
CSC172 LAB

JAVA REVIEW

1 Introduction
The labs in CSC172 will follow a pair programming paradigm. Every student is encouraged (but not 
strictly required) to have a lab partner. Labs will typically have an even number of components. The 
two partners in a pair programming environment take turns at the keyboard. This paradigm facilitates 
code improvement through collaborative efforts, and exercises the programmers cognitive ability to 
understand and discuss concepts fundamental to computer programming. The use of pair programming 
is optional in CSC172. It is not a requirement. You can learn more about the  pair programming 
paradigm, its history, methods, practical benefits, philosophical underpinnings, and scientific validation 
at http://en.wikipedia.org/wiki/Pair_programming . 

Every student must hand in his own work, but every student must list the name of the lab partner  (if 
any) on all labs. 

This lab has six parts. You and your partner(s) should switch off typing each part, as explained by your 
lab TA. As one person types the lab, the other should be watching over the code and offering 
suggestions. Each part should be in addition to the previous parts, so do not erase any previous work 
when you switch. 

The textbook should present examples of the code necessary to complete this lab. However, 
collaboration is allowed. You and your lab partner may discuss the lab with other pairs in the lab. It is 
acceptable to write code on the white board for the benefit of other lab pairs, but you are not allowed to 
electronically copy and/or transfer files between groups.

2 Simple Programming Review
The real purpose of this lab is organizational. Practical programming knowledge is a 
prerequisite for this course. It is also important to get to know your lab TA, get used to the 
format of the labs, and make sure you know how to hand things in on the blackboard system. 
So, this first lab is intended mostly to be review.

1. Write a JAVA “helloworld” program with a single main method that prints out your name, your 
lab session, and the name of the TA that is responsible for your grades. 



2. Write a recursive method to calculate the factorial function. Add it to the program above. 
Include some code that tests your method on the integers 1 -10.

3. Write a method that takes an integer value N as a parameter and returns an array. The length of 
the array should be equal to the value of the the parameter. The method should return an integer 
array of length N filled with random integers in the range. 0 – N. Write a method that takes a 
reference to an integer array as a parameter and prints the contents of the array to standard 
output. Add code to your program to demonstrate the code.

4. Write a method that takes a reference to an integer array as a parameter and sorts the array in 
ascending order. (least to greatest). Do not use the built in Java library swap routines. Rather, 
write your own method. Demonstrate that your method works by generating a random array, 
printing it, sorting it, then printing it again.

5. In a separate file, define a class “Student” students have names and graduation years which 
should be declared as private instance variables variables. Include a constructor and appropriate 
methods (accessor, mutator, toString). Add code to your program to show your class working.

6. In a separate file define a class “TA” that is a subclass of the “Student” class. TAs are Students 
with a an hourly pay rate. Add code to your program to show the use of this new class.

3 Hand In
Hand in the source code from this lab at the appropriate location on the blackboard system at 

my.rochester.edu. You should hand in a single compressed/archived (i.e. “zipped”) file that contains 
the following.

1. A README  file that includes your contact information, your partner's name, a brief 
explanation of the lab (A one paragraph synopsis. Include information identifying what class 
and lab number your files represent.). 

2. JAVA source code files representing the work accomplished in this lab. All source code files 
should contain author and partner identification in the comments at the top of the file.

3. A plain text file named OUTPUT that includes author information at the beginning and shows 
the compile and run steps of your code. The best way to generate this file is to cut and paste 
from the command line.

4 Grading

See 172/grading.html.

Each section (1-6) accounts for 15% of the lab grade (total 90%)

(README file counts for  10%) 


	1 Introduction
	2 Simple Programming Review
	3 Hand In
	4 Grading

