
OVERVIEW Here’s a version of the infamous

“Venn Diagram”. Its rectangles share the “top

edge” of the page...

LANGUAGE GRAMMAR MACHINE CXTY

Finite List Enumer. O(n)

Reg. Exp S->aT RE=DFA O(n)

(ab*)*|(0*1*)* S->b =NFA=RE

Context S->aSb NPDA > Poly:

Free DPDA > O(n^3)

Lin. DPDA O(n)

Context aS->bTSa LBA Expon.

Sensitive

Recursively Undeci-

Enumerable aT->b TM dable

1



DEFINITIONS TYPES 0-3 (CHOMSKY

HIERARCHY)

Erasing Convention (EC). Limit erasing to single

S → λ production, with S the start symbol. If

that happens, S doesn’t appear on RHS of any

other productions.

Given that (have to convince self it’s OK),

G is Context Sensitive (Type 1): obeys EC, and

otherwise for all α → β, β is at least as long as α.

G is Context Free (Type 2): obeys EC, for all

α → β, α is a single nonterminal.

G is Regular (Type 3): obeys EC and for all

α → β, α is a single nonterminal and β is of form t

or tW , t a terminal, W non-terminal.

2



REGULAR, CONTEXT FREE

G = (V, T, S, P ) with V = {0,1, S}, T = {0,1}, P

S->0S S->1

L = (ab) ∗ c | db∗: G = (V, T, S, P ) with

V = {a, b, c, d, S, B, TS}, T = {a, b, c, d}, P

S->d S->dT T->b T->bT

S->c S->aQ Q->bX X->c X->aQ

I think! This is Type 3 = RE, Scanners, we know

this!

L is all non-empty strings with even number of

1’s: G = (V, T, S, P ) with V = {1, S}, T = {1}, P

S->SS S->11

Not Regular (RHS has two NT or two T). Note

other grammars but...

3



Type 1 Grammar

L is {anbncn | n ≥ 1}. G = (V, T, S, P ) with

V = {a, b, c, S, B, C}, T = {a, b, c}

S->aSBC S->aBC CB->BC aB->ab bB->bb bC->bc cC->cc

S aSBC aaBCBC aaBBCC aabBCC aabbCC abbcC aabbcc

Not CFG (note multiple-symbol LHSs).

LBA recognizes since non-shrinking productions

mean no intermediate sentential form is longer

than original input string.

4



Type 0 Grammar (not CS)

L is empty string λ (or l) with set of strings

consisting of odd number of 0s, > 3.

G = (V, T, S, P ) with

V = {0, A, B, E, F, W, X, Y, Z, S}, T = {0},, and P

(note shrinking productions)

S->FA S->FBA FB->F0EB0 EB->XBY 0X->0X

EB->0 Y0->0Y FX->F0W YA->Z0A W0->0W

0Z->Z0 WBZ->EB F->l A->l

Derivation: S ⇒ FA ⇒∗ λλ gives λ.

S FBA F0EB0A F0XBY0A * FX0B0YA * F0W0B0Z0A

* F00WBZ00A F00EB00A F00000A * 00000

(Note X,Y,W,Z march across the 0 string, adding

one on each side. Very TM- like.

5



TURING MACHINE

Finite alphabet, Finite number of non-blank cells,

finite but unbounded memory. Cell blank or one

symbol. FSA reads one cell at any given

moment, then either halts or takes these actions:

1. Print a symbol from alphabet on the cell read

(possibly same symbol).

2. Go to next state (could be same)

3. Move the Read-Write head one cell left or

right.

Describe by set of quintuples {s, r, p, n, d} for

(current state, current symbol, symbol printed,

next state, direction). In a deterministic TM no

two quintuples have same s, r. In

nondeterministic, there can be a choice of

actions: this models parallelism or precognition

but doesn’t add power (new languages accepted).

6


