OVERVIEW Here's a version of the infamous "Venn Diagram". Its rectangles share the "top edge" of the page...

LANGUAGE	GRAMMAR	MACHINE	CXTY
Finite	List	Enumer.	0(n)
Reg. Exp (ab*)* (0*1*)*	S->aT S->b	RE=DFA =NFA=RE	0(n)
Context Free	S->aSb L:	NPDA > DPDA > in. DPDA	Poly: O(n^3) O(n)
Context Sensitive	aS->bTSa	LBA	Expon.
Recursively Enumerable	aT->b	TM	Undeci- dable

DEFINITIONS TYPES 0-3 (CHOMSKY HIERARCHY)

Erasing Convention (EC). Limit erasing to single $S \rightarrow \lambda$ production, with S the start symbol. If that happens, S doesn't appear on RHS of any other productions.

Given that (have to convince self it's OK),

G is Context Sensitive (Type 1): obeys EC, and otherwise for all $\alpha \rightarrow \beta, \beta$ is at least as long as α .

G is Context Free (Type 2): obeys EC, for all $\alpha \rightarrow \beta, \alpha$ is a single nonterminal.

G is Regular (Type 3): obeys EC and for all $\alpha \rightarrow \beta, \alpha$ is a single nonterminal and β is of form t or tW, t a terminal, W non-terminal.

REGULAR, CONTEXT FREE

G = (V, T, S, P) with $V = \{0, 1, S\}, T = \{0, 1\}, P$

S->0S S->1

$$L = (ab) * c | db*: G = (V, T, S, P) \text{ with}$$
$$V = \{a, b, c, d, S, B, TS\}, T = \{a, b, c, d\}, P$$

$$S->d$$
 $S->dT$ $T->b$ $T->bT$
 $S->c$ $S->aQ$ $Q->bX$ $X->c$ $X->aQ$

I think! This is Type 3 = RE, Scanners, we know this!

L is all non-empty strings with even number of 1's: G = (V, T, S, P) with $V = \{1, S\}, T = \{1\}, P$

S->SS S->11

Not Regular (RHS has two NT or two T). Note other grammars but...

Type 1 Grammar

L is
$$\{a^n b^n c^n \mid n \ge 1\}$$
. $G = (V, T, S, P)$ with $V = \{a, b, c, S, B, C\}, T = \{a, b, c\}$

S->aSBC S->aBC CB->BC aB->ab bB->bb bC->bc cC->cc S aSBC aaBCBC aaBBCC aabBCC aabbCC abbcC aabbcc

Not CFG (note multiple-symbol LHSs).

LBA recognizes since non-shrinking productions mean no intermediate sentential form is longer than original input string. Type 0 Grammar (not CS)

L is empty string λ (or 1) with set of strings consisting of odd number of 0s, > 3. G = (V,T,S,P) with $V = \{0, A, B, E, F, W, X, Y, Z, S\}, T = \{0\},$, and P (note shrinking productions)

S->FA S->FBA FB->FOEBO EB->XBY OX->OX EB->O YO->OY FX->FOW YA->ZOA WO->OW OZ->ZO WBZ->EB F->1 A->1

Derivation: $S \Rightarrow FA \Rightarrow^* \lambda \lambda$ gives λ .

S FBA FOEBOA FOXBYOA * FXOBOYA * FOWOBOZOA * FOOWBZOOA FOOEBOOA FOOOOOA * 00000

(Note X,Y,W,Z march across the 0 string, adding one on each side. Very TM- like.

TURING MACHINE

Finite alphabet, Finite number of non-blank cells, finite but unbounded memory. Cell blank or one symbol. FSA reads one cell at any given moment, then either halts or takes these actions:

1. Print a symbol from alphabet on the cell read (possibly same symbol).

2. Go to next state (could be same)

3. Move the Read-Write head one cell left or right.

Describe by set of quintuples $\{s, r, p, n, d\}$ for (current state, current symbol, symbol printed, next state, direction). In a deterministic TM no two quintuples have same s, r. In nondeterministic, there can be a choice of actions: this models parallelism or precognition but doesn't add power (new languages accepted).