
Intelligent Autonomous Agents in Quake

David Ganzhorn, William de Beaumont
University of Rochester

February 27th, 2004

Abstract

For several weeks we researched and developed agents that

interact with Quake2UR, a version of Quake2 that has been modified by

the University of Rochester graduate student Bo Hu to allow for a socket

connection directly to a bot. This connection allows for external

programs to command a bot around, thus allow the intelligent decision

making to be off-loaded from the bot and into the external controller.

Our research has been to develop intelligent and autonomous controllers

in JESS, the Java Expert Systems Shell. We were supplied with an agent

that randomly walked at right angles, did not interact with the

environment, and did not listen for messages from the bot that it had

been stopped short of the goal. We have developed two agents from this

basis, both of which are capable of locating and acquiring nearby objects

in the environment if they are reachable, reacting appropriately to being

stopped, and moving freely through quake space. The first agent is a

random walker, and the second is a wall follower. Also, we used the

perceptual capabilities of the agents to make detailed and accurate maps

of the world they were exploring.

Motivation

The primary motivation for this project was to explore expert

systems as a means of generating intelligent behavior for an agent that

had to operate through complex 3d environments. Jess and Quake2UR

were the only available tools to experiment with, and so the decision to

use them was obvious. Our goal of creating intelligent navigational and

item acquiring behavior through rules seemed challenging and proved to

be so. The reason for mapping the Quake world was to both become

more familiar with the environment and to have an accurate means of

determining coordinates of different positions in quake world, so that we

could spawn agents and items in the desired locations with ease.

Methods

The development of the two agents occurred after the creation of the

mapping. We were introduced to the idea of using the bots to map quake

space by Gregory Briggs and Rob van Dam, fellow students. After

learning about this idea for mapping we shared with them the methods of

greatly increasing the perceptual abilities of the bots, and thus we both

benefited from the exchange. Rather than using the same program to

accomplish the mapping, we wrote our own that would also plot the rays

of vision of the bots in addition to the points that they saw. This resulted

in both an outline of the space and filled regions within this space to

more clearly indicate obstacles within the world, as well as to see the

extent to which a bot explored a particular region, and from which

vantage point. We then set loose several waves of random agents that

each created their own maps, and then we composited the maps of

multiple agents to create a more comprehensive map. Eventually, one

random agent performed extremely well in exploring the world and we

were able to create a detailed map from it's observations alone. The

following image is the map that was generated by the agent, and then

processed by hand to have clearer outlines, as well as coordinate

information. Any areas that do not have complete outlines are regions

that are impossible for the agents to enter, but into which they can see.

See appendix for the initial map.

Once this was done, we developed the two agents in JESS. The first

was created by streamlining the movements of the original agent. The

original agent was coded to only move at right angles, so by allowing the

agent to move in any direction, our agent become twice as efficient in

moving to any given point. Also, we implemented event handling, so that

not only would our agent know to not initiate a new movement until its

first movement was complete, but it would also be able to initiate a new

movement immediately when the previous action ended. This allowed

our agent to execute behaviors much faster, particularly when it was

stopped immediately upon moving, by encountering a wall. Whereas

several seconds would elapse before a new move would be initiated by

the original agent, our new agent was capable of initiating new moves as

frequently as every tenth of a second. In certain circumstances, our first

agent was capable of moving ten to twenty times as fast as the original.

Before implementing item acquisition abilities, we created the

second, more sophisticated agent. This agent was designed to

implement basic wall-following behavior. Initially the agent consisted

primarily of two rules; if the agent encountered a wall, it would turn by

thirty degrees to the left until it was capable of moving. Then, the agent

would move forwards at ten degrees to the right. This behavior resulted

in the agent initially colliding with a wall, and then banging into and off

of the wall as it followed it around in quake world. Unfortunately, the

configuration of quake world prevented the agent from ever leaving the

initial room; it could not turn sharply enough to make it through doors.

We considered making the turning radius much smaller, but this would

have lead to enormous inefficiency as the agent collided with the wall

every ten or so units, rather than every few hundred units. Instead, we

decided upon adding an additional rule to the agent's behavior; whenever

the agent had strayed from the wall on its right by too great of a

distance, it would turn towards the wall and collide with it, and then

continue on its way. This allowed for the agent to perceive doors and to

pass through them, as well as to pass through winding tunnels. Once the

third rule was implemented, our agent traversed the initial level of the

world, where all testing was done, and reached the exit; the agent walked

from his initial location, through two tunnels, an intersection of multiple

rooms, and up stairs before he came to the end of his journey. Our agent

proved robust and was capable of such sophisticated navigation under

multiple starting conditions; the agent was deterministic and so the

starting location entirely determined the ultimate behavior of the agent.

Lastly, we added item-acquisition behavior to each of the agents.

Were they to perceive any items when they were checking out their

situation, they would head straight towards the first one perceived and

pick it up. If they were unable to directly reach it, then they would go

back to regularly moving about.

Once we had implemented item-grabbing behavior, we moved on

to comparison tests to see which of the two agents were quantitatively

superior in acquiring the most items in quake world. We randomly

spawned 100 items in quake world by using a program that examined

our created map, located areas that the agent had explored, and spawned

items randomly throughout this space. We ran 8 trials for each of our

two agents, where their score was the number of items they acquired

during their journey, which lasted for the duration of their lifespan,

approximately 500 seconds.

Results

Both agents were severely hindered by points in the quake world

that bots are incapable of navigating out of; once reached, the bot is

stuck in it for the rest of its lifespan. The random agents tended to be

plagued by this problem more than the wall-followers. We assume this is

because the random agent is more likely to try to wedge itself into

corners. The exact scores of the agents were:

Random Wall-
Follower

Trial 1 10 10

Trial 2 4 9

Trial 3 7 1

Trial 4 7 24

Trial 5 0 30

Trial 6 8 10

Trial 7 3 11

Trial 8 12 18

Total 51 113

Although we did not do test trials with the original agent, we predict that

it would have done extremely poorly in the test, as it is no more

sophisticated in navigational abilities than our random walking agent,

and it is vastly slower overall. Also, the lack of event handling would

likely cause conflicts when the item acquisition behavior was added, as

the agent might begin moving in another direction before it had acquired

the item it was heading towards.

Discussions

The results make it clear that the wall-following agent is much

more capable of navigating and acquiring items in quake world than the

random agent. We believe this is due to the greater range of the wall-

follower's travel in the same amount of time. It is easy to make an

analogy from quake world to the real world, as both are continuous 3d

spaces, and to see the value of more sophisticated navigational abilities

for autonomous agents. If the agents were cleaning robots that were

attempting to pick up as much trash as possible in an indoor area, it is

probably safe to assume that the wall-following agent's behaviors would

be much more efficient than the random agents behaviors.

With modifications to the item-grabbing behavior, the wall-

follower could most likely do comparatively even better. One such

modification would be for the agent to move to and grab the nearest

item, rather than the item which is initially perceived. This would result

in a smaller disturbance in the movement of the bots, and this would be

of primary advantage to the wall-follower, who's movements are

organized, rather than the the random agent, who's movements are done

randomly, without any goal. However, this only becomes a significant

factor for situations in which more than one item at a time is perceived,

which was rare in our simulations. Another modification that we think

would make a much larger change would be for the agent to return to it's

original facing and position after it had acquired an item, or even a string

of several items. This behavior could easily be implemented with a stack

of locations, and would allow for the navigational patterns of the agents

to be unperturbed by the behavior of acquiring items. Again, this would

only be of help to the wall-following agent. This methodology would

allow for any new behavior to be added to the agents, without impairing

their current navigating habits, although it would result in a substantial

amount of backtracking. We would like to continue researching better

navigational patterns that would both me more effective in and of

themselves, and that would be capable of being unperturbed by other

behaviors of the agent.

Appendix

A1. JESS rules for the random-walking quagent:
Causes the bot to randomly select a new direction and distance to
walk.
(defrule find-new-behavior-walk

(idle)
=>
(retract ?*current-goal*)
(bind ?*current-goal* (assert (goto)))
(bind ?*goto-d* (?*quake* randInt))
(bind ?*goto-a* (?*quake* randInt360))

)

If the agent perceives an item within 100 units, then activate item-getting
behavior. Otherwise just move again.
(defrule look-around

(get-situation)
=>
(bind ?*current-situation* (?*quake* probe 100))
(retract ?*current-goal*)
(if (= (?*quake* interestingItems ?*current-situation*) 0)

then (bind ?*current-goal* (assert (idle)))
else (bind ?*current-goal* (assert (go-find))))

(printout t "-scan-" crlf)
)

Determine which item is preferable (currently implemented to be the closest) and
calculate the angle and distance to the item, then go get the item.
(defrule find-items

(go-find)
=>
(bind ?*item-name* (?*quake* bestItemSeen ?*current-situation*))
(bind ?*Location* (?*quake* whereAmI))
(bind ?*goto-a* (?*quake* angleToItem ?*current-situation*

 ?*item-name* ?*Location*))
(bind ?*goto-d* (?*quake* distToItem ?*current-situation*

 ?*item-name*))
(retract ?*current-goal*)
(bind ?*current-goal* (assert (getitem)))

)

Move to the item and pick it up if it is reachable, if not then become idle (which
leads to moving).
(defrule get-item

(getitem)
=>
(bind ?*return-value* (?*quake* turn ?*goto-a*))
(bind ?*return-value* (?*quake* walk ?*goto-d*))
(bind ?*stopped-distance* (?*quake* stopped))
(if (< (- ?*stopped-distance* ?*goto-d*) -15)

then (retract ?*current-goal*)
(bind ?*current-goal* (assert (idle)))
(printout t "Stupid wall!" crlf)

else (retract ?*current-goal*)
(bind ?*current-goal* (assert (get-situation)))
(bind ?*return-value* (?*quake* pickUp ?*item-name*))
(printout t "I picked up " ?*item-name* crlf)
(bind ?*item-count* (?*quake* countInventory))
(printout t "I now have " ?*item-count* " items!"

 crlf)
)

)

Move, then become idle.
(defrule need-to-move

(goto)
=>
(bind ?*return-value* (?*quake* turn ?*goto-a*))
(bind ?*return-value* (?*quake* walk ?*goto-d*))
(bind ?*return-value* (?*quake* stopped))
(retract ?*current-goal*)
(bind ?*current-goal* (assert (get-situation)))

)

A2. JESS rules for wall-follower agent
Head slightly to the right, which should eventually reach a wall.
(defrule approach-wall

(idle)
=>
(retract ?*current-goal*)
(bind ?*current-goal* (assert (goto)))
(bind ?*goto-a* -10) ;(?*quake* randWander)
(bind ?*goto-d* 50) ;(?*quake* randInt)

)

Turn to the left thirty degrees, and move forward, in hopes of getting away from
the wall.
(defrule avoid-wall

(at-wall)
=>
(retract ?*current-goal*)
(bind ?*current-goal* (assert (goto)))
(bind ?*goto-a* 30)
(bind ?*goto-d* 50)

)

Look to see if there are any interestingitems around. If so, initiate item-grabbing
behavior. If not, and we are too far awhile from the wall on the right, then go to
the wall on the right. Otherwise, just become idle (which leads to moving).
(defrule look-around

(get-situation)
=>
(bind ?*current-rays* (?*quake* scan 4))
(bind ?*dist-right-wall* (?*quake* distToWall ?*current-rays*))
(retract ?*current-goal*)
(bind ?*current-situation* (?*quake* probe 100))
(if (= (?*quake* interestingItems ?*current-situation*) 0)

then (if (>= ?*dist-right-wall* 50)

then (bind ?*current-goal* (assert (wall-bang)
else (bind ?*current-goal* (assert (idle))))

else (bind ?*current-goal* (assert (go-find))))
(printout t "-scan-" crlf)

)

Determine which item is preferable (currently implemented to be the closest) and
calculate the angle and distance to the item, then go get the item.
(defrule find-items

(go-find)
=>
(bind ?*item-name* (?*quake* bestItemSeen ?*current-situation*))
(bind ?*Location* (?*quake* whereAmI))
(bind ?*goto-a* (?*quake* angleToItem ?*current-situation*

?*item-name* ?*Location*))
(bind ?*goto-d* (?*quake* distToItem ?*current-situation*

?*item-name*))
(retract ?*current-goal*)
(bind ?*current-goal* (assert (getitem)))

)

Move to the item and pick it up if it is reachable, if not then become idle (which
leads to moving).
(defrule get-item

(getitem)
=>
(bind ?*return-value* (?*quake* turn ?*goto-a*))
(bind ?*return-value* (?*quake* walk ?*goto-d*))
(bind ?*stopped-distance* (?*quake* stopped))
(if (< (- ?*stopped-distance* ?*goto-d*) -15)

then (retract ?*current-goal*)
(bind ?*current-goal* (assert (idle)))
(printout t "Stupid wall!" crlf)

else (retract ?*current-goal*)
(bind ?*current-goal* (assert (get-situation)))
(bind ?*return-value* (?*quake* pickUp ?*item-name*))
(printout t "I picked up " ?*item-name* crlf)
(bind ?*item-count* (?*quake* countInventory))
(printout t "I now have " ?*item-count* " items!" crlf)

)
)

Head directly towards the wall on the right, and move as far towards it as it is
distant.
(defrule go-to-the-wall

(wall-bang)
=>
(retract ?*current-goal*)
(bind ?*current-goal* (assert (goto)))
(bind ?*goto-a* -90)
(bind ?*goto-d* ?*dist-right-wall*)

)

Just turn, then assert that we need to walk.
(defrule need-to-move

(goto)
=>
(bind ?*return-value* (?*quake* turn ?*goto-a*))
(retract ?*current-goal*)
(bind ?*current-goal* (assert (walk)))

)

Walk, and if stopped short, then assert that we are at a wall, otherwise get the
situation.
(defrule walkin

(walk)
=>
(bind ?*return-value* (?*quake* walk ?*goto-d*))
(bind ?*stopped-value* (?*quake* stopped))
(bind ?*stopped-difference* (- ?*stopped-value* ?*goto-d*))
(retract ?*current-goal*)
(if (>= (abs ?*stopped-difference*) 30)

then (bind ?*current-goal* (assert (at-wall)))
else (bind ?*current-goal*(assert (get-situation))))

)

A3. Unaltered map , generated from the mapping program and bot.

