user input, a rule-based gist clause transducer is first used to both classify

intent and preprocess the input into a simplified form for semantic parsing. Inputs are

initially classified as spatial/historical questions, special requests (e.g., to pause the

conversation), or “smalltalk”. In the first case, the preprocessing steps include fixing

common errors introduced by the ASR system, combining multi-word predicates (e.g.,

to the left of), and trimming fillers or tag questions.

6.3.2 Semantic

The semantic transducer plays an important role in DAVID’s interpretive pipeline since

it allows for deep semantic understanding of user inputs, rendering them into a form

that can be processed by the specialist servers. We employ the hierarchical pattern

transduction algorithm described in 4.3.1, augmented with phrase-based recursion; this

enables a form of compositional semantic parsing that is quite efficient and accurate for

the linguistically constrained blocks world domain, yet extensible.

An example transduction tree used for parsing a historical question into ULF is

shown in Figure 6.3. A top-level tree identifies different types of input sentences and

accordingly sends them to more specialized trees. These trees again use hierarchical

pattern matching based on words and their features to identify meaningful (generally

phrasal) segments of the input, such as an NP segment or a VP segment. They then

dispatch the corresponding word sequences to transduction hierarchies appropriate for

their phrasal types; these recursively derive and return ULF formula constituents, which
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...

... ... ......

...

(be np_ 0) (wh_ color 0) (where 0)

(be det 2 block 0)

(be det 2 block adj ?) (be det 2 block 1 prep 2 np-bw 3 adv-hist 0 ?)

(det 2 noun 0)

(corp noun)

(adv-hist prep det 3 noun) 

(adv-f) (prep det 2 noun)

(prep-hist 0 verb 0)

(prep np-bw 2 verb np-bw 3) 

(pron) (pron)

(lex! pro 1) (lex! pro 1)
((lex! name 1)  (lex! noun 2))

(( 2 ( 1  3  4 )) ?)
1  (lex! v 1) 2  (*np-ulf-tree* 2 3 4)3  (*pp-ulf-tree* 5 6 7 8 9)4  (*adv-ulf-tree* 10 11)

( 1  2 )
1  (lex! det 1) 2  (*n1-ulf-tree*)

( 1  2 )
1  (*adv-ulf-tree* 1)2  (*pp-ulf-tree* 2 3 4 5)

(adv-f  1 )
1  (lex! adj 1)

( 1  2 )
1  (lex! prep 1)2  (*np-ulf-tree* 2 3 4)

( 1  ( 2  ( 3  4 )))
1  (lex! ps 1)2  (*np-ulf-tree* 2 3)3  (lex! v 4)4  (*np-ulf-tree* 5 6)

*yn-question-ulf-tree*

*adv-ulf-tree*

*psp-ulf-tree*

*n1-ulf-tree*

*np-ulf-tree* *pp-ulf-tree*

*adv-ulf-tree* *pp-ulf-tree*

*spatial-question-ulf-tree*

Was the Twitter block    always      on   the Texaco block  before  I       moved        it ?

(((the.d (|Twitter| block.n)) ((past be.v) ((adv-f always.a) (on.p (the.d (|Texaco| block.n)))) (before.ps (I.pro ((past move.v) it.pro))))) ?)

Figure 6.3: An example ULF parse, with the input shown in red, and the resulting ULF

(at each composition step) shown in green. The nodes with rectangles represent ULF

composition nodes, where the numbers in the upper box correspond to the indices of the

lower boxes (if there is no upper box, the constituent ULFs are simply concatenated).

All other nodes are patterns to be matched to the corresponding span of input text.

are then composed into larger expressions by the “calling” tree, and returned. At the

level of individual words (or certain phrases), a lexicon and lexical routines supply word

ULFs.

6.3.3 Reasoning

While much of the reasoning involved in the blocks world domain relates to quantitative

spatial relations or temporal relations, and are therefore outsourced to the respective

specialist servers, we also employ a bottom-up reasoning transducer to generate addi-
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tional inferences from user inputs. One particular case is that of implicature-generating

questions: for example, the historical question “What blocks did I move?” implies the

question “What blocks did I just move?” (unless defeated, e.g., by the adverbial “...since

the beginning”). These implicatures are inferred through a simple rule-based transducer.

6.3.4 Reaction

Given the classified intent of the user input, a rule-based reaction transducer is used

to select an appropriate subschema for handling that input. For example, the schema

in Figure 6.2b will be selected for reacting to a spatial question, whereas a schema for

pausing the conversation will be selected for reacting to a special request to pause the

conversation. In the case of smalltalk, such as the user inquiring about the name of

the agent, DAVID may simply react with a direct say-to.v action, whose content is

computed in the usual way by context-aware pattern transductions.

6.3.5 Paraphrase

We use hierarchical pattern transduction to generate an output utterance given the

generated answer to a user’s query. In most cases, the paraphrased utterance will simply

be identical to the generated answer. However, in cases where the answer is overly

lengthy (e.g., a conjunction of a large number of relations) or technical (e.g., involving

numerical distance between blocks), we convert the utterance into a more natural form.

Furthermore, pronouns may be substituted for block names in some cases. For example,

in the case where the user asks DAVID a question such as “Why is the Twitter block

near the Texaco block?” (testing understanding of the latent factors underlying spatial

relations (Platonov et al., 2021a)), the spatial system may generate a technical answer

such as “The scaled raw distance between the Twitter block and Texaco block is 1.5”;

this would be paraphrased into a more natural form such as “The distance between them,
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scaled by their relative sizes, is 1.5.”2.

6.4 Registering Historical Context for Question-

Answering

For DAVID to be able to answer questions about historical states of the world – such

as “Which blocks were near a red block in the beginning?” – the agent must have some

sort of episodic memory of past actions and world states, and must be able to use this

episodic memory in order to “reconstruct” the spatial relations between blocks in prior

states. In this section, we describe the creation of a specialist server that allows for

efficient backtracking through an episodic memory of prior actions and the estimation

of spatial relations at particular points in time.

A natural question that emerges is: which memories should be preserved, and how

should these memories be represented? Since our modelling of spatial relations is

based on 3-D Blender graphics representations of the objects in the blocks world, a

straightforward approach would be to store successive states in this “imagistic” form.

However, this would be intractable in terms of computation and storage in more general

scenarios, where there may be object-rich scenes or indefinitely long histories.

Some prior work, such as Rothfuss et al. (2018) and Franklin et al. (2019), takes

the approach of representing episodic memory in a sub-symbolic form compatible with

deep learning models. The former uses an unsupervised encoder-decoder model to

represent episodic memory as latent embeddings, and shows that this model can allow

a robot to recall previous visual episodes in a physical scene. The latter introduces a

neuro-symbolic Structured Event Memory (SEM) model that is capable of segmenting

events in video data and reconstructing past memory items.

2Scaled distance, rather than absolute distance, is used here due to the fact that, in general, nearness

depends on the relative sizes of objects as well as the distance between them (Platonov and Schubert,

2018).
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We, however, opt to represent memories at a higher level of abstraction: Studies

of human visual memory indicate that detailed visual memories of scenes are quite

short-lived, and a few higher-level properties suffice for humans to swiftly reconstruct

more detailed representations of a scene (Rensink, 2001). Therefore, we operate over an

episodic memory containing symbolic knowledge about changes in the world – allowing

us to seamlessly integrate spatial reasoning with the memory component of the Eta

architecture described in Section 4.1.2. This symbolic history enables approximate

reconstruction of past states of the world given a set of current spatial perceptions.

6.4.1 Tracking Temporal Relations

As a spatial question answering session progresses, the perceptual server

records the centroid coordinates of blocks and block moves in real time.

In the current system, these perceptions consist of block location proposi-

tions of the form (|Twitter| at-loc.p ($ loc ?x ?y ?z)) (where

“$ loc” indicates a location record structure), and block move propositions

of the form (|Twitter| ((past move.v) (from.p-arg ($ loc ?x1

?y1 ?z1)) (to.p-arg ($ loc ?x2 ?y2 ?z2))))3.

We rely on a simple linear, discrete time representation (possible future modifications

are discussed in Section 6.7). Eta stores a symbol denoting the current time, with

|Now0| representing the time at which the dialogue is initialized. Each sequential

action in the world causes Eta to “update” its time twice corresponding to the time

during which the move is in-progress and the time at which the move has finished. That

is, if the initial time is denoted by |Now0|, a block move would cause Eta to update

its time to |Now1| (the in-progress time), and then to |Now2| once the move has

finished. These temporal symbols are related to each other via propositions of the form

(|Now1| before.p |Now2|) and (|Now2| after.p |Now1|) stored

3In principle our representation also allows named locations, e.g., (|Twitter| at-loc.p

|Loc1|), though this is not yet implemented.
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in the context.4 The fact ((|Twitter| ((past move.v) (from.p-arg

($ loc ?x1 ?y1 ?z1)) (to.p-arg ($ loc ?x2 ?y2 ?z2)))) **

|Now1|) is stored in the dialogue context, where ‘**’ is the episodic characterization

operator described in Section 3.1. User utterance actions are similarly stored in the

context.

Based on this context, the DM can efficiently reconstruct a scene at any past time by

backtracking from currently observed block locations, as well as use these reconstructed

scenes to evaluate spatial relationships between blocks in a “rough-and-ready” way, i.e.,

using approximate calculations of spatial relations based on block centroid coordinates,

as opposed to the detailed spatial computations supported by the visual blocks world

system.

6.4.2 Interpreting Historical Questions

Following a successful ULF parse of a historical question by the semantic parser,

such as the example shown in Figure 6.3, historical modifiers in a ULF will be indi-

cated by constituents of type “adv-e” (event adverbial, e.g., (adv-e (during.p

(the.d move.n)))), “adv-f” (frequency adverbial, e.g., (adv-f (three.a

(plur time.n)))), or “adv-s” (sentence adverbial, e.g., (adv-s (after.ps

(|Twitter| (past move.v))))).

The algorithm the temporal specialist server uses to answer historical questions

is as follows: starting from the present time, the algorithm iterates over past times,

reconstructing the scene at each one using stored knowledge about moves. At each time,

the algorithm computes and stores a list of salient facts (i.e., propositions about spatial

relations or actions which held at that time) depending on the subject, object, predicate,

question category, and polarity of the query sentence. Furthermore, temporal constraints

4Record structures specifying current world time are also attributed to these symbols; these are used in

forming answers to “when” questions.
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are applied to filter these times (in the manner described below) to obtain a final list of

times with relevant attached facts.

Figure 6.4: A simplified example showing how the temporal specialist uses episodic

memory to compute relations given temporal constraints (top) and determine an answer

from a specific historical query ULF (bottom).

The semantic types of these temporal and frequency modifiers allow them to be

lifted to the sentence level (Kim and Schubert, 2017). Temporal constraints expressed

by modifiers may be binary, e.g., (adv-e (before.p |Now4|)), or unary, e.g.

(adv-e recent.a). A binary constraint takes a temporal entity as an argument and
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maps it to a truth value, depending on whether the given relation holds with the object

of the constraint. This is used by the algorithm described above to filter out each time at

which the binary constraint does not evaluate to true. However, first the binary constraint

needs to resolve its object constituent (which could be a simple temporal noun phrase

or an embedded clause). This is done using a recursive call of the algorithm described

above, which maps the ULF of the constituent to a list of times, treating any modifiers

in the noun phrase or embedded clause as temporal constraints.

A unary constraint takes a set of times and maps it to a subset (possibly null) of

these times. For example, the “recent” constraint above picks out the subset of times

that are within some fixed threshold to the present time. Frequency constraints such as

twice.adv-f or (adv-f (three.a (plur time.n))) are similar to unary

constraints in that they take a set of times and return a subset of these, though their

behavior is slightly more complicated – they pick out all times for which the salient

facts attached to that time are also attached to at least N unique times, inclusive. For

(adv-f always.a), N is taken to be the size of the set of times being filtered (so

that only facts that are attached to every time in the set are selected).

Each constraint may also be modified by a “mod-a” modifier, e.g., (adv-e

(just.mod-a recent.a)), which modifies how that constraint is applied. In

the case of “just recently”, the singular most recent time is picked out.

Historical questions don’t necessarily involve sentence-level adverbial modifiers,

as the temporal content could be embedded within a noun phrase, as in “What was

the first block that I moved?”. In this case, the DM will resolve this reference to a

particular block by calling the above algorithm recursively, treating the noun pre- and

post-modifiers as temporal constraints, and using the facts attached to the resulting

times.

Once a list of final times and the corresponding facts/relations have been obtained,

an answer is generated by making the appropriate substitutions in the query ULF (e.g.

a wh-pronoun for the subject of a relation), applying syntactic transformations (e.g.,
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uninverting questions and removing auxiliary verbs such as “do”), and converting this to

surface form using the response transducer.

A full example of answering a historical question (using a simplified scene) is

shown in Figure 6.4. The extraction of answer relations, given the query ULF and the

generation of the answer ULF, is shown in the bottom half of the figure, while the scene

reconstruction and computation of relevant facts/relations is depicted in the top half of

the figure.

6.5 Evaluation

Two separate user evaluations of the DAVID agent in the QA task were conducted in

Platonov et al. (2020) and Kane et al. (2020), respectively, with the former focusing

on spatial questions, and the latter focusing on historical questions. These evaluations

assessed the ability of DAVID to (a) deeply understand the user – quantified by the

accuracy of DAVID’s semantic parser – and (b) reason correctly within the domain –

quantified by its QA accuracy.

Table 6.1: Spatial question results.

Total well-formed

questions

329

Parser accuracy 74%

% Incorrect parses

due to ASR errors

53%

Correct answers 66.6%

Partially correct 13.7%

Incorrect 18.8%

Table 6.2: Historical question results.

Total well-formed

questions

387

Parser accuracy 94%

% Incorrect parses

due to ASR errors

N/A

Correct answers 77%

Partially correct 3%

Incorrect 20%

For the spatial question evaluation, we recruited 5 volunteers from our department –
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including both graduate and undergraduate students, as well as native and non-native

English speakers – to test the capabilities of the system. Participants were instructed to

ask spatial questions of the general type supported by the system, but without restriction

on wording; before their first session they were shown a short demonstration of the

expected kind of interaction with the system, including a few question-answer exchanges.

During each evaluation session they were requested to ask between 40 and 50 questions

and mark the system’s answer as correct, partially correct or incorrect. Additionally,

if no answer could be given because of speech recognition errors, they were asked to

indicate that as well. Each session started with the blocks positioned in a row at the

front of the table. The participants were instructed to move the blocks arbitrarily to test

the robustness and consistency of the spatial models. The results from this session are

shown in Table 6.1.

For the historical question evaluation, we recruited 4 volunteers from our department.

Since the COVID-19 pandemic made testing the physical blocks world system on-

site impossible, we instead conducted this evaluation using a virtual environment that

mirrors our setup, sans the physical block tracker and the audio I/O. However, as the

crucial components being evaluated (parser, dialogue manager, and spatial context)

were unchanged, the significance of the results is not impacted. The participants were

instructed to move the blocks around and ask general questions about changes in the

world, with no restrictions on wording. After the system displayed its answer, the

participants were asked to provide feedback on its quality by marking it as correct,

partially correct or incorrect. Each participant contributed about 100 questions or

above (primarily historical questions, but also including some non-historical spatial

questions). These results are shown in Table 6.2. Non-historical questions, as well as a

few malformed questions, were excluded when computing accuracy.

We additionally collect expert annotations (i.e., annotated by the authors) judging the

correctness of the semantic parser outputs, and compute the parser accuracy based on the

number of well-formed questions that result in semantically correct ULF expressions. In
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DAVID: Would you like to ask me a spatial question?

User : (moves a block )

DAVID: David , which block did I just move?

DAVID: You moved the Toyota block .

User : Where was the Toyota block before?

DAVID: The Toyota block was between the Mercedes block

and the Burger King block .

User : Where is it now?

DAVID: The Toyota block is on top of the Texaco block .

User : (moves another block )

User : How many blocks have I moved since the beginning?

DAVID: You moved two blocks .

User : Was the Twitter block always behind the Mercedes block?

DAVID: No .

User : Did I move the Twitter block after I moved the Toyota block?

DAVID: Yes .

User : When did I move the Toyota block?

DAVID: You moved the Toyota block three minutes ago .

. . .

Figure 6.5: Example of the sort of dialogue that DAVID can engage in (in the QA setting).

the case of the spatial question evaluation where the physical setup was used, the rate of

incorrect parses that are attributed to automatic speech recognition errors is also shown.

Overall, the semantic parser itself is highly reliable, with 94% of grammatical

sentences being parsed correctly in the text-based historical question evaluation, and

74% in the speech-based spatial question evaluation, with over half of the incorrect

parses attributable to ASR errors. Moreover, DAVID provides the correct answer to a

majority of user queries in both question categories, with a larger portion being judged as

“partially correct” in the case of spatial questions. We provide a qualitative example of a

transcript from the DAVID avatar in Figure 6.5 demonstrating both spatial and historical

questions.
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6.6 Extending to Concept-Tutoring Dialogues

One limitation of these initial experiments is that, however open-ended they were in

terms of the questions that could be posed, they were limited to a relatively rigid and

predictable dialogue flow, without much room for back-and-forth collaboration between

the agent and user. While the QA task demonstrated strong spatial understanding and

reasoning capabilities, a more collaborative task would test another important capability

of a spatially-situated agent – namely, spatial planning. In this section, we consider an

extension of the DAVID agent to support concept tutoring dialogues.

The concept tutoring task extends the QA task by enabling interactive collaboration

between the DAVID agent and a user. In this task, DAVID has in mind some abstract

concept (e.g., an arch – potentially given a made-up name to avoid the user relying on

common knowledge), and attempts to interactively teach the user the concept through

having them create examples of the concept with blocks. Typically, the user will first be

guided by DAVID to construct a simple example block-by-block, and then tested on the

concept by being asked to create a larger example (for example, a 5-block arch rather

than a 3-block arch) in a more hands-off “supervised” manner, with DAVID only issuing

corrections or answering questions.

To support concept tutoring, it is necessary to extend the spatial specialist server

shown in Figure 6.1 with the ability to send actions/plan steps to DAVID, when queried

– enabled through the integration of a symbolic spatial planner that maintains a hash

table of on-relations and tracks possible steps towards a goal structure. We additionally

create several schemas for guiding or supervising the construction of concepts within

the blocks world. Figure 6.7a shows part of a schema for guiding the construction

of a concept ?goal-rep (e.g., an arch), which has a corresponding object schema

containing knowledge about the part structure of the concept, shown in Figure 6.6.

DAVID will repeatedly attempt to find an action that is a valid step towards the goal

concept – instantiated with a particular action by querying the specialist server – and
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(obj-schema :header (?x BW-arch.n)

;‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

[...]

:types (

!t1 (?stack1 BW-stack.n)

!t2 (?stack2 BW-stack.n)

!t3 (?top BW-block.n))

:rigid-conds (

!r1 (?top on.p ?stack1)

!r2 (?top on.p ?stack2)

!r3 (?stack1 next-to.p ?stack2)

!r4 (not (?stack1 touching.p ?stack2))

!r5 (?top clear.a)

!r6 ((height-of.f ?stack1) = (height-of.f ?stack2))))

Figure 6.6: An example of an object schema for an “arch” in the blocks world domain.

then guide the user to perform that action; this continues until the planner does not

suggest any further action, indicating that the goal state has been reached.

Part of the schema for guiding the user to perform an action is shown in Figure 6.7b.

DAVID will first propose an action to the user, followed by an expectation that the user

might reply with either an acknowledgement or a clarifying question – however, since

this is only a weak expectation and the user may in fact remain silent, this step in the

schema is associated with a relatively low certainty. The user is then expected to try

to perform the proposed action (note that, if the user performs the action incorrectly,

the next iteration of finding a step towards the goal state will generate an appropriate

correction). Analogous schemas to those in Figures 6.7a and 6.7b were created for

supervising construction in a hands-off manner.

The transduction methods in the concept tutoring task remain the same, but with

augmentation of the pattern transduction trees used by the paraphrase transducer to

support verbalization of proposed actions, and augmentation of the gist clause and

semantic transducers to support additional types of user inputs.
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(dial-schema :header

((ˆme guide-construction.v ˆyou

?goal-rep) ** ?e)

;‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

:types (

!t1 (ˆyou person.n)

!t3 (?bb (plur block.n))

!t4 (?goal-rep obj-schema.n))

[...]

:episodes (

?s1 (:repeat-until (?s1 finished.a)

?s2 (ˆme find.v (some.d

?ka1 (step-toward.p ?goal-rep)))

?s3 (:if (?ka1 = (ka do-nothing.v))

?s4 (ˆme say-to.v ˆyou ’(Looks like

the structure’s done))

?s5 (ˆme commit-to-memory.v

(that (?e2 finished.a)))

:else

?s6 (ˆme guide-action.v

ˆyou ?ka1)))))

(a)

(dial-schema :header (((set-of ˆme ˆyou)

guide-action.v) ** ?e)

;‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

:episodes (

?e1 (ˆme propose-to.v ˆyou ?ka1)

?e2 (ˆyou reply-to.v ?e1)

?e3 (ˆyou try.v ?ka1))

:certainties (

!c1 (!e2 0.4)

))

(b)

Figure 6.7: The dialogue schema used for guiding the user through the construction of a

concept in the concept tutoring task (a), and for guiding a particular action (b).

While a quantitative user evaluation of the concept tutoring task was not conducted,

a qualitative example of a dialogue from this task is shown in Figure 6.8.
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DAVID: I would like to teach you the concept of an arch .

User : Okay , let ’s go ahead .

DAVID: Let ’s start with a simple example . Put a block on the table .

User : Sure . (places block A centrally )

DAVID: Now put a block to the right of block A .

User : (places block B touching the right side of block A )

DAVID: Well , block A should not touch block B .

User : Okay . (shifts block B half a block to the right )

DAVID: Good . Now place a block on top of block A and block B .

User : (places block C on top of both blocks )

DAVID: Excellent . You have now built the simplest possible arch .

DAVID: Do you think you understand the concept?

User : Can we try making a bigger one?

DAVID: We certainly can . Why don ’t you try building it?

User : (creates two 2−tall columns with blocks A-D )

User : How ’s that?

DAVID: Good , that ’s correct so far .

User : Should block E be on top of block C and block D?

DAVID: Yes .

User : Okay . (places block E on top of block C and block D )

DAVID: Looks like the structure is completed .

DAVID: I think you ’ve got the idea of an arch . You caught on fast !

Figure 6.8: Example dialogue that DAVID can hold from the concept tutoring task. The

company block identifiers are replaced with letters for brevity.
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6.7 Discussion

The results obtained in the QA evaluation demonstrate that the Eta framework – aug-

mented with expressive ULF representations, specialist reasoning servers, and domain-

specific transducers – provides a powerful medium for allowing a situated agent to

understand complex spatial and temporal relations and to communicate about them with

a user in natural language. Furthermore, hierarchical pattern transduction provides an

accurate and efficient means of implementing domain-specific ULF transducers. In

particular, we attribute the high accuracy of the ULF parser to the fact that hierarchical

pattern transduction allows use of miscellaneous low-level cues – patterns of words (not

necessarily adjacent), and their syntactic and semantic features – to robustly segment

sequences into phrase types top-down, recursively parsing the constituent phrases and

combining their ULFs compositionally. Furthermore, the gist clause preprocessing

strategy can trim or add words as may be needed for unimpeded interpretation.

While we did not conduct a quantitative evaluation in the concept tutoring task, it is

still notable that the Eta framework allowed for direct transfer from a constrained QA

task to a far more complex, interactive tutoring task through the creation of a small set of

dialogue schemas and the integration of an external spatial planner. Due to the modular

and portable nature of schemas, the tutoring agent also retained its abilities to answer a

wide variety of spatial questions.

Although the blocks world domain is highly constrained, the spatial specialist

methods used by Eta are fully general and have been demonstrated in a simulated “room

world” containing everyday objects (Platonov et al., 2021b). It would be natural to

extend the DAVID agent to this more realistic domain. However, the domain-specific

techniques used by the DAVID agent – particularly the low-level patterns of words

and features that are cues to overall phrase structure in semantic interpretation – are a

limiting factor. Hierarchical pattern-matching-based methods would require substantial

additional engineering for broader domains, making them difficult to scale.
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Open-domain structured semantic parsing presents a challenging problem, but pre-

vious work has demonstrated some success by using neural cache transition parsers

(Gildea et al., 2018; Kim et al., 2021) or Transformer-based encoder-decoder networks

(Kitaev and Klein, 2018; Andreas et al., 2020; Platanios et al., 2021; Gibson and Lawley,

2022). By replacing or augmenting DAVID’s semantic transducer with a neural semantic

parser trained on diverse linguistic corpora, it may be possible to extend the QA dialogue

task to fully general domains. This remains an interesting direction of future work.
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7 SOPHIE Virtual Standardized

Patient

7.1 Domain

Conversational virtual standardized patients (VSPs) – virtual humans that simulate

patient interactions for use in training or evaluating medical practitioners – present an

impactful but challenging application of dialogue technology. Communication skills

on the part of the physician are a well-recognized determinant of patient satisfaction

(Korsch and Negrete, 1972), and prior research has shown that poor communication by

doctors leads to lower quality health outcomes at a higher cost (Ha and Longnecker,

2010; Riedl and Schüßler, 2017; Stewart, 1995; Begum, 2014; Butow and Hoque, 2020).

Unfortunately, low cost communication training videos or reading materials have been

shown to have little effect (Arnold et al., 1994; Ijaz et al., 2017). Training courses using

standardized patients (SPs) are a viable remedy widely used in medical schools (Fiscella

et al., 2007; Teherani et al., 2008). For example, our institution offers interdisciplinary

workshops for practicing patient care professionals (e.g., physicians, nurses, advanced

practice providers, social workers, and chaplains) through the Advanced Communica-

tion Training (ACT) program (Carroll et al., 2021), which teaches the MVP (Medical

situation, Values, Plan) paradigm and emphasizes the 3 E skills: Empower, be Explicit,

Empathize skills (Horowitz et al., 2020). Receiving feedback has been found to improve
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the communication skills of clinicians. For example, feedback from communication

coaching experts based on recorded interactions with real patients has been shown to

improve a clinician’s ability to empathize with their patient and empower them by elicit-

ing questions (Pollak et al., 2023). However, due to the cost and limited availability of

human SPs and coaches who can provide relevant feedback, these traditional approaches

are hard to scale; this is compounded by the diminishing effects of communication

training over the course of a physician’s career (DiMatteo, 1998). A system that allows

a physician to practice with a VSP at the convenience of their personal computer, and

receive direct automated feedback, could have a sizable impact on medical training.

The utility of automated feedback metrics for behavior such as empathy, however,

depend critically on the quality of dialogue supported by the system – a VSP must

provide the physician with opportunities to be empathetic (or to empower the patient,

etc.), by generating natural reactions that are consistent with a real patient in their

setting, express appropriate emotions, and demonstrate understanding of the physician’s

responses. Effective dialogue management in this domain is challenging because the

types of conversations that oncologists have with real cancer patients are emotionally

and topically diverse, and often involve complex mixed-initiative dialogue – i.e., a

mixture of the patient taking initiative and the physician taking initiative at various

times. These types of dialogues have radically different structure than task-oriented

dialogues, requiring a greater degree of collaboration between the two agents (Walker

and Whittaker, 1990). Furthermore, these dialogues can span a relatively wide range of

topics, and can jump suddenly between topics.

Owing to present limitations in dialogue management technology, current VSPs have

been largely limited to narrow single-initiative domains – for instance, allowing a doctor

to practice eliciting a medical history from a patient and creating a differential diagnosis,

where the interaction is enabled using a combination of statistical retrieval and pattern-

matching methods (Maicher et al., 2017; Carnell et al., 2015; Talbot et al., 2012; Rossen

et al., 2009). Other more general techniques, such as fine-tuning large language models
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Figure 7.1: The full agent configuration used for the SOPHIE domain.

on domain corpora, have been successfully employed for creating robust conversational

chatbots for entertainment purposes (Adiwardana et al., 2020; Roller et al., 2020; Zhang

et al., 2020a). Yet, these methods present limitations for developing realistic VSPs such

as a lack of goal-directed planning abilities and a tendency to “hallucinate” false or

contradictory information (Roller et al., 2020).

In this chapter, we present the creation of a VSP – SOPHIE – that plays the role

of a virtual patient who has been recently diagnosed with lung cancer and is seeking

medical advice about her condition, prognosis, and treatment options from a user. The

full SOPHIE configuration is shown in Figure 7.1.

7.2 Schema Design

In designing schemas for the SOPHIE agent, it was important to balance three primary

desiderata: First, the the agent must be able to handle mixed-initiative dialogue often

present in doctor-patient interactions – i.e., a mixture of the patient taking initiative and
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the doctor taking initiative. Second, in order for a VSP to provide opportunities for

the user to practice particular skills – e.g., to respond empathetically, to empower the

patient, etc. – the agent must be capable of generating sufficiently natural, affective

responses. Third, the VSP must be able to steer the conversation to ensure that its own

conversational goals (e.g., learning about possible medical options) are met over the

course of a conversation. These desiderata are often intertwined in complex ways; for

instance, a failure of the user to display appropriate empathy may naturally lead to the

VSP becoming less cooperative in a dialogue, providing a form of feedback to the user.

The design of the Eta framework allows us to capture such interactions by inferring

the use of particular skills by a user and designing schemas that condition SOPHIE’s

reactions on the presence or absence of these skills.

We developed four dialogue sessions with the SOPHIE agent in collaboration with

palliative care experts. The first three sessions involve short medical scenarios that

each target a particular skill in the “Medical Situation, Values, and Plan” (MVP) model

of patient communication (Horowitz et al., 2020). A session in which SOPHIE talks

about her recent pain allows the user to practice responding empathetically; a session

in which SOPHIE asks about her prognosis allows the user to practice being explicit; a

session in which SOPHIE asks about her treatment options allows the user to practice

empowering SOPHIE to explore her values and goals. The top-level schema design for

each of these sessions consists of an initial question by SOPHIE followed by multiple

levels of escalation if the user fails to employ the appropriate skill, with the conversation

terminating for feedback after 3 failed attempts. If the user successfully employs the

skill, SOPHIE responds with a positive acknowledgement and pauses the conversation for

feedback. An example of a schema for the empathy-focused session is shown in Figure

7.2. Note that the use of conditional episodes allows for the possibility of multiple

different dialogue flows depending on the use of skills by the user, and the presence of

particular social obligations (e.g., that talking about pain obligates empathy) allows for

later checking the successful use of skills by the user (e.g., for providing feedback).
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(dial-schema :header ((ˆme ask-about-pain.v ˆyou) ** ?e)

;‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

:episodes (

?e1 (ˆme paraphrase-to.v ˆyou ’(Why has my pain been getting worse recently ?))

?e2 (ˆyou reply-to.v ?e1)

?e3 (:if (not (ˆyou be.v empathetic.a))

?e4 (ˆme react-mildly-to-non-empathy.v ˆyou)

?e5 (:if (not (ˆyou be.v empathetic.a))

?e6 (ˆme react-moderately-to-non-empathy.v ˆyou)

?e7 (:if (not (ˆyou be.v empathetic.a))

?e8 (ˆme paraphrase-to.v ˆyou ’(I don’t think I can handle this right now .

I need a break .))

?e9 (ˆme say-to.v ˆyou ’(Let’s pause here for feedback on this conversation .))

?e10 (ˆme stop-conversation.v))))

?e11 (ˆme acknowledge-empathy.v ˆyou)

?e12 (ˆme say-to.v ˆyou ’(Let’s pause here for feedback on this conversation .)))

:obligations (

!o1 (?e1 obligates (that (ˆyou be.v empathetic.a)))

[...]

))

Figure 7.2: A simplified portion of the dialogue schema used for the empathy-focused

SOPHIE session, in which SOPHIE asks the user about the pain that she’s recently been

experiencing. Steps such as react-mildly-to-non-empathy.v correspond to

subschemas to be instantiated.
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A final session is aimed at mimicking a more natural doctor-patient conversation in

which all three skills may be employed. The schema for this session progresses through

each of the topics of the earlier sessions in sequence (however, because of the dynamic

planning enabled by the Eta framework, this order may be modified – for instance, in

case the user indirectly answers a later question by SOPHIE at an earlier point in the

conversation).

In order to handle potential discursive conversations that might naturally happen in a

doctor-patient conversation, we additionally create a set of subschemas for reacting to

questions or statements by the user. For example, if the user mentions the possibility

of chemotherapy, SOPHIE may select a subschema for inquiring about the side-effects

of chemotherapy. If the user asks where SOPHIE’s pain is located, SOPHIE may select

a subschema for telling the user that her pain is located in her chest. Each subschema

typically consists of a speech act by SOPHIE followed by an expected user response.

We created 103 subschemas across a variety of medical topics (66 of which involve a

statement by SOPHIE; 37 involve a question from SOPHIE).

7.3 Transduction Methods

The SOPHIE agent relies in part on hierarchical pattern transduction methods similar

to those used in the LISSA agent, as described in Chapter 5. However, because of the

greater complexity of doctor-patient conversations, we augmented the gist clause and

reaction transducers with additional transduction methods, described in the following.

These include methods for generating pragmatic inferences (particularly concerning

the use of skills by the user), generating surface utterances from the expectations in a

given schema, and producing an appropriate affect/emotion classification for a particular

SOPHIE utterance.
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7.3.1 Gist clauses

The user’s input is split into individual clauses prior to gist clause extraction; the system

attempts to obtain a gist clause for each input clause, which are then combined. The

transduction tree for gist clause interpretation begins by selecting appropriate subtrees

for interpretation based on keyword patterns in the prior SOPHIE utterance, as in the

case of LISSA. For a given prior utterance, this tree will select both a specific topical

subtree (e.g., if SOPHIE were to ask how much time she has left, a “prognosis input”

subtree would be selected, possibly matching user responses like “You likely have

three months.”) as well as a general interpretive tree matching responses outside the

detected topic (e.g., if the user were to reply “What’s your biggest concern right now?”).

This allows SOPHIE to accurately match expected answers to her questions while also

matching unexpected or topic-shifting responses.

We designed 37 specific topical subtrees, each containing about an average of 28

top-level patterns. Each topical subtree took approximately 15-30 minutes to develop,

depending on the level of detail required. The general interpretive tree in turn attempts

to match an input using a subtree for statements or a subtree for questions, depending on

the syntactic structure and punctuation of the input. These subtrees contain 265 and 442

top-level patterns, respectively.

7.3.2 Pragmatic meanings

We use a simple rule-based pragmatic transducer to infer the “pragmatic” meaning of a

given gist clause. This is primarily used to classify the skills present in a user’s input –

i.e., whether they were empathetic, explicit, or empowering – but also allows SOPHIE

to infer whether the user directly or indirectly provided her with relevant information

about a topic. For example, if SOPHIE extracts the gist clause “your cancer has spread .”,

the pragmatic transducer will infer that (a) the user was explicit, and (b) the user told

SOPHIE some information about her condition.
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The pragmatic transducer consists of about 200 pattern-matching rules that were

iteratively developed using a subset of the VOICE corpus of doctor-patient conversations

(Hoerger et al., 2013) annotated for skills, as well as consultation with palliative care

experts.

7.3.3 Reactions

Hierarchical transduction trees are used to select appropriate reactions to particular

gist clauses, akin to the method employed for the LISSA agent. However, unlike in

the case of LISSA, where the agent reacts with shallow speech acts, the reaction rules

used by the SOPHIE agent primarily select subschemas that are instantiated and inserted

into the dialogue plan. For example, if the user inquires about SOPHIE’s mental health,

SOPHIE may react with a subschema for discussing mental health. The advantage of

this is twofold: First, since each subschema consists of a pair of expected dialogue

turns, it allows for discursive, mixed-initiative dialogue flows, unlike the relatively

constrained LISSA domain. Second, since the subschemas for reaction may involve

SOPHIE paraphrasing some clause, it allows for conditional response generation based

on the user’s utterance.

7.3.4 Paraphrasing

In the case where a schema or subschema specifies a particular gist clause to paraphrase

– such as ?e1 in Figure 7.2 – we use a paraphrase transducer to conditionally map the

gist clause to a surface utterance based on the user’s prior utterance. For example, if the

user previously mentioned something about SOPHIE’s cancer becoming worse, it may

be more natural for SOPHIE to paraphrase the gist clause in ?e1 as “Do you think the

cancer is why my pain has been worsening?” rather than the literal gist clause.

A top-level tree first selects an appropriate topical subtree on the basis of the gist

clause to paraphrase – for instance, the gist clause in ?e1 may be used to select a
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subtree for generating responses related to pain. Each subtree contains multiple patterns

matching the user’s prior utterance, each containing several alternatives for SOPHIE

outputs.

7.3.5 Responses

The response transducer is used in the case where a schema step simply specifies

an arbitrary speech act – e.g., (ˆme say-to.v ˆyou ?resp) – rather than a

particular gist clause to paraphrase. This method is used rarely in the SOPHIE agent for

handling “small talk” or simple emotive responses (e.g., “Oh no...”); we use a single

pattern transduction tree to select responses based on the user’s prior utterance.

7.3.6 Affect

Finally, we classify each SOPHIE utterance as an appropriate affect or emotion label;

these emotion labels are used to control the speech and facial expressions of the SOPHIE

virtual human. The agent currently supports the following affect labels: neutral, sad,

happy, worried, and angry. We use a rule-based affect transducer to associate a subset of

possible SOPHIE outputs with predetermined emotion labels. By default, an utterance is

associated with a neutral affect.

7.4 Pilot Experiment

In this section, we present a pilot experiment with the SOPHIE system in which we

validate the system as a whole by evaluating whether participants who interact with the

SOPHIE system are able to improve their communication skills. In addition to assessing

the performance of the overall system, we also collect the conversation transcripts

themselves, which we analyze further in Section 7.5.
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7.4.1 Methods

Participants who are assigned to the intervention group with the SOPHIE system undergo

three steps. First, they watch an instructional video about the MVP/3E’s communication

paradigm. Second, they view a tutorial video on how to use the SOPHIE system. Finally,

they interact with the SOPHIE VSP for two sessions, including feedback after each

conversation. The feedback page is split into a transcript, and a section for each of

the three E’s – including metrics such as hedge words and speaking rate (explicit),

personal pronouns and empathetic words (empathy), and number of questions asked and

turn-taking (empowering). Participants in the control group, on the other hand, received

no training.

Both groups of participants interacted with one of four randomly assigned trained

human standardized patient (SP) actors before and after, and were also rated by the SPs

following each interaction. The SP rating scale was developed in close collaboration

with URMC Oncologists and Palliative Care Specialists, and is based on communication

behaviors that the human SP observes during their interaction with the participant. The

full set of questions can be seen in Table 7.1.

7.4.2 Results

We summarize the results from the SP ratings in Figure 7.3, and present the full results

in Table 7.1. We found that the intervention group performed significantly better on the

“overall communicator” (intervention: 6.000, control: 5.067, p < 0.05) and “aggregate

score” (intervention: 36.067, control: 29.600 p < 0.05) metrics. For every other

question, there was a trend towards the intervention group, but the difference was

not always statistically significant. A Bonferroni corrected pairwise t-test showed no

significant differences between mean ratings given by the different SPs.
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Figure 7.3: Experiment with 30 participants - a) Intervention group, underwent

educational intervention with SOPHIE before speaking to SP. b) Control group, received

no training before speaking to SP. c) Overall ratings comparison between control (blue)

and intervention (tan) bold denotes significant differences. The numbers have been

normalized to a 0-1 scale with 1 being “good.” The raw numbers and full question text

can be found in Table 7.1 by looking up the question ID. (Images of participants used

with permission).
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ID Question Control Mean Intervention Mean p-value

q1 The participant elicited the

patient’s major concerns

within the first 5 minutes of

the conversation.

0.867 1.0 0.175

q2 The participant asked for per-

mission to share information

about prognosis.

0.533 0.8 0.114

q3 The participant asked how

much information the patient

would like concerning prog-

nosis.

0.333 0.8 0.03*

q4 The participant checked the

patient’s prognostic under-

standing by asking them to

state what they understood,

using a teach-back approach.

0.133 0.267 0.282

q5 The participant actively en-

couraged the patient to ask

questions using facilitating

questions/statements.

0.333 0.6 0.078

q6 The participant helped the SP

make a plan regarding with

whom, and when, to con-

vey prognostic information

to family members.

0.2 0.467 0.123

q7 The participant gave the SP

many opportunities to talk.

0.467 0.867 0.024*



119

q8 Empower Rating 5.267 6.133 0.003*

q9 The participant described the

medical situation (the cancer

has spread) clearly and with-

out euphemism or jargon.

0.8 0.8 0.488

q10 The participant shared the

prognosis accurately (a few

months - less than one year).

0.6 0.667 0.476

q11 The participant used clear

language without eu-

phemism or jargon when

sharing the prognosis.

0.533 0.667 0.252

q12 The participant used difficult

to understand medical jar-

gon.

-0.733 -0.933 0.079

q13 The participant lectured the

patient (uninterrupted infor-

mation for what seemed like

a long time).

-0.533 -0.8 0.067

q14 be Explicit rating 5.667 6.067 0.084

q15 The participant was gener-

ally empathetic.

0.667 1.0 0.04*

q16 The participant used states of

empathy.

0.467 0.667 0.205

q17 The participant used silence

appropriately in response to

patient emotion.

0.333 0.667 0.051

q18 The participant validated the

SP emotional responses.

0.533 0.867 0.027*
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q19 Empathize Rating 5.533 6.0 0.102

q20 Overall Communicator 5.067 6.0 0.003*

– Total 29.6 36.067 0.005*

Table 7.1: Average SP ratings for each item in the rating scale. Italics and an asterisk

(“*”) denote p ≤ 0.05

7.5 Conversation Transcript Evaluation

In this section, we turn to an evaluation of the quality of the response generation by the

SOPHIE agent, using the transcripts collected in the pilot experiment. From the treatment

group in the pilot experiment, we collected a dataset consisting of 397 conversation

turns in total.

7.5.1 Expert Annotations

As a preliminary form of evaluation, two researchers involved in the design of the pattern

transduction methods for SOPHIE independently annotated each conversation turn for (a)

Whether the system extracted a correct gist clause, an incorrect gist clause, or failed to

extract a gist clause; (b) Whether the system gave an appropriate response, inappropriate

response, or a non-contentful clarification request; and (c) Whether there was any notable

ASR errors that were observed, such as transcription errors and turn-taking errors where

the user was cut off. These results are shown in Table 7.2, corrected for ASR errors

by assuming that a clarification request by the system is correct behavior when the

input contains a significant ASR error. Inter-annotator agreement (Cohen’s kappa) was

quite high for both annotations, at 0.85 for gist clause annotations and 0.71 for response

annotations.
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7.5.2 Neural Baseline Model

To allow comparison of the schema-based approach to a statistical approach to dia-

logue, we also establish a “neural baseline” for our conversation domain – that is, the

performance of a large language model fine-tuned on human SP transcripts from our

domain – and compare the responses generated by this model, when prompted with

turns from the pilot dataset, to the responses from our system. Specifically, we used the

DialoGPT-medium model Zhang et al. (2020a), as it was the largest language model we

were able to train within our financial constraints at the time the study was conducted,

and was a standard benchmark for a variety of dialogue tasks. We fine-tuned DialoGPT

on the VOICE human SP dataset Hoerger et al. (2013), which contains 109,134 dialogue

turns (44,917 of which are patient turns) across 389 dialogues between human actor

cancer patients and doctors.

After filtering for only patient turns and creating a 20%/80% training set/validation

set split, we trained the model for 5 epochs, using a context window size of 5 previous

utterances, and a batch size of 1. This resulted in a validation set perplexity of 6.53;

gains after 5 epochs were negligible. To generate model responses for the pilot data,

for each turn in the dataset, we concatenated the user utterance with the context of the

immediately preceding utterance (separated by end-of-turn tokens) and let the model

generate the next response. We used a length penalty of 0.5 and a repetition penalty of

1.4 as generation parameters; these were found to generate the best responses through

manual inspection.

7.5.3 Crowdsourced Evaluation

Given the SOPHIE responses and corresponding responses generated by the neural base-

line model, we crowdsourced annotations on response quality using Amazon Mechanical

Turk. We first removed 89 turns that were judged by either of the expert annotators to

include significant ASR errors in the doctor’s input. The remaining turns were used
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Figure 7.4: Crowdsourced evaluation results for SOPHIE from the pilot transcripts;

distributions of average crowdsourced response ratings are shown for each question,

compared with the LLM baseline.

to form 308 items, each consisting of the context of the previous patient utterance, the

doctor’s utterance, the response generated by Eta, and the response generated by the

neural baseline model.

Items were randomly distributed into 20 Human Intelligence Tasks (HITs), each

containing 16 items. To avoid introducing possible annotation bias, items were exactly

balanced on string length of each text field (i.e., items were assigned to four high/low

bins for each text field computed using a median split), and were approximately balanced

on the expert annotations of response quality (ensuring that each HIT had about as many

good responses as bad responses from each system). For each item, workers were shown

a response from Patient A and the previous two dialogue turns, and then asked to rate the

following four questions about the response on a Likert scale. Then workers were shown

a response from Patient B to the same previous turns, and asked to rate the same four
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ASR Errors 20%

Correct Gist Extracted 39%

No Gist Extracted 41%

Incorrect Gist Extracted 20%

Appropriate Response 49%

Clarification Request Re-

sponse

28%

Inappropriate Response 24%

Appropriate Response, When

Gist Clause Extracted

72 %

Table 7.2: Results from the expert annota-

tions of the SOPHIE pilot transcripts.

Agent Q1 Q2 Q3 Q4

GPT
M 3.49 3.03 3.30 3.06

Mdn 3.55 3.00 3.40 3.11

Eta
M 4.15 3.29 3.78 3.60

Mdn 4.20 3.20 4.00 3.60

Diff

M +0.66 +0.26 +0.48 +0.54

Mdn +0.65 +0.20 +0.60 +0.49

p 0.001 0.002 0.001 0.001

Table 7.3: Mean (M) and median (Mdn)

of average crowdsourced responses across

items for each set of SOPHIE responses, with

p-values shown for mean differences.

questions. The Eta responses and neural baseline responses were randomly assigned to

Patient A and Patient B.

Q1. Patient A/B’s response is fluent and natural.

Q2. Patient A/B’s response is consistent with her having understood the preceding

turns.

Q3. Patient A/B’s response is consistent with her role as a cancer patient.

Q4. Patient A/B’s response expresses appropriate emotions (if emotional response).

Workers were instructed to focus on the quality of the response irrespective of the

patient background and previous turns for answering Q1, and to overlook fluency in the

response for answering Q2-Q4. Additionally, Q3-4 had “Not Applicable” options, in

the event that these questions could not be evaluated (for instance, Q3 is impossible to

evaluate if the patient asks “Could you repeat that?”, and Q4 is impossible to evaluate if
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SOPHIE : I ’ve already scanned the results , but don ’t understand what they are

telling me . Could you explain what they mean?

User : So unfortunately Sophie I have some bad news . It looks like the cancer has

grown and spread .

SOPHIE : Oh no . . . those are not the words I wanted to hear . I mean , I was bracing for

the worst , since I could tell by the pain that it ’s bad . But to hear that the

cancer has spread is quite depressing . What does it all mean for me?

User : How much information would you like to know about the prognosis?

SOPHIE : I feel very anxious about my condition . I feel like it ’s gotten worse . I want

to know what this means for me .

User : What concerns do you have about the future?

SOPHIE : What worries me the most is just how uncertain my future is . Some days I

believe my condition will get better and others I brace myself for the worst .

Is there any way you can let me know what I should expect?

. . .

Figure 7.5: Example of a dialogue between a medical student and SOPHIE from the pilot

experiment.

the patient says “I’m taking Lortab for the pain.”); any Not Applicable responses were

discarded.

We obtained 10 ratings for questions Q1-4 for each item, from 167 native English

speakers. The resulting distributions of mean ratings per item are shown as histograms

in Figure 7.4. The mean and median scores for each question across all items are shown

in Table 7.3; the mean differences between SOPHIE and DialoGPT were found to be

statistically significant for each question (P < 0.05) using a Mann–Whitney U test.

We provide a qualitative example of a dialogue excerpt from the SOPHIE pilot study in

Figure 7.5.

7.5.4 Discussion

From the crowdsourced ratings summarized in Table 7.3, we observe that the SOPHIE

avatar obtained high ratings for fluency/naturalness, consistency with the role of a

patient, and appropriateness of emotions. Moreover, the avatar outperformed the fine-
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tuned DialoGPT model for each of these metrics, indicating that the customizability

of Eta provides a distinct advantage over an end-to-end deep learning approach, since

our framework allows the dialogue schemas and response transduction methods to be

designed with a particular role and character in mind. The lowest mean rating for

SOPHIE’s responses pertained to whether the agent demonstrated understanding of

the previous turns. Looking at the underlying rating distributions in Figure 7.4, the

ratings for this question were strongly bimodal, indicating that SOPHIE would sometimes

demonstrate high understanding, and at other times fail to understand the user – in

comparison, DialoGPT tended to obtain consistently middling ratings for this question.

Turning to the expert annotations in Table 7.2, we observe that the rates of correct gist

clause extraction and appropriate response generation were 39% and 49% respectively.

Since SOPHIE employed strategies to ask non-contentful clarification requests in cases

where it fails to extract a gist clause, the relatively low accuracy of gist clause extraction

directly impaired SOPHIE’s ability to generate an appropriate response – although in

some cases it was able to select an appropriate default response. In the cases where the

system was able to extract a gist clause, however, the fraction of appropriate responses

was substantially higher – providing a direct explanation of the bimodality observed in

Figure 7.4.

7.6 Extending SOPHIE with LLM-Aided Interpretation

and Generation

These results from the pilot experiment and subsequent transcript analysis highlighted

two significant limitations of the pattern transduction methods used by the SOPHIE agent

in these experiments: First, even though the transduction trees covered a wide range of

topics, the recall of this method was relatively low due to the large number of possible

phrasings that were unaccounted for. Second, although extracting a gist clause allowed



126

SOPHIE to give highly appropriate and natural responses, the gist clause interpretation

step was also acting as a bottleneck, preventing SOPHIE from generating an appropriate

response in cases where a gist clause could not be obtained. The results, however, show

that LLMs – while being less natural than Eta on average – are also more robust to cases

where Eta fails to extract a gist clause, suggesting that the way forward may be a hybrid

of the two approaches.

In this section, we discuss recent extensions of the SOPHIE agent to address these

limitations through integration of LLMs. First, we enable robust interpretation of user

inputs – particularly in the gist clause interpretation and pragmatic interpretation steps –

by augmenting the existing pattern transduction trees with LLM-based interpretation

methods. Second, we extend the paraphrase and response transduction methods used by

SOPHIE with LLM-aided generation methods, allowing SOPHIE to give responses that

demonstrate understanding even when it fails to extract a gist clause, while still retaining

the advantages of the schema-based approach.

7.6.1 Robust Gist Clause and Pragmatic Interpretation

We augment the gist clause transduction method used by the SOPHIE agent with an

LLM-based gist clause transducer, using the setup shown in Figure 4.4 (right). We use

OpenAI’s gpt-3.5-turbo model with the following initial prompt: “I want you to rewrite

the utterance sentences I give you in a maximally context-independent and explicit way,

given a context sentence. Only generate a single sentence, and try to keep it as short

as possible, without redundant information.”1. This prompt is followed by 9 in-context

examples, each consisting of a context, utterance, and rewritten gist clause. Finally, the

LLM is provided with the utterance to be interpreted and the previous turn in the context.

We use a simple gist validator that checks whether the generated gist clause contains any

1This specific prompt was designed through manual inspection of the resulting gist clauses from a

small validation set.
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clear contextual terms, e.g., pronouns. Any gist clauses obtained using this method are

combined with those obtained through hierarchical pattern transduction.

In addition, we extend the pragmatic interpretation method with a data-driven model

of medical conversation skills (i.e., being empathetic, being explicit, or empowering the

user), allowing these to be inferred from the user input (hence, used to drive dialogue

flow or to provide user feedback) even when the gist clause is incorrect. For this, we

fine-tune a BERT (Devlin et al., 2018) multi-label classifier to predict skills given an

input utterance. Three expert annotators independently annotated 3598 turns from the

VOICE dataset (Hoerger et al., 2013) for skills, which were split to create a training set

of 2878 turns and a validation set of 720 turns. The model was fine-tuned on the training

set for 3 epochs, obtaining a final validation accuracy of 72% and an F1 score of 51%.

Since false negatives were assessed to be more costly than false positives in this domain,

we take the union of all skills predicted by this model and all skills inferred using the

existing rule-based method.

7.6.2 LLM-Aided Response Generation

We next employ LLM-based transduction methods for paraphrasing and response gener-

ation in place of hierarchical transduction trees. We follow the same generation methods

proposed by Kane and Schubert (2023) and discussed in Section 5.6; however, instead

of retrieving knowledge from habitual schemas, we directly use schema knowledge

associated with the currently selected dialogue schema. For example, as a reaction

to the user providing a prognosis, SOPHIE may initially react by expressing mistrust

in the user’s prognosis – an example of a dialogue schema for this reaction is shown

in Figure 7.62. In addition to the expected episodes for each dialogue schema, we

2To ease development, and since strict goal/condition-based planning isn’t required in this domain, we

use only natural language eventualities (with indexical variables) for all schema sections but episodes.

However, since Eta incorporates a ULF-to-English conversion algorithm, our method is also compatible

with a more precise representation.
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(dial-schema :header ((ˆme express-doubt-about-prognosis.v ˆyou) ** ?e)

;‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

:static-conds (

?s1 (ˆme has lung cancer .)

?s2 (ˆme has an uncle Fred who outlived his prognosis .))

:preconds (

?p1 (ˆme doesn’t fully accept ˆme ’s prognosis .)

?p2 (ˆme doesn’t trust ˆyou ’s prognosis .))

:goals (

?g1 (ˆme wants to know more about ˆme ’s prognosis .)

?g2 (ˆme wants to know whether ˆme can trust ˆyou ’s prognosis .))

:episodes (

?e1 (ˆme paraphrase-to.v ˆyou ’(Can I trust your prognosis ?))

;; ?e1 (ˆme say-to.v ˆyou ?response)

?e2 (ˆyou reply-to.v ?e1)))

Figure 7.6: A portion of a dialogue schema in which SOPHIE expresses a lack of trust in

the user’s prognosis; for instance, because of conditions such as SOPHIE’s relative having

outlived their prognosis. Note that, as an alternative to the paraphrase episode ?e1,

the schema may directly specify a say-to.v step where the variable ?response is

bound to the response produced by an LLM.
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add knowledge pertaining to the expected static conditions, preconditions, goals, etc.

of each dialogue event. When paraphrasing the clause in step ?e1 (or generating an

unconstrained response, as in the commented alternative), the LLM is conditioned on

this schema knowledge. An example generation for this schema, for instance, may be

“I’m having trouble trusting your prognosis. After all, I have an uncle Fred who outlived

the prognosis he was given.”.

One challenge that we occasionally encountered is the tendency of the LLM to

hallucinate in its responses; in the most common failure mode, the LLM would role-

switch and generate a response from the doctor’s perspective rather than from the patient.

We found this error to be less common when using OpenAI’s gpt-4 model instead of

gpt-3.5-turbo. Ultimately, we addressed this challenge by using gpt-4 to validate whether

the gpt-3.5-turbo model contains a hallucination, and if so, retrying the generation using

gpt-4 instead.

We additionally use gpt-3.5-turbo to classify SOPHIE’s output with an appropriate

affect/emotion tag. The model is provided the following prompt, along with a list of

supported emotions, the utterance, and the last 3 turns of dialogue history: “From the

following list, which emotional state most closely describes the feelings of ˆme?”.

Augmented with LLMs, the SOPHIE agent is able to generate natural responses

even in cases where the agent is unable to correctly extract a gist clause from the user

utterance; but importantly, the schema-based dialogue framework allows imposition

of constraints on the LLM responses, ensuring that the responses are still on-track,

consistent with SOPHIE’s role, and emotionally appropriate.

7.7 Discussion

In the pilot experiment described in Section 7.4, we observed that, even despite the

relatively limited capabilities of this version of SOPHIE, users were able to improve

certain communication behaviors after several sessions of interacting with the SOPHIE
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agent and receiving feedback. We attribute this success to the fact that SOPHIE was able

to display responses that were judged as generally natural, consistent with her role as a

cancer patient, and emotionally appropriate, providing the user with an opportunity to

rehearse particular skills even if the agent was not always viewed as truly understanding

the user.

We used these insights in order to further construction of the SOPHIE agent, resulting

in a far more intricate, comprehensive, and capable version of the system. Augmented

with LLMs, the SOPHIE agent is able to generate natural responses even in cases

where the agent is unable to correctly extract a gist clause from the user utterance; but

importantly, the schema-based dialogue framework allows imposition of constraints

on the LLM responses, ensuring that the responses are still on-track, consistent with

SOPHIE’s role, and emotionally appropriate.

Although it lies outside the scope of these experiments, another benefit of the schema-

based design of SOPHIE is that it allows for explicit personalization of the virtual human

through modification of the dialogue schemas. This is particularly important for VSPs

since disparities in human SPs often lead to implicit biases in how medical practitioners

interact with different demographics; allowing VSPs to be personalized allows for

medical practitioners to practice with patients that have a variety of demographics or

dispositions.

In the near future, we aim to conduct a larger scale and more rigorous experiment

with the SOPHIE system in order to assess the performance of the augmented system. The

preliminary results discussed in this chapter are promising, and further positive results

could demonstrate SOPHIE to be a beneficial technology for medical communication

training. To our knowledge, there is no other dialogue manager that has yet been

developed capable of enabling realistic VSPs in open-ended and mixed-initiative patient-

physician conversations, to the extent that we support in the SOPHIE system.
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8 MegaIntensionality: Linking

Prototypical Knowledge and

Language

In the previous chapters we have focused on demonstrating the utility of a dialogue

management framework based on prototypical knowledge, where we have assumed

that prototypical knowledge could be explicitly represented in the form of schemas and

matched to natural language utterances. In other words, in these systems, we began by

assuming a fully specified model of prototypical dialogue events within a domain and

interpreting natural language within the context of this model. However, it is possible to

invert this relationship and instead ask the question: What prototypical knowledge is

actually attested by the natural language used to communicate about events?

In this chapter, we turn our attention towards the MegaIntensionality project: an

effort to answer this question by collecting lexical-scale data on prototypical judgments

associated with English predicates and deriving a taxonomy of predicates according to

this prototypical knowledge. We find not only that clusters of predicates appear to be

associated with distinct patterns of prototypical knowledge, but also that the syntax of

natural language itself is to some extent structured around these patterns.
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8.1 Introduction

Some linguists have endeavored to study prototypical event knowledge at the level of

individual lexical items, i.e., expectations associated with the events characterized by

verbal predicates. Dowty (1991), for instance, postulates the existence of prototypical

thematic roles – “proto-roles” – that play a part in determining argument selection (see

also Reisinger et al., 2015; White et al., 2017). For example, an act of running typically

involves an agent who performs the action with volition, whereas an act of falling

typically has a patient who undergoes the change of state without volition. Similarly, it is

hypothesized that clause-taking verbs1 are associated with prototypical attitudes towards

the embedded clause (Hooper, 1975; Heim, 1992; Anand and Hacquard, 2013, 2014).

For example, for someone to think that some event happened typically involves a belief

that that event happened, while for someone to love that some event happened typically

involves both a desire and a belief that that event happened (as well as a presupposition

that the event did, in fact, happen).

One way of capturing this prototypical knowledge is through evaluating which

inferences a person may plausibly make in the presence of a particular lexical item,

across a variety of syntactic contexts. Specifically, we say that an inference is triggered

by a predicate if the use of that predicate consistently gives rise to that inference across

contexts; for example, (1-a)⇝ (1-b). Furthermore, we may distinguish between types of

inferences based upon whether the inference projects from negation (see e.g. Karttunen,

1973). If an inference is targeted or cancelled by negation, as in (1-b) vs. (2-b), we say

that the inference is an entailment. If an inference is not targeted by negation, as in (1-c)

vs. (2-c), we say that the inference is a presupposition.

(1) a. Jo remembered that he went to the grocery store.

b. ⇝ Jo believed that he went to the grocery store.

1I.e., verbal predicates that are used in constructions involving some embedded phrase, such as finite

clauses (e.g., that something happened) or nonfinite clauses (e.g., to do something).
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c. ⇝ Jo went to the grocery store.

(2) a. Jo didn’t remember that he went to the grocery store.

b. ̸⇝ Jo believed that he went to the grocery store.

c. ⇝ Jo went to the grocery store.

With these definitions in hand, we focus on the following subset of lexically triggered

inferences: veridicality inferences (3-a), neg(ation)-raising inferences (3-b), doxastic

inferences (3-c), bouletic inferences (3-d), and intention inferences (3-e).

(3) A predicate v triggers...

a. ...{veridicality, antiveridicality} inferences in sentence np (not) v ((to) np)

s iff the use of np (not) v ((to) np) s consistently triggers the inference that

{s, not s} across contexts.

e.g., Jo {liked , lied} that Bo left. ⇝ Bo {left , didn’t leave}.

b. ...neg(ation)-raising inferences in a sentence np not v ((to) np) s iff the use

of np not v ((to) np) s can trigger the inference that np v ((to) np) not s in

some contexts.

e.g., Jo didn’t think that Bo left. ⇝ Jo thought that Bo didn’t leave.

c. ...{doxastic, antidoxastic} inferences about the role associated with position

i in a sentence np1 (not) v ((to) np2) s iff the use of np1 (not) v ((to) np2)

s consistently triggers the inference that {npi believes s, npi believes not

s} across contexts.

e.g., Jo {thought , doubted} that Bo left. ⇝ Jo {believed , didn’t

believe} that Bo left.

d. ...{bouletic, antibouletic} inferences about the role associated with position

i in a sentence np1 (not) v ((to) np2) s iff the use of np1 (not) v ((to) np2)

s consistently triggers the inference that {npi wants s, npi wants not s}

across contexts.
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e.g., Jo {loved , hated} that Bo left. ⇝ Jo {wanted , didn’t want} Bo

to leave.

e. ...{intention, anti-intention} inferences about the role associated with posi-

tion i in a sentence np1 (not) v ((to) np2) s iff the use of np1 (not) v ((to)

np2) s consistently triggers the inference that {npi intends s, npi intends

not s} across contexts.

e.g., Bo {promised , refused} to leave.⇝ Jo {intended , didn’t intend}

to leave.

These inferences are of interest for at least two reasons. First, they display apparent

correlations with each other across lexical items – potentially suggesting some core set

of lexicosemantic components (i.e., semantic components that the meanings of each

lexical item are built from) that interact to give rise to them. For instance, Anand and

Hacquard (2014) suggest that, while there are predicates for which doxastic inferences

are “foregrounded” entailments (as diagnosed by sensitivity to negation) – e.g. (4-a)⇝

(6-a), (5-a)⇝ (7-a) – and predicates for which bouletic inferences are entailments and

doxastic inferences are “backgrounded” presuppositions (as diagnosed by insensitivity

to semantic operators like negation) – e.g. (4-b)⇝ (6-a), (5-b)⇝ (6-a), (4-b)⇝ (6-b),

(5-b)⇝ (7-b) – there are no predicates for which doxastic inferences are “foregrounded”

and bouletic inferences are “backgrounded” (see also Hooper, 1975; Heim, 1992; Anand

and Hacquard, 2013). Such gaps in logically possible patterns of lexically triggered

inferences have long played an important role in semantic theory because they suggest

potentially deep constraints on lexicalization (Horn, 1972; Barwise and Cooper, 1981;

Levin and Rappaport Hovav, 1991, a.o.).

(4) a. Jo knew that Bo left.

b. Jo liked that Bo left.

(5) a. Jo didn’t know that Bo left.

b. Jo didn’t like that Bo left.

(6) a. Jo believed that Bo left.

b. Jo wanted Bo to have left.

(7) a. Jo didn’t believe that Bo left.

b. Jo didn’t want Bo to have left.
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Second, these inferences appear to correlate with the syntactic distribution of predicates

– potentially suggesting that said lexical properties may be formally represented, rather

than solely a byproduct of how conceptual representations interact with pragmatic

reasoning. For example, veridicality and neg-raising inferences have been claimed to

correlate with interrogative selection (Hintikka, 1975; Karttunen, 1977; Zuber, 1982;

Berman, 1991; Ginzburg, 1995; Lahiri, 2002; Egré, 2008; George, 2011; Uegaki, 2015;

Theiler et al., 2017, 2019; Elliott et al., 2017; Uegaki and Sudo, 2019; Roberts, 2019)

(cf. (White, 2021)); and mood/finiteness selection (Giannakidou and Mari, 2021); and

doxastic and bouletic inferences have been claimed to correlate with mood/finiteness

selection (Bolinger, 1968; Hooper, 1975; Farkas, 1985; Portner, 1992; Giorgi and Pianesi,

1997; Giannakidou, 1997; Quer, 1998; Villalta, 2000, 2008). A long-standing question

is thus whether there exists a systematic relationship between syntactic structures and

prototypical inference patterns, or whether this relationship is always mediated by the

lexical item.

A major remaining challenge in this domain is that, not only is the space of logically

possible inference patterns vast, even the cleanest measurements of at least veridicality

and neg-raising using inference judgment tasks display substantial gradience (White

and Rawlins, 2018; An and White, 2020). This gradience makes it difficult to ascer-

tain which inference patterns are attested because it makes it difficult to determine (i)

whether a particular sentence should be considered to trigger a particular inference; and

(ii) whether there exist patterns consisting partly or wholly of non-necessary inferences.

Such difficulties may be unavoidable–e.g. because gradience indicates that no formally

represented lexical property controls whether a particular inference is triggered (see De-

gen and Tonhauser, 2022). But there are at least two other (non-exclusive) possibilities:

(i) apparent gradience is partly or wholly a product of the methods often used to collect

inference judgments and that there are discrete, formally represented lexical properties

that are active in triggering the necessary inferences; and/or (ii) that there are discrete,

formally represented lexical properties active in triggering non-necessary inferences.
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We argue that assessing these possibilities requires a lexicon-scale approach through

which an inference pattern taxonomy can be derived.

Our primary aim in this chapter is to derive such a lexicon-scale taxonomy of English

predicates based on (i) the doxastic, bouletic, intention, neg-raising, and veridicality

inference patterns that they give rise to across a variety of syntactic contexts, and (ii)

their associated syntactic distributions. To carry out this derivation while addressing the

challenges posed by gradience, we apply a soft clustering model to each lexicon-scale

dataset. Three of these datasets already existed prior to this work: one collecting syntactic

acceptability judgments for various syntactic contexts (the MegaAcceptability dataset;

White and Rawlins, 2020) one focused on veridicality inferences (the MegaVeridicality

dataset; White and Rawlins, 2018) and one focused on neg-raising inferences (the

MegaNegRaising dataset; An and White, 2020). We review these datasets in Section 8.2.

No similar, lexicon-scale dataset capturing doxastic, bouletic, and intention infer-

ences – i.e., inferences pertaining to intensional states – existed prior to this work. To

address this gap, we extended the methodology used to collect MegaVeridicality and

MegaNegRaising to collect doxastic, bouletic, and intention inferences for 725 finite

and nonfinite clause-taking predicates, covering a wide variety of semantic classes and

resulting in the MegaIntensionality dataset. These include cognitive predicates–e.g.

think, know, remember, forget–emotive predicates–e.g. hope, fear, love, hate–and com-

municative predicates–e.g. say, tell, notify, convince–among others. We describe the

data collection process in Section 8.3.

Next, we turn towards the clustering model that we use to induce a taxonomy of

predicates on the basis of these inference and syntactic acceptability judgments in Section

8.4. We label and discuss the clusters that we discover and the prototypical inference

patterns that they capture. Finally, in Section 8.5, we discuss an exploratory analysis

where we attempt to uncover the semantic components underlying these inference

patterns – i.e., foundational semantic features from which the inference patterns of each

cluster are constructed – and find a mapping of these components to syntactic features.

http://megaattitude.io/projects/mega-acceptability/
http://megaattitude.io/projects/mega-veridicality/
http://megaattitude.io/projects/mega-negraising/
http://megaattitude.io/projects/mega-intensionality/
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8.2 Existing Lexical-Scale Datasets

Our work on measuring prototypical intensional inferences builds on two previous

lexicon-scale datasets capturing veridicality (the MegaVeridicality dataset; (White and

Rawlins, 2018)) and neg-raising inferences (the MegaNegRaising dataset; (An and White,

2020)) across a variety of clause-embedding verbs in a variety of syntactic contexts. Both

datasets include syntactic frames selected on the basis of their acceptability as measured

in the MegaAcceptability dataset (White and Rawlins, 2016, 2020), which contains

acceptability judgments for 1,000 English clause-embedding verbs in 50 syntactic

contexts.

A major challenge to collecting such inference judgments at scale lies in disen-

tangling the lexical effects of a sentence’s matrix predicate on the inference from the

potentially confounding effects of world knowledge. For instance, if a respondent were

to indicate that (8-b) follows from (8-a), it would be difficult as an experimenter to

tell whether their judgment was due to the semantics of know (as desired) or to the

respondent’s knowledge of world history.

(8) a. Jo knew that Napoleon was defeated at Waterloo.

b. Napoleon was defeated at Waterloo.

To isolate predicate-specific effects on veridicality inferences, White and Rawlins (2018)

build on a method they developed in (White and Rawlins, 2016) for constructing low-

content sentences. Specifically, they solicit judgments by presenting participants with a

bleached sentence, as in (9-a), and then ask (9-b), where the possible responses are yes,

no, and maybe or maybe not.

(9) a. Someone {knew, didn’t know} that a particular thing happened.

b. Did that thing happen?
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This bleaching is carried out by instantiating all noun phrases in a syntactic context with

indefinite pronouns and by replacing all verbs except for the target verb with do, have,

or happen, as appropriate. White and Rawlins (2018) capture factivity in this paradigm

by manipulating the negation on the verb and seeing whether participants judge that

the inferences goes through in both conditions. The resulting MegaVeridicality dataset

contains veridicality judgments for 517 finite clause-embedding English verbs in both

transitive (passivized) and intransitive contexts.

An and White (2020) take a similar approach to investigating neg-raising inferences.

Participants are presented with questions like (10) and respond using a bounded slider

ranging from 0 (not likely at all) to 1 (very likely).

(10) If I were to say I don’t think that a particular thing happened, how likely is it

that I mean I think that that thing didn’t happen?

As in (White and Rawlins, 2018), the authors select predicates based on their acceptabil-

ity in different frames and with different tenses based on data from MegaAcceptability.

The resulting MegaNegRaising dataset contains judgments for 925 clause-embedding

verbs in six syntactic contexts (including multiple involving infinitival complements) in

both past and present tenses, and with both first and third person subjects—e.g. the past

analogue of (10) with a third person subject is (11).

(11) If I were to say a particular person didn’t think that a particular thing happened,

how likely is it that I mean that person thought that that thing didn’t happen?

8.3 Collecting a Dataset of Intensionality Inferences

In addition to the veridicality and neg-raising inferences already captured by MegaVeridi-

cality and MegaNegRaising, we aim to capture patterns of doxastic, bouletic, and inten-

tion inferences at scale. As with veridicality and neg-raising inferences, a major obstacle
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to collecting inference data at scale is that, using standard item construction methods, it

can be difficult to ensure that one is isolating prototypical inferences triggered by the

predicate of interest (in some syntactic context) rather than surrounding lexical material

(in conjunction with world knowledge). For instance, boast tends to trigger an inference

that the boaster believes the content of the boast, but this inference is defeasible in cases

where the boaster is a willful liar, as in (12).

(12) Trump boasted that he won in

2020.

(13) Trump doubts that he won in 2020.

Conversely, doubt tends not to trigger bouletic inferences; but if given a sentence like

(13) and asked how likely it is that Trump wants to have won the 2020 election, one

would likely answer that it is highly likely—mainly on the basis of prior knowledge.

To mitigate this issue, we deploy a templatic semantic bleaching method for data

collection wherein we strip away lexical material that may confound the prototypical

judgments associated with the predicate itself. In this method, participants are presented

with templatic items consisting of a templatic antecedent, as in (14), and a templatic

consequent, as in (15), and are asked to judge the likelihood that the consequent is true

given the antecedent using a slider with extremely unlikely on the left and extremely

likely on the right2.

(14) a. A boasted to B that C hap-

pened.

b. A doubted that C happened.

(15) a. A believed that C happened.

b. A wanted C to have hap-

pened.

2In a separate validation experiment, we compared inferences collected using this method to inferences

collected using a contentful method – controlling for world knowledge using a norming task that assessed

the a priori likelihood that each contentful item is true – and found that the templatic bleaching task

reliably captures the same information about lexically triggered inferences (Kane et al., 2021; Gantt et al.,

in prep).
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We collected data for the MegaIntensionality dataset over two separate experiments –

one focused on finite frames (those taking a sentential complement, i.e., A that S),

and one focused on nonfinite frames (those taking a verb phrase complement, i.e., A

to VP). In the former case, we collect only doxastic and bouletic inferences, since we

expect to find interesting intention inferences only in the case of nonfinite complements.

We detail the finite data collection first, and then detail the modifications to this method

that we made for collecting nonfinite data.

8.3.1 Collecting Finite Frames

Materials

We select 725 unique predicates for use in this experiment based on their normalized

acceptability score in the MegaAcceptability dataset.3 We focus on the 12 frames found

in Table 8.1, manipulating (i) embedded tense/modality; (ii) the presence of a direct

object (DO) or to-PP; and (iii) whether the matrix clause is passivized or not (to naturally

capture predicates that take expletive subjects and direct objects, such as amaze, surprise,

etc.). We manipulate tense/modality of the embedded clause—past (16-a), future (16-b),

and tenseless (16-c)—to ensure good coverage of bouletic predicates, like hope, and

deontic predicates, like demand; and we manipulate DO/PP-taking to ensure good

coverage of communicative predicates, like say.

(16) a. A knew that C happened.

b. A hoped that C would hap-

pen.

c. A demanded that C happen.

d. A said to B that C happened.

In all of these frames, the matrix predicate is in the simple past (for the active frames)

or past participial form (for the passive frames). For each frame except the embedded

3These normalized scores are described in (White and Rawlins, 2020) and are available at megaatti-

tude.io.

http://megaattitude.io
http://megaattitude.io
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tenseless ones, we select predicates with a normalized acceptability score in that frame of

≥0.2. For embedded tenseless frames, we set the threshold at 1.5. These thresholds were

determined by manual inspection of the least acceptable items that would be included.

The 0.2 threshold roughly corresponds to an average rating of approximately 4.5 on the

original ordinal scale (1-7), and the 1.5 threshold corresponds to an average rating of

approximately 6.4 The number of predicates that lie above this threshold for each frame

can be found in Table 8.1. We additionally manipulate the polarity of the matrix clause

in templatic antecedents, as in (17).

(17) A {wanted, didn’t want} C to have happened.

And we construct templatic consequents for each antecedent that are conditioned on the

tense/modality of the embedded clause—(18) for antecedents with embedded past tense

and (19) for antecedents with tenseless or future embedded clauses.

(18) a. A believed that C happened.

b. A wanted C to have hap-

pened.

(19) a. A believed that C would hap-

pen.

b. A wanted C to happen.

We construct two sets of templatic consequents for each antecedent with a DO/PP.

(20) a. A/B believed that C hap-

pened.

b. A/B wanted C to have hap-

pened.

We sort the resulting items into lists of 32, aiming to constrain the construction of these

lists such that the distribution over the expected responses for the items list has a mean of

4We use a distinct threshold for the embedded tenseless frames because we found that the acceptability

scores are significantly noisier for them than in other frames, resulting in many unnatural tenseless

items being included when the threshold is set to 0.2. We believe this noise may be due to some

MegaAcceptability participants missing the subtle difference between the embedded simple past and

tenseless items—namely, the presence or lack of an -ed suffix.
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Embedded Past Embedded Future Embedded Tenseless

A that C happened 534 A that C would happen 498 A that C happen 50

A to B that C happened 156 A to B that C would happen 160 A to B that C happen 7

A was that C happened 238 A was that C would happen 213 A was that C happen 24

A B that C happened 33 A B that C would happen 31 A B that C happen 1

Table 8.1: Counts of unique predicates for each frame in the finite experiment.

approximately 0.5 and has high variance. The idea here is to avoid introducing “warping”

into the participants’ use of the response scale due to the underlying distribution of

inferences associated with items in a particular list. For instance, if the underlying

distribution of inferences for items in a list were to result in a heavy bias toward

extremely high likelihood responses, any responses that might otherwise be moderately

low likelihood or middling likelihood responses might be assigned extremely low

likelihood in comparison to the majority of the other inferences in the list.

An obvious difficulty in achieving this goal is that we do not have access to the

underlying distribution of inferences. Rather, this is exactly what we aim to measure,

and so we must use proxy measures that are plausibly correlated. We use four such

measures: the normalized veridicality and neg-raising scores from MegaVeridicality and

MegaNegRaising, respectively; the normalized acceptability judgments from MegaAc-

ceptability; and the frequency counts for the predicate in a particular item’s templatic

antecedent given by SUBTLEX (Brysbaert and New, 2009).5

We perform PCA on these scores and then bin items based on their score on each

component. This binning was done sequentially: we first derive two bins based on a

median split of scores on the first component; then for each of those bins, we derive two

bins based on a median split of scores on the second component; continuing similarly

for the remaining two components. This procedure results in 16 equally-sized bins. We

5We use the normalized veridicality and neg-raising scores described in (White and Rawlins, 2018)

and (An and White, 2020), respectively. In cases where no veridicality or neg-raising score exists for a

particular item, we randomly impute it.
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construct lists such that every combination of PCA bin and consequent verb appear

exactly once in each list. To fill a list with items, we choose frames and antecedent

verbs proportionally to their frequency in that respective PCA bin, also enforcing a hard

constraint that each antecedent verb appears no more than once in a list. For transitive

frames, the subject of the consequent is toggled each time an item with a DO or PP in

the templatic antecedent is added to a list, ensuring that we also obtain a balance of

subject and object targets among the DO/PP frames in each list.

Finally, we add four sanity check questions to each list to verify participant reliability.

These items are constructed in pairs, with one item in the pair having a clear-cut 0

response and the other having a clear-cut 1 response. Each item in the pair uses the

same verb in both the antecedent and the consequent, with one item having a negated

antecedent (creating a contradiction) and the other having a positive antecedent (creating

a tautology). All such items use the A that C happened frame, and we only use

predicates with a very high acceptability in this frame (≥3).

Participants

We recruited 272 native American English speakers on Amazon Mechanical Turk.

Participants were allowed to respond to at most 20 lists, and each list was rated by 10

unique participants.

Results

Figure 8.1 plots the normalized judgments for the doxastic and bouletic inferences (for

both subject target and object target, when applicable), with select predicates labeled.

To obtain these normalized judgments for each item, we use a mixed effects beta

model-based normalization procedure.

We examine the top two subplots—those showing judgments for items with embed-

ded past tense—first. The top left subplot shows judgments for doxastic inferences. We



144

convince

convince

doubt

dupe

dupe

fear

hate

hope

know

lie

lie

likelove

miss

notify

notify

notify

notifypersuade

persuade

pretend

regret

reject

rejectsay

say

tell

tell

think

wish

worry

worry

convince

convince

doubt

fear

hate
hope

know

lie

lie

like

love

mislead

mislead

notify

notify
persuade

persuade

pretend

regret

reject

say

say

tell

tell
think

wish

worry

worry

convince

doubt

dupe

dupe

fear

hate

hope

lie

lie

like

love

miss
notify

persuade

persuade

pretend

regret

reject
reject

tell

wish

worry

worry

convince

convince

doubt

fear
hate

hope

know

lie

lie

like

love

mislead

mislead

notify

notify

persuade

persuade
pretend

regret
reject

say

say

tell
tell

think

wish

worry
worry

A __ed ({to B, B}) that P ... {A, B} believed P A __ed ({to B, B}) that P ... {A, B} wanted P
E

m
bedded past

E
m

bedded future

0.
00

0.
25

0.
50

0.
75

0.
00

0.
25

0.
50

0.
75

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Negative matrix polarity in antecedent

P
os

iti
ve

 m
at

rix
 p

ol
ar

ity
 in

 a
nt

ec
ed

en
t

Target a asubject object

Figure 8.1: Distribution of verbs with respect to normalized doxastic and bouletic

inference judgments, in finite syntactic contexts.

observe that our results correspond well with intuitions about a variety of commonly

discussed predicates. For instance, cognitive predicates (such as think and know) and

communicative predicates that trigger doxastic inferences about the recipient (such as

convince and persuade) show up in the top left quadrant, indicating doxastic components

that are “foregrounded” and targeted by negation. In contrast, emotive predicates such

as love, like, and hate appear in the top right, indicating that the doxastic inferences are

“backgrounded” and persist under negation. The center of the subplot shows predicates

that don’t trigger doxastic inferences, e.g. wish and hope. We also observe predicates
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that yield “backgrounded” negative doxastic inferences (deceitful communicatives, such

as lie and pretend), and predicates that yield “foregrounded” negative doxastic inferences

that are targeted by negation, such as miss and doubt.

The top right subplot shows judgments for bouletic inferences. As expected, we

observe various positive emotive and preferential predicates such as love, like, wish, and

hope in the top left quadrant, and negative emotive predicates such as hate, regret, worry,

and fear in the bottom right quadrant. These indicate predicates that yield positive

and negative bouletic inferences, respectively, that are “foregrounded” and targeted by

negation. Many predicates are clustered around the center, indicating weak positive or

negative bouletic inferences (such as pretend and doubt, respectively), or a lack of a

bouletic component, as in the case of most cognitive predicates (e.g. know and think)

and communicatives (e.g. tell and say). Notably, the overall pattern observed in this

subplot suggests that no predicate has a positive bouletic inference when under both

positive and negative matrix polarity. This pattern is consistent with the hypothesis that

bouletic inferences (if present) are always at issue and targeted by negation (Anand and

Hacquard, 2014).

The bottom two subplots show judgments for the same items with embedded future

(when applicable). For the bouletic inferences for these items (bottom right subplot),

the judgments we obtain are approximately the same as the corresponding items with

embedded past tense. However, the doxastic inferences from these items (bottom left

subplot) weaken significantly for any predicates where the doxastic inferences are

backgrounded relative to the embedded past tense items—e.g. love yields a strong

doxastic inference with a past tense embedded clause but only a weak doxastic inference

with a future embedded clause.
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8.3.2 Collecting Nonfinite Frames

Materials

We follow the same overall list construction process described in Section 8.3.1. We

initially choose 738 unique predicates based on their normalized acceptability score in

the MegaAcceptability dataset. We select 11 nonfinite frames, manipulating (i) stative

versus eventive embedded clauses; (ii) the presence of a direct object (DO) or to-PP;

(iii) passivization of the matrix clause; and (iv) for-PP, small clause, or gerund variants.

These frames are shown in Table 8.2.

The acceptability of each predicate in each frame is taken directly from MegaAccept-

ability, except for the to-PP cases – A TO B TO HAVE/DO C – which are missing

from the dataset. We add these frames for predicates that appear in both A TO B

THAT C HAPPENED and A TO HAVE/DO C frames, imputing the acceptability score

as the minimum of either frame.

Stative Eventive

A to have C 232 A to do C 291

A to B to have C 70 A to B to do C 85

A was to have C 348 A was to do C 353

A B to have C 188 A B to do C 248

A for B to do C 266

A B do C 156

A doing C 327

Table 8.2: Counts of unique predicates for each frame in the nonfinite experiment.

For each frame, we select predicates with a normalized acceptability score of ≥0.8,

resulting in the per-frame predicate counts shown in Table 8.2. We determined this
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threshold by manual inspection of the quality of the least acceptable items above this

threshold. We manipulate the matrix polarity of the antecedent sentences, such as in

example (21).

(21) A {prayed, didn’t pray} for B to do C.

We create templatic consequent sentences pertaining to each of the three inference

types, which were sorted into lists of 48 items each using the binning process described

previously. In the case of transitive frames, we manipulate the target of the consequent

sentence – that is, the subject of the consequent sentence is taken to be either the subject

or object from the antecedent. Additionally, we add 4 sanity check questions to each list

to allow validation of annotator responses. These questions consist of 2 pairs of items,

where the consequent of the first item is identical to the antecedent – creating a tautology

whose expected response is extremely likely – and the consequent of the second item

is the negation of the antecedent – creating a contradiction whose expected response

is extremely unlikely. Each sanity check item uses the A TO DO C frame, and the

predicates are randomly selected from those with very high normalized acceptability

(≥ 3) in this frame.

In contrast with the finite frames, however, the experimental design for the nonfinite

frames posed many additional challenges that required modifications to the collection

method. We describe the challenges and corresponding modifications in the remainder

of this section.

Filtering Small Clause Items Manual inspection of the items in the A B DO

C frame indicated that the acceptability scores for these items contained a high degree

of noise, resulting in poor quality items in this frame above the base threshold. We

hypothesize that, in the original MegaAcceptability study, some annotators interpreted

these items as finite frames with an elided that, such as in (22).
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(22) a. Someone advised someone do something.

b. Someone advised that someone do something.

We therefore manually select only 9 theoretically interesting predicates to include in the

small clause frame: feel, hear, imagine, make, observe, overhear, see, sense, and help.

Selecting Eventive or Stative Frames A number of predicates are acceptable in both

the eventive and stative versions of particular frames, which we expect would result in

somewhat redundant annotations. Additionally, certain predicates have a preference for

either an eventive or stative complement despite passing the base threshold for both,

such as the examples in (23) and (24).

(23) a. Someone annoyed someone to do something.

b. ?Someone annoyed someone to have something.

(24) a. ?Someone haggled someone to do something.

b. Someone haggled someone to have something.

For each predicate that is acceptable in both the eventive and stative versions of a partic-

ular frame, we constrain it to appear in either the eventive or stative frame. We select

the eventive version if the predicate has high acceptability in that frame (normalized

acceptability ≥ 1), or the stative version otherwise.

Selecting Passivized, DO, for-PP, and to-PP Frames We further constrain the frames

that each predicate appears in by selecting between direct object versus for-PP frames,

passivized versus unpassivized frames, and to-PP versus intransitive frames. For each

pair, we decide which frame to select based on their normalized acceptability scores.

Specifically:

• If a predicate occurs in both A FOR B TO DO C and A B HAVE/DO C,
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we select the former frame only if the predicate does not have high acceptability in

the latter frame, and has a higher acceptability in the former frame than the latter.

• If a predicate occurs in both A B TO HAVE/DO C and A WAS TO

HAVE/DO C, we select the former frame only if the predicate has high acceptability

in that frame; otherwise we select the latter frame.

• If a predicate occurs in both A TO B TO DO C and A TO DO C, we

select the former frame only if the predicate has a higher acceptability in that

frame; otherwise we select the latter frame.

A high acceptability is defined as having a normalized acceptability score ≥ 1.2,

chosen by manual inspection of the least acceptable items above this threshold for each

frame.

Manipulating Control Unlike in the case of finite frames, in the case of nonfinite

frames we have to contend with control of unexpressed arguments in the embedded

clause by the matrix predicate. For example, the embedded clause in (25-a) is under

object control – the assumed argument of the doing is the object of the matrix clause, B –

while the embedded clause in (25-b) is under subject control – the assumed argument of

the doing is the subject of the matrix clause, A. The example in (25-c) allows for both

subject and object control.

(25) a. A commanded B to do C.

b. A promised B to do C.

c. A helped B to do C.

It is therefore necessary to condition the constructed consequent sentences on the control

of each predicate. To do this, two of the authors manually annotated all transitive frames
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for cases of subject control and subject+object control, assuming object control as the

default6.

We construct a pair of consequent sentences for each inference type – one with a

subject target and one with an object target – for each possible argument of the embedded

clause. For items annotated with object control, we use the consequents in (26), (28),

and (30). For items annotated with subject control, we use the consequents in (27), (29),

and (31). For items annotated with both, we use both pairs of consequents. In the case

of intransitive items, we use only the consequents with both subject control and subject

target.

(26) a. A believed that B did C.

b. B believed that B did C.

(27) a. A believed that A did C.

b. B believed that A did C.

(28) a. A wanted to do C.

b. B wanted A to do C.

(29) a. A wanted B to do C.

b. B wanted to do C.

(30) a. A intended to do C.

b. B intended for A to do C.

(31) a. A intended for B to do C.

b. B intended to do C.

Manipulating Embedded Tense Another challenge particular to nonfinite frames is

that, while the MegaAcceptability dataset lacks the embedded tense markers present for

the finite frames, certain nonfinite predicates have a preference for temporal orientation

– i.e., whether the event of the embedded clause is located in the future, as in example

(32), or the past, as in example (33).

(32) a. A promised to do C.

b. ⇝ A intended to do C.

c. ̸⇝ A intended to have done C.

(33) a. A admitted doing C.

6Each annotator independently annotated half of the transitive items.
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b. ̸⇝ A intended to do C.

c. ⇝ A intended to have done C.

To select the appropriate temporal orientation to use for each consequent sentence,

we use the MegaOrientation dataset, which contains judgments of the acceptability of

various nonfinite frames with both past and future-oriented embedded clauses across

898 English verbs (Moon and White, 2020). For each item, we generate consequent

sentences for whichever embedded tenses have a normalized MegaOrientation score

≥ 0.2 for that frame. If neither embedded tense is above that threshold, we select the

embedded tense with the higher score.

Noise Reduction Manually inspecting the acceptability of a sample of the nonfinite

items after the previous selection procedure, we observed that the nonfinite items were

still far noisier than observed in the case of finite items7. Furthermore, many of the

negative polarity items were ambiguous or otherwise difficult to answer.

To further filter difficult items out of our experiment, we randomly selected 10% of

the candidate items – resulting in 24 lists of 48 items – and ran a separate experiment

where annotators were asked to annotate both the likelihood and difficulty of each item.

For example, after being shown an antecedent and asked “How likely is it that B intended

to do C?”, a participant would then be asked to judge “How difficult is it to judge the

likelihood that B intended to do C?” using a slider with very easy on the left and very

difficult on the right.

After collecting these annotations, we trained a neural natural language inference

model with mixed effects (Gantt et al., 2020) to separately predict the likelihood and

difficulty scores of held-out items given the concatenated antecedent and consequent

sentences as input. We then used the trained model to predict difficulty scores for the full

7While the exact cause of this is unclear, we hypothesize that it may be due to a greater degree of

linguistic ambiguity in these inference judgments.
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set of items, and removed items with predicted difficulty scores ≥ 0.375, determined by

manual inspection8.

We additionally modify the binning method during list creation to include the

predicted difficulty and predicted likelihood scores in the PCA, ensuring that the items

in the resulting lists are approximately balanced on difficulty and likelihood. We finally

obtain 193 lists with 48 items per list.

Participants

For collecting difficulty annotations, we recruited 114 native American English speakers

on Amazon Mechanical Turk. Each list was rated by 10 unique participants.

For the full experiment, we recruited 300 native American English speakers on

Amazon Mechanical Turk. Participants were allowed to respond to at most 20 lists, and

each list was rated by 10 unique participants.

Results

Figure 8.2 plots the normalized judgments for the doxastic, bouletic, and intention infer-

ences for each embedded tense, as well as for each applicable combination of target and

control conditions, with select predicates labeled. To obtain these normalized judgments

for each item, we use a mixed effects beta model-based normalization procedure.

We first restrict ourselves to examining inferences targeting the subject, beginning

with the leftmost two subplots, i.e., those showing doxastic judgments. We observe that

commonly discussed cognitive predicates – including predicates that are future-oriented

in infinitival contexts such as know, as well as predicates that are past-oriented such

as remember – appear in the top left quadrant, suggesting doxastic inferences that are

8To ensure that each item still has an equal number of consequent verbs – as required for balancing

the lists – we resample from the rejected items in order of increasing difficulty until the consequent verbs

are exactly balanced.
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Figure 8.2: Distribution of verbs with respect to normalized doxastic, bouletic, and

intention inference judgments, in nonfinite syntactic contexts.

targeted by negation, consistent with intuitions about such predicates. Past-oriented

emotive predicates such as regret, appear in the top right, suggesting that doxastic

inferences are presupposed by emotive predications pertaining to a prior event; in

contrast, future-oriented emotive predicates such as love and hate appear in either the

top left or bottom right, suggesting that these may trigger either a positive or negative

doxastic inference respectively, and that these inferences are targeted by negation.

Predicates with object control – e.g., communicative, authoritative, and persuasive

predicates such as tell, make, and choose – yield weakly positive doxastic inferences
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about the object of the predication (excepting deceptives such as mislead) that may or

may not be targeted by negation.

We next examine the rightmost two subplots showing bouletic judgments. As

expected, we observe that both past-oriented and future-oriented emotive predicates

trigger either positive bouletic inferences – such as in the case of love and like (as well as

preferentials such as wish) – or negative bouletic inferences – such as in the case of hate

or fear; furthermore, these inferences are targeted by negation. Cognitive predicates such

as remember and think are associated with a moderate bouletic inference for the subject

that does not project under negation; likewise, communicatives and other subject-control

predicates such as tell and persuade are associated with moderate bouletic inferences

for the object.

Finally, we turn to the central two subplots showing intention judgments. Intuitively,

we expect that these judgments would pattern similarly to the bouletic judgments, but

with predicates that implicate commitment to a particular event regardless of desire

shifted in the positive direction. Indeed, we observe that predicates such as remember

and hate are associated with somewhat higher judgments than in the case of bouletic

inferences; conversely, predicates such as doubt and fear have weaker judgments.

We observe a surprising result when examining inference judgments instead targeting

the object. While common predicates with subject control appear to conform to intuitions

– such as the predicate promise triggering positive bouletic and intention inferences about

the subject – we find that predicates with object control are heavily clustered around

the center. Common persuasive predicates such as persuade and convince were judged

to have very weak bouletic and intention inferences about the object of the persuasion,

contrary to intuition. We manually selected a subset of these predicates and, in a small

set of validation experiments, investigated them by collecting judgments with several

alternative prompts (e.g., adding explicit “beforehand” or “afterward” modifiers). We

found that, in the particular case of object target and object control, there appears to

be high variability in the resulting judgments due to either true lexical ambiguity or
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inter-annotator meta-linguistic variability in how the items are interpreted. We leave this

as an open question for future investigation.

8.4 Deriving a Taxonomy of Prototypical Inferences

Using these lexicon-scale datasets, we attempt to derive a taxonomy of English clause-

embedding predicates according to distinct patterns in the prototypical inference judg-

ments that they trigger. One sub-question that emerges in this analysis is: how many,

and which, inference patterns and syntactic distributions are actually attested by the

lexical-scale data?

To address this question, we fit a multiview mixture model simultaneously to each

dataset – i.e., MegaAcceptability, MegaVeridicality, MegaNegRaising, and MegaInten-

sionality – treating each as a separate view. The result is a soft clustering of predicates

according to common inference patterns, while allowing some morphing in order to

ensure that the clusters are syntactically meaningful. Each cluster is associated with a

central inference pattern (i.e., a distribution of scores in [0, 1] across inference types and

syntactic frames), as well as a central syntactic distribution. In some sense, this model

allows us to determine the degree to which the full lexicon can be compressed on the

basis of the observed inference and acceptability judgments.

8.4.1 Multiview Mixed-Effects Cluster Model

Model Specification

To obtain a soft clustering of the predicates in our datasets, we fit a multiview mixed ef-

fects mixture model. The underlying mixture model is similar to Latent Dirichlet Alloca-

tion for topic modeling (Blei et al., 2003): Each unique predicate v in the lexicon is asso-

ciated with a categorical distribution over clusters with parameter θv ∼ Dirichlet (α1K)
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(where α is a dispersion hyperparameter); and the cluster assignment ci for a particu-

lar datapoint i is sampled from the distribution corresponding to the predicate of that

datapoint, ci ∼ Categorical
(
θverb(i)

)
.

Each dataset constitutes a different view of the predicates that we are clustering

within the model. Following Gantt et al. (2020), we incorporate mixed effects into

the model in order to account for variation in response behavior among participants.

Specifically, each cluster c of the mixture model is associated with the fixed effect

parameters β⟨view,c⟩ of the mixed effects response model for each view. The full model

is as follows:

θv ∼ Dirichlet (α1K)

zi ∼ Categorical
(
θverb(i)

)
β⟨view(i), zi⟩ ∼ N (0, 100I)

ρparticipant(i) ∼ N (0, 100)

yi ∼ fview(i)

(
β⟨view(i), zi⟩ · xi,ρparticipant(i)

)

Unit Response Model The MegaNegRaising and MegaIntensionality datasets use

a unit-valued response scale. Following Grove and White (under review), we use a

unit mixed effects response model that assumes each response is a mixture of three

truncated normal (TN) distributions: one centered around 1 representing “extremely

likely” responses with some variance, another centered around 0 representing “extremely

unlikely” responses, and a “prior” distribution centered around µ. β(θ)
ci,ki

and β
(µ)
ci,ki

repre-

sent the fixed effects for the mixture weights and the location of the prior distribution,

respectively, where ci is the cluster assignment for an item and ki is the inference type.

ρ
(θ)
pi and ρ

(µ)
pi represent the respective random effects for participant pi.
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θi = softmax
(
β
(θ)
ci,ki

+ ρ(θ)pi

)
µi = logit−1

(
β
(µ)
ci,ki

+ ρ(µ)pi

)
y
(1)
i ∼ TN(1, 1, 0, 1)

y
(0)
i ∼ TN(0, 1, 0, 1)

y
(µ)
i ∼ TN(µ, 1, 0, 1)

yi = θi ·
[
y
(1)
i , y

(0)
i , y

(µ)
i

]
After fitting the model, we compute the mean inference values as vi = 1 ∗ θ(1)i + 0 ∗

θ(0) + µ ∗ θ(µ)i .

Ordinal Response Model The MegaVeridicality and MegaAcceptability datasets use

a 3-point and 7-point ordinal response scale, respectively. For both datasets, we use an

ordinal mixed effects response model that assumes that each item with a particular cluster

ci maps to some real-valued score βci , and that each participant p has a different way of

binning these scores into ordinal rankings. These bins are defined by random effects

ρp that represent cutpoints, such that the worst rating corresponds to bin (−∞, ρp1], the

best rating to bin
(
ρp(n−1),∞

)
, and all other ratings r to bins

(
ρp(r−1), ρpr

)
.

The probability of a particular item i (with participant pi and assigned cluster ci)

getting ordinal rating r is defined based on these cutpoints:

P (yi ≤ r) = logit−1(cpi,r − βci,ki)

P (yi = r) = θir = P (yi ≤ r)− P (yi ≤ (r − 1))

yi ∼ Categorical(θi)

After fitting the model, we compute the mean inference values using the expected

distribution over the fixed ordinal cutpoints. We assign values to each ordinal rank such
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that the resulting expected values vi ∈ [0, 1]9, allowing them to be directly compared

with the unit-valued inference model.

Model Fitting

We fit the model in PyTorch using maximum a posteriori estimation of the parameters,

using the following loss function:

L = Lprior − logP (y | θ,β,ρ)

= Lprior −
∑
d

∑
i

logsumexp
c

[
log θverb(i),c + log fd

(
y
(d)
i | β(d)

c ,ρ
(d)
participant(i)

)]

We minimize the loss function using minibatch stochastic gradient descent with the

Adam optimizer with a learning rate of 0.02 and a batch size of 5%, for a maximum

of 10000 epochs. We initialize the cluster weights and fixed effects parameters using

K-Means with imputation of missing values. We use an early stopping criterion where,

after 1000 epochs, we stop if the relative change in loss (over a window size of 100) is

below a threshold of 1e−7. We set the cluster dispersion hyperparameter to be α = 1.

Selecting the optimal number of clusters

A challenge that arises in our unsupervised clustering approach is that of selecting the

optimal number of clusters. One way to select the number of clusters is to use an extrinsic

metric; for instance, evaluating how well a particular number of inference patterns is

able to predict syntactic acceptability judgments in a multivariate regression (Kane et al.,

2021). In the present experiment, however, we incorporate the MegaAcceptability task

into the model in order to find syntactically meaningful clusters, so we cannot use this

dataset for an extrinsic evaluation.

9For example, the ordinals in MegaVeridicality would be assigned 0, 0.5, and 1.
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Instead, we use cross-evaluation to select the optimal number of clusters. We split

each dataset into 5 folds. For each held-out fold, we fit the model on the remaining

datasets and compute the per-item log-likelihood of the held-out data. For each pairing

of models (i.e., for each pairing of the number of clusters |C|), we compute Bonferroni-

corrected 95% confidence intervals for the likelihood ratio via non-parametric bootstrap

over items. To choose the optimal number of clusters |C|∗, we choose the smallest

number of clusters such that no model with a greater number of clusters performs

reliably better.

8.4.2 Results

After fitting models for each number of clusters up to |C| = 30 using the cross-validation

procedure described in Section 8.4.1, we find the optimal number of clusters to be

|C|∗ = 25. This demonstrates that 25 clusters are sufficient to capture most of the

variance in the observed inference patterns and syntactic distributions across the lexical-

scale data. One important caveat, however, is that the inference data our model was

trained on is not exhaustive; training the model on additional inference types may lead

to a finer-grained clustering. In this section, we investigate the resulting clusters and the

inference patterns that are associated with them.

Hierarchically Grouping Clusters

For expository purposes, we first hierarchically group the resulting clusters on the basis

of correlations between their mean inference patterns and syntactic distributions. We

perform an agglomerative hierarchical clustering in which we regard the “micro-clusters”

from the mixture model as individual samples, and attempt to induce “macro-clusters”

by iteratively merging clusters. We use a Pearson correlation distance metric, and define

the distance between two clusters to be the maximum distance between any pair of data

points within them (i.e., complete linkage).
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Figure 8.3: Through hierarchically clustering the “micro-clusters” from the mixture

model based on correlations between inference patterns, we obtain several “macro-

clusters” or groups, which in turn are divided between a group with broadly positive

valence and a group with broadly negative valence.

The resulting dendrogram plot is shown in Figure 8.3. We manually label the most

salient macro-clusters (i.e., groups), and we assign names to the micro-clusters on

the basis of the highest-probability predicates contained within them. We additionally

observe that the primary division – capturing most of the correlations between micro-

clusters – corresponds to a broadly negative valence group of clusters (i.e., associated

with various negated inference types) and a broadly positive valence group of clusters.

Clusters and Inference Patterns

In the following section, we provide a discussion of the salient inference patterns for each

cluster in our taxonomy along with prototypical predicates in each cluster, comparing

our results to prior literature when applicable. We investigate these inference patterns by

analyzing the mean values of the fixed effects parameters learned by the mixed effects

mixture model for each inference dataset.

Since we learn parameters for each inference type relative to each syntactic frame in

a dataset, we first aggregate values across frames in order to aid interpretation. However,
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Figure 8.4: Prototypical doxastic, bouletic, and intention inference patterns for each

cluster (weighted average across frames).
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Figure 8.5: Prototypical veridicality inference patterns for each cluster (weighted average

across frames).

A[1s] not __[past] B~> A[1s] __[past] not S

A[1s] not __[pres] B~> A[1s] __[pres] not S

A[3s] not __[past] B~> A[3s] __[past] not S

A[3s] not __[pres] B~> A[3s] __[pres] not S

Ges
tu

ra
l C

om
m

un
ica

tiv
es

Per
su

as
ive

s

Circ
um

sta
nt

ial
s +

 A
sp

ec
tu

als

In
for

m
at

ive
s

Rea
cti

ve
s

M
isc

 E
m

ot
ive

s

Por
tra

itiv
es

Cha
ng

e 
of

 S
ta

te
 +

 A
sp

ec
tu

als

Coe
rc

ive
s

W
ea

k D
ox

as
tic

 C
om

m
un

ica
tiv

es

Stro
ng

 D
ox

as
tic

 C
om

m
un

ica
tiv

es

Pos
itiv

e 
In

te
rn

al 
Em

ot
ive

s

Eva
lua

tiv
es

Pro
sp

ec
tiv

e 
Pre

fer
en

tia
ls

Aut
ho

rit
at

ive
s

Rep
re

se
nt

at
ion

als

Cog
nit

ive
 (S

em
i)fa

cti
ve

s

Rea
so

nin
g 

+ 
Ju

dg
m

en
t

Neg
at

ive
 E

xte
rn

al 
Em

ot
ive

s

M
ira

tiv
es

Unc
er

ta
int

y

Arg
um

en
ta

tiv
es

Neg
at

ive
 A

ttit
ud

es

Pro
hib

itiv
es

Ant
ido

xa
sti

cs

0.1 0.3 0.5 0.7 0.9
Mean likelihood

Figure 8.6: Prototypical neg-raising inference patterns for each cluster (weighted average

across frames).
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since not all inference type and frame combinations have sufficient datapoints available –

due to low acceptability – some values learned by the model may not be meaningful.

We account for this by taking a weighted average across frames for each inference

type, weighting by the percentile rank of the acceptability values learned by the model

for each frame. Figures 8.5–8.4 show the resulting inference patterns for veridicality

inferences, negation-raising inferences, and doxastic, bouletic, and intention inferences,

respectively. We primarily refer to these prototypical inference patterns throughout the

following discussion of the observed clusters, except where we find that it is important

to describe patterns relative to particular frames – in Appendix A.2 we provide plots

showing the full disaggregated inference patterns. Furthermore, we provide full lists of

the high-probability predicates within each cluster in Appendix A.1.

Group 1 broadly consists of clusters related to representation, reasoning, preferences,

and authorization.

(34) Reasoning + Judgment: change in belief states through mental processes.

manage, glean, opt, presuppose, signify, conclude, etc.

(35) Cognitive (Semi)factives: cognitive states where truth is presupposed.

discover, realize, recognize, know, find out, understand, etc.

(36) Representationals: representations of belief states.

dream, hope, think, agree, assume, etc.

(37) Authoritatives: acts of authorizing some state or action.

expect, authorize, desire, request, allow, approve, etc.

(38) Prospective Preferentials: orientation towards bringing about some preferred

future state.

aim, appear, compete, hunger, try, lust, attempt, start, etc.
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We first compare and contrast the clusters of Representationals (36), Cognitive

(Semi)factives (35), and Reasoning + Judgment (34). These clusters are all similar in

that they primarily involve mental states and processes related to the representation

of beliefs and knowledge – indeed, we observe from Figure 8.4 that these clusters are

associated with similar inferences about the belief of the subject. However, they differ

in whether the truth of their complement is in fact entailed or presupposed, i.e., whether

they give rise to veridicality inferences in positive contexts, both positive and negative

contexts, or neither. Predicates within the class of cognitive semifactives have been

thought to weakly presuppose the truth of their clausal complements (Karttunen, 1971b;

Kiparsky and Kiparsky, 1970); however, unlike true factives (such as in the case of

emotive predicates, as we discuss later), these presuppositions are highly variable across

contexts (Hooper and Thompson, 1973; Simons, 2007). Indeed, we observe from Figure

8.5 that this cluster is strongly veridical, but not systematically factive across all contexts

– yet, we note that when we disaggregate inference types by individual frames (see

Appendix A.2), this cluster is factive in the frame A that S, consistent with prior

literature.

The cluster of Reasoning + Judgment predicates are an example of what Karttunen

(1971a) termed “two-way implicatives”: they entail the truth of their complement in

a positive context, and the falsity of their complement in a negative context. The

Representational cluster, on the other hand, is nonveridical, consistent with previous

findings (White and Rawlins, 2018).

The other two nonveridical clusters in this group – Authoritatives (37) and Prospec-

tive Preferentials (38) – primarily contain predicates that represent attitudes in relation

to infinitival complements. The former – containing predicates that have to do with

authorizing some action or state of affairs - tends to trigger inferences about either the

intention of the subject or about the desire and intention of the object (in the case of

transitive frames). The latter contains a subset of preferential predicates (Uegaki and

Sudo, 2017) that involve preference for, and possibly an act to bring about, some future
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state or event – this cluster tends to trigger inferences that the subject believes, wants,

and intends the embedded clause.

We note that this group as a whole is the only group that triggers strong neg-raising

inferences (Figure 8.6) – with the exception of Prospective Preferentials, which trigger

only weak neg-raising inferences in the present tense – suggesting that neg-raising is

related to predicates with cognitive components. This is generally consistent with prior

findings (An and White, 2020), although we surprisingly find the class of Cognitive

(Semi)factives as a whole to be associated with neg-raising inferences, despite that

predicates such as realize and know are standardly thought to be non-neg-raising.

Group 2 consists of clusters capturing a mixture of positive valence internal states,

communicatives, and aspectual predicates.

(39) Evaluatives: acts of evaluating the truth of a belief.

check, investigate, contemplate, evaluate, examine, explore, etc.

(40) Positive Internal Emotives: positive internal emotional states.

content, relieve, amuse, charm, please, comfort, etc.

(41) Strong Doxastic Communicatives: acts of communicating a belief where truth

is entailed.

affirm, confirm, verify, acknowledge, clarify, etc.

(42) Weak Doxastic Communicatives: acts of communicating a belief.

articulate, communicate, explain, write, etc.

(43) Coercives: acts of compelling another to perform some action.

coerce, enlist, manipulate, allow, assign, bribe, coax, compel, force, etc.

(44) Change of State + Aspectuals: expressions involving a change in state over

time.
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buy, delete, alter, attempt, insert, operate, cause, etc.

(45) Portraitives: acts of depicting some state or action.

defend, imitate, portray, address, conceal, depict, describe, detail, etc.

(46) Misc Emotives: expressions of emotion that didn’t cleanly fit in other clusters.

faze, cloud, gladden, affront, bear, bless, chide, etc.

Starting with the Evaluatives (39) and Positive Internal Emotives (40), we find

predicates involving internal evaluation of doxastic states and predicates representing

positive internal emotional states, respectively. The former cluster is nonveridical and is

associated with generally positive doxastic and bouletic inferences, although may result

in negative inferences about the subject in particular nonfinite transitive frames (see

Appendix A.2). Unsurprisingly, the latter cluster is factive10 – as emotive predicates are

typically thought to be (Kiparsky and Kiparsky, 1970) – and associated with positive

bouletic inferences with finite complements.

Interestingly, we find two separate classes of communicative predicates involving a

communication of beliefs – Strong Doxastic Communicatives (41) and Weak Doxastic

Communicatives (42) – that both trigger positive doxastic inferences for either partici-

pant; however, the former cluster is veridical – entailing the truth of the complement –

while the latter cluster is nonveridical.

We next find a cluster of Coercive (43) predicates; consistent with intuition, these

predicates trigger a positive intention inference for the object of the coercion, but a

much weaker bouletic inference. This cluster is also the only other two-way implicative

cluster (along with Reasoning + Judgment), triggering a positive veridicality inference

in positive contexts, and a negative inference in negative contexts. Intriguingly, our

model also finds a couple clusters of aspectual predicates11, one of which – the Change

10The factivity inferences are particularly strong in passivized frames; refer to Appendix A.2.
11Plausibly, these clusters are differentiated solely by their typical syntactic distributions, since we do

not measure inferences related to aspect – though this would be an interesting future analysis.
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of State + Aspectuals (44) cluster – is closely related to Coercives and contains veridical

predicates that involve a change in state over time.

Finally, we observe clusters of Portraitives (45) (predicates depicting some state or

action) as well as Misc Emotives (46) (“miscellaneous” expressions of emotion that

didn’t fit cleanly in other emotive clusters). The former cluster fails to trigger doxastic

inferences about the subject in nonfinite contexts. Plausibly, this is due to the fact that

depicting an action tends to carry an implication that the action itself was not performed.

Group 3 consists of primarily communicative clusters that involve transmission of

information.

(47) Reactives: acts of communicating an attitude in relation to a state or event.

audit, discipline, approach, chastise, compliment, praise, demean, etc.

(48) Informatives: acts of informing another about a state or event.

inform, remind, tell, advise, alert, ask, email, notify, warn, etc.

(49) Circumstantials + Aspectuals: expressions involving the result of some pro-

cess over time.

bury, come, function, happen, invite, result, etc.

(50) Persuasives: communicative acts intended to bring about a change in desires

of the target.

hound, pester, educate, interview, badger, brief, bug, challenge, etc.

(51) Gestural Communicatives: non-contentful acts of communication.

glare, grin, strut, talk, beam, frown, scowl, sulk, etc.

First, we find two related communicative clusters – Reactives (47) and Informatives

(48) – that respectively involve the communication of a bouletic attitude towards a state

or event, and the act of informing another about a state or event. As one might expect,
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reactives trigger slightly positive inferences about the subject’s desire for the object to

perform some action, but do not trigger inferences about the subject’s desire to perform

the action themselves. Informatives, on the other hand, are associated with doxastic

inferences for both participants (in the finite case); and inferences about both the object’s

intention to perform an action and the subject’s intention for the object to perform an

action (in the nonfinite case). Both clusters are nonveridical, or very weakly implicative.

We next observe a second cluster of aspectual predicates – Circumstantials + As-

pectuals (49). One interesting finding is that this cluster triggers only weak veridicality

inferences in positive contexts, but strong negative veridicality inferences in negative

contexts – the converse of the Change of State + Aspectuals cluster. Plausibly, this differ-

ence is related to the fact that the predicates in the former set of aspectuals are generally

past-oriented, whereas the latter set of aspectuals are generally future-oriented (Moon

and White, 2020). An experiment that incorporates temporal orientation judgments into

the model may provide evidence for or against this hypothesis; we leave this open as a

possible future analysis.

Finally, we find two other communicative clusters – Persuasives (50) and Gestural

Communicatives (51). The former, like the cluster of Coercives, contains predicates

that involve an intention of the subject for the object of the act to perform some action;

unlike Coercives, however, the predicates in this cluster are indirectly mediated through

an attempt to bring about a change in the desires of the target. Correspondingly, we

observe that this cluster is nonveridical and tends to be associated with weaker bouletic

and intention inferences for the object. The latter cluster contains predicates that involve

communication of internal states through gestures or other non-contentful speech acts,

and triggers a bouletic inference about the desire of the subject to perform some action

in nonfinite contexts.

Group 4 consists of clusters that primarily contain negative attitude predicates, ex-

pressing internal attitudes that involve some sort of negated component.
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(52) Antidoxastics: expressions of disbelief or doubt in some state or action.

doubt, question, dispute, fear, neglect, worry, etc.

(53) Prohibitives: acts of disallowing or rejecting some state or action.

denounce, disallow, face, prohibit, repress, abhor, admonish, etc.

(54) Negative Attitudes: negative cognitive attitudes towards some state or action.

decline, fail, hate, neglect, refuse, regret, detest, dislike, etc.

We first discuss the two nonveridical clusters in this group: Antidoxastics (52)

and Prohibitives (53). The former cluster – which contains predicates that express

disbelief, anti-belief, or doubt in some state or action – inverts the doxastic pattern

associated with positive doxastic clusters such as Representationals: it does not trigger

doxastic inferences about the subject in a positive context12, and triggers positive doxastic

inferences about the subject when under negation. Interestingly, we also find that, when

used in nonfinite transitive constructions, this cluster is associated with positive doxastic

inferences for each participant about the other participant – suggesting that these

predicates may also involve a misalignment of belief states. The Prohibitives cluster, on

the other hand, contains predicates that express rejection of some state or action, and is

associated with negative bouletic inferences that are targeted by negation.

The third cluster in this group – Negative Attitudes (54) – contain other predicates

that express negative internal states. This cluster is the only cluster as a whole to be

anti-implicative – triggering negative veridicality inferences that are flipped by negation

– however, when we disaggregate inferences by frame (see Appendix A.2), we find

that this cluster is strongly factive in the A that S frame. Therefore, this cluster

appears to agglomerate several types of predicates – including negative internal emotives

(such as hate and dislike) that are known to be factive (Kiparsky and Kiparsky, 1970;

12We observe a weak positive inference with finite complements; however, looking at the disaggregated

results in Appendix A.2, we note that this is primarily driven by certain tenseless constructions.
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Giannakidou, 2006), strongly anti-implicative predicates such as fail and decline, and

predicates such as refuse that have sometimes been called “adversatives” (Klima, 1964).

One possible cause of this outcome is that the inclusion of both finite and nonfinite

frames in the model weakens the predicate-level distinctions between inference patterns

within this cluster.

Group 5 consists of the remaining negative valence clusters that tend to contain

predicates expressing negative externalized states or actions.

(55) Argumentatives: communicative acts that express disagreement over some

desire.

fret, lie, agonize, bitch, brood, object, quarrel, quibble, whine, etc.

(56) Uncertainty: expressions of lack of certainty in some belief or action.

confuse, distress, freak out, panic, perplex, puzzle, stump, baffle, etc.

(57) Miratives: expressions of displeasure or surprise in some state or action.

depress, disappoint, shock, disgust, displease, embarrass, frustrate, surprise, etc.

(58) Negative External Emotives: externalized expressions of negative emotion.

apologize, complain, cry, gloat, growl, sob, weep, etc.

First, we find clusters of Argumentatives (55) and Uncertainty (56) that appear to

contain communicative predicates involving disagreement, and external expressions

of uncertainty. In particular, the former cluster appears to entail the anti-desire of the

subject for some state or action – i.e., it triggers negative bouletic inferences that are

flipped under negation – but generates a doxastic presupposition for the subject. The

latter cluster appears to trigger similar inference patterns (though generating stronger

negative bouletic and intention inferences for the subject), but is additionally factive –
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distinguishing it from the cluster of Antidoxastics as well.

Next, we find a cluster of Miratives (57) containing predicates that involve expres-

sions of displeasure or surprise. Standard accounts of mirativity suggest that this attitude

involves both a factive, emotive component (Sadock and Zwicky, 1985; Chernilovskaya

et al., 2012; Bustamante, 2015) as well as an element of surprise, suddenness, or mental

unpreparedness (DeLancey, 1997, 2001; Rett, 2011). Indeed, we observe that this cluster

appears to pattern similarly to other emotive clusters: it is factive, triggers negative

bouletic inferences about the subject that are targeted by negation, and generates a

doxastic presupposition13. Interestingly, we find that negative emotive miratives tend

to be more prototypical members of this cluster than predicates with weaker emotive

components such as surprise.

Finally, we find a cluster of Negative External Emotives (58) containing predicates

involving externalized expressions of negative emotion. This cluster has a similar pattern

of bouletic and doxastic inferences as other emotive clusters, but surprisingly, we find

that this cluster is only veridical rather than factive. One possible explanation for this

difference may be that external emotives carry an additional actuality inference that may

be targeted by negation (e.g., to say that “A didn’t complain that C happened” is to say

that C did not, in fact, happen). We leave this as an open question for future work.

8.4.3 Mapping Clusters to Syntax

We now consider the syntactic distributions of the clusters in our taxonomy learned by

the view of the model that was fit using MegaAcceptability. However, rather than directly

investigating the relationship between clusters and syntactic frames, we ultimately aim

to extract relationships between clusters and the underlying constituents (or syntactic

features) that the frames are built from. For example, the frame A was whether S

may be parsed into the following constituents: a direct object (NP obj), an interrogative

13These inferences become stronger when looking at the specific frame A was that S.
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complement (whether S), and potentially a direct subject (NP subj) depending on

interpretation.

We assume that there is a linear mapping M ∈ R|C|×|S| from clusters to a set of

syntactic features S such that the syntactic features in a particular frame can be predicted

from the distribution of clusters that are acceptable in that frame. We treat this as a multi-

label classification problem where the objective is to predict for each frame a multi-hot

vector where the ith index is 1 if that frame contains feature Si, and 0 otherwise. One

challenge that emerges is that particular frames may have multiple constituent parses;

for instance, the example above is ambiguous between two interpretations with and

without a direct subject. We account for this by treating two distinct parses as separate

data points, but taking the minimum loss over all parses pf for a particular frame f . We

therefore use the following binary cross-entropy loss function:

argmin
M

−
∑
f,s

minpf

(
ϕ̂f,slogϕf,pf ,s + (1− ϕf,pf ,s)log(1− ϕ̂f,s)

)
ϕ̂f,s = logit−1

(∑
c

af,cmc,s

)

Where A ∈ [0, 1]|F|×|C| is the matrix of cluster acceptability loadings for each frame

computed from the fixed effects of the mixture model14, and ϕf ∈ {0, 1}|Pf |×|S| contains

a multi-hot vector of features for each parse of f . We manually create the latter matrices

for |S| = 27 constituent types and |F| = 49 frames, with a maximum of 3 parses per

frame.

We fit this model using batch gradient descent with a learning rate of 0.1 for 2000

epochs. We show the resulting syntactic feature probabilities logit−1(M) for each cluster

in Figure 8.7, ordering the axes according to a hierarchical clustering. In the remainder

of this section, we discuss several interesting distinctions that we find.

14The full loadings are included in Appendix A.2.
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Figure 8.7: Likelihoods that each cluster maps onto a particular syntactic feature.

NP-taking behavior We observe fairly clear distinctions in NP-taking behavior be-

tween clusters, with emotive clusters (such as Negative External Emotives and Positive

Internal Emotives) and communicative clusters (such as Strong/Weak Doxastic Commu-

nicatives, Persuasives, and Informatives – but interestingly, not Gestural Communica-

tives or Argumentatives) having strong preferences for either a direct object (NP obj)

or indirect object (NP iobj), and with cognitive/representational clusters showing the

weakest preferences for either. The preference for a direct or indirect object among

communicatives is likely indicative of the fact that communicatives tend to entail transfer

of information from a source (usually characterized by the subject) to a goal (usually

characterized by the direct or indirect object); a similar generalization likely holds for

external emotives. The tendency of internal emotive clusters to prefer a direct object is

perhaps more surprising – however, this is likely attributable to the tendency of internal
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emotives to appear in expletive subject + experiencer object constructions, such as “It

pleased someone that something happened”.

We find a further distinction within communicative clusters between those that

strongly prefer to realize the goal as an indirect object – e.g., Strong/Weak Doxastic

Communicatives, as well as Negative External Emotives and Reasoning + Judgment

– those that prefer to realize the goal as a direct object – e.g., Reactives, Informatives,

Authoritatives, and Prohibitives – and those that are acceptable with both – e.g., Por-

traitives and Coercives. These findings broadly replicate prior work by Kane et al.

(2021); however, we find clearer evidence for communicative classes that prefer direct

objects at the exclusion of indirect objects, including clusters such as Miratives and

Antidoxastics that were previously found to have a weak preference for direct objects.

It is likely that we observe stronger associations in these cases due to the inclusion of

nonfinite transitive constructions, such as (59), as well as passivized experiencer object

constructions as mentioned previously.

(59) a. ?Someone {questioned, worried, embarrassed, surprised} someone that

something happened.

b. Someone {questioned, worried, embarrassed, surprised} someone to do

something.

Interestingly, we also find a distinction in NP-taking between the two aspectual classes,

with the more future-oriented Change of State + Aspectuals cluster preferring a direct

object, and the more past-oriented Circumstantials + Aspectuals cluster preferring an

indirect object. This appears to attest to the hypothesis that NP-taking behavior tracks

underlying distinctions in event structure or aspect (Levin and Rappaport Hovav, 2005),

though this relationship requires further exploration.

Finiteness We also observe clear trends in the relationships between clusters and the

types of clausal complements that they prefer. For instance, we observe that many
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clusters containing so-called “assertive” predicates (Hooper, 1975) – e.g., Cognitive

(Semi)factives, Representationals, Reasoning + Judgment, Portraitives, and Weak Doxas-

tic Communicatives (but, interestingly, not their Strong counterpart) – as well as several

other emotive or bouletic clusters – tend to prefer finite complements (that/whether

S variants). On the other hand, clusters that primarily involve intention components

– e.g., Authoritatives, Coercives, Prospective Preferentials, and Prohibitives – tend to

prefer nonfinite complements (to VP variants). In particular, the distinction between

representationals and preferentials mirrors prior generalizations (see Bolinger, 1968).

We note, however, that this trend is nowhere near categorical; many clusters, including

Representationals, can take both finite and nonfinite complements to some degree.

Eventivity Looking now within clusters that can take nonfinite complements, we also

observe interesting distinctions in the eventivity of the embedded verb phrase. For exam-

ple, though it was noted above that Representationals (and Cognitive (Semi)factives) can

take some nonfinite complements, these are heavily biased towards stative (-eventive)

complements – whereas Prospective Preferentials are acceptable with both types of

complements. This pattern may indicate a structural distinction between the sorts of

infinitivals that representationals take and those that preferentials take (see Wurmbrand,

2014).

Embedded Tense In the case of finite complements, we distinguish between the

two embedded tenses – past (default that S) and future (that S[+future]) – in the

MegaAcceptability dataset. While many clusters are acceptable with both embedded

tenses, we find some clusters that tend to prefer future-oriented complements – such as

Authoritatives, Gestural Communicatives, Argumentatives, and Miratives – and others

that tend to prefer past-oriented complements – such as Weak Doxastic Communicatives

and Negative Attitudes. It is likely that these differences mirror distinctions in the

temporal interpretations of the underlying events (Moon and White, 2020).
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Interrogativity Finally, we turn towards the distinction between interrogative

(which/whether variants) and declarative (that/to variants) complements. Many gener-

alizations have been provided relating hypothesized semantic components to alternation

between interrogatives and declaratives (Hintikka, 1975; Grimshaw, 1979; Zuber, 1982;

Egré, 2008; Theiler et al., 2017, 2019; Uegaki and Sudo, 2019; Roberts, 2019). One

common alternation, for instance, draws attention to the distinction between respon-

sive predicates – those that are good with both complements, such as (60-b) – and

antirogative predicates – those that are only good with declarative complements. This is

commonly taken to indicate a relationship between veridicality and interrogativity.

(60) a. Someone {thinks, believes, hopes, fears} (that / *whether) S

b. Someone {knows, understands, doubts, fears} (that / whether) S

We find, indeed, that there are several responsive clusters that allow for both complement

types – including Cognitive (Semi)factives and Antidoxastics – and clusters that are

antirogative – including Representationals and Persuasives. However, both the Cognitive

(Semi)factives and Representationals exhibit weaker preferences than one might expect.

This finding is consistent with recent work that finds the support for such generalizations

to be considerably weaker when investigating corpus-wide data (White, 2021).

Interestingly, we also find several clusters that exhibit a strong preference for inter-

rogative complements over declarative complements, including intuitive clusters such as

Reactives as well as some counter-intuitive clusters that merit further investigation – for

example, Uncertainty, Informatives and Strong Doxastic Communicatives.

8.5 Discovering Semantic Components

As an exploratory post hoc analysis – intended to lay the groundwork for future investiga-

tion and testing of linguistic generalizations – we try to decompose the clusters into a set
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of semantic components based on shared correlations within the clusters. If the clusters

in our taxonomy correspond to distinct inference patterns and syntactic distributions, the

components that we aim to uncover represent, in some sense, aspects of the underlying

denotational features that combine to form the truth conditions of predicates within each

cluster (see e.g. Dowty, 1979) – for instance, bouletic or doxastic modalities.

8.5.1 Model

We induce the semantic components using a fuzzy logic matrix factorization model,

following White and Rawlins (2016) and An and White (2020). The intuition behind our

approach is that we assume a particular cluster c triggers a particular inference type i –

denoted by the boolean indicator variable rc,i – if it has at least one semantic component

k that is associated with that inference type – denoted by the boolean indicator variables

lc,k and hk,i, respectively. More formally, rc,i ≡
∨
k

[lc,k ∧ hk,i].

Since our clustering model learns the probabilities that each cluster triggers a particu-

lar inference type, we convert this definition to a probabilistic fuzzy logic formula (Megh-

dadi and Akbarzadeh-T, 2001), choosing an axiomatization where P (x∧y) ≡ P (x)P (y)

and P (¬x) ≡ 1 − P (x). Specifically, given the mean fixed effect values learned by

the mixture model for the three inference datasets – T ∈ [0, 1]|C|×|I| – we derive the

following model:

t̂c,i = P (rc,i) = P

(∨
k

[lc,k ∧ hk,i]

)
= 1−

∏
k

1− uc,knk,i

U∗, N∗ = argmin
U,N

(
|T − T̂ |

)
Where U ∈ [0, 1]|C|×|K| and N ∈ [0, 1]|K|×|I| are the factorized matrices representing the

probability that a cluster has a particular semantic component, and that that semantic
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component gives rise to a particular inference type, respectively15.

We impose additional regularization on the components by using a modified version

of the syntactic feature classifier discussed in Section 8.4.3 to predict the syntactic

features associated with each component. Instead of learning a linear mapping from

clusters to features, we instead learn a mapping M ∈ R|K|×|S| from components to

features. We compute the frame probabilities for each component by composing the

cluster frame probabilities (i.e., A ∈ [0, 1]|F|×|C|) with the component probabilities for

each cluster learned by the model, i.e., U :

ϕ̂f,s = logit−1

(∑
k

(∑
c

af,cuc,k

)
mc,s

)
M∗, U∗ = argmin

M,U

−
∑
f,s

minpf

(
ϕ̂f,slogϕf,pf ,s + (1− ϕf,pf ,s)log(1− ϕ̂f,s)

)
We jointly optimize both loss functions during each epoch of training by iteratively

optimizing the fuzzy logic inference model (using minibatch gradient descent with a

batch size of 20%) and the feature classification model (using batch gradient descent).

We fit the model using the Adam optimizer for a maximum of 10000 epochs, using a

learning rate of 0.01, stopping if after 1000 epochs the relative change in loss for both

models is below a threshold of 1e−5.

8.5.2 Results

After fitting models with up to 20 components, we choose to analyze the model with

|K|∗ = 10 components – this number is chosen heuristically by finding the “elbow point”

15One caveat with this model definition is that it fails to account for the fact that a particular component

may be negated by a particular cluster – instead implicitly viewing this as two separate components that

give rise to negative or positive inferences. In developing this model, we initially attempted to model

negation of a component by a cluster explicitly; however, we found that this model was not able to capture

meaningful component negations.
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Figure 8.8: Semantic component membership probabilities for each cluster.

in the syntax classification loss, i.e., the point at which introducing an additional compo-

nent begins to provide marginal explanatory power towards the syntactic distributions of

clusters.

Figures 8.8 and 8.9 respectively plot the probabilities that a cluster has a particular

semantic component (U ) and the probabilities that a particular semantic component maps

to a particular syntactic feature (M ). In Figures 8.10 – 8.12 we show the probabilities

that a particular semantic component gives rise to a particular inference type, averaging

across frames for each inference type. The components in each plot are ordered according

to a hierarchical clustering of syntactic feature and inference probabilities.

Since the clusters in our model are built from several semantic components, the

inferences associated with each cluster reflect superpositions of the underlying compo-

nent mappings – in other words, the inferential properties of each cluster can be “built

from” distinct combinations of components. Similarly, the distributional profile of a

particular cluster of predicates will be a function of the syntactic preferences of the

semantic components from which that cluster is built – for example, a cluster having

two components, one with a preference for direct objects and one with a preference for

indirect objects, may be acceptable with either a direct or indirect object.
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Figure 8.9: Mappings from semantic components to syntactic features.

We form several generalizations from the resulting semantic components that are

consonant with prior literature. For example, replicating a finding in (Kane et al.,

2021)16, we find that components associated with neg-raising are anti-correlated with

those that are veridical under negation, although this correlation is weaker than previously

observed (An and White, 2020). Unsurprisingly, we observe from Figure 8.8 that these

components most strongly associate with emotive clusters, which have long been known

to be anti-neg-raising as well as factive.

Below, we describe interpretations of the 10 semantic components that result from

our model, along with further tentative generalizations. We suggest names for each

component on the basis of the clusters that have that component (Figure 8.8); the

predicates with highest probability for that component17 (see Appendix A.3); and the

inference patterns associated with each component (Figures 8.10 – 8.12).

Negative Preferentiality represents a negative preference for some state or event.

16In contrast to the matrix factorization approach used here, which results in “local” semantic compo-

nents that combine to form the inference patterns, Kane et al. (2021) use PCA to find “global” components

that explain most of the variance in inference patterns.
17We compute these probabilities by composing the component probabilities for each cluster with the

predicate membership probabilities for each cluster obtained from the mixture model.
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Figure 8.10: Mappings from semantic components to doxastic, bouletic, and intention

inferences (averaged across frames).
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Figure 8.11: Mappings from semantic components to veridicality inferences (averaged

across frames).
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Figure 8.12: Mappings from semantic components to neg-raising inferences (averaged

across frames).
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(61) detest, loathe, neglect, oppose, reject, resent, disapprove, dislike

Broadly, this component captures negative emotivity, and is shared among all negative

emotive clusters (as well as, to a lesser extent, Gestural Communicatives). It tends to

prefer intransitive syntactic contexts with finite complements. It is associated with veridi-

cality and doxastic presuppositions, as well as anti-desire and anti-intention inferences

that are reversed in negative contexts.

Directed Preferentiality captures preferences that are directed from a source to a

target.

(62) result, happen, aggravate, annoy, dishearten, pester, admonish, agitate

This component is shared by a subset of negative valence clusters that involve com-

munication of negative preferential attitudes – namely, Miratives, Argumentatives, and

Prohibitives – as well as positive valence clusters such as Persuasives and, curiously,

Cirumstantials + Aspectuals. It tends to prefer syntactic contexts with a direct object,

and either nonfinite complements or future-oriented finite complements. In contrast with

Negative Preferentiality, it is non-veridical, but is associated with bouletic and intention

inferences for the target about the source.

Internal Representationality captures representation of the “inner” belief state of an

agent.

(63) consider, deem, evaluate, formulate, perceive, picture, recognize

This component is shared by the various “cognitive” clusters that we identified – such

as Representationals, Cognitive (Semi)factives, and Reasoning + Judgment – as well

as Reactives, Portraitives, and Evaluatives. It tends to prefer intransitive contexts with
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interrogative or stative nonfinite complements. It is associated with strong neg-raising

inferences with a 3rd-person subject under present tense.

Negative Intentionality represents an intention of an agent against some event.

(64) neglect, refuse, detest, dislike, hate, reject, resent, decline, disallow

This component is shared primarily by a subset of clusters relating to negative attitudinal

states – Antidoxastics, Prohibitives, and Negative Attitudes – but also Prospective Pref-

erentials, which notably contains both Negative and Positive Intentionality components.

It tends to prefer syntactic contexts with direct objects and either nonfinite or gerund

complements. It is associated with anti-intention inferences for an agent, or in the case

of transitive contexts, for the target about the source.

Actuality captures the entailment that some state or event actually occurred (or will

occur).

(65) result, delete, store, bury, discover, disgust, find, happen, evidence

This component is shared by both aspectual clusters, as well as Coercives, Cognitive

(Semi)factives, Reasoning + Judgment, Miratives, and Uncertainty. It tends to prefer

contexts with a direct object and interrogative complements. It is associated with strong

veridicality inferences.

Emotive Communicativity represents the communication of bouletic attitudes from a

source to a target.

(66) comfort, soothe, aggrieve, attest, commend, congratulate
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This component is shared by many emotive and communicative clusters, such as Per-

suasives, Reactives, Weak Doxastic Communicatives (but, interestingly, not Strong

Doxastic Communicatives), Positive Internal Emotives, Negative External Emotives.

It also appears for Reasoning + Judgment, possibly suggesting that some predicates

of judgment involve both representational and emotive components. It tends to prefer

indirect objects.

Positive Intentionality represents an intention of an agent for some event.

(67) start, try, aim, appear, attempt, buy, steer, apply

This component is shared by clusters such as Gestural Communicatives, Reactives, Misc

Emotives, Change of State + Aspectuals, Prospective Preferentials, as well as (to a

lesser degree) Coercives and Authoritatives. It tends to prefer either direct or indirect

objects, and nonfinite or tenseless complements. It is associated with reflexive intention

inferences for either the subject or object (in the transitive case), as well as neg-raising

inferences with a 1st-person subject under present tense.

Commitment broadly encompasses different types of commitments, such as discourse

commitment or doxastic commitment.

(68) advise, bet, command, discover, guarantee, instruct, petition, promise, trust,

approve

This component is shared by communicative clusters that involve some sort of discourse

commitment or obligation – such as Persuasives, Informatives, Change of State +

Aspectuals, Coercives, Strong Doxastic Communicatives, Authoritatives, and Positive

Internal Emotives – or doxastic commitment, such as Representationals and Cognitive

(Semi)factives. It tends to weakly prefer direct objects, and either finite, sentential, or
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small clause complements. It is associated with doxastic inferences about the subject and

object (in the case of transitive contexts) and neg-raising inferences with a 1st-person

subject under present tense.

Evaluativity captures the evaluation of the truth-value of a proposition (or intention

towards an action) by some agent.

(69) result, cloud, discuss, happen, outline, recount, repeat, review, summarize

The semantic interpretation of this component is somewhat unclear relative to the other

components that we observe; however, it is shared by clusters that each involve some sort

of evaluation or portrayal by an agent – including Evaluatives, Informatives, Portraitives,

and Weak Doxastic Communicatives (as well as, curiously, Circumstantials + Aspectuals

and Misc Emotives). This component tends to prefer both direct and indirect objects,

and interrogative or finite complements. It is associated with neg-raising inferences

with a 1st-person subject, and in the case of transitive nonfinite contexts, with intention

inferences about the object.

External Representationality captures communication of an attitude state from a

source to a target.

(70) admit, affirm, agree, allege, announce, claim, communicate, confirm, convey,

describe

This component is shared by several communicative clusters involving information trans-

fer – Portraitives, Weak and Strong Doxastic Communicatives, and Coercives – as well as

cognitive attitude clusters – Prospective Preferentials, Authoritatives, Representationals,

Cognitive (Semi)factives, and Reasoning + Judgment. It tends to prefer indirect objects

and either nonfinite, interrogative, tenseless, or future-oriented finite complements. It is
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associated with doxastic and bouletic inferences about both the subject and object (in

finite contexts), or about the subject towards the object (in nonfinite contexts). It is also

weakly neg-raising across all contexts.

Many of these components are interesting and clearly align with lexical-semantic

components that have been proposed in theoretical literature. We also find several

components that appear to align with relatively understudied relationships, such as

those relating the source of a communicative act with the target of a communicative

act. Interestingly, we find that most components are somewhat associated with doxastic,

bouletic, and intention inferences – the weakest overall associations appearing to be with

the Negative Preferentiality and Emotive Communicativity components – potentially

suggesting a root modality that is active in the interpretation of most clusters of predicates.

It is also possible, however, that a more fine-grained categorization of inference patterns

– including additional types of inferences besides those used for the present analysis

– may result in more varied components. We leave this as an interesting direction for

future exploration.

8.6 Discussion

In this chapter, we have presented the results of a lexical-scale collection of prototypical

belief, desire, and intention inferences, as well as a taxonomy of English predicates

derived on the basis of several types of prototypical inferences and syntactic distribu-

tions. We concluded with an exploratory analysis that revealed the underlying semantic

components that these prototypical inference patterns are constructed from. This work

represents, to our knowledge, the first systematic, lexical-scale taxonomy of predicates

according to their lexicosemantic inferential properties. The taxonomy and component

decomposition provide a fertile ground for linguists to test generalizations about the

interface between syntax and semantics.

Apart from the insights into lexical semantics gained through this analysis, such a
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taxonomy may be useful in the development of dialogue systems such as Eta, and in

NLP pipelines more generally. One popular framework for intelligent agents proposed

by Bratman (1987) explicitly models agents through their belief, desire, and intention

states, while a preponderance of dialogue schemas and plan actions contain conditions

related to these states. In both cases, creating precise and semantically-grounded models

for inferring belief, desire, and intention states from natural language would allow for

more robust and more explainable dialogue management.

We suggest two potentially promising routes for the incorporation of our results into

NLP systems. The first route involves using the inference patterns that we uncovered

to inform the design of Natural Logic (NLog) reasoning models. NLog was initially

proposed by Lakoff (1970) as an approach to characterize inferences in natural language

(or structures resembling natural language) through lexical entailment relations – for

example, monotonic inferences based on generalization and specialization relations, as

implemented by MacCartney and Manning (2007). These monotonic inferences are

known to be sensitive to semantic contexts including surrounding polarity items and the

veridicality or factivity of a matrix predicate (see e.g. Giannakidou, 2006). Stratos et al.

(2011) and Kim et al. (2019) demonstrate NLog systems for Episodic Logic and ULF,

respectively, that augment monotonic entailment with the ability to generate inferences

from a subset of clause-embedding factive and implicative predicates. Our work can

build on such systems by (i) greatly expanding the subset of factive and implicative

predicates that can modulate monotonic inferences or generate projection inferences; (ii)

allowing for the incorporation of other types of lexical entailments; particularly, bouletic,

doxastic, intention, and neg-raising entailments; (iii) allowing for the quantification of

uncertainty by using our model to assign probabilities to particular inferences.

A second, and more direct, route involves fine-tuning statistical natural language

inference (NLI) models on the MegaIntensionality dataset to enable prediction of be-

lief, desire, and intention entailments. In this direction, Gantt et al. (2020) propose a

method for inserting mixed effects adapters into pretrained language models (such as
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BERT) that allows them to model prototypical inference judgments while accounting

for annotator variability, and show that this method substantially improves performance

on the MegaVeridicality and MegaNegRaising datasets. A similar model trained on the

MegaIntensionality dataset instead of (or in addition to) these datasets may be sufficient

to predict the belief, desire, and intention states of agents from natural language text;

however, we leave this question to a future investigation.
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9 Conclusion

In this dissertation I presented Eta, a general dialogue framework for the creation of

conversational agents that uses an explicit dialogue schema representation and a novel

schema instantiation method to dynamically drive dialogue. Eta maintains a dialogue

state including an episodic memory, abstract schema knowledge, records of partially

instantiated schemas, a dialogue plan, and dialogue history. Four parallel processes –

perception, reasoning, planning, and execution – operate over this dialogue state. Within

each process, abstract transduction methods are employed that transform certain entities

in the dialogue state; for instance, interpreting an input as a logical form, or expanding a

step in the dialogue plan. The functional implementations of these transduction methods

are relegated to the domain of application, allowing for seamless integration of pattern-

based methods, LLM-based methods, or other methods depending on the needs of the

particular domain.

I have provided a comprehensive overview of three separate case studies of con-

versational agents created with the Eta framework across diverse domains, detailing

the design of the schemas and transduction methods that enabled each agent. First, I

discussed the LISSA virtual human – a friendly peer for social skill assistance – and

our efforts to enable topically broad and personable casual conversation that lead to

the genesis of the Eta framework. I also presented more recent work demonstrating

how schemas may be combined with LLMs in order to enable robust and engaging
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persona-based response generation.

Next, I discussed a spatially situated virtual agent, DAVID, that is able to hold

collaborative conversations with a user about a physical “blocks world” domain. I

described the schema design, transduction methods, and specialist reasoning methods

that were required to enable advanced question-answering capabilities, and provided an

open-ended evaluation of the system’s performance. I also discussed an extension of the

system to interactive concept tutoring sessions.

As a final case study, I presented the SOPHIE virtual human – a simulated cancer

patient that medical professionals can use to practice essential communication skills

in end-of-life scenarios. I presented results from an initial pilot experiment that was

conducted with the system, as well as a post-hoc analysis of the transcripts that were

obtained from this pilot. I discussed an extension of the SOPHIE agent that incorporates

LLMs for interpretation and generation, improving on the limitations observed in the

transcript analysis while preserving the strengths of the schema-based framework. This

system represents the most elaborate and impactful application of Eta to date, and to our

knowledge, there is no other dialogue framework that allows for conversational fluency

in various domains to the extent of Eta while still allowing control of the structure and

goals of dialogue.

In the final chapter of this dissertation, I shift from the topic of schema-based

dialogue management toward a descriptive question: as opposed to interpreting natural

language to fit a pre-specified representation of prototypical knowledge within a domain,

what sorts of prototypical knowledge can be inferred from natural language itself? I

described the MegaIntensionality project: an effort to create a lexical-scale dataset of

prototypical judgments of belief, desire, and intention inferences from English predicates.

I present a comprehensive taxonomy of predicates and corresponding inference patterns

derived from this data using a soft clustering model, and an exploratory analysis of the

semantic components underlying these clusters.

Several avenues of future work open up as a result of this dissertation. The current
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state of the Eta framework presented within, although adaptable, is still dependent on

domain-specific transducer plugins as well as external servers for specialist reasoning

methods. The extensions that we discussed illustrate some steps that we have taken to

employing more general domain-independent transduction methods, e.g., using statistical

semantic parsers or LLMs such as those proposed by (Kim et al., 2021; Gibson and

Lawley, 2022), and likewise using LLMs for controllable generation, as discussed in

Chapters 5 and 7. More extensive evaluations of these improvements are necessary,

and an effort to carry out a large-scale experiment with the SOPHIE system is currently

underway.

Apart from this, several other potential extensions appear to be promising for further

closing the gap between domain-specific plugins and domain-independent transduction

methods. For instance, LLM or search-based methods for reasoning and plan modifica-

tion may enhance Eta’s capabilities in domains involving complex logistical planning.

The data collected in the MegaIntensionality dataset, and the resulting analysis, may

be useful in developing models for natural language inference that can allow Eta to

more precisely track the belief, desire, and intention states of a user. Finally, enabling

automatic acquisition of schemas – e.g., from stories (Lawley et al., 2019) or dialogue

examples – and incorporating efficient data-driven methods of schema matching – e.g.,

attention models for schema alignment, such as those proposed by Mehri and Eskénazi

(2021) – would pave the way for a generalist agent competent in diverse domains without

the need for explicit schema design.
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methods, 41(4):977–990, 2009. doi: 10.3758/BRM.41.4.977.
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A Full MegaIntensionality Results

A.1 Complete Cluster Verb Memberships

In Table A.1, we provide a full list of high-probability predicates falling within each

cluster in our taxonomy. We show verbs falling within three cumulative probability

thresholds – i.e., we abbreviate 0.5 ≤ p > 0.4 as p > 0.4. Note that, due to the nature of

our soft clustering model, the same predicate may appear in multiple clusters if it has a

particularly entropic distribution (possibly suggesting a high degree of polysemy).

A.2 By-frame Inference Patterns

Figures A.1 – A.5 show the full inference patterns for veridicality, neg-raising, intention,

doxastic, and bouletic inferences, respectively. Each facet of a plot represents a particular

inference type, while individual frames are displayed on the y-axis.

To make the plots more interpretable, we filter out inferences in frames that aren’t

acceptable in a particular cluster, based on the model’s predicted values for the frames in

the MegaAcceptability dataset. Specifically, we filter out frames that are in the bottom

quarter percentile for ranked acceptability scores.
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We additionally show the full syntactic distributions learned by the MegaAccept-

ability view of our model – for present tense, past tense, and past progressive tense,

respectively – in Figures A.6 – Figure A.8.

A.3 Complete Component Verb Memberships

In Table A.2, we provide a full list of high-probability predicates falling within each

semantic component in our matrix factorization model. These probabilities are obtained

by composing the component probabilities for each cluster with the predicate member-

ship probabilities for each cluster obtained from the mixture model. We show verbs

falling within four cumulative probability thresholds – i.e., we abbreviate 0.7 ≤ p > 0.6

as p > 0.6.
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Cluster Threshold Predicates

Gestural

Communicatives

p > 0.5 glare, grin, strut, talk

p > 0.4 beam, feud, frown, repent, scowl, smirk, snivel, sulk,

wallow, wheeze

p > 0.3 chime, cough, cringe, listen, meditate, mope, pout,

rankle, sigh

Persuasives

p > 0.5 hound, pester

p > 0.4 educate, interview

p > 0.3 badger, brief, bug, challenge, consult, correct, coun-

sel, deceive, frighten, harass, interest, misinform,

mislead, pressure, probe, scare, taunt, torment

Circumstantials +

Aspectuals

p > 0.5 bury, carp, come, function, happen, invite, punt, re-

sult, skirmish, turn out

p > 0.4 bleat, bore, cloud, evidence, forgo, hire, seem, shoot,

sober, store, taste, wound

p > 0.3 accredit, cease, compete, configure, delete, disquiet,

end, get, hinder, inscribe, jade, meet, nauseate, non-

plus, remain, resume, serve, snub, stand, take, whoop

Informatives

p > 0.5 inform, remind, tell

p > 0.4 advise, alert, ask, email, notify, warn

p > 0.3 assure, caution, instruct, lecture, reassure, show,

teach

Reactives

p > 0.5 audit, discipline

p > 0.4 approach, chastise, distract, need, soothe
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p > 0.3 compliment, demean, frame, hustle, praise, recruit,

reprimand, serve, slander, stereotype, summon, tanta-

lize, thank, worship

Misc Emotives

p > 0.5 faze

p > 0.4 cloud, gladden

p > 0.3 affront, bear, bless, chide, embitter, jar, malign, set,

sorrow

Portraitives

p > 0.5

p > 0.4 defend, imitate, portray

p > 0.3 address, conceal, depict, describe, detail, endorse,

expose, identify, justify, mention, point out, recount,

showcase, televise, uncover

Change of State +

Aspectuals

p > 0.5 buy, delete

p > 0.4 alter, attempt, calibrate, insert, keep, operate, shape,

smell, store

p > 0.3 back, catch, cause, commence, cover, dig, disprefer,

dub, end, glimpse, gurgle, handle, help, inspect, iso-

late, manufacture, reconstruct, rediscover, relearn,

snort, spot, start, steer, taste, underscore, view

Coercives

p > 0.5 coerce, enlist, manipulate

p > 0.4 allow, assign, bribe, coax, compel, force, hire, moti-

vate, recruit, train, trick

p > 0.3 appoint, bully, choose, commission, direct, dispatch,

dupe, entice, guide, help, influence, inspire, invite,

oblige, permit, provoke, require, rush, select, sign up,

spur, summon, tempt

Weak Doxastic

Communicatives

p > 0.5
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p > 0.4 articulate, blog, brag, communicate, explain, mum-

ble, murmur, mutter, preach, type, whisper, write

p > 0.3 babble, boast, clarify, comment, confess, demon-

strate, divulge, elaborate, embellish, exclaim, ex-

press, gossip, holler, insinuate, joke, narrate, post,

read, reiterate, remark, repeat, reply, restate, share,

shout, shriek, sing, transmit, utter, yell

Strong Doxastic

Communicatives

p > 0.5

p > 0.4 affirm, confirm, verify

p > 0.3 acknowledge, clarify, declare, disclose, ensure, guar-

antee, indicate, note, point out, prove, reaffirm, re-

port, reveal, signal, specify, stress

Positive Internal

Emotives

p > 0.5 content, relieve

p > 0.4 amuse, awe, charm, comfort, delight, elate, enthrall,

enthuse, exhilerate, flatter, gratify, humble, please,

satisfy, thrill

p > 0.3 aggrieve, electrify, enchant, energize, excite, hearten,

intrigue, invigorate, rile, spellbind, stimulate

Evaluatives

p > 0.5 check, investigate

p > 0.4 contemplate, evaluate, examine, explore, reconsider,

research, review

p > 0.3 analyze, brainstorm, calculate, consider, discuss, pon-

der, reevaluate, reexamine, study, test, wonder

Prospective

Preferentials

p > 0.5 aim, appear, come around, compete, hunger, long,

look, lust, try, yearn
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p > 0.4 apply, attempt, come out, scramble, seem, stand, start,

struggle

p > 0.3 bargain, be, begin, come, conspire, continue, crave,

hope, love, pause, pine, plan, plot, procrastinate,

scheme, set about, smile, start off, thirst

Authoritatives

p > 0.5 expect

p > 0.4 authorize, desire, request

p > 0.3 allow, approve, arrange, command, demand, fancy,

forbid, mandate, need, order, permit, prefer, recom-

mend, seek, want

Representationals

p > 0.5

p > 0.4 dream, hope, think

p > 0.3 agree, assume, bet, concur, daydream, deserve, figure,

guess, insist, pray, presume, pretend, proclaim, say,

scream, shout, theorize, wish

Cognitive

(Semi)factives

p > 0.5 discover, realize, recognize

p > 0.4 find, find out, know, notice, see, understand

p > 0.3 accept, comprehend, detect, figure out, hear, identify,

observe, overhear, remember

Reasoning +

Judgment

p > 0.5 manage

p > 0.4 glean, opt, presuppose, signify

p > 0.3 attest, chronicle, conclude, deem, derive, discern,

expound, formulate, make out, reason out, reckon,

submit, venture, warrant

Negative

External

Emotives

p > 0.5

p > 0.4 apologize, cackle, complain, cry, gloat, growl, sob,

stutter, weep
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p > 0.3 banter, chirp, chuckle, cringe, curse, fume, gasp, gig-

gle, grimace, groan, grunt, gurgle, laugh, moan, pout,

rant, sigh, snap, snicker, snitch, spout, squeal, whim-

per, whine

Miratives

p > 0.5 depress, disappoint, disgruntle, disgust, displease,

embarrass, frustrate, horrify, outrage, sadden, shock

p > 0.4 amaze, anger, annoy, appall, astonish, astound, baf-

fle, devastate, dishearten, dismay, dissatisfy, enrage,

infuriate, irk, irritate, mortify, offend, overwhelm,

perturb, sicken, spook, stun, surprise, traumatize, up-

set

p > 0.3 aggravate, alarm, demoralize, disgrace, disturb, fasci-

nate, floor, fluster, humiliate, madden, pain, perplex,

petrify, please, startle, terrify

Uncertainty

p > 0.5

p > 0.4 confuse, distress, freak out, panic, perplex, puzzle,

stump

p > 0.3 anguish, appall, baffle, befuddle, bewilder, con-

cern, devastate, disillusion, disturb, fascinate, fluster,

grieve, irritate, mystify, petrify, quiz, strain, stress,

terrify, trouble, unsettle, vex, worry

Argumentatives

p > 0.5

p > 0.4 fret, lie

p > 0.3 agonize, bitch, brood, object, quarrel, quibble, scoff,

whine

Negative

Attitudes

p > 0.5 decline, fail, hate, neglect, refuse, regret
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p > 0.4 cease, detest, dislike, forget, resent

p > 0.3 adore, dismiss, dread, enjoy, fear, loathe, oppose,

reject

Prohibitives

p > 0.5

p > 0.4 denounce, disallow, face, prohibit, repress

p > 0.3 abhor, admonish, belittle, blast, constrain, demystify,

detest, dislike, disparage, forbid, loathe, mistrust,

pardon, reproach

Antidoxastics

p > 0.5 doubt, question

p > 0.4 dispute

p > 0.3 fear, neglect, worry

Table A.1: A full list of high-probability predicates within each cluster, shown at three

cumulative probability thresholds.
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Figure A.1: Prototypical veridicality inference patterns for each cluster.
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Figure A.2: Prototypical neg-raising inference patterns for each cluster.
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Figure A.3: Prototypical intention inference patterns for each cluster.
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positive negative ~> A believes A VP
~> A believes B VP

~> A believes S

~> B believes A VP
~> B believes B VP

~> B believes S
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Figure A.4: Prototypical doxastic inference patterns for each cluster.
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Figure A.5: Prototypical bouletic inference patterns for each cluster.
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Figure A.6: Prototypical present tense syntactic distributions for each cluster.
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Figure A.7: Prototypical past tense syntactic distributions for each cluster.
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Figure A.8: Prototypical past progressive tense syntactic distributions for each cluster.
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Component Threshold Predicates

Internal

Representation-

ality

p > 0.9

p > 0.8 consider, deem, evaluate, formulate, perceive, pic-

ture, recognize, register, visualize

p > 0.7 analyze, appreciate, ascertain, audit, calculate, check,

comprehend, conceive, contemplate, deduce, defend,

depict, detect, document, envision, examine, foresee,

gauge, hear, imagine, investigate, make out, manage,

mark, measure, monitor, pinpoint, portray, presume,

record, reevaluate, sense, showcase, surmise, televise,

think, witness

p > 0.6 accept, address, agree, allege, anticipate, applaud,

arrange, assess, assume, celebrate, certify, charac-

terize, cheer, chronicle, commend, conclude, con-

trol, decide, demean, derive, deserve, detail, devise,

discipline, discover, discuss, distract, endorse, envy,

establish, estimate, expect, feel, figure, figure out,

find out, forecast, glean, glorify, guess, hope, iden-

tify, imitate, include, justify, know, name, need, ob-

serve, opt

Emotive

Communicativity

p > 0.9

p > 0.8 comfort, soothe

p > 0.7 aggrieve, attest, commend, congratulate, distract,

rouse, submit
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p > 0.6 approach, audit, charm, chastise, console, content,

discipline, enchant, engage, enthrall, enthuse, ex-

hilarate, humble, intrigue, presuppose, relieve, rep-

rimand, rile, satisfy, spellbind, stimulate, tantalize,

terrorize

Negative

Preferentiality

p > 0.9 detest, loathe, neglect, oppose, reject, resent

p > 0.8 anguish, curse, decline, disapprove, dislike, dis-

miss, disparage, disregard, distress, fail, grieve, hate,

refuse, regret, repress, weep

p > 0.7 abhor, agitate, baffle, brood, complain, cringe, de-

nounce, deplore, despair, devastate, disconcert, dis-

may, distrust, doubt, dread, fear, flip out, forget,

fume, grimace, ignore, mourn, object, panic, puz-

zle, revolt, scoff, worry

p > 0.6 agonize, apologize, appall, befuddle, condemn, con-

fuse, cry, deny, disallow, disbelieve, discourage,

dispute, disturb, exasperate, fluster, freak out, fret,

frustrate, fuss, gloat, gripe, groan, growl, hesitate,

hush up, irk, irritate, laugh, lie, misjudge, mistrust,

outrage, overlook, perplex, perturb, pout, question,

sadden, scowl, sigh, sneer, sob, spook, stew, stump,

stun, sulk, terrify, trouble, underestimate

Evaluativity

p > 0.9 result

p > 0.8 cloud, discuss, happen

p > 0.7 fax, faze, outline, recount, repeat, review, sober, sum-

marize, write
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p > 0.6 advise, articulate, ask, bear, blog, bore, brainstorm,

broadcast, carp, clarify, contemplate, describe, de-

tail, disquiet, divulge, email, embellish, endorse, es-

tablish, explain, express, fake, function, illustrate,

imitate, inscribe, insinuate, mention, narrate, over-

estimate, ponder, punt, reevaluate, reiterate, remind,

research, share, shoot, show, skirmish, televise, tell,

transmit, turn out, type, utter, weigh

Negative

Intentionality

p > 0.9 neglect, refuse

p > 0.8 detest, dislike, hate, reject, resent

p > 0.7 decline, disallow, dismiss, disregard, fail, fear, ignore,

loathe, oppose, repress

p > 0.6 appear, cease, compete, condemn, denounce, dispute,

distrust, doubt, dread, enjoy, forget, misjudge, mis-

trust, overlook, prohibit, regret, underestimate

Commitment

p > 0.9 advise, bet, command, discover, guarantee, instruct,

petition, promise, prompt, see, trust

p > 0.8 alert, allow, approve, arrange, ask, authorize, believe,

bribe, brief, caution, choose, coax, coerce, compel,

confirm, convince, demand, designate, determine,

direct, email, encourage, expect, find, force, guide,

help, hound, inform, know, manipulate, notify, ob-

serve, permit, pester, press, pressure, rediscover, re-

mind, report, require, show, signal, teach, tell, think,

threaten, understand, urge, warn
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p > 0.7 affirm, allege, assure, badger, beg, cajole, contract,

counsel, dare, declare, delight, dupe, embolden, en-

sure, entice, find out, gratify, hear, implore, incite,

insist, inspire, intrigue, license, make, mandate, mo-

tivate, move, note, order, persuade, phone, pick, pre-

sume, proclaim, propose, provoke, radio, reaffirm,

realize, reassure, recognize, relieve, remember, re-

quest, reveal, say, select, specify, suggest

p > 0.6 accept, acknowledge, assign, assume, back, bug, buy,

cause, certify, challenge, charm, claim, coach, com-

fort, comprehend, consult, content, correct, decree,

deduce, dictate, educate, elate, elect, enforce, en-

lighten, enlist, enthrall, envision, feel, figure, fig-

ure out, foresee, foretell, gather, glimpse, hint, hope,

humble, identify, imagine, imply, indicate, induce,

influence, insure, interest, lecture, lobby, misinform

Actuality

p > 0.9 delete, hire, result, store

p > 0.8 bury, configure, depress, discover, disgust, disillu-

sion, displease, embarrass, evidence, find, get, hap-

pen, help, horrify, invite, make, manage, perplex,

sadden, taste, unsettle, view



240

p > 0.7 accredit, appall, baffle, calibrate, cause, comprehend,

crush, devastate, disappoint, disgruntle, dishearten,

dissatisfy, disturb, end, fluster, frustrate, infuriate,

insert, irk, irritate, manufacture, mortify, nauseate,

nonplus, offend, outrage, print, punt, puzzle, realize,

recognize, rediscover, resume, select, shock, shoot,

stump, stun, surprise, tackle, terrify, turn out, upset,

use, vex

p > 0.6 aggravate, alter, anger, annoy, astonish, astound, be-

fuddle, begin, bore, carp, choose, come, contrive,

cover, diagnose, dismay, distress, enlist, enrage, fas-

cinate, fool, force, function, glean, glimpse, jade,

know, label, manipulate, measure, mystify, operate,

overwhelm, pain, perturb, petrify, pick, remain, see,

shape, sicken, skirmish, smell, spook, spot, spur, star-

tle, take, trick, witness

Positive

Intentionality

p > 0.9 start, try

p > 0.8 aim, appear, attempt, buy, steer

p > 0.7 apply, commence, credential, discriminate, hunger,

hustle, isolate, look, lust, mope, operate, smell, sor-

row, start off, suffer
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p > 0.6 audit, be, bear, begin, bless, calibrate, chime,

come around, crave, design, dig, disprefer, dub, en-

dure, frown, galvanize, gladden, glimpse, grin, han-

dle, help, insert, keep, legislate, long, malign, mean,

meditate, need, scramble, set out, shape, shatter,

smile, smirk, snort, soothe, stand, stereotype, strut,

swoon, tap, undertake, want, wheeze, worship, yearn

External

Representation-

ality

p > 0.9 admit, affirm, agree, allege, announce, claim, commu-

nicate, conclude, confirm, convey, declare, demon-

strate, describe, disclose, emphasize, exclaim, hope,

identify, imply, indicate, infer, long, manage, mur-

mur, note, proclaim, propose, reiterate, report, restate,

say, scream, shout, specify, speculate, state, verify,

voice, whisper

p > 0.8 accept, acknowledge, approve, arrange, articulate,

assert, attest, boast, broadcast, certify, choose, clar-

ify, conceive, confess, conspire, corroborate, deem,

defend, demand, depict, dictate, divulge, dream, ex-

pect, explain, expose, express, foresee, guess, hint,

illustrate, imagine, insinuate, know, love, maintain,

mandate, mention, mumble, narrate, notice, observe,

perceive, permit, picture, point out, portray, pray,

predict, presume
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p > 0.7 advertise, advocate, aim, allow, appear, ascertain,

assess, assign, assume, authorize, brag, celebrate,

come around, come out, command, comment, com-

prehend, concede, concur, confide, consent, crave,

decide, decree, deduce, designate, desire, devise,

diagnose, discover, document, elect, establish, ex-

trapolate, fabricate, fantasize, figure, figure out, find,

flaunt, force, gamble, hear, highlight, holler, insist,

intend, interpret, justify, learn

p > 0.6 address, annotate, anticipate, appreciate, argue, at-

tempt, babble, beg, believe, blog, care, change, chant,

chronicle, commission, compete, conceal, consider,

contend, contribute, dare, daydream, detect, direct,

discern, discuss, display, elaborate, embellish, en-

dorse, enlist, ensure, envision, estimate, expound,

fancy, feel, find out, formulate, gauge, glean, gossip,

grant, guarantee, hanker, hunger, initiate, joke, leak,

like

Directed

Preferentiality

p > 0.9 result

p > 0.8 happen

p > 0.7 aggravate, annoy, dishearten, function, pester
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p > 0.6 admonish, agitate, anger, belittle, bore, bother, carp,

counsel, deplore, depress, disappoint, disgruntle, dis-

gust, disparage, displease, dissatisfy, enrage, face,

forgo, frighten, frustrate, grouse, horrify, humiliate,

irk, misinform, nauseate, nonplus, notify, repress,

ridicule, sadden, spook, surprise, torment, trouble,

upset

Table A.2: A full list of high-probability predicates within each semantic component,

shown at four cumulative probability thresholds.
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