
CSC172 2nd Midterm 2013 Answers

Please write your name on the bluebook. There are 75 points (minutes). Two sides of
handwritten notes allowed. Stay cool and please write neatly.

1 Heaps: 20 pts.

A (10 min). The array implementation of a complete binary tree of N elements uses N array
positions 1 to N. Consider incomplete trees: how large must the array be to deal with the
following (5 min) cases:

A.1. A binary tree of N nodes that has two extra levels (slightly unbalanced).
A.2. The worst case binary tree (it forces the largest heap array) of size N.
A.3. A binary tree with deepest node at 3 logN .
B. (10 min.) In a binary MaxHeap, consider the minimum item in the heap: Show
B.1. it must be at one of the leaves.
B.2. every leaf must be examined to find it.
B.3. there are exactly dN/2e leaves.

Ans. A.1. Ignoring the technical ± 1 for levels vs. depth, a simple diagram shows we
need up to 4N (multiplicative constant). It looks something like

.
. .

. . . . 7 used to here
. * * * * * * * * need 8 here

. * * * * * * * * * * * * * * * * and 16 here
total array len will be 32, or about 4N for N>8.

Analytically, we need 2logN+2.
Or: 2dlogNe+1.
That evaluates to 4N, a multiple of the number of meaningful elements.

A.2. Here, no need to get that weird ”depth” involved. A worst-case binary tree with
N elements (entries) has N levels, which means 2N − 1 nodes, plus one if you like for the
Array[0] position, get 2N . So if N = 3, need array of length 8, an exponential function of
length.

A.3. Again there’s the unfortunate fact that the deepest node in a tree with L levels is at
depth L-1 (root is at depth 0). Taking the question literally, we’d get 23 logN+1

or 23 logN if we ignored the subtlety of how to define ”depth”. Since 3 logN is logN3, we get a
polynomial function: required length is N3 or 2N3.

B.1. If not it’d be above some smaller-valued node and would not obey the PO Tree
property.

B.2. The minimum item can be put into any leaf by choosing the order of insertions.

1

B.3. Clearly true in complete (full, totally balanced, N = 2k type tree. There are 2k−1

leaves, which is dN/2e. The first leaf added to a parent keeps the number of leaves constant.
The second adds a leaf, but that can only be done for 2k−1 old leaves, now parents. This
exactly doubles the number of leaves, creates a full tree as above, and thus leaves (har) the
assertion true.

2 Sorts: 15 pts

A (5 min). What is the running time of heapsort for presorted input? (The input is in
ascending order. Use a Minheap).

B. (10 min) What is the running time of shellsort (number of swaps) for reverse-ordered
input? Assume increments of (N/2, N/4, ..., 2, 1).

Ans
A. buildheap does no swapping but the deletemins are are still a log N proposition, so

NLogN.
B Ans. Shellsort is just a bunch of insertion sorts. For a given increment I, there will

be I subarrays to sort by insertion, each of length N/I. We know that insertion sort requires
time O(m2) to sort a reverse-sorted array of length m. Here, m will be (N/I) for eachsub
array. Thus one subarray will cost N/I)2 to sort. There are I sub arrays, so the total cost
will be I ∗ (N/I)2 = n2/I. But that is the cost just for a single gapSize. The total time
for all of the iterations must be N2/(N/2) + N2/(N/4) + N2/(N/8) + ... + N2/2 + N2/1 =
2N + 4N + ...+N2/2 +N2/1. If we factor out an N, we get N(2 + 4+ ...+N/2 +N). In parens
is sum of powers of 2 from 2 to N, which is approximately equal to 2N. Therefore, the total
cost is N(2N) = 2N2 = O(N2).

3 Searching: 20 pts

A (15 pts): We have a graph of V vertices with costs on its E edges. Compare and contrast
Depth First Search and Breadth First Search for:

A1 (5 pts): Data structures and programming concepts required to implement the search
(not implement the graph).

A2 (5 pts): Worst-case Big-Oh space (in terms of V or E or both) required to search the
graph. Justify your answer: what is the worst case graph for DFS and BFS?

A3 (5 pts): Worst-case Big-Oh time (in terms of V or E or both) required to search the
graph.
B (5 pts): Is uniform cost search more like DFS or BFS? What data structure is natural for
its implementation?

Ans. A1. DFS: stack and (or) recursion. BFS: queue and iteration
A2 Although we pay (depth-limited) DFS in the hope it only needs about O(logN) space

(as many recursive calls as the depth), in the Worst Case the depth is N... e.e. a binary tree
in which all nodes have only a left child.

2

Thus O(V) for each type of search. worst for dfs is list, worst for BFS is also a list, or
depending on the edges, a clique... or anything!

A3 BFS: O(V+E) or O(E): linear DFS: O(E), also linear in size of graph.
B: it’s like BFS, priority queue is natural.

4 Recurrence and Loop Analysis: 10 pts

Note: given in class earlier. Here’s some C-ish pseudocode.
This function takes three parameters: 1: A character array. 2: The starting index of a

substring (subarray). 3: The ending index of the substring.
Array indices start at 0. A sample (and top-level) call: disturb(’abcd’, 0, 3);

disturb(char a[], int i, int n) {
int j;
if (i == n)

printf("%s\n", a);
else
{ for (j = i; j <= n; j++)

{ swap(a[i], a[j]); //swap 2 chars
disturb(a, i+1, n);
swap(a[i], a[j]); //(un)swap 2 chars

} } }

A (5 pts): Do loop analysis to derive a recurrence equation for the growth rate (as a function
of N) for the algorithm disturb. Solve it by inspection.
B (5 pts): In one word, what is disturb computing?

Ans:
One of the more common errors was to compute the loop cost by adding the T(n-1) costs

of the body, rather than multiplying each by n.
A. T(n) = n*T(n-1) +O(1)

T(0) = 1,
so T(n) = n!

C. permutations, which the n! should remind us of.

5 Hashing: 5 pts

Cubic probing uses the probing sequence hash(x)+ i3, i = 1, 2, Does this method improve
on quadratic probing’s secondary clustering behavior? Why or why not?

Ans. no improvement. Secondary clustering is caused by any repeated pattern of probes
to resolve a collision. So it’s endemic unless some more randomization is applied, like sec-
ondary hashing. True the cubes grow faster, but they’re modded out like the squares and
always repeat themselves for any collision.

3

6 Disjoint Sets: 15 min.

A (10 pts): Perform the following unions on the set 0,...,7 using union by size: (several
right answers)
U(0,1); U(4,5); U(2,3); U(6,7); U(0,3); U(5,2).
B (5 pts): Show the effect of find(9) performed on the following tree, using path compression.

1
/ \
3 5

\
7
/ \

6 9

Ans. A. Lots of right answers depending on how pick children and parents. My answer
looks like the two-tree forest: Lots of people forgot the little 6-7 tree in the union.

0 6
1 2 4 7

3 5

B. 3,5,7,9 all become direct children of root 1.

1
3 5 7 9

6

4

