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1 Prolog

1.1 Bad Vibrations

Your dad’s been arrested on trumped-up drug and kiddie-porn charges by the Chicago po-
lice. He was about to blow the whistle on Boeing about dangerous vibrations in the Dream-
liner’s jet engine. You’ve got this datastick you found on the floor before the place was
raided...maybe it has something you can use to get his message out to the world and save
him by the time Fall tuition’s due.

You seem to have .1 seconds of vibration data. Dad’s told you the danger lies in reso-
nances that cause peaks at 150 and 350 cycles per second. The notation says “unshielded
sensor cables give 60 cycle hum. Noise pretty bad, but danger evident.” You plot the data
and get Fig. 1.

Figure 1: A Matlab plot of vibration data.

Yikes. Who will that mess convince? Can you see evidence of 150 or 350 Hz vibrations?
Or 60? But wait! Silently blessing that dedicated old Prof. Whoever in CSC160, you call up,
in order: some memories, MatLab, and the New York Times. See Fig. 21.

1.2 A Summer (Re)construction Job

85 Broad Street. The new Monroe County Crime Laboratory. Your internship interview is
here. The place smells of new carpet, new latex paint, and old fingerprints. You knock on
the pebbled glass door of Dr. Hirsch’s lab; a technician says he’s out, but hands you a 3”
square yellow sticky. It’s got a short grocery list on the smooth side. On the sticky side, it
says blur.jpg, get lic. #, 30 mins. — H.. Oh boy: a classic “in-basket interview”.
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The file is data that looks like Fig. 2 when you use Matlab’s imshow command.

Figure 2: A Matlab imshow of blurred image.

Yikes. Is that plate number a 2389, or a 5698, or what?.... But wait! You go to the CSC160
webpage from last year, read a bit, invoke Matlab and start typing. Lucky that little streak
in the lower right is there... 25 minutes later Dr. Hirsch comes in, looks over your shoulder,
and says: “You’re hired. Let me show you something exciting that just came in.... What was
your name again?...” You resolve to send that kindly old CSC160 prof a bottle of Laphroaig
for Christmas; you hope his name’s on the website somewhere. See Fig 28.

2 A Personal Preview

This is a non-mathematical introduction to several “Megacepts”: universal ideas that are
widely applicable theoretically, practically, and even metaphorically. They provide insight
into physical phenomena, intellectual control of powerful formalisms and techniques, and
have practical applications.

I haven’t found an introductory treatment of this subject that does not bring in at least
Sophomore-level mathematics. I claim we can understand what’s going on at a level that
will allow significant accomplishments, and that our understanding will make standard
treatments more accessible and less intimidating.
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This approach will require you to take my word for some things. They are not hard to
derive and prove from a few simple mathematical formalizations of the ideas, but we only
hint at formalism.

The plan is to introduce you to several concepts that are universal, powerful, general,
and practically useful. I hope that later you will see the material presented formally: it’s a
very elegant body of work.

I hope to demonstrate the power of:

1. A few simple, basic functions.

2. The idea of a basis set of functions.

3. The ideas of a linear shift-invariant system and convolution.

4. The idea of the Fourier transformation, its properties and use.

5. Generally, The idea of an invertible transform. Representing the same thing in an
equivalent but different way (using basis functions) allows useful operations that are
not at all easy given the original representation. We can losslessly transform the result
back to the original representation.

6. Some practical transform-domain signal-processing techniques.

If you’re not put off by a few integrals, please take advantage of the embarrassing
plethora of good, readable, illustrated, animated, tight, clear tutorials on this subject on
the web, many from college signal-processing classes. A few sites that caught my eye are in
the reference section.

3 Two Functions and an Operator

Dirac Delta: This simple but historically controversial “function”, often written δ(t) or δ(x)
(Fig. 3), is a powerful tool for modelling ideal versions of things like a very quick sharp
input (voltage spike, clapper striking a bell, etc.) or sampling a function. Conceptually, the
delta function is 0 everywhere except at 0, where it is “infinite” in just the right way that
the integral over any interval containing 0 is 1. The concept can be formally defined as a
limit of narrower and narrower, but higher and higher bumps that all integrate to 1. As a
model of sampling, δ(t) is shifted, say by c, to give the function δ(t − c). Then the product
δ(t − c)f(t) is zero everywhere but at c, where its integrated value is f(c) since the integral
of δ(t) there is 1. Thus the output is a scaled, shifted delta function, whose ’value’ (integral,
often pictured as height) is the sampled value of f(t).

Sampling produces values of the function of interest (a light field projected by a cam-
era lens, a sound waveform,...) over some range of space or time. Often these values are
regularly spaced. A simplified model of sampling in one dimension is to multiply the input
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Figure 3: Dirac Delta Function δ(t) or δ(x) has infinitesimal width, an infinitely
sharp peak, value 0 everywhere but at 0 and its total integral is 1. It is also called
the unit impulse function.

function by a Dirac Comb, or regularly-spaced sequence of Dirac delta functions. The re-
sulting function is an array of weighted deltas. Except for the regular spacing, the situation
looks like Fig. 8.

Sinusoids (Sines and Cosines): If you don’t remember sines and cosines from high
school trigonometry, please go look them up. However, we care more about them as functions
(of time or space) than as numbers that tell you things about the sides of triangles. Sinusoids
are characterized by amplitude, phase and frequency (or wavelength) (Fig. 4). Amplitude is
basically “height”, wavelength (in meters, say) is the distance between repeats of the periodic
function, the frequency (in inverse seconds, cycles per second, or Hertz (Hz.)) is inversely
proportional to the wavelength, with the constant determined by the medium the wave is
in (for electromagnetic waves it is c, the velocity of light). A shifted version of the sinusoid
differs in phase: for sines and cosines, a phase shift of 2π is equivalent to one of 0.

Figure 4: Left: The sine and cosine. A sinusoid has a wavelength, a frequency
inversely proportional to wavelength, amplitude (height), and phase (a shift: the
cosine is out of phase with the sine by π/2 radians). Right: a 2-D sine wave grating.

For reasons of mathematical leverage, elegance, and actually clarity, sinusoids are often
represented as complex exponentials e−iωx for real ω, with e the base of natural logarithms.
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We like the exponential because its derivative and integral are simply multiples of itself,
which often keeps the mathematics under control. A quick refresher on complex numbers is
in Appendix A.

You can look up Taylor Series, or you can take my word that sin(x), cos(x), ex can each be
represented by an infinite series. It may seem that this idea is worthless, just complicating
things, but it is a very common technique in the sort of applied mathematics that engineers
do.

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
− · · ·

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

You could notice here that sin(0) is zero, cos(0) is 1, and that the sin(x) ≈ x and cos(x) ≈ 1
for small x, as expected. The higher powers of x and the factorials work together to make
the terms shrink and the series converge to a finite value.

You can also derive Euler’s Formula

eiθ = cos(θ) + i sin(θ)

just by multiplying the sine series by i, adding it to the cosine series, and checking that the
sum is the exponential. For time-varying signals, we often write eiωt where ω is angular
frequency (radians per second).

For 2-D sine waves as (Fig. 4,) some trigonometric math leads to the fact that cos(ux+vy)
and sin(ux + vy) are 2-D sinusoids as in the figure. Their ridges and troughs fall along the
parallel lines ux + vy = kπ for integer k, and their wavelength is 2π/

√
u2 + v2. So we can

write a 2-D wave as ei(ux+vy).
The Dot Product (Inner Product): Fig. 5 from Wikipedia should refresh your memory

of the normal 2-D interpretation.
The general version of the concept is the inner product operation between N-dimensional

vectors x and y:

x · y =
N∑
i=1

x(i)y(i). (1)

For unit or equal-magnitude vectors, which only differ in direction, the dot product is a
reasonable measure of their similarity since it is a monotonic (cosine) function of the an-
gle between them. Another less-mathematially-friendly measure is their vector difference.
The dot product can also be considered as a similarity measure even if the vectors are of
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Figure 5: The dot product. A · B =| A || B | cos θ, the scalar projection of A onto B is
| A | cos θ.

different magnitudes. The dot product has mathematical advantages, and is used in many
current computer applications such as document classification, image understanding, and
other high-dimensional matching tasks.

You may not have thought of also extending the idea to “continuous vectors”, because
you’re not Hilbert, but who is? The formalization of inner product in a Hilbert space encom-
passes the idea of projecting one function on another. By analogy to Eq.(1) we can use the
’continuous sum’, or integral, to define

f · g =
∫
f(x)g(x)dx (2)

as the inner product of the two functions, and can consider it a measure of how much the
functions “look alike”. If you consider

∫
sin(x)sin(x + c)dx, the sines are the same and the

product is always positive if c = 0, so the integral is at a maximum. The product is always
negative if c = π (Fig. 6). At c = π/2, there are an equal number of positive and negative
terms in the sum and the integral goes to zero. We can sense something of the “matching”
semantics of the inner product.

Good News Department: You may see two or three other integrals in this paper, but
they all look just like (are) inner products. So Eq. (2) is as bad as the math is going to get.

4 Basis Functions

When a sound enters your ear it is a possibly complex wave of pressure that varies in am-
plitude and frequency: When you’re young you can hear from about 20-20,000 Hz. Your
ear senses this broad band of frequencies with vibrations of the eardrum, which are then
transmitted to the inner ear’s cochlea (Fig. 7). You can see the cochlea’s spiral nautilus-shell
morphology, which suggests part of the mechanical process of identifying differing sound
wavelengths (inverse frequencies) in the eardrum’s output.
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Figure 6: Sine waves shifted by π

The point is that the information in complex input from the eardrum is transformed
by the cochlea as a set of weighted simpler components, each representing some small fre-
quency range.

Figure 7: The Inner Ear. Speaking metaphorically, the canals (upper left) do 3-
axis inertial guidance and the cochlea (lower right) does Fourier Transformation,
splitting the sound into separate frequencies.

Moving on from amateur biology: a set of basis functions is simply some family of func-
tions that are used like this: a weighted sum of them is equal to some other function of
interest. Orthogonal basis functions have the nice property that they don’t interfere with
each other: their inner product (integral of the product of one with the other) is 0. It’s easy
to see that δ(t − c)δ(t − d) is 0 if c 6= d, (otherwise it is “infinite” but in the “right” way).
Orthogonality makes the inner products easy to visualize and compute.

It may seem silly to represent one function by a sum of a bunch of other ones, but there
can be advantages (remember the ear?) For now, let’s consider our Dirac deltas as a family
of basis functions. If we’re willing to consider infinite sums, it seems reasonable that we can
represent a function f(x) of one variable by the sum of an infinite number of weighted Dirac
deltas, with the weight at x being f(x) (Fig. 8).
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Figure 8: A finite number N of samples gives a discontinuous function whose value
is 0 almost everywhere but which agrees with the function at N places. The agree-
ment is ’better’ with denser samples. With an infinite number of samples, the
constructed function agrees with the original everywhere.

So δ(t) can form an orthogonal basis set for a one-dimensional function; maybe not a ter-
ribly elegant or even useful set, but it works. Also clearly it works for 2-D or N-D functions.

Not so obvious is that sinusoids are an orthogonal basis set for a big class of useful func-
tions of arbitrary dimension (e.g. Fig. 9). The name most closely associated with the sinu-
soidal basis set is Fourier (as in Fourier series, Fourier Transform, Fourier analysis,...).

Figure 9: Two-dimensional sinusoidal gratings are orthogonal basis functions for
2-D functions like images. Left, low-amplitude sinusoids at various spatial fre-
quencies and one orientation. right, high-amplitude grating at another orienta-
tion.

Applying the inner product of Eq. (2), we’re claiming two sine waves of different wave-
length are orthogonal: their inner product is zero:∫

sin(αx) sin(βx) = 0, α 6= β

To visualize the situation, think of one sine function above another of a different wave-
length, their product, and its integral (you can easily use Matlab to create and plot a vector
version of this argument). The two sine functions will sometimes be of the same sign and
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sometimes of opposite sign: (in fact, half the time each.) It’s really easy to believe this if
one of them has a long wavelength and the other a very short one. In fact eventually all
the points of positive product have to have a corresponding point of the same magnitude but
negative sign. So in sum (in the integral) the positive and negative contributions cancel,
the integral is 0, they’re orthogonal. Proving they’re a basis set I leave to your Calculus
professor, but a suggestive little demonstration involves building a very sharp-edged func-
tion (a square wave) out of sine waves (Fig. 10). It isn’t a proof but it’s a pretty impressive
accomplishment for a bunch of smooth functions to add up to a sharp one, no?

Figure 10: Adding sine waves to get a square wave: three, 100, and 256 sines shown.

One of the prime goals of this paper is for us to be able to think about, say a sound signal
as 1) a pressure wave through time (what your eardrum or a microphone responds to) and 2)
a collection of sine waves of different frequencies (what a graphic equalizer or your cochlea
works with). We’ll see that signals can be represented and processed in either domain and
transformed between domains. The idea of such transforms is a key and ubiquitous concept:
just for instance, in pure mathematics or control theory the Laplace and Z transforms can
simplify solving a big class of differential and difference equations.

There are many, many sets of basis functions. Good ones for analyzing vibrations (vibra-
tional modes) in a drum head are Bessel functions. Spherical harmonics are good for modes
of magnetic fields in planets and stars, electron orbital configurations, etc. Legendre poly-
nomials spring from basic differential equations in physics. The Laplace transform basis
functions are damped exponentials.

Fig. 11 illustrates two these basis functions. There are fun animations and experiments
on the web illustrating vibrational modes:
http://paws.kettering.edu/ drussell/Demos/MembraneCircle/Circle.html
www.youtube.com/watch?v=v4ELxKKT5Rw.

5 Linear and Shift-invariant Systems

5.1 An Introduction

We have used the words “linear system” to mean a system of linear equations. Henceforth
in this module, a linear system is one composed of linear operators. This type of linear sys-
tem forms the core formal object of much elegant mathematics and many practical modeling
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Figure 11: Two of many orthogonal basis sets: Legendre polynomials and spherical
harmonics.

techniques. The library has many books with ’Linear Systems’ in their title. For our ap-
plication here you can find a responsible treatment (unlike this one) in books with ’Digital
Image Processing’ or ’Signal Processing’ in their title (see the References Section).

Linear systems are powerful and beautiful mathematically, and approach the Platonic
ideal of predictable systems that “do what you’d like or what you’d expect”.

By linear operator, we mean this: let f1(t) and f2(t) be input functions g1(t) and g2(t) their
corresponding output functions, and α and β be scalar weights. If we make up a new input
function αf1(t) + βf2(t), then the output is αg1(t) + βg2(t). The system effectively treats each
part in the input separately and independently. For a ’superposition’ (addition) of weighted
inputs, we get the superposition of weighted outputs.

You can check that matrix multiplication is a linear operation over vectors. Indeed in
general, any linear transformation can be thought of as an appropriate “matrix multiplica-
tion” operation on an appropriately represented “input vector”. (It turns out that function
inputs can be viewed as infinite-dimensional vectors in a way that can be mathematically
well defined. In this case, the “matrix” is a function of two variables that is multiplied by the
input function inside an integral that functions as an analog to the summation in normal
matrix multiplication).

Matrix multiplication is a good place to start for some important intuition. Linear sys-
tems have the above nice properties, but it is still true that if y = Mx (a vector-matrix
equation) each element of the output y can be a sum of all the elements in the input x, each
weighted by the elements in a row of M . Thus the output may not be all that obviously
related to the input.

We are going to concentrate on a very special subclass of linear systems, the linear shift-
invariant (LSI) systems, to model certain physical processes, like imaging.

If x is a one-dimensional “scene” and y its image, and M models a camera, we’d want a
camera C1 that did not mix up the whole scene somehow into each point of the image. We’d
want this:
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y C1 x
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1
2 = 0 0 0 1 0 0 0 * 2
4 0 0 0 0 1 0 0 4
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

We have the concept of basis functions and sampling using the Dirac delta. In this mind-set,
we see that each row of the matrix multipication samples the input at a different point with
a delta function, thus exactly reproducing it at the sample’s location (which we can see shifts
across the input as we go down the rows). Here we don’t need an infinite number of deltas
to reproduce the input exactly since vectors are discrete. If every other row (say) were all
zeros, we’d undersample we’d not have a shift-invariant system.

¡p¿ It actually may be more comfortable to imagine these as infinite matrices and vec-
tors... zeroes in both directions for the vectors and the single shifted 1 in each row of the
matrix. Then each row is a shifted version of every other one, and so if we shift the input
vector up or down by some amount, the output vector is similarly shifted. We have a per-
fect 1-D digital camera with infinite field of view that exactly reproduces the input. It’s no
accident that the rows are digital versions of the (shifted) delta function.

An smaller, out-of-focus camera C2 might be modeled like this: each image element is
the average of up two adjacent scene elements: a slight blur. Note the annoying ’edge effect’
that gives the ’wrong’ answer for the last element of y – a potential problem for all finite
versions of ideally infinite arrays.

y C2 x
1/2 = 1 1 0 0 0 0
3/2 0 1 1 0 0 1
3 = 0 0 1 1 0 * 2
2 0 0 0 1 1 4
0 0 0 0 0 1 0

A camera C3 that behaves nicely in the middle of its field of view but goes blurry around
the edges could be:

y C3 x
0 1/2 1/4 0 0 0 0 0 0
1/4 1/4 1/2 1/4 0 0 0 0 0
1 0 0 1 0 0 0 0 1
2 = 0 0 0 1 0 0 0 * 2
4 0 0 0 0 1 0 0 4
1 0 0 0 0 1/4 1/2 1/4 0
0 0 0 0 0 0 1/4 1/2 0
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Now we can notice:

• C1 and C2 are even closer to the Platonic ideal of “do what you’d like or what you’d
expect” because a shifted version of the same input is always the same output, shifted.
They are special because their matrices are the super-simple form: just one row, re-
peated and shifted.

• The output vector can be considered to be indexed by the amount a matrix row has
been shifted.

• C3 is a linear transform but the function does not act “the same everywhere”, as do
shifted rows. Here the “edges of the field” are blurred and the center isn’t. C3 is not
shift-invariant.

• An LSI matrix is a wasteful way to write down what’s happening, though it is perfectly
mathematically correct and proper. It’s easy to see that each output element is a dot
product of the input with a differently-shifted copy of the “one row” in the matrix. We
can (and almost always do) rewrite the matrix multiplication elegantly as a vector of
dot-products, each one between the input and the same (but shifted) row. The operation
that creates the shifted dot products, and indexes the output by the shift, is the discrete
convolution operation.

• This whole story works in the continuous domain, with a continuous function as input,
and a shifting continuous function instead of a matrix row. Continuous addition is
integration, so we obtain the (continuous) convolution integral.

Thus a useful special class of linear operators, defined more formally below, is called
“convolutions”, operations that can be specified by a “weighting function” (that is, the row
of the matrix or a continuous version of it) that is “swept across” the input and multiplied
element (dot-product) wise at every shift to produce the output.

Fig. 12 shows that we’ll consider a linear (usually LSI) system as a black box with in-
put(s) and output(s), or input and output vectors or functions. The black box is characterized
by the operation it performs on the input.

What’s the black box? Linear operators can be used to represent systems like like cam-
eras, stereo amplifiers, and even mathematical operations. If the operation is a convolution,
(whose definition we will see later) the weighting function is often called the impulse re-
sponse for input functions of time, or the point-spread function for functions of space.

A linear, shift-invariant (LSI) system produces a similarly-shifted input for a shifted
version of the input: If f(t − h) goes in, g(t − h) comes out. The matrices representing LSI
systems have a repetitive diagonal structure to them, like C1 and C2 above.

For example, one dramatically non-shift-invariant linear optical system is a kaleidoscope,
which adds up variously-weighted bits of the scene to create each patch of image. The
familiar colored chunks of glass bring in the interaction of different wavelengths in our
color perceptions, which is a non-linear process (red plus green don’t make ’reddish green’).
“Non-linear optics” deals with light in nonlinear materials: the result is a breakdown of the
superposition principle, and we get phenomena such as frequency-doubling or - tripling.
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Figure 12: Linear shift-invariant systems, one for time-domain input (like sound),
one for 2-D spatial domain input (like images). f(t) and f(x, y) represent inputs,
h(t′) and h(x′, y′) impulse response functions, and g(t) and g(x, y) the outputs. The
box performs convolution.

Nonlinear dynamic systems are famous nowadays through ’the butterfly effect’ and chaos
theory: small variations in input or parameters can have big effects on the output (as can
the Lorenz attractor from the ODE topic in this course).

One example of a true LSI system is simply that the black box’s h(t) is the (linear)
differential operator d/dt, which takes the derivative of the input. We remember that
d/dt(af(t + c) + bg(t + d)) = af ′(t + c) + bg′(t + d): superposition holds, thus we get lin-
earity. Another example: if the input is a vector (or a sum of weighted vectors), then matrix
multiplication is a linear system (as we saw above, to be really shift-invariant the vectors
and matrices must be infinite).

Fig. 13 shows how linear systems behave, using a camera analogy.
Note: Fig. 14 shows that a real pinhole does not produce a point image from a “point

input.”
Real systems are not linear: often they do approximate linearity over some range. Cam-

eras do not have infinite fields of view. They distort the image optically in various ways both
at large scales (pincushion and barrel distortion) and small (Fig. 15).

Amplifiers, speakers, our ears... all have volumes and frequencies below and above which
they distort or do not respond. Light sensors, like our rods and cones, film, and CCD arrays
in cameras, act the same way: they have preferred wavelengths and only a range of light
amplitudes to which they respond (Fig. 16).

5.2 Properties

Again, you’re not seeing proofs of any of this, nor the usual mathematical formalization:
we’re after visualizible concepts and intuitions.

We are lucky that we can describe precisely two very general ways to think about any
linear, shift-invariant system (LSI).
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Figure 13: The ideal pinhole camera as linear system. In terms of Fig. 12, f is
the object in the world on the left, h is how the camera transforms a point (here
to another ideal point or an F shape), and g is the image. In the top example, if
another point is added in the scene, we expect its image to show up in the right
spot, and not to interfere with the original point’s image: that’s linearity. The
camera deals with ideal geometrical points and straight lines, not real physical
imaging phenomena.

1. It performs a convolution in the time or space domain of its input and its impulse-
response function. In fact, if a system performs a convolution, it’s LSI and vice-versa.

2. We’ll see in Section 6 that it acts like a graphic equalizer in the frequency domain,
amplifying and attenuating (and possibly phase-shifting) the various wavelengths rep-
resented in the signal.

Wikipedia’s “Convolution” article has some very helpful animations and images; it states:
The convolution of f and g is written f ∗ g [or as f ⊗ g.] It is defined as the integral of the
product of the two functions after one is reversed and shifted.

With apologies, here is the formal definition of the convolution, since it’s a ubiquitous con-
cept and since we can understand it now as just another inner product. The one-dimensional
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Figure 14: Point-spread function of a real pinhole is the Airy disk, resulting from
diffraction of the incoming light waves.

discrete convolution is the short way to write the matrix multiplications in the examples of
LSIs in the introduction: it is given by:

(f ⊗ g)(t) =
n∑
i=0

f(i)g(t− i).

You can see that the sum computes a dot product, and t is the shift. Its one-dimensional
continuous analogue is the famous convolution integral given by:

(f ⊗ g)(t) =
∫ ∞
−∞

f(τ)g(t− τ))dτ =
∫ ∞
−∞

f(t− τ) g(τ) dτ

Note that it’s commutative. It is also an example of how a linear operator in continuous
space can be described by an integral of the product of a function f(τ) with a two-parameter
function of τ and an index variable t that appears externally, here g(t−τ). This is an example
of the above-mentioned integral generalization of matrix multiplication. We will see another
example of this generalized form shortly, in the Fourier Transform.

The use of τ here need not represent the time domain. If it does, the convolution formula
describes a weighted average of the function f(τ) at the moment t, with the weighting given
by g(τ) shifted by amount t. As t changes, g slides by, and its weighting function moves
across the input function.

Convolution is also defined for arrays: due to the shifting and overlap, an N−-vector con-
volved with an M−vector has length M +N − 1.
In Matlab: conv([1 2 3 4], [2 4 6]) gives [2 8 20 32 34 24] and in 2-D conv2([1
1;1 1],[1 1;1 1]) is [1 2 1; 2 4 2; 1 2 1]. Note that the operation can be repre-
sented by multiplication of the (extended) input vector by a matrix whose rows consist of
shifted copies of the (reversed) convolution weights (diagonal structure). The meaning of
“shift invariance” is well illustrated by this representation.

The negative sign on one of the τs means that this function is backwards. You’ve seen
this phenomenon in the bottom case of Fig. 13, and for many physical systems it makes
sense. In Fig. 17, imagine the red function being emitted as a function of time: it starts
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Figure 15: In coma the ’ideal’ impulse response (a point) is distorted to ellipse or
comet shape, often systematic and increasing with the angle of imaged point off
the optical axis of the system. In chromatic aberration, different wavelengths are
focussed at different distances, hence impulse response varies with color.

out big and decays. If this function is f sent into a system with the blue function as h, the
flipping makes sense.

A closely-related concept is called correlation, a distant cousin of the more familiar sta-
tistical concept. The operation is usually just written as * or ⊗ as before, disambiguated by
context if need be.

(f ⊗ g)(t) =
∫ ∞
−∞

f(τ)g(τ + t)dτ =
∫ ∞
−∞

f(τ + t)g(τ)dτ

We see that the correlation is even more like the familiar dot-product or inner product of
two vectors, since now the indices of the product terms are varying in the same direction.
Again, the analog to matrix multiplication applies: for each t, g(τ + t) is like the (τ + t)th row
of an (infinite) transformation matrix. We can use the correlation to implement matching of
vectors or functions, since it is made up of pure (shifted) dot products. The autocorrelation
(correlation of a function with itself) is maximized at zero offset, and for aperiodic functions
tends to drop off with distance. You can see that for an infinite picket fence (or dirac comb
or sine wave), the auto correlation is itself periodic.

A simple consequence of definitions is the nice fact that if g(t) = h(t) ∗ f(t), the input
f(t) = δ(t) (the Dirac delta), then for any LSI the output g(t) = h(t). This is useful because
we may not be able to look into the black box but if we give it an impulse as input, the output
is its defining h(t). This you can see from imagining a Wikipedia-animation scenario (or Fig.
17) with impulse input sliding across h(t).

Another interesting and basic fact about LSI is that sinusoids are eigenfunctions of linear,
shift-invariant systems. That means if the input f(t) is a sine wave, the output g(t) is a sine
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Figure 16: The modeled response of photographic film and the actual response of
one type of CCD (digital camera sensor): As is typical of real sensors, they are
linear over a range at best, with nonlinear rolloff or saturation.

wave of the same frequency for convolution with any arbitrary h(t)! Amazing but true.
Output g(t) may be scaled (amplified or attenuated) or shifted in phase, but it’s still a sine
wave of the same frequency. This property has a one-line proof based on the definition of
convolution and our favorite facts that 1) the integral of ekx is (1/k)ekx for any real and
complex k, and 2) for imaginary k, ekx is a sinusoid.

6 The Fourier Transform

6.1 Definition

The Fourier transform is a linear operator that we can think of think of as taking input in
the time or space domain (say a sound, a voltage waveform, or an image) and producing
as output an equivalent (lossless and invertible) representation of the input in a frequency
or spatial-frequency domain. In other words, it decomposes the input into a number of
sinusoids of varying magnitude and phase (and in two dimensions, directions). The inverse
transform inverts the transformation. I can’t resist showing the mathematical definition:

F (ν) =
∫ ∞
−∞

f(t) e−2πiνtdt,
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Figure 17: The convolution operation. The red function is turned backwards (line
1) and slid past the blue one (lines 3,4,5): the output is the area under the red
function weighted by the blue one or vice-versa.

where t is time or space and ν is frequency. The inverse is simply related:

f(t) =
∫ ∞
−∞

F (ν) e2πiνtdν.

(We have left out a scaling factor involving the square root of 2π needed to ensure that
no net scaling occurs when the transform is followed by its inverse)

Notice that the Fourier transform (FT) is another of our inner-product integrals, analo-
gous to matrix multiplication. This one can be read as answering the question “how much
of this particular sine wave e−2πiνt is in this input function f(t)?” It is projecting f(t) into the
transform basis space of sinusoids.

Note that in general the FT is complex, but read on.

6.2 Properties

Let F denote the Fourier transform operator, so F{f} is the Fourier transform of f(t), which
we also write as F (ν).

The Fourier transform (FT) has a number of pretty properties. In no particular order:

• FT is linear. That is, the FT of a weighted sum of functions is the weighted sum of
their FTs.

• FT of any symmetric (even) function is real and even: (the function is a sum of cosines).
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• FT of any antisymmetric (odd) function is imaginary and odd: (function is a sum of
sines).

• FT of a real function has the property that if F (ω) = x + iy then F (−ω) = x − iy.
Such a function is sometimes called Hermitian, although the term is more frequently
used with respect to operators that display the same conjugate behavior under index
reversal rather than sign reversal.

• Scaling or similarity: F{f(ax)} = 1
|a|F

(
ν
a

)
.

• Thus a time-reversal property: F{f(−x)} = F (−ν).

• F(Gaussian) is a Gaussian.

• FT of a Dirac comb is a Dirac comb.

• Examples: from the scaling property and the last two properties, we see that the FT of
a narrower (wider) Gaussian is a wider (narrower) one, and the FT of a higher (lower)
frequency Dirac comb is a lower (higher) frequency one. The FT of a (single) Dirac
function is flat: it has waves of all frequencies and the same magnitude (do the FT
integral and prove it!).

• In the FT of a shifted function, the magnitude of all the components (the complex
numbers) stays the same, but they rotate (their phase changes) as a function of the
shift and their frequency.

• FT has an equivalent for (discrete) vector inputs. It has a very clever implementation
called the Fast FT, or FFT, which we’ll be using (along with tout le monde.

The Fast Fourier Transform (FFT): The FFT is fast because the discrete FT transform
is just a matrix multiplication that normally would take N2 multiplications to transform an
N-vector (an N-long dot product for each output component). However, the FT matrix has
a very elegant internal structure that can be exploited to make the multiplication faster, so
FFT runs in order of N logN time. For large N , this can result in significant savings (e.g.,
1, 000, 0002 = 1012, but 1, 000, 000 log(1, 000, 000) = 6, 000, 000.)

The FFT works fastest on arrays of length 2n for integer n, but can be generalized beyond
powers of two, and is then most efficient for lengths with small prime factors: 60 (factors
2,3,5) would be faster than 59 (a prime number), for instance, but not as fast as 64.

Signal shifts cause FT rotations: See appendix A. We can think about a complex
number z = (a + bi) as a vector in the real-imaginary plane with coordinates (a, b) or in
polar form a magnitude

√
(a2 + b2) and direction tan−1(b/a) (or atan2(b,a) for us computer

types.) For a complex number conj(z) = conj(a+ ib) = a− ib, so z · conj(z) gives the squared
magnitude of the number (a2 + b2) (Appendix A).

On the ’properties’ point above about the shifted function, the individual elements in the
FT are phasors (see Wikipedia for an animation) (Fig. 18); a phasor is a rotating complex
number that is related to sinusoids: a phase change (shift) a sinusoid is the same as rotating
its phasor.
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Figure 18: A phasor. The sinusoid associated with it is shown. Note same ampli-
tude and frequency, but wave is shifted (“starts at a later point in its cycle”) as the
phase angle increases. When phase difference hits 2 ∗ pi, wave looks exactly the
same (as does the phasor).

The power spectrum: If the FT is multiplied pointwise by its own complex conjugate,
P = conj(F ) · F , every element of the product P is real and positive, and is the squared
magnitude of the FT’s complex phasor. P is a very important concept called the power
spectrum of the function since it shows the power of all the sine waves in its spectrum (that
appear in its Fourier Transform representation). It is normally how we visualize (plot) a FT,
and we often hear power spectrum plots referred to as FT plots (examples in Appendix B).

The power spectrum (PS) tells a lot about the signal. If we get the power spectrum of the
vibrations of a jet engine we can read right off it the frequencies at which it is vibrating most
strongly and may choose to redesign or modify it if we don’t like what we see. The PS of a
signal is “de-spaced”, in that information about the power at a given frequency is gathered
from the whole signal.

Periodic and aperiodic functions: In the ideal continuous mathematical world, we
can use infinite, periodic inputs like sines. In Matlab, we must use finite arrays as input to
the FFT, and it’s important to realize that the FFT treats this array as if it were an infinite
periodic array! That is, it repeats, or wraps around (to make a ring in 1-D and a torus in
2-D). For instance, the vector [1 2 3 4 5 6 7 8 9] seems to describe a nice smooth ramp but if
it is understood to be periodic, there is a disguised, sudden drop back to one: ...7 8 9 1 2 3
.... As we shall see we pay the FFT just to notice this sort of phenomenon, so we can’t forget
about it. We often do want the non-repeating function, as when we match by ’aperiodic
correlation’. For this, simply embed the data array (say it is N × N ) in a 2N × 2N array of
zeroes and use the bigger array. The calculation of course still thinks this bigger function
is periodic but the array you are interested in will not ’interfere with itself ’. In Matlab the
padding is easy; if X is an N by N array, then fft2(X, 2*N, 2*N) works.
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FT and power spectrum coordinates: The logical coordinate system for a FT or power
spectrum has the origin in the middle, with positive and negative axes as usual. Then the FT
of a single cosine wave consists of two real points, one at (u,v) and one at (-u, -v), representing
the fact that the wave can be thought of as going in either of two opposite directions. If the
cosine is shifted along the axis its phase changes and these two phasors rotate (change
phase), and when the wave shifts enough to become an odd function (the sine, in fact), the
two points at (u,v) and (-u, -v) are now purely imaginary.

However, when we input a vector to an FFT program, the output has its origin in a corner,
(lower left or lower right). There’s still symmetry but it’s confusing. Matlab has the function
fftshift, which shifts the origin of the FFT output to the center.

In the literature we almost always see plots of the right half of the one-dimensional power
spectra, for 0 and positive frequencies. For 2-D power spectra, the usual display is the entire
symmetric 2-D spectrum, with origin in the center (as with fftshift()).

Spatial and frequency domain relationships: For images, it is often possible to con-
nect image phenomena with PS phenomena: If the image is ’blobby’, slowly-varying, with
few sharp edges, the energy in the PS will be in the central, low-frequency region. If there
are lots of sharp edges there will be lots of power at the high frequencies (note in Fig. 10
how we had to add more high-frequency sines to make the square wave’s edges sharper).
If there is an obviously oriented feature (a long, high-contrast edge or parallel lines) in the
image, the PS will have a symmetrical spike in the orthogonal direction emanating from the
center. A checkerboard like pattern (say a simple basket-weave texture or a wall of windows)
induces a Dirac comb-like structure in the PS, etc. See Fig. 19 and Appendix B.

Figure 19: An image and its power spectrum. The six-fold symmetry is evident in
both.

Shifting example: Fig. 20 shows a sine and slightly shifted sine – imagine their sum
is the input. We expect the power spectrum to represent only one amplitude and frequency,;
that is, to consist of only two phasors in symmetric places. We expect it to look the same for
either sine since the power spectrum throws away the phase information.
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Figure 20: Left: sines with same amplitude and frequency, different phase. Right:
fftshifted power spectrum of either sine wave or their sum.

Let’s dig into the actual vectors produced by the FFTs of the sines. In the (un fftshifted
FFT for the unshifted sine we see zeroes and...:

... -0.0000 - 0.0000i
Columns 5 through 8
0.0000 -32.0000i 0.0000 - 0.0000i...

Aha...there’s one of the FFT phasors, purely imaginary since the sine is odd. Here’s its
complex conjugate, symmetrically opposite the origin:

Columns 61 through 64
0.0000 +32.0000i -0.0000 + 0.0000i ...

For the shifted sine, the phasors are at the same indices (5 and 61), but have rotated to
create complex matrix elements:

29.5641 +12.2459i
29.5641 -12.2459i

The energy in this wave (the magnitude of its single-phasor FFT) has not changed.
29.56412 + 12.24592 = 322 = 1024.
Bad vibrations: The jet engine vibration data (see Fig. 1) was claimed to have some

particular dominant frequencies and noise. In fact, we only need to add two or three sine
waves together, even with no noise, and unless their frequencies (wavelengths) are really
different it’s hard to tell what the original frequencies were (try it). The made-up jet vibra-
tion data was three pure sines and a surprising amount of 0-mean Gaussian noise all added
up. The power spectrum makes their contributions obvious, even to the New York Times.

The basic code for the power spectrum is simple:
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Figure 21: Power spectrum of vibration data shown in Fig. 1. It is the sum
of variously-weighted sinusoids of frequencies 60, 150, and 350 Hz. with a fair
amount of 0-mean Gaussian noise. Data was a 128-long vector representing .1 sec-
ond.

function thePS = PowSpec1D(X,n)
Y = fft(X,n); % get the FT
thePS = (Y .* conj(Y)) / n; % compute the PS
end
... % and in the calling script
plot(xaxis, fftshift(thePS)); % show me

In practice, we usually want to supress the ’central peak’, which gives the total power
and thus dominates the plot scaling, and sometimes want to emphasize detail in (usually
smaller) high frequency power by plotting the logarithm of the spectrum or somesuch.

7 The Convolution and Sampling Theorems

7.1 Convolution Theorem

There are more interesting and useful FT properties than we saw in Section 5.2. Here’s a
big one. Convolution in the time (space) domain is dual to elementwise multiplication in the
frequency domain. This is the convolution theorem.

Let F denote the Fourier transform operator, so F{f} and F{g} are the Fourier trans-
forms of f and g, respectively. Then

F{f ∗ g} = F{f} · F{g} (3)

where * denotes convolution and · point-wise multiplication (in Matlab, the .* operation).
Also vice-versa:

F{f · g} = F{f} ∗ F{g}, (4)
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And applying the inverse Fourier transform F−1 to Eq. (3), we get:

f ∗ g = F−1{F{f} · F{g}} (5)

Convolution and correlation are important operations and the Convolution Theorem is a key
intellectual idea with wide-ranging practical utility.

Convolution is closely related to a polynomial multiplication and even to integer multi-
plication: compare the convolution of vectors 1111 and 111 with the product of integers 1111
and 111 (base ten). The convolution theorem says that one way to compute a convolution of
functions (vectors, matrices) A and B is to get their FTs, multiply those FTs elementwise,
and take the inverse FT of the product. This method is faster for big enough inputs.

Thanks to the convolution theorem we can make a frequency-domain version of the sim-
ple block diagram of (Fig. 12). It is (Fig. 22), with the inputs and outputs being the FTs
of f and g, the function in the box being the FT of h, and the operation of the box being
elementwise multiplication.

Here the box acts like a graphic equalizer: the signal (say sound) comes in as the sum
of sinusoids of many frequencies, which are amplified or attenuated by the equalizer (which
multiplies the vector of their amplitudes and phases (that is, F (ν)) elementwise by its set-
tings (that is the vector H(ν), which is called the Modulation Transfer Function (MTF).) The
graphic equalizer is just an MTF. For sound, it’s a linear system that’s easier to think about
in the frequency domain than in the temporal domain.

Figure 22: Compare to Fig. 12. Here F (ν) is the FT of a signal, H(ν) is the the FT
of the point spread function h(t′). H(ν) acts like a graphic equalizer, changing the
amplitude and phase of the incoming sinusoids. The box’s operation is Matlab’s .*,
or element-wise multiplication.
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7.2 The Sampling Theorem

It makes some sort of sense, we feel, to talk about or use a sampled version of a contin-
uous function. We use finite-resolution images from “x-megapixel” cameras, and film was
finite-resolution too. Likewise a CD is data from a sound waveform “sampled” at 44KHz.
MP3 is a very interesting blend of sampling and psychophysics-based compression that not
only samples sound but tosses out the frequencies that it thinks we won’t miss. JPEG is
similar. They are “lossy encodings”, based on sampling and on tossing out less-informative
frequencies in the signal.

Rising above the smog of consumer electronics trade secrets, empirical engineering hacks,
and evanescent esoterica about data-encoding ’standards’, consider the idealized, mathe-
matical, formalizable question: can we exactly reproduce a continuous signal from a finite
number of (point) samples?

We know enough now to answer that question, even if the exact algorithm isn’t clear. Our
approach is to think in the frequency domain: every signal is a sum of sinusoids. If we could
reconstruct every sinusoid, we could reconstruct the signal exactly. If we can reconstruct
a sinusoid (its frequency, amplitude, phase) from a sequence of samples, we can presum-
ably reconstruct any lower-frequency, longer-wavelength sinusoid from the same samples
(aha!!). (Managing to state this property precisely is actually a bit tricky, and the crux of a
formal proof) Say there is some maximum frequency in the signal. Deconstruct the signal
into sinusoids of <= that frequency. Find a sampling frequency f that allows recovery of the
highest-frequency sinusoid, sample the signal (thus sampling all the sinusoids) at that fre-
quency, and reconstruct the original input from the recovered input frequencies (and phases
and amplitudes).

This is a feasibility-proof, not an algorithm, but that’s all we need to answer our formal
question: Yes, we can reconstruct a band-limited signal (one with no frequencies higher than
some maximum) exactly if we can reconstruct its highest-frequency sinusoid exactly.

Temporal Domain Argument: Imagine sampling a sine wave at its high and low
points, that is twice per wavelength (at twice its frequency). If we know these are the high
and low points, we know its amplitude, phase, and frequency: we’re done. True, if our sam-
pling is shifted along by 1/4 of a wavelength, sampling at the same rate, we see a nothing
but zeroes: bad luck and no information about the signal. Also notice a higher-frequency
sine can sneak in between the samples and not be noticed (Fig. 23).

BUT if you sample long enough at just a little faster than twice the frequency, AND you
know that no higher frequencies are present (this is part of the trickiness) sooner or later
you’ll get samples at the maximum amplitude and you can figure out all you need to know.
The Nyquist frequency is twice the maximum frequency of a band-limited function and we
must sample more frequently than that to guarantee an error-free reconstruction (which
can be accomplished by interpolating between samples with a special function). In practice
with finite wave trains, 5 or 10 times the maximum frequency is a good practical sampling
rate to shoot for.

Frequency Domain Argument: We use the property that the FT of the Dirac comb
is another Dirac comb, and that the closer the time (space) domain peaks are together, the
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Figure 23: The signal is the sum of the two sine waves. If we sample at twice
the large (red) sine’s frequency and at its high and low peaks, we can recover
amplitude, phase, and frequency. The small (blue) sine is entirely missed, being 0
at every sampling location. Moral: we need to sample at least at twice the highest
frequency, and we need an even higher frequency unless by luck sampling is in
phase with peaks.

farther apart the frequency domain peaks are. Well, multiplying a function f(t) by the Dirac
comb gives a sampled version of f(t). Using the convolution theorem (Eq. (4)), and going
to the transform domain, the transform of the sampled function is the convolution of F (ν)
and the transformed Dirac comb. That is, it’s copies of F (ν), spaced apart just as far as the
peaks in the transformed Dirac comb. If those peaks are too close (the sampling Dirac comb
was too coarse) the copies of F (ν) overlap and interfere with each other. If the peaks are far
apart, the copies do not overlap and we can imaging snipping one out, inverse transforming
it, and getting f(t) back perfectly by inverse transforming one of the copies of F (ν) (Fig
24. The effects of overlap, or under-sampling, are called aliasing; the symptom is that
higher-frequency waves are either missed entirely, or more likely are treated as (misleading)
evidence of lower-frequency waves.

This subsection is meant to show the intellectual leverage we can already bring to bear
on rather important signal-analysis questions. Here, we justified the universal and maybe
questionable practice of representing a continuous function by a set of discrete samples.
We discovered that for perfect reconstruction the function must be band-limited and the
sampling must be done more often than the Nyquist frequency.
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Figure 24: On the left, sampling described as multiplication of f(x) by a Dirac comb
of low frequency (top) and high frequency (bottom). Fourier transforming both
functions (band-limited F (ν) means the FT is finite) and applying the convolution
theorem gives the FT of the product as the convolution of the FTs. The coarse
(fine) Dirac comb gives a fine (coarse)-toothed transform. Here coarse (under-)
sampling means the F (ν)’s overlap and will add together and be impossible to sort
out. Finer sampling (above the Nyquist frequency) means the F (ν)s are separated
and one can be “snipped out” and inverted to reconstruct f(t) exactly.

8 Three Frequency-domain Operations

8.1 Filtering

In this context, a filter (a very common use of the word in signal-processig) is an operation
that does some signal-processing function. Filters can operate in the temporal or spatial
domain (see Section 9).

Common types of filtering in the frequency domain are “band-pass” and “radial” filtering.
In the first, some band of temporal or spatial frequencies is passed through and the rest are
blocked. A low-pass filter throws away high frequencies (blurring the result) and a high-pass
filter ( usually a disk-like mask centered at the origin of frequency space) does the opposite,
(sharpening the result) (Fig. 25.) A band-pass filter is the sum of a high-pass and a low-pass
filter, allowing some band of frequencies to pass.

A radial filter looks like two more or less skinny pieces of pie symmetrically arranged
around the (u, v) origin, masking frequencies in a range of directions. Of course radial and
band-pass filters can be combined.

As Fig. 25 illustrates, filter shape is important: the fast change from 0 to 1 and back in
the figure’s sharp disk, or in 1-D the boxcar filter 0001111000, generate high frequencies.
In turn they cause “ringing” in the results. There is an entire science of filter design, with
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Figure 25: Top: original image, sharp-edged high-pass filter centered at (u, v) =
(0, 0). The filtered result has ringing artifacts. Bottom: smooth-edged high-pass
filter centered at (u, v) = (0, 0): result is better.

results like the Butterworth filter, which is designed to keep the band-pass range as flat
(free of ringing) as possible. In matlab, >> help butter and follow the “doc butter” link.

Generally, if the FT of some unwanted signal is known, it can be masked out: problems
arise because the signal you want often shares frequencies with the unwanted signal.

8.2 Matching

There is a whole science of recognizing known signals in noise (spawned when radar was
being developed). Some signals are better than others for radar: a reflected sine wave or
picket fence signal is ambiguous about range, an impulse signal needs a lot of power in
a short time (and will be spread out when it returns). A “chirp” is a better choice, and a
random string of 1’s and -1’s isn’t bad (Fig 26).

The optimal way to detect a known signal is correlation detection, in which the input is
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Figure 26: A chirp (left) has good autocorrelation properties (a sharp peak). At
right is the autocorrelation of a random string of 1’s and -1’s. In realizable func-
tions, the sharp peak is flanked by “sidelobes”.

correlated with the known function (or convolved with its inverse). The correlation should
show a peak when (or where) the known function lines up with its appearance in the input.

We met the autocorrelation of a function in Section 5.2. It is the output of correlation de-
tection when the input is the known function with no noise. For instance: (remember conv
is convolution, not correlation)
conv([1 2 3 4],[4 3 2 1]) = [4 11 20 30 20 11 4]. Using the time-reversal prop-
erty of FTs and the convolution theorem, we get the elegant result that the power spectrum
of a function is the Fourier transform of its autocorrelation.

Designing functions with good autocorrelation properties is interesting for imaging, and
signal detection. “Computational imaging” cameras with strange “lenses” and built-in image-
postprocessing are on the market. Another example is finding features in images to match
in automatic photo-mosaicing: they must be places you can match reliably in another image
– they are small areas with delta-function-like autocorrelations.

If the pattern to matched is small compared to the input, implementing correlation in
the time or space domain (via the 1- or 2-D shifting dot-product method) is cheaper than
FTing everything twice. Matlab has conv(), conv2() for such cases.

8.3 Image Reconstruction
Within weeks of the launch of the [big, expensive, Hubble] telescope, the re-

turned images showed that there was a serious problem with the optical system.
Although the first images appeared to be sharper than ground-based images, the
telescope failed to achieve a final sharp focus, and the best image quality obtained
was drastically lower than expected. Images of point sources spread out over a ra-
dius of more than one arc-second, instead of having a point spread function (PSF)
concentrated within a circle 0.1 arc-sec in diameter as had been specified in the
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design criteria.[46] The detailed performance is shown in graphs from STScI il-
lustrating the mis-figured PSFs compared to post-correction and ground-based
PSFs.[47]

Analysis of the flawed images showed that the cause of the problem was that
the primary mirror had been ground to the wrong shape. Although it was prob-
ably the most precisely figured mirror ever made, with variations from the pre-
scribed curve of only 10 nanometers,[21] it was too flat at the edges by about
2200 nanometers (2.2 microns).[48] This difference was catastrophic, introduc-
ing severe spherical aberration, a flaw in which light reflecting off the edge of a
mirror focuses on a different point from the light reflecting off its center.[49]

–Wikipedia

How do we repair in-camera optical distortion (blurring, say) of an image? The first
ground-based, signal-processing fixes to the Hubble were based on the following idea, which
starts with the convolution theorem statement:

F{f ∗ h} = F{f} · F{h}

Let’s say the left hand side is the image from a camera with point-spread function h and
scene data f . If h is an ideal Dirac delta, the output is the scene. If the camera moves during
exposure, h becomes a 2-D curve (in general), and the image is spread out along this curve.
Or, if the camera is not in focus its point spread function becomes a disk. The following
argument is of course general, not just for images. Assume we know or can guess h.

In the equation above, simply divide (elementwise) by F{h}:

F{f ∗ h}
F{h}

= F{f},

so

f = F−1

(
F{f ∗ h}
F{h}

)
(6)

Here we have generated the FT of what we want (the input function) using things we
know (the point-spread function and the degraded image). Taking the inverse transform
of both sides recovers the original input. It almost works. A representative example is
the box blur function, which formalizes either (in 2-D) defocus blur or (in 1-D) straight-
line motion blur. Fig. 27 shows the problem: if F{h} ≈ 0, multiplying by 1

F{h} multiplies
frequencies there by huge amounts (or Inf if there is a divide by zero error). These amplified
frequencies often contain a noise component, so the noise can overwhelm the signal. So
some care (thresholding before multiplying, say) is needed. The Gaussian is a very friendly
blur function since its FT is another Gaussian and so is always positive. Deconvolving
with it simply amplifies the high frequencies, so thresholding is easy to implement and has
predictable consequences (loss of fine detail).
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Figure 27: The symmetric box function has a real-valued FT (on the left.) box
= [ 1 1 1 1 1 0 0 ....0 0 1 1 1 1]: box(1) is considered the origin). 1/FT is
plotted on the right: there are spikes or Infs where the FT is near or equal to 0.

A summer (re)construction job In the crime-lab data (See Fig. 2), the PSF is the
result of motion blur, and it be recovered from (that is, it exactly IS) the streak in the lower
right, the image of a single bright pixel. Here are three digital versions of it: the true PSF
and two approximations.

realpsf = [ .1 .5 .9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .9 .5 .1 ] % 22 long
okpsf = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] %19 long
badpsf = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] %22 long

The results of deconvolving and un-transforming via Eq. (6) are shown in Fig 28.
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Figure 28: Deconvolving the motion-blurred image of Fig 2 with three possible
streak point-spread functions (see text). Top left: badpsf; top right: okpsf (re-
sults serviceable but a little blurry still); Bottom: realpsf, the exact original point
spread function.
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9 Time and Space-Domain Operations

While this tutorial is about the idea and use of transform spaces, many useful signal pro-
cessing operations, in fact most, are performed in the time and space domains.

As an example, we might want to take the spatial derivative of the image to enhance
edges. In a digital image, this amounts simply to subtracting one pixel’s value from its
neighbor’s. We can do that with a convolution: we just convolve with the function (or mask,
in Matlab terms) [-1, 1]. So the derivative is a linear operator (which we know, given the
formula for d/dx [a(f(x)) + b(g(x))].)

Due to one of our favorite properties of eat , (its derivative is aeat), it turns out that the
result of putting the derivative operator into the FT is a cone-shaped function in frequency
space rising from 0 at the origin and proportional to the frequency. The in frequency space,
the derivative is a graphic equalizer that amplifies sinusoids by a factor proportional to their
frequency. Makes sense: the derivative of slowly-varying waves is small, and of fast-varying
ones is big.

Practically speaking, it is quicker and easier (takes fewer computer operations) to do this
little convolution in the space domain than it does to transform, multiply, and un-transform
image-sized matrices. Further, this filter like many can be implemented as a ’real time’
operation rather than a ’batch’ operation: d/dt can be done ’on the fly’ by streaming the
signal through a little circuit that subtracts neighboring data values and outputs the results.
Likewise more complex filters like guitar effects are real-time circuits with a little memory.

As an experimentalist, you will be fitting mathematical models to experimental data,
smoothing or interpolating data, creating statistics and visualizations. As we have seen,
frequency space certainly has its uses, but unless frequencies are the issue you may never
find yourself in transform space.

In sound processing, basic temporal-domain operations include overdubbing, sampling,
splicing, amplitude modulation, “loop delays”, and guitar effects like phasers and flangers.

Is spatial processing useful for images? Well, imagine inserting the Photoshop manual
right here. So yes. Matlab has an image processing toolbox, with some very useful proven
techniques, like Mathematical morphology, which is like convolution but the operations are
non-linear set operations like AND and OR functions over the data (binary data is the eas-
iest to think about). Morphology is excellent for cleaning up noisy images in many useful
ways, and also can be used for matching.

Enough. There is much more to be learned and used, but I hope you have an inkling of
why transform spaces are useful in many contexts, especially signal processing.
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A Complex Numbers

Complex numbers are just mathematical objects, like integers, reals, and matrices, that
have their own algebraic rules. A complex number is of the form a + bi, where i is

√
−1.
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Especially in engineering, i is often called j. Complex numbers were controversial when
introduced by Cardano back in the 1500’s, and they still resist ’understanding’ about what
they ’really’ are. Maybe there’s a ’Metaphysics of Mathematics’ course that worries about
that, but it’s easiest to think of them as Useful Gadgets That Do The Right Thing.

For instance, there isn’t anything wrong with the equation x2 = 1: the answer’s x = ±1.
By analogy, what’s wrong with the equation x2 = −1? Nothing, except you won’t find an
integer, fraction, real number, matrix, etc. that solves it. But it is solved by x = ±i if
you define i such that i2 = −1. And making such a definition turns out to be perfectly
consistent mathematically, as well as useful. So think of it as a formal shorthand solution
for a (mind-bending but) simple mathematical problem. You may recall that the solution
to a simple quadratic equation ax2 + bx + c = 0 is complex if

√
b2 − 4ac < 0: in fact it is

((−b/2a)± (i/2a)
√
b2 − 4ac).

Or, if you’re still queasy with
√
−1, you can just define a complex number as an (a, b) pair

of real numbers, using the particular set of rules below to define operations on such pairs.
A complex number a + bi can be considered to live in a plane with a real-part axis (giv-

ing value of a) and an imaginary-part axis (giving b’s value). So it is a 2-vector in that
2-dimensional (real-imaginary) space called the complex plane (Fig. 29).

Figure 29: An Argand diagram displays a complex number z and its conjugate z̄ as
points in the complex plane (the real-imaginary plane.)

There’s a new operator called the conjugate of a complex that simply changes the sign of
its imaginary part. Confusingly for us, conjugation is often denoted by *, so we’ll use conj()
as a conjugate function.

Thus conj(a + bi) = (a− bi) and vice-versa. You can work out that (a + bi) · conj(a + bi) is
a2 + b2, which is the squared magnitude (length) of the (a, b) vector in the complex plane.

Complex numbers are added, subtracted, multiplied, and divided by formally applying
the associative, commutative and distributive laws of algebra, together with the equation
i2 = 1:
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1. Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

2. Subtraction: (a+ bi)− (c+ di) = (a− c) + (b− d)i

3. Multiplication: (a+ bi)(c+ di) = ac+ bci+ adi+ bdi2 = (ac− bd) + (bc+ ad)i

4. Division:
a+ bi

c+ di
=

(a+ bi)(c− di)
c2 + d2

=
(ac+ bd) + (bc− ad)i

c2 + d2

where c and d are not both zero. Derive this by multiplying both the numerator and
the denominator by the conjugate of the denominator (c+ di), which is (c− di).
It turns out that addition of complex numbers corresponds graphically to addition of
the corresponding vectors in the complex plane. Somewhat more surprisingly, but also
very useful, is the fact that if these vectors are represented by polar coordinates (r, θ),
then multiplication of complex numbers corresponds to multiplying the lengths and
adding the angles. That is, if z1 = (r1, θ1) and z2 = (r2, θ2) represent complex numbers
in polar coordinates, then z3 = z1z2 is given by (r1r2, θ1 + theta2). This leads to interest-
ing graphical visualizations for operations such as extracting square roots, raising to
powers, etc, as well as interesting facts such as the n nth roots of any complex number
lying on a regular n-gon centered on the origin.

Complex numbers are ubiquitous, so you’ve got to get used to them. As always, consult
your favorite text or Wikipedia (’Complex Numbers’) for more.

B Power Spectrum Examples

These are meant to highlight frequency-domain features and how they are related to their
image (spatial domain) counterparts. The power spectrum has a wide range of values and
must be manipulated in order to be shown. Here I zeroed out the central peak (always huge,
representing the sum of all image values), added 1 to all the values, took their logarithm,
then scaled the values to [0,1].

The vertical line in the Limbaugh power spectrum and the horizontal one in the beach
sand are doubtless artifacts having to do with image cropping.
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Figure 30: Images and their log power spectra. The logarithm vastly reduces
the range of the numbers, effectively emphasizing higher frequencies relative to
lower. The checkerboard has s similarly-checkered spectrum, reminding us a bit
of the 2-D dirac comb whose power spectrum is also a comb. The middle figure
exhibits a few symmetries and some high-frequency structure. Rush’s image has
few straight lines but some high-frequency effects like hair.
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Figure 31: Images and their log power spectra. We expect the sand image to have
relatively much high-frequency power in no specific direction, and that the build-
ing and basket exhibit some straight line power spikes and 4-fold periodicity.
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