
Tom O'Neill, Glaser, Aldridge Page 1 of 19 4/3/2006
Modeling Priority Management… CSC242

Modeling Priority Management Strategies

Using UR-Quagents and JESS

Tom O'Neill Harry Glaser Leland Aldridge

CSC242, Dept. of Computer Science, University of Rochester

{toneill, hglaser, la002k}@mail.rochester.edu

Abstract

Complex agents with intelligent behaviors often have multiple potential

behaviors to employ at any one time. Selecting the best behavior is usually non-

trivial because it can depend on the situation. Using JESS and the UR-Quagent

environment, we model three priority management strategies using goal-oriented

agents in a simulated environment. Our results are inconclusive due to weaker

than expected payoffs for certain actions in the environment, thus severely

limiting our ability to compare strategies built for use under different

environmental assumptions. Future trials should adjust the payoffs of certain

actions based on these results.

Tom O'Neill, Glaser, Aldridge Page 2 of 19 4/3/2006
Modeling Priority Management… CSC242

Introduction

Production systems are ideal environments for programming behaviors

into agents without enforcing a rigid control structure. One way to implement

simple intelligent behavior in a production system is to use behavior states (Maes

& Brooks, Learning to Coordinate Behaviors). In this scenario, several behavior

states may be viable options at any time, and the agent needs to choose

between them. To guide the agent with this task, the behavior states are ranked

by their priority, thus the agent will always choose the available state with the

highest priority.

The complexity of the problem arises at the point where priorities are

assigned. Our approach identifies three potential strategies and applies them to

the agent’s behaviors. Our agent’s behaviors are set up such that the

complexities of more intelligent agents are abstracted away and our agent’s

behavior is entirely dependent on the priority strategy used on a particular

choice. The choice the agent is presented with involves choosing which of two

actions to perform in the environment, one option representing a short term

payoff and the other a long term payoff. The strategies are evaluated based on

the agents’ relative success when compared to a common goal known by the

agent.

We expect that a strategy that satisfies a ‘compromise’ between conflicting

behaviors will lead to the best performance toward the goal, where strategies that

concentrate on satisfying a single behavior’s requirements will not lead to optimal

agent behavior.

Tom O'Neill, Glaser, Aldridge Page 3 of 19 4/3/2006
Modeling Priority Management… CSC242

Methods

We used the University of Rochester Quake II Quagent environment to

simulate intelligent agents in a virtual world. The JESS production system was

used to both create and control the behavior of the agents.

Environment

 At the start of each behavior session, a quagent was placed in the center

of a room containing a 7x9 randomized grid of items that the quagent could

interact with. For each trial the same randomized grid was used. Each item was

in the center of a grid square, and grid points were 150 units apart. The grid

contained 52 pieces of gold, 8 battery packs, and 3 pieces of kryptonite. The

gold acted as a source of wealth, the batteries acted as a source of energy, and

the kryptonite caused harm to the quagent if the agent traveled within 200 units

of it. The distribution of items in the agent’s environment is shown in Figure M.1.

The agent always started in the middle of the grid.

G G G K G G B G B

G G B G G G G G G

G G G G G G G G G

G G B G G G G B G

G G G G B G G G G

G G G K B G G G G

G G B G G G G G B
Figure M.1

(G = gold, N = batteries, K = kryptonite)

Tom O'Neill, Glaser, Aldridge Page 4 of 19 4/3/2006
Modeling Priority Management… CSC242

Priorities

 To allow the agents to model the implemented priority management

strategies, the agent’s behavior priorities were split into to three groups:

1. The Greater Priority Behaviors (GPB) – this group contains all of

the behavior priorities in effect above the experimental behaviors

and hence dominates the agent’s behavior when in use.

2. The Strategy Priority Behaviors (SPB) – this group contains the two

behaviors (long term benefit and short term benefit) that are

managed using the current priority management strategy.

3. The Lesser Priority Behaviors (LPB) – this group contains the

behaviors that only execute after both previous groups cannot act.

These three groups allowed the priority management strategies to

influence each agent in a predicable way, thus allowing for the evaluation of each

strategy in the context of the agent’s environment and goal.

Behaviors

While in the environment, the quagents acted out one of four behaviors at

a time. Each agent had the same four behaviors to choose from:

1. Avoid kryptonite – this constituted the GPB for each quagent. This

behavior forced quagents to avoid nearness to kryptonite.

2. Collect gold – this is the first of two behaviors in the SPB. While

executing this behavior, quagents sought out piles of gold and

collected them.

Tom O'Neill, Glaser, Aldridge Page 5 of 19 4/3/2006
Modeling Priority Management… CSC242

3. Collect batteries – the second behavior in the SPB. While

executing this behavior, quagents sought out battery packs and

collected them.

4. Explore – the default action of the quagent, representing the LPB.

Agents in explore mode turned a random number of degrees and

walked random distances around the environment.

The goal of each quagent was to collect as much gold as possible before

running out of energy. At no point were quagents allowed to sacrifice health in

order to collect gold. Each action required a small amount of energy, thus

leading to the development of three different strategies to handle the SPB. (Refs

to Books-style papers?)

Sensors

 Each agent could view the immediate area around it (1000 unit radius

from the agent’s position). The agent was able to determine the location and

object type of every object in its radius, as well as use its own position and

heading to calculate how to move toward or away from any viewable object. The

agent did not remember previously seen objects. Thus, each action by the agent

is determined by what is sees in its viewable radius at any moment.

Strategies

 All agents had the same first last priorities, avoid kryptonite and explore

respectively. The three priority management strategies implemented to handle

Tom O'Neill, Glaser, Aldridge Page 6 of 19 4/3/2006
Modeling Priority Management… CSC242

the two SPB, collecting gold and collecting batteries while avoiding kryptonite,

were:

1. Greedy Agent (GA) - Ignore energy requirements and always seek

gold.

2. Frantic Agent (FA) – Collect gold until energy runs low, then

explore until enough batteries are found to restore energy levels.

3. Pragmatic Agent (PA) – Collect gold until energy runs low, then

collect gold or batteries, with batteries given precedence.

Several agents operating under each strategy were placed in the

environment (one at a time) and each acted out the behaviors deemed as having

the highest priority. Each agent was allowed to act in the environment until its

energy fell to zero. At that point, the results were recorded and the simulation

reset.

Results

Agents were evaluated on several criteria: maximum wealth collected,

time taken to collect the wealth, and the lifetime of the agent. The average

values of these criteria for each agent are shown in Figure R.1, along with some

calculated results. In this environment, time is measured in ‘ticks’, each tick

represents a period of movement. Quagents could turn and pickup items

between movement ticks, depending on their behavior state.

 Wealth
Time to

Max Wealth Lifetime
Lifetime

Collection Rate
Frantic Agent 160 21 100.5 1.6

Tom O'Neill, Glaser, Aldridge Page 7 of 19 4/3/2006
Modeling Priority Management… CSC242

Greedy Agent 520 72 90.5 5.7
Pragmatic Agent 485 71.5 87 5.6

Figure R.1

Wealth is the total amount of gold the agent collected. Time to Max

Wealth is the number of ticks in the environment until the last time the quagent

picked up gold. Lifetime is the total number of ticks spent in the environment

before death. Lifetime Collection Rate is the rate at which the quagent collected

gold during its lifetime (Wealth / Lifetime). Graphical versions of the above chart

follow in Figures R.2 – R.5.

0

100

200

300

400

500

600

Lifetime Wealth
(gold x 10)

Frantic Agent Greedy Agent Pragmatic Agent
Agent Strategy

Total Lifetime Wealth

0

10

20

30

40

50

60

70

80

Time (ticks)

Frantic Agent Greedy Agent Pragmatic Agent
Agent Strategy

Time to Max Wealth

Figure R.2 Figure R.3

80

85

90

95

100

105

Time (ticks)

Frantic Agent Greedy Agent Pragmatic Agent
Agent Strategy

Lifetime

0

1

2

3

4

5

6

Wealth
Generation (gold

x 10 / lifetime)

Frantic Agent Greedy Agent Pragmatic Agent
Agent Strategy

Lifetmie Wealth Collection Rate

Figure R.4 Figure R.5

In addition to the above measurements, each tick of each quagent was

graphically mapped. The 5th, 20th, 40th, and 80th ticks for representative trials of

each agent strategy are in Appendix 1.

Tom O'Neill, Glaser, Aldridge Page 8 of 19 4/3/2006
Modeling Priority Management… CSC242

Discussion

Our hypothesis suggests that the Pragmatic Agent would have the most

success in attaining the goal. However, this is not the case since it does not

acquire wealth at the highest rate nor does it attain the most wealth compared to

the other two strategies. In an effort to explain this interesting phenomenon, we

analyze each agent’s performance. In all cases, the agents did not use any

planning mechanisms to determine optimal paths, their actions were based

entirely on the immediately viewable radius.

The Frantic Agent

 The most glaring difference between the three strategies separates the

Frantic Agent from the other two. Its strategy of fulfilling the secondary objective

first (i.e. replenish energy before pursuing more gold) dramatically hurt its

performance compared to the other agent strategies. The relative differences

between the Frantic Agent and the other two agents in both Max Wealth and

Time to Max Wealth suggest that it accrued wealth at an equal pace to the other

two agents early on, and then no longer accrued any wealth once it ran low on

energy. Appendix 1 shows that the exploratory nature of the Frantic Agent

actually causes it to leave the main area of the environment and get lost near the

boundaries.

 The most likely cause for this error on the part of the agent is that the

battery packs were either too sparse, or did not contain enough energy to offset

the cost of exploration and thus were essentially useless.

Tom O'Neill, Glaser, Aldridge Page 9 of 19 4/3/2006
Modeling Priority Management… CSC242

 However, the Frantic Agent does perform slightly better than the other two

agents regarding life spans. It appears as if the Frantic Agent conserves energy

in an effort to have enough time to explore and find more battery packs.

 The frantic agent seems better suited for environments with stronger

batteries, or higher densities of batteries, or environments where lifespan is a

factor in achieving the goal.

The Greedy Agent

This agent ignored the requirement for energy and strictly collected gold.

For this environment, this strategy was the most successful because this agent

strategy collected more gold than any other agent strategy. This result could be

the effect of an experiment that was too short, thus allowing an agent seeking

short term gains to take the lead. However, that does not appear to be the case

since the Pragmatic Agent, a design that should outperform a greedy strategy in

the long run, collected slightly less gold.

This situation lends more evidence to the idea that the battery packs do

not carry enough energy to be worth picking up. This strategy shows that energy

did not play an important enough role in this environment to be worth picking up.

The Pragmatic Agent

 This agent strategy was expected to perform the best of the three agents.

Due to potential issues related to the power quantity of the battery packs

throughout the environment, this agent performed worse than expected.

Tom O'Neill, Glaser, Aldridge Page 10 of 19 4/3/2006
Modeling Priority Management… CSC242

 This agent strategy produced the shortest lifetime of all three strategies,

yet it performed almost as well as the greedy agent regarding the total amount of

gold collected. This is likely the result of the battery packs actually hampering its

ability to collect gold because they do not seem to positively affect the quagent in

any measurable way.

 We believe the problem regarding the performance of these agents is

related to the battery packs not carrying enough energy to make them useful in

aiding quagent behavior. For this reason, we cannot accurately evaluate the

effectiveness of the behavior priority strategies because the intended behaviors

were not emergent in the agents. We discuss potential fixes and ideas for further

exploration of priority strategy management in the next section.

Future Work

Future efforts to model priority management strategies in the

Quagents/JESS environment need to account for the potential weakness of the

battery packs in the environment. We suggest recompiling the Quake engine to

provide for larger energy values on battery packs, or placing many more battery

packs (potentially in the same location) in the environment.

After the energy issue has been corrected, future work could include

testing the effectiveness of these strategies on several more environments,

especially those that are not grid based. Environments that are engineered to

force the quagents into varying levels of behavior complexity would be useful in

Tom O'Neill, Glaser, Aldridge Page 11 of 19 4/3/2006
Modeling Priority Management… CSC242

testing more intelligent behaviors. For example, the environment could be set up

with kryptonite near batteries and experimenters could allow strategies that

account for a desperation factor, thus the quagent could travel closer to

kryptonite/battery dense areas if the quagent was especially low on energy.

Work Distribution

This project was worked on by Tom O’Neill, Harry Glaser, and Leland

Aldridge, their contributions are as follows:

Tom O’Neill wrote this paper and programmed most of the JESS Quagent

behaviors and Java interfacing, and ran the behavior tests.

Harry Glaser set up the Jess/Java framework and performed initial

development and functional testing.

Leland Aldridge is responsible for developing the quagent behaviors and

the frsmework for priority strategy modeling.

Tom O'Neill, Glaser, Aldridge Page 12 of 19 4/3/2006
Modeling Priority Management… CSC242

Appendix 1: Graphical Displays of Quagent Movements

The following are graphical printouts of representative behavior

sequences of each quagent strategy. The colored dots on the map represent all

of the objects the quagent can see (quagents do not have memories). The blue

arrows represent the agent’s successive moves.

Dot Key:

Red = kryptonite

Green = batteries

Yellow = gold.

Tom O'Neill, Glaser, Aldridge Page 13 of 19 4/3/2006
Modeling Priority Management… CSC242

Frantic Agent

Step 5 Step 20

Step 40 Step 80

Time slices from a sample run of the Frantic Agent’s behavior trials. By step 40 he has left field

of objects and by step 80 he is lost near the border of the environment.

Tom O'Neill, Glaser, Aldridge Page 14 of 19 4/3/2006
Modeling Priority Management… CSC242

Greedy Agent

Step 5 Step 20

Step 40 Step 80

Time slices from a sample run of the Greedy Agent’s behavior trials. Step 80 shows the

methodical nature of the agent as it collects gold and ignores everything else but kryptonite.

Tom O'Neill, Glaser, Aldridge Page 15 of 19 4/3/2006
Modeling Priority Management… CSC242

Pragmatic Agent

Step 5 Step 20

Step 40 Step 80

Time slices from a sample run of the Pragmatic Agent’s behavior trials. Like the Greedy Agent,

step 80 shows a methodical process of collecting items, with a few excursions for collecting

batteries.

Tom O'Neill, Glaser, Aldridge Page 16 of 19 4/3/2006
Modeling Priority Management… CSC242

Appendix 2: JESS Code for each agent

The following pages are the complete JESS code files used to orchestrate the

behaviors of the agents.

Tom O'Neill, Glaser, Aldridge Page 17 of 19 4/3/2006
Modeling Priority Management… CSC242

Frantic Agent

(defglobal
 ?*quagent* = 0 ;mr quagent
 ?*actionState* = 0 ;state of the quagent

 ?*currentVision* = 0 ; array of objects in local area

 ?*target* = 0 ;target index into vision array
 ?*energy* = -1 ;energy level of quagent, inits to 1000

 ;constants
 ?*seekEnergyAt* = 400 ;level at which quagent will start seeking energy

?*fleeDistance* = 200 ;distance to back away when quagent sees something bad
 ?*searchRadius* = 1000 ;radius of probe to seek objects (max: 1000)
 ?*minDistToKrypt* = 200 ;flee at this radius
 ?*noTarget* = -1 ;when no target exsts in the vision array

 ;jess into mapper names:
 ?*mapperName* = "myMapper"
 ?*addMovement* = "acceptPos" ;(x,y)
 ?*clearViewedItems* = "resetSpecial" ;()
 ?*addViewedPoint* = "addSpecialPos" ;(x,y,"type")
 ?*setHealth* = "setHealth" ;(val)
 ?*setEnergy* = "setEnergy" ;(val)
 ?*setWealth* = "setWealth" ;(val)
)

(deffunction init ()
 (printout t "#Function: init" crlf)

 (bind ?*quagent* (new ControlledQuagent))
 (?*quagent* initialize)
 (bind ?*actionState* (assert(lookAround)))
)

(deffunction close ()
 (?*quagent* close)
)

;scan max radius for potential targets and store scan for later
;also, check/update current energy level and health
(defrule lookForTargets

(lookAround)
 =>
 (printout t "#Rule: lookForTargets" crlf)

 ;mapper output - movement!
 ;(bind ?pos (?*quagent* pos))

;(printout t ?*mapperName* "." ?*addMovement* "((" (?pos getX) ", " (?pos getY) "))"
crlf)

 (bind ?*currentVision* (?*quagent* probe ?*searchRadius*))
 (bind ?*energy* ((?*quagent* getWellbeing) getEnergy))
 (bind ?health ((?*quagent* getWellbeing) getHealth))
 (bind ?wealth ((?*quagent* getWellbeing) getWealth))

 ;mapper output - radius
 ;(printout t ?*mapperName* "." ?*clearViewedItems* "()" crlf)
 ;(bind ?len (- (?*currentVision* numItems) 1))
 ;(while (>= ?len 0)
 ; (printout t ?*mapperName* "." ?*addViewedPoint* "(" (?*currentVision* getX ?len)
", " (?*currentVision* getY ?len) ", \"" (?*currentVision* getName ?len) "\")" crlf)

 ; (bind ?len (- ?len 1))
 ;)

 ;draw quagent's state
 ;(printout t ?*mapperName* "." ?*setEnergy* "(" ?*energy* ")" crlf)
 ;(printout t ?*mapperName* "." ?*setHealth* "(" ?health ")" crlf)
 ;(printout t ?*mapperName* "." ?*setWealth* "(" ?wealth ")" crlf)
 ;(printout t ?*mapperName* ".draw()" crlf)

 (printout t "# Current Energy: " ?*energy* crlf)
 (printout t "# Current Health: " ?health crlf)
 (printout t "# Current Wealth: " ?wealth crlf)

 (retract ?*actionState*)
 (bind ?*actionState* (assert(checkSurroundings)))
)

;searches scan for kyrptonite and if found, flees from it
;search only applies when kyptonite is seen
(defrule lookForKryptonite
 (declare (salience 30))
 (checkSurroundings)
 (test (neq (?*currentVision* getClosest "kryptonite" (?*quagent* pos)
 ?*minDistToKrypt*) ?*noTarget*))
 =>
 (printout t "#Rule: lookForKryptonite" crlf)

 (bind ?*target* (?*currentVision* getClosest "kryptonite" (?*quagent* pos)))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(fleeTarget)))
)

;searches scan for gold and if found, goes there
;search only applies when bot has energy above it's
; low-threshold and gold is in the scan
(defrule lookForGold
 (declare (salience 20))
 (checkSurroundings)
 (test (neq (?*currentVision* getClosest "gold" (?*quagent* pos)) ?*noTarget*))

 ;get gold only if not low on energy ;
 (test (> ?*energy* ?*seekEnergyAt*))
 =>
 (printout t "#Rule: lookForGold" crlf)

 (bind ?*target* (?*currentVision* getClosest "gold" (?*quagent* pos)))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(seekTarget)))
)

;searches scan for batteries and if found, goes there
;search only applies if the agent either cannot find gold or
; needs energy and batteries are in the scan
(defrule lookForEnergy

(declare (salience 10))
 (checkSurroundings)
 (test (neq (?*currentVision* getClosest "battery" (?*quagent* pos)) ?*noTarget*))
 =>
 (printout t "#Rule: lookForEnergy" crlf)

 (bind ?*target* (?*currentVision* getClosest "battery" (?*quagent* pos)))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(seekTarget)))
)

;handles moving the agent to the desired target
(defrule goToTarget
 (seekTarget)

=>
 (printout t "#Rule: goToTarget" crlf)
 (printout t "# Target = " (?*currentVision* getName ?*target*) crlf)

 (?*quagent* turn (* ((?*quagent* pos) getYaw) -1));reset yaw to 0, makes math easier

 (bind ?dist (?*currentVision* getDist ?*target* (?*quagent* pos)))
 (bind ?turn (?*currentVision* getAngle ?*target* (?*quagent* pos)))

 (?*quagent* turn ?turn)
 (?*quagent* run ?dist)

 (retract ?*actionState*)
 (bind ?*actionState* (assert(atTarget)))
)

;handles moving the agent to the desired target
(defrule fleeFromTarget
 (fleeTarget)

=>
 (printout t "#Rule: fleeFromTarget" crlf)
 (printout t "# Target = " (?*currentVision* getName ?*target*) crlf)

 (?*quagent* turn (* ((?*quagent* pos) getYaw) -1));reset yaw to 0, makes math easier

 ;flee in opposite direction +/- 30 degrees to avoid loops
 (bind ?dist ?*fleeDistance*)
 (bind ?turn (+ (?*currentVision* getAngle ?*target* (?*quagent* pos)) 180))
 (bind ?turn (- ?turn (* (?*quagent* randInt 3) 30)))

 (?*quagent* turn ?turn)
 (?*quagent* run ?dist)

 (retract ?*actionState*)
 (bind ?*actionState* (assert(lookAround)))
)

;picks up wanted objects when standing over them
(defrule pickUpTarget
 (atTarget)

=>
 (printout t "#Rule: pickUpTarget" crlf)

 (?*quagent* pickup (?*currentVision* getName ?*target*))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(lookAround)))
)

;when there's nothing else to do, explore
(defrule exploreSurroundings
 (declare (salience 0))
 (checkSurroundings)

 =>
 (printout t "#Rule: exploreSurroundings" crlf)

 (?*quagent* turn (* (?*quagent* randInt 12) 30)) ;random multiple of 30 degrees
 (?*quagent* run (+ (* (?*quagent* randInt 6) 50) 200)) ;random multiple of 50 in
[200, 450]

 (retract ?*actionState*)
 (bind ?*actionState* (assert(lookAround)))
)

(reset)
(init)
(run)
(close)

Tom O'Neill, Glaser, Aldridge Page 18 of 19 4/3/2006
Modeling Priority Management… CSC242

Greedy Agent

(defglobal
 ?*quagent* = 0 ;mr quagent
 ?*actionState* = 0 ;state of the quagent

 ?*currentVision* = 0 ; array of objects in local area

 ?*target* = 0 ;target index into vision array
 ?*energy* = -1 ;energy level of quagent, inits to 1000

 ;constants
 ?*seekEnergyAt* = 400 ;level at which quagent will start seeking energy

?*fleeDistance* = 200 ;distance to back away when quagent sees something bad
 ?*searchRadius* = 1000 ;radius of probe to seek objects (max: 1000)
 ?*minDistToKrypt* = 200 ;flee at this radius
 ?*noTarget* = -1 ;when no target exsts in the vision array

 ;jess into mapper names:
 ?*mapperName* = "myMapper"
 ?*addMovement* = "acceptPos" ;(x,y)
 ?*clearViewedItems* = "resetSpecial" ;()
 ?*addViewedPoint* = "addSpecialPos" ;(x,y,"type")
 ?*setHealth* = "setHealth" ;(val)
 ?*setEnergy* = "setEnergy" ;(val)
 ?*setWealth* = "setWealth" ;(val)
)

(deffunction init ()
 (printout t "#Function: init" crlf)

 (bind ?*quagent* (new ControlledQuagent))
 (?*quagent* initialize)
 (bind ?*actionState* (assert(lookAround)))
)

(deffunction close ()
 (?*quagent* close)
)

;scan max radius for potential targets and store scan for later
;also, check/update current energy level and health
(defrule lookForTargets

(lookAround)
 =>
 (printout t "#Rule: lookForTargets" crlf)

 ;mapper output - movement!
 ;(bind ?pos (?*quagent* pos))

;(printout t ?*mapperName* "." ?*addMovement* "((" (?pos getX) ", " (?pos getY) "))"
crlf)

 (bind ?*currentVision* (?*quagent* probe ?*searchRadius*))
 (bind ?*energy* ((?*quagent* getWellbeing) getEnergy))
 (bind ?health ((?*quagent* getWellbeing) getHealth))
 (bind ?wealth ((?*quagent* getWellbeing) getWealth))

 ;mapper output - radius
 ;(printout t ?*mapperName* "." ?*clearViewedItems* "()" crlf)
 ;(bind ?len (- (?*currentVision* numItems) 1))
 ;(while (>= ?len 0)
 ; (printout t ?*mapperName* "." ?*addViewedPoint* "(" (?*currentVision* getX ?len)
", " (?*currentVision* getY ?len) ", \"" (?*currentVision* getName ?len) "\")" crlf)

 ; (bind ?len (- ?len 1))
 ;)

 ;draw quagent's state
 ;(printout t ?*mapperName* "." ?*setEnergy* "(" ?*energy* ")" crlf)
 ;(printout t ?*mapperName* "." ?*setHealth* "(" ?health ")" crlf)
 ;(printout t ?*mapperName* "." ?*setWealth* "(" ?wealth ")" crlf)
 ;(printout t ?*mapperName* ".draw()" crlf)

 (printout t "# Current Energy: " ?*energy* crlf)
 (printout t "# Current Health: " ?health crlf)
 (printout t "# Current Wealth: " ?wealth crlf)

 (retract ?*actionState*)
 (bind ?*actionState* (assert(checkSurroundings)))
)

;searches scan for kyrptonite and if found, flees from it
;search only applies when kyptonite is seen
(defrule lookForKryptonite
 (declare (salience 30))
 (checkSurroundings)
 (test (neq (?*currentVision* getClosest "kryptonite" (?*quagent* pos)
 ?*minDistToKrypt*) ?*noTarget*))
 =>
 (printout t "#Rule: lookForKryptonite" crlf)

 (bind ?*target* (?*currentVision* getClosest "kryptonite" (?*quagent* pos)))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(fleeTarget)))
)

;searches scan for gold and if found, goes there
(defrule lookForGold
 (declare (salience 20))
 (checkSurroundings)
 (test (neq (?*currentVision* getClosest "gold" (?*quagent* pos)) ?*noTarget*))
 =>
 (printout t "#Rule: lookForGold" crlf)

 (bind ?*target* (?*currentVision* getClosest "gold" (?*quagent* pos)))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(seekTarget)))
)

;searches scan for batteries and if found, goes there
;search only applies if the agent either cannot find gold or
; needs energy and batteries are in the scan
(defrule lookForEnergy

(declare (salience 10))
 (checkSurroundings)
 (test (neq (?*currentVision* getClosest "battery" (?*quagent* pos)) ?*noTarget*))
 =>
 (printout t "#Rule: lookForEnergy" crlf)

 (bind ?*target* (?*currentVision* getClosest "battery" (?*quagent* pos)))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(seekTarget)))
)

;handles moving the agent to the desired target
(defrule goToTarget
 (seekTarget)

=>
 (printout t "#Rule: goToTarget" crlf)
 (printout t "# Target = " (?*currentVision* getName ?*target*) crlf)

 (?*quagent* turn (* ((?*quagent* pos) getYaw) -1));reset yaw to 0, makes math easier

 (bind ?dist (?*currentVision* getDist ?*target* (?*quagent* pos)))
 (bind ?turn (?*currentVision* getAngle ?*target* (?*quagent* pos)))

 (?*quagent* turn ?turn)
 (?*quagent* run ?dist)

 (retract ?*actionState*)
 (bind ?*actionState* (assert(atTarget)))
)

;handles moving the agent to the desired target
(defrule fleeFromTarget
 (fleeTarget)

=>
 (printout t "#Rule: fleeFromTarget" crlf)
 (printout t "# Target = " (?*currentVision* getName ?*target*) crlf)

 (?*quagent* turn (* ((?*quagent* pos) getYaw) -1));reset yaw to 0, makes math easier

 ;flee in opposite direction +/- 30 degrees to avoid loops
 (bind ?dist ?*fleeDistance*)
 (bind ?turn (+ (?*currentVision* getAngle ?*target* (?*quagent* pos)) 180))
 (bind ?turn (- ?turn (* (?*quagent* randInt 3) 30)))

 (?*quagent* turn ?turn)
 (?*quagent* run ?dist)

 (retract ?*actionState*)
 (bind ?*actionState* (assert(lookAround)))
)

;picks up wanted objects when standing over them
(defrule pickUpTarget
 (atTarget)

=>
 (printout t "#Rule: pickUpTarget" crlf)

 (?*quagent* pickup (?*currentVision* getName ?*target*))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(lookAround)))
)

;when there's nothing else to do, explore
(defrule exploreSurroundings
 (declare (salience 0))
 (checkSurroundings)
 =>
 (printout t "#Rule: exploreSurroundings" crlf)

 (?*quagent* turn (* (?*quagent* randInt 12) 30)) ;random multiple of 30 degrees
 (?*quagent* run (+ (* (?*quagent* randInt 6) 50) 200)) ;random multiple of 50 in

[200, 450]

 (retract ?*actionState*)
 (bind ?*actionState* (assert(lookAround)))
)

(reset)
(init)
(run)
(close)

Tom O'Neill, Glaser, Aldridge Page 19 of 19 4/3/2006
Modeling Priority Management… CSC242

Pragmatic Agent

(defglobal
 ?*quagent* = 0 ;mr quagent
 ?*actionState* = 0 ;state of the quagent

 ?*currentVision* = 0 ; array of objects in local area

 ?*target* = 0 ;target index into vision array
 ?*energy* = -1 ;energy level of quagent, inits to 1000

 ;constants
 ?*seekEnergyAt* = 400 ;level at which quagent will start seeking energy

?*fleeDistance* = 200 ;distance to back away when quagent sees something bad
 ?*searchRadius* = 1000 ;radius of probe to seek objects (max: 1000)
 ?*minDistToKrypt* = 200 ;flee at this radius
 ?*noTarget* = -1 ;when no target exsts in the vision array

 ;jess into mapper names:
 ?*mapperName* = "myMapper"
 ?*addMovement* = "acceptPos" ;(x,y)
 ?*clearViewedItems* = "resetSpecial" ;()
 ?*addViewedPoint* = "addSpecialPos" ;(x,y,"type")
 ?*setHealth* = "setHealth" ;(val)
 ?*setEnergy* = "setEnergy" ;(val)
 ?*setWealth* = "setWealth" ;(val)
)

(deffunction init ()
 (printout t "#Function: init" crlf)

 (bind ?*quagent* (new ControlledQuagent))
 (?*quagent* initialize)
 (bind ?*actionState* (assert(lookAround)))
)

(deffunction close ()
 (?*quagent* close)
)

;scan max radius for potential targets and store scan for later
;also, check/update current energy level and health
(defrule lookForTargets

(lookAround)
 =>
 (printout t "#Rule: lookForTargets" crlf)

 ;mapper output - movement!
 ;(bind ?pos (?*quagent* pos))

;(printout t ?*mapperName* "." ?*addMovement* "((" (?pos getX) ", " (?pos getY) "))"
crlf)

 (bind ?*currentVision* (?*quagent* probe ?*searchRadius*))
 (bind ?*energy* ((?*quagent* getWellbeing) getEnergy))
 (bind ?health ((?*quagent* getWellbeing) getHealth))
 (bind ?wealth ((?*quagent* getWellbeing) getWealth))

 ;mapper output - radius
 ;(printout t ?*mapperName* "." ?*clearViewedItems* "()" crlf)
 ;(bind ?len (- (?*currentVision* numItems) 1))
 ;(while (>= ?len 0)
 ; (printout t ?*mapperName* "." ?*addViewedPoint* "(" (?*currentVision* getX ?len)
", " (?*currentVision* getY ?len) ", \"" (?*currentVision* getName ?len) "\")" crlf)

 ; (bind ?len (- ?len 1))
 ;)

 ;draw quagent's state
 ;(printout t ?*mapperName* "." ?*setEnergy* "(" ?*energy* ")" crlf)
 ;(printout t ?*mapperName* "." ?*setHealth* "(" ?health ")" crlf)
 ;(printout t ?*mapperName* "." ?*setWealth* "(" ?wealth ")" crlf)
 ;(printout t ?*mapperName* ".draw()" crlf)

 (printout t "# Current Energy: " ?*energy* crlf)
 (printout t "# Current Health: " ?health crlf)
 (printout t "# Current Wealth: " ?wealth crlf)

 (retract ?*actionState*)
 (bind ?*actionState* (assert(checkSurroundings)))
)

;searches scan for kyrptonite and if found, flees from it
;search only applies when kyptonite is seen
(defrule lookForKryptonite
 (declare (salience 30))
 (checkSurroundings)
 (test (neq (?*currentVision* getClosest "kryptonite" (?*quagent* pos)
 ?*minDistToKrypt*) ?*noTarget*))
 =>
 (printout t "#Rule: lookForKryptonite" crlf)

 (bind ?*target* (?*currentVision* getClosest "kryptonite" (?*quagent* pos)))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(fleeTarget)))
)

;searches scan for gold and if found, goes there
;search only applies when bot has energy above it's
; low-threshold and gold is in the scan
(defrule lookForGold
 (declare (salience 20))
 (checkSurroundings)
 (test (neq (?*currentVision* getClosest "gold" (?*quagent* pos)) ?*noTarget*))

;get gold if low on energy and don't see energy ;
 (test (or (> ?*energy* ?*seekEnergyAt*) (eq (?*currentVision* getClosest "battery"
(?*quagent* pos)) ?*noTarget*)))
 =>
 (printout t "#Rule: lookForGold" crlf)

 (bind ?*target* (?*currentVision* getClosest "gold" (?*quagent* pos)))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(seekTarget)))
)

;searches scan for batteries and if found, goes there
;search only applies if the agent either cannot find gold or
; needs energy and batteries are in the scan
(defrule lookForEnergy

(declare (salience 10))
 (checkSurroundings)
 (test (neq (?*currentVision* getClosest "battery" (?*quagent* pos)) ?*noTarget*))
 =>
 (printout t "#Rule: lookForEnergy" crlf)

 (bind ?*target* (?*currentVision* getClosest "battery" (?*quagent* pos)))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(seekTarget)))
)

;handles moving the agent to the desired target
(defrule goToTarget
 (seekTarget)

=>
 (printout t "#Rule: goToTarget" crlf)
 (printout t "# Target = " (?*currentVision* getName ?*target*) crlf)

 (?*quagent* turn (* ((?*quagent* pos) getYaw) -1));reset yaw to 0, makes math easier

 (bind ?dist (?*currentVision* getDist ?*target* (?*quagent* pos)))
 (bind ?turn (?*currentVision* getAngle ?*target* (?*quagent* pos)))

 (?*quagent* turn ?turn)
 (?*quagent* run ?dist)

 (retract ?*actionState*)
 (bind ?*actionState* (assert(atTarget)))
)

;handles moving the agent to the desired target
(defrule fleeFromTarget
 (fleeTarget)

=>
 (printout t "#Rule: fleeFromTarget" crlf)
 (printout t "# Target = " (?*currentVision* getName ?*target*) crlf)

 (?*quagent* turn (* ((?*quagent* pos) getYaw) -1));reset yaw to 0, makes math easier

 ;flee in opposite direction +/- 30 degrees to avoid loops
 (bind ?dist ?*fleeDistance*)
 (bind ?turn (+ (?*currentVision* getAngle ?*target* (?*quagent* pos)) 180))
 (bind ?turn (- ?turn (* (?*quagent* randInt 3) 30)))

 (?*quagent* turn ?turn)
 (?*quagent* run ?dist)

 (retract ?*actionState*)
 (bind ?*actionState* (assert(lookAround)))
)

;picks up wanted objects when standing over them
(defrule pickUpTarget
 (atTarget)

=>
 (printout t "#Rule: pickUpTarget" crlf)

 (?*quagent* pickup (?*currentVision* getName ?*target*))

 (retract ?*actionState*)
 (bind ?*actionState* (assert(lookAround)))
)

;when there's nothing else to do, explore
(defrule exploreSurroundings
 (declare (salience 0))

 (checkSurroundings)
 =>
 (printout t "#Rule: exploreSurroundings" crlf)

 (?*quagent* turn (* (?*quagent* randInt 12) 30)) ;random multiple of 30 degrees
 (?*quagent* run (+ (* (?*quagent* randInt 6) 50) 200)) ;random multiple of 50 in
[200, 450]

 (retract ?*actionState*)
 (bind ?*actionState* (assert(lookAround)))
)

(reset)
(init)
(run)
(close)

