
Tom O'Neill, Glaser, Aldridge Page 1 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

Q-Learning and Collection Agents

Tom O'Neill Leland Aldridge Harry Glaser

CSC242, Dept. of Computer Science, University of Rochester

{toneill, hglaser, la002k}@mail.rochester.edu

Abstract

Reinforcement learning strategies allow for the creation of agents that can

adapt to unknown, complex environments. We attempted to create an

agent that would learn to explore an environment and collect the trash

within it. While the agent successfully explored and collected trash many

times, the training simulator inevitably crashed as the Q-learning algorithm

eventually failed to maintain the Q-value table within computable bounds.

Tom O'Neill, Glaser, Aldridge Page 2 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

Introduction

 In complex environments, it is almost impossible to account and program

for every possible scenario than an agent may face. Reinforcement learning is

one solution to this problem because it allows for the creation of robust and

adaptive agents (Russell and Norvig(2)).

Our goal was to develop an agent that when placed in an unknown

environment, the agent would explore the environment, collect any trash found,

and finally return to its starting location once all of the trash had been collected.

We chose to develop a learning agent such that we could train it in many

simulated environments thus allowing it to learn the optimal behaviors of a trash

collection agent. Once the agent was trained, it was expected to be able execute

the learned behaviors in any relatively similar environment and perform well.

According to Russell and Norvig(2), two popular reinforcement strategies

are active and passive learning. In both cases agents make decisions based on

expected utilities, though they differ in the method in which the utility of states is

determined. We briefly explain the difference between these strategies to

motivate the decision to use active learning in our environment.

Passive Learning

 With passive learning, agents require a model of the environment. This

model tells the agent what moves are legal and what the results of actions will

be. This is particularly useful because it allows the agent to look ahead and

make better choices about what actions should be taken. However, passive

Tom O'Neill, Glaser, Aldridge Page 3 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

learning agents have a fixed policy and this limits their ability to adapt to or

operate in unknown environments.

Active Learning

 Unlike passive learning agents, active learning agents do not have a fixed

policy. Active learning agents must learn a complete model of the environment.

This means that the agent must determine what actions are possible at any given

state since it is building a model of its environment and does not yet have an

optimal policy. This allows active learning agents to learn how to effectively

operate in environments that are initially unknown. However, the lack of a fixed

policy slows the rate at which the agent learns the optimal behaviors in its

environment.

Motivation for Active Learning

 We chose to explore the behavior of a collection agent in an unknown

environment. The agent was expected to learn how to optimally move around

the environment while collecting trash, and ultimately make its way back to the

starting point once all of the trash was collected.

 Since the shape of the environment, trash distribution, and starting

location of the agent are all unknown to the agent, we chose to use an active

learning reinforcement technique called Q-learning.

Tom O'Neill, Glaser, Aldridge Page 4 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

The Q-Learning Algorithm

 Since Q-learning is an active reinforcement technique, it generates and

improves the agent’s policy on the fly. The Q-learning algorithm works by

estimating the values of state-action pairs. The purpose of Q-learning is to

generate the Q-table, Q(s,a), which uses state-action pairs to index a Q-value, or

expected utility of that pair. The Q-value is defined as the expected discounted

future payoff of taking action a in state s, assuming the agent continues to follow

the optimal policy (Russell and Norvig(2)).

 Q-learning generates the Q-table by performing as many actions in the

environment as possible. This initial Q-table generation is usually done offline in

a simulator to allow for many trials to be completed quickly. The update rule for

setting values in the table is as follows in Eqation-1:

]),[]','[max])(,[(],[],[
'

asQasQrasNasQasQ
asa −++← γα

Eqation-1

 In Equation 1, α is the learning factor and γ is the discount factor. These

values are positive decimals less than 1 and are set through experimentation to

affect the rate at which the agent attempts to learn the environment. Nsa[s,a] is a

table of frequencies indexed by the same state-action pair, the value of the table

is equivalent to the number of times the agent has attempted that state-action

pair. The variables s and a represent the current state and action of the agent,

respectively. Finally, r is the reward from performing s’ and a’, the previous state

and action, respectively. (Russell and Norvig(2))

Tom O'Neill, Glaser, Aldridge Page 5 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

 The initial entries of Nsa[s,a] are 0 for all pairs, and the initial values for

Q[s,a] are arbitrary. The values of Q[s,a] can be arbitrary because the effect of

this update rule after many trials is to essentially average neighboring expected

utilities of state-action pairs to a smooth and near-optimal dynamically generated

policy.

Simulator Design

 We developed a simulator to train the agent offline in many different

environments. The simulator generated randomized environments, maintained

the structures necessary for Q-learning, and provided appropriate feedback to

the agent such that it could learn.

The Agent and Environment

 In every case, the agent explored and collected trash in an N by N

obstacle-free grid world. The agent always started at position (0, 0) and could

move north, south, east, and west, and pickup trash. The agent did not know

where it was in the grid world, nor could it tell if it was at a boundary of the world.

Additionally, the agent did not have any sight – it could not tell if trash was

nearby beyond receiving a reward for successfully picking up trash (assuming it

existed in the agent’s grid square). Actions always executed successfully with

the expected outcome, with the exception that moving into a wall at a boundary

square did not move the agent, and picking up trash in a clean square did not

trigger a reward.

Tom O'Neill, Glaser, Aldridge Page 6 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

 Trash was distributed randomly throughout the grid world each trial with a

20% chance of any cell having trash in it. The results in this paper were

generated using a 4 by 4 grid, though both the percent of trash and size of the

grid are arbitrary.

Rewards

 The agent received rewards of 20 points for collecting trash and 50 points

for returning home after all trash had been collected. For each movement or

empty pickup attempt, the agent was penalized 1 point. These values were

chosen arbitrarily and varied during experimentation in an attempt to produce

optimal behavior.

Simulator Implementation

 This section describes some of the important implementation details of the

simulator. The complete implementation of the simulator, written in python, can

be found in the in the appendix of this paper.

 In this simulator, a state is defined as a 3-tuple of:

(currentPosition, trashAtLocation, numTrashCollected)

• currentPosition is a 2-tuple of integers representing of the agent’s grid

location (x, y)

• trashAtLocation is a Boolean, True if there is/was trash at the agent’s

current position and False otherwise

• numTrashCollected is a integer representing the number of trash items

collected thus far

Tom O'Neill, Glaser, Aldridge Page 7 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

We used this style of state description so that we could account for each

important dimension governing the agent’s behavior. The agent needs to learn

the value of each grid square as it varies with the number of each trash items

collected and whether or not the agent has already found trash at that location.

Main Loop

 The entire simulator was driven by a short loop that evaluated the

previous action and then chooses the best available action, performs the action,

and then repeats.

Main Loop of TrashMan.py

Lines 2 and 3 initialize the starting position and value of the first state such

that lines 6 and 7 can repeatedly generate the explore and collect policy of the

agent. Line 5 acts as a measure of performance for each trial of the agent, fewer

actions are expected on each trial as the agent’s policy gets closer to the optimal

policy for this environment.

Taking Actions

Taking an action must update the agent’s state, but it cannot update the

environment until after the Q-learning function has had a chance to analyze the

rewards associated with that action in the environment. Additionally, the only

Tom O'Neill, Glaser, Aldridge Page 8 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

chance to calculate rewards in the simulator is when the agent takes actions.

Thus the combined method for taking actions and calculating rewards:

Action Taking and Reward Calculating Function

Line 5 shows the default reward for any action is the penalty for being

alive. If the agent successfully collects trash (lines 6-8) or is at the starting

location after collecting all of the disbursed trash (lines 23-24), then the agent is

rewarded instead of penalized. Finally, on each of the agent’s movement actions

the position of the agent is checked and the action is ignored if it would move the

agent outside the environment.

Tom O'Neill, Glaser, Aldridge Page 9 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

Learning

By far the most complicated function in the simulator is the function that

implements the Q-learning aspect of the agent’s behavior. The function must

first compute the value of taking that action based on the received reward and

then calculate the next best action to take. Finally the environment must be

updated to reflect the results of the agent’s actions before the next action can be

taken.

Agent’s Q-Learning Function (Part 1 of 2)

First, the function checks to see if that state-action pair has ever been

tried before and if it hasn’t, the state-action pair is initialized with an arbitrary

value in the Q-table (lines 5-6). Likewise, if the frequency table does not have a

value for the state-action pair, the value is initialized at 0 (lines 8-9). Once the

two important tables are set, the frequency of the state-action pair is incremented

(line 12) before our implementation of Equation 1 is executed.

 Line 15 of this function is probably the most important line in the simulator

– it’s where the learning takes place! All of it should look familiar from Equation

Tom O'Neill, Glaser, Aldridge Page 10 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

1, with the exception of getMaxQ(state) which merely returns the highest

possible Q-value for an action in the specified state.

Agent’s Q-Learning Function (Part 2 of 2)

After the completion of line 15, the environment can be updated to reflect

the result of the actions. If the agent picked up trash (lines 20-23), then the trash

must be removed from that location and the relevant accounting variables

updated. If the agent completed its task, then the world must be reset with a new

trash grid and the agent’s action history must be cleared (lines 25-32).

Otherwise, the function sets up the state and action variables so that the function

can be called again after the action it returns is executed.

Results

 After running the simulator for many trials with many different values for

the constants (α, γ, N, reward scale values, exploration tendency, etc) we could

Tom O'Neill, Glaser, Aldridge Page 11 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

not get the Q-value table to converge. In every configuration, the simulator

would oscillate between two state-action pairs and repeatedly increase each

pair’s Q-value. Since each member of the oscillation loop was the other

member’s previous state-action pair, the rate of growth for both Q-values was

exponential.

 The following two graphs show the exponential growth of the Q-values.

The X-axis is in a log10 scale. As shown, both oscillating cases grew their Q-

values to over 10250 in less than 350 action steps before crashing the simulator.

East/West Loop

0

50

100

150

200

250

300

350

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286

Log(Q(s,a))

A
ct

io
ns

Tom O'Neill, Glaser, Aldridge Page 12 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

North/South Loop

0

50

100

150

200

250

300

350

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248

Log(Q(s,a))

Ac
tio

ns

Due to diverging behavior of the Q-values in the Q-table, we were unable

to construct an agent that learned a useable collection strategy and hence

cannot report on the results of a meaningful policy.

Discussion and Future Work

 It’s important to note that the simulator’s Q-table did not

immediately diverge. The agent was able to successfully complete its task many

times before the seemingly inevitable divergence. It’s unclear whether or nor the

agent successfully learned even part of an optimal policy before the Q-table

diverged.

 The divergence of the Q-value table was not entirely unexpected.

Gordon(1) and Weiring(3) have separately discussed the nature of Q-learning and

the inability to guarantee its convergence in many circumstances. Gordon

specifically addresses the problem of oscillations leading to divergence and

Tom O'Neill, Glaser, Aldridge Page 13 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

Weiring discusses how off-policy reinforcement learning methods often cause the

system to diverge.

One possible reason for the divergence in our system is that the

environment is too dynamic for Q-learning’s standard update style. The standard

update can result in very fast swings of Q-values, and thus quickly break the

averaging nature of Q-learning.

 We believe that the Q-learning algorithm for active reinforcement learning

in this environment may not have been the correct algorithm to use, specifically

because of the diverging results we encountered.

Other active learning algorithms with stronger convergence properties and

averaging updating methods instead of standard updating methods may fair

better in this environment. Additionally, it’s very possible to describe this

environment with different state-action pairs that could be better suited for

learning then those currently used by our simulator.

Tom O'Neill, Glaser, Aldridge Page 14 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

Distribution of Work

• Tom O’Neill wrote this paper

• Leland Aldridge was the mathematical brains behind understanding and

implementing Q-learning

• Harry Glaser coded most of the simulator and read parables about

learning during debugging sessions

Notes to TAs

CB suggested we deviate from the project spec and pursue Q-learning

applied to an agent in a garbage collection environment - given the amount of

passive learning code already supplied made the “hook it up to quagents and

run it” significantly less of a learning project than implementing something like

Q-learning. Thanks!

Tom O'Neill, Glaser, Aldridge Page 15 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

References

1. Gordon, Reinforcement learning with function approximation converges to a

region. Advances in Neural Information Processing Systems. The MIT Press,

2001. http://citeseer.ist.psu.edu/gordon01reinforcement.html

2. Russell and Norvig, Artificial Intelligence A Modern Approach, Second

Edition. Prentice Hall, 2003.

3. Weiring, Convergence and Divergence in Standard and Averaging

Reinforcement Learning. Intelligent Systems Group, Institute of Information

and Computer Sciences, Utrecht University.

http://www.cs.uu.nl/people/marco/GROUP/ARTICLES/ecml_rl_convergence.p

df 4/21/2006.

Tom O'Neill, Glaser, Aldridge Page 16 of 16 4/21/2006
Q-Learning and Collection Agents CSC242

Appendix: TrashMan.py Source Code

TrashMan.py
1 # Q-learning agent for "trash world"
2 #
3 # by Leland Aldridge, Harry Glaser, Tom O'Neill
4 # for CSC 242 Project 4: Learning
5 # 4/21/2006
6
7 import sys, random
8
9 # useful utilities
10 def debug(s):
11 if DEBUG:
12 print s
13
14 def enum(*args):
15 g = globals()
16 i = 0
17 for arg in args:
18 g[arg] = i
19 i += 1
20 return i
21
22
23 # GLOBALS ###
24
25 # Macros
26 NUM_ACTIONS = enum('ACTION_PICKUP',
27 'ACTION_NORTH',
28 'ACTION_EAST',
29 'ACTION_SOUTH',
30 'ACTION_WEST')
31 DEBUG = False
32 GRID_LENGTH = 4
33 THRESH = .2
34 TRASH_CHAR = '1'
35 CLEAR_CHAR = '-'
36 Q_INIT = 0
37
38 # Learning tables
39 Q = {} # indexed by (a, s) utility of taking action a in state s
40 Nsa = {} # indexed by (a, s) number of times action a has been taken when in state s
41 trash = {}
42
43 # Learning parameters
44 ALPHA = 0.5 # learning factor
45 GAMMA = 0.5 # discount factor
46 N = 5 # number of times to try an action to get a good feel for it
47
48 # globals
49 trashes = 0 # num trashes left
50 picked = 0 # num trashes collected
51 curPos = (0, 0) # current position
52 grid = [] # the world
53 actions = 0 # num actions taken so far
54

D:\My Documents\School\2005-2006\CSC242\Projects\Project_04-QLearning\TrashMan.py - Page 1 -

TrashMan.py
55 # remembered information
56 prevState = None
57 prevAction = None
58 prevReward = None
59
60 # Utilities
61 REWARD_SUCCESS = 50
62 REWARD_PICKUP = 20
63 PENALTY_ALIVE = -1
64
65
66 # read grid from file
67 def readGrid(filename = 'quagent.itemgrid'):
68 line_num = 0
69 itemGrid = []
70 for i in range(GRID_LENGTH):
71 itemGrid += [[]]
72 for j in range(GRID_LENGTH):
73 itemGrid[i] += [False]
74
75 infile = open(filename)
76 i = -1
77 for line in infile:
78 i += 1
79 j = -1
80 if i >= GRID_LENGTH:
81 break
82 for c in line:
83 j += 1
84 if j >= GRID_LENGTH:
85 break
86 if c == TRASH_CHAR:
87 itemGrid[i][j] = True
88 elif c != CLEAR_CHAR:
89 sys.stderr.write('Error: invalid token, line ' + str(i) + ', col ' + str

(j) + ': ' + c + '\n')
90 return itemGrid
91
92 # construct random grid
93 def makeGrid():
94 global trashes
95 itemGrid = []
96 for i in range(GRID_LENGTH):
97 itemGrid += [[]]
98 for j in range(GRID_LENGTH):
99 if random.random() < THRESH:
100 itemGrid[i] += [True]
101 trashes+=1
102 else:
103 itemGrid[i] += [False]
104
105 return itemGrid
106
107 # print grid to stdout

D:\My Documents\School\2005-2006\CSC242\Projects\Project_04-QLearning\TrashMan.py - Page 2 -

TrashMan.py
108 def printGrid(itemGrid):
109 for i in itemGrid:
110 for j in i:
111 sys.stdout.write(str(j) + ' ')
112 sys.stdout.write('\n')
113
114
115 # take the specified action: returns the reward for that action
116 def takeAction(action):
117 global curPos, trashes, grid, picked, actions
118 x, y = curPos
119 reward = PENALTY_ALIVE
120 if action == ACTION_PICKUP:
121 if grid[curPos[0]][curPos[1]]:
122 reward = REWARD_PICKUP
123 elif action == ACTION_NORTH:
124 if y < GRID_LENGTH - 1:
125 y += 1
126 elif action == ACTION_EAST:
127 if x < GRID_LENGTH - 1:
128 x += 1
129 elif action == ACTION_SOUTH:
130 if y > 0:
131 y -= 1
132 elif action == ACTION_WEST:
133 if x > 0:
134 x -= 1
135
136 curPos = (x, y)
137 if curPos == (0, 0) and trashes == 0 and reward != REWARD_PICKUP:
138 reward = REWARD_SUCCESS
139
140 return reward
141
142
143 # returns the highest possible Q-value for an action in the specified state
144 def getMaxQ(state):
145 action = None
146 max = 0
147
148 for curAction in range(NUM_ACTIONS):
149 key = (state, curAction)
150 if not Q.has_key(key):
151 Q[key] = Q_INIT
152 if action == None:
153 action = curAction
154 max = Q[key]
155 else:
156 n = Q[key]
157 if n >= max:
158 action = curAction
159 max = n
160 return max
161

D:\My Documents\School\2005-2006\CSC242\Projects\Project_04-QLearning\TrashMan.py - Page 3 -

TrashMan.py
162 # returns the current reward for exploring further
163 def exploration(utility, frequency):
164 if frequency < N:
165 return REWARD_SUCCESS
166 else:
167 return utility
168
169 # determines the best action to take in the current state
170 def argmaxexplo(state):
171 bestaction = -1
172 oldmaxexplo = 0
173
174 for action in range(NUM_ACTIONS):
175 key = (state, action)
176 if not Q.has_key(key):
177 Q[key] = Q_INIT
178 if not Nsa.has_key(key):
179 Nsa[key] = 0
180
181 e = exploration(Q[key], Nsa[key])
182
183 if bestaction == -1:
184 oldmaxexplo = e
185 bestaction = action
186
187 if e > oldmaxexplo:
188 oldmaxexplo = e
189 bestaction = action
190 return bestaction
191
192 # Q-learning function
193 def Qlearning(reward, state):
194 global prevState, prevAction, prevReward, trashes, grid, actions, picked
195 if prevState != None:
196 if not Q.has_key((prevState, prevAction)):
197 Q[(prevState, prevAction)] = Q_INIT
198
199 if not Nsa.has_key((prevState, prevAction)):
200 Nsa[(prevState, prevAction)] = 0
201
202 # update visited states
203 Nsa[(prevState, prevAction)] += 1
204
205 # Q-learning equation
206 Q[(prevState, prevAction)] += ALPHA * Nsa[(prevState, prevAction)] * (reward +

GAMMA * getMaxQ(state) - Q[(prevState, prevAction)])
207 #debug:print prevState, prevAction, Q[(prevState, prevAction)]
208
209 # updates
210 pos = state[0]
211 if reward == REWARD_PICKUP:
212 grid[curPos[0]][curPos[1]] = False
213 trashes -= 1
214 picked += 1

D:\My Documents\School\2005-2006\CSC242\Projects\Project_04-QLearning\TrashMan.py - Page 4 -

TrashMan.py
215 elif reward == REWARD_SUCCESS:
216 prevState = None
217 prevAction = None
218 prevReward = None
219 print "GRID CLEAN! actions:", actions
220 actions = 0
221 grid = makeGrid()
222 picked = 0
223 else:
224 prevState = state
225 prevAction = argmaxexplo(state)
226 prevReward = reward
227
228 return prevAction
229
230 # init and main loop
231 def run():
232 global trashes, curPos, grid, picked, actions, ALPHA, GAMMA, N
233
234 # init
235 grid = makeGrid()
236 printGrid(grid)
237
238 ALPHA = float(sys.argv[1])
239 GAMMA = float(sys.argv[2])
240 N = int(sys.argv[3])
241
242 print "ALPHA: ", ALPHA, "\nGAMMA: ", GAMMA, "\nN: ", N, "\nGRID_LENGTH: ",

GRID_LENGTH
243
244 # main loop
245 firststate = ((0,0),grid[0][0], 0)
246 action = Qlearning(Q_INIT, firststate)
247 while True:
248 actions += 1
249 reward = takeAction(action)
250 action = Qlearning(reward, (curPos, grid[curPos[0]][curPos[1]], picked))
251
252
253 run()
254
255

D:\My Documents\School\2005-2006\CSC242\Projects\Project_04-QLearning\TrashMan.py - Page 5 -

	writeup.pdf
	TrashMan.pdf

