
Tom O'Neill, Glaser, Aldridge Page 1 of 16 4/21/2006 
Q-Learning and Collection Agents  CSC242 
 

 

 

 

Q-Learning and Collection Agents 

 

Tom O'Neill        Leland Aldridge        Harry Glaser 

CSC242, Dept. of Computer Science, University of Rochester 

{toneill, hglaser, la002k}@mail.rochester.edu 

 

Abstract 

Reinforcement learning strategies allow for the creation of agents that can 

adapt to unknown, complex environments.  We attempted to create an 

agent that would learn to explore an environment and collect the trash 

within it.  While the agent successfully explored and collected trash many 

times, the training simulator inevitably crashed as the Q-learning algorithm 

eventually failed to maintain the Q-value table within computable bounds. 
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Introduction 

 In complex environments, it is almost impossible to account and program 

for every possible scenario than an agent may face.  Reinforcement learning is 

one solution to this problem because it allows for the creation of robust and 

adaptive agents (Russell and Norvig(2)). 

Our goal was to develop an agent that when placed in an unknown 

environment, the agent would explore the environment, collect any trash found, 

and finally return to its starting location once all of the trash had been collected.  

We chose to develop a learning agent such that we could train it in many 

simulated environments thus allowing it to learn the optimal behaviors of a trash 

collection agent.  Once the agent was trained, it was expected to be able execute 

the learned behaviors in any relatively similar environment and perform well. 

According to Russell and Norvig(2), two popular reinforcement strategies 

are active and passive learning.  In both cases agents make decisions based on 

expected utilities, though they differ in the method in which the utility of states is 

determined.  We briefly explain the difference between these strategies to 

motivate the decision to use active learning in our environment. 

Passive Learning 

 With passive learning, agents require a model of the environment.  This 

model tells the agent what moves are legal and what the results of actions will 

be.  This is particularly useful because it allows the agent to look ahead and 

make better choices about what actions should be taken.  However, passive 
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learning agents have a fixed policy and this limits their ability to adapt to or 

operate in unknown environments. 

Active Learning 

 Unlike passive learning agents, active learning agents do not have a fixed 

policy.  Active learning agents must learn a complete model of the environment.  

This means that the agent must determine what actions are possible at any given 

state since it is building a model of its environment and does not yet have an 

optimal policy.  This allows active learning agents to learn how to effectively 

operate in environments that are initially unknown.  However, the lack of a fixed 

policy slows the rate at which the agent learns the optimal behaviors in its 

environment. 

Motivation for Active Learning 

 We chose to explore the behavior of a collection agent in an unknown 

environment.  The agent was expected to learn how to optimally move around 

the environment while collecting trash, and ultimately make its way back to the 

starting point once all of the trash was collected. 

 Since the shape of the environment, trash distribution, and starting 

location of the agent are all unknown to the agent, we chose to use an active 

learning reinforcement technique called Q-learning. 



Tom O'Neill, Glaser, Aldridge Page 4 of 16 4/21/2006 
Q-Learning and Collection Agents  CSC242 
 

The Q-Learning Algorithm 

 Since Q-learning is an active reinforcement technique, it generates and 

improves the agent’s policy on the fly.  The Q-learning algorithm works by 

estimating the values of state-action pairs.  The purpose of Q-learning is to 

generate the Q-table, Q(s,a), which uses state-action pairs to index a Q-value, or 

expected utility of that pair.  The Q-value is defined as the expected discounted 

future payoff of taking action a in state s, assuming the agent continues to follow 

the optimal policy (Russell and Norvig(2)). 

 Q-learning generates the Q-table by performing as many actions in the 

environment as possible.  This initial Q-table generation is usually done offline in 

a simulator to allow for many trials to be completed quickly.  The update rule for 

setting values in the table is as follows in Eqation-1: 

 

]),[]','[max])(,[(],[],[
'

asQasQrasNasQasQ
asa −++← γα  

Eqation-1 
 

 In Equation 1, α is the learning factor and γ is the discount factor.  These 

values are positive decimals less than 1 and are set through experimentation to 

affect the rate at which the agent attempts to learn the environment.  Nsa[s,a] is a 

table of frequencies indexed by the same state-action pair, the value of the table 

is equivalent to the number of times the agent has attempted that state-action 

pair.  The variables s and a represent the current state and action of the agent, 

respectively.  Finally, r is the reward from performing s’ and a’, the previous state 

and action, respectively. (Russell and Norvig(2)) 
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 The initial entries of Nsa[s,a] are 0 for all pairs, and the initial values for 

Q[s,a] are arbitrary.  The values of Q[s,a] can be arbitrary because the effect of 

this update rule after many trials is to essentially average neighboring expected 

utilities of state-action pairs to a smooth and near-optimal dynamically generated 

policy. 

Simulator Design 

 We developed a simulator to train the agent offline in many different 

environments.  The simulator generated randomized environments, maintained 

the structures necessary for Q-learning, and provided appropriate feedback to 

the agent such that it could learn. 

The Agent and Environment 

 In every case, the agent explored and collected trash in an N by N 

obstacle-free grid world.  The agent always started at position (0, 0) and could 

move north, south, east, and west, and pickup trash.  The agent did not know 

where it was in the grid world, nor could it tell if it was at a boundary of the world.  

Additionally, the agent did not have any sight – it could not tell if trash was 

nearby beyond receiving a reward for successfully picking up trash (assuming it 

existed in the agent’s grid square).  Actions always executed successfully with 

the expected outcome, with the exception that moving into a wall at a boundary 

square did not move the agent, and picking up trash in a clean square did not 

trigger a reward. 
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 Trash was distributed randomly throughout the grid world each trial with a 

20% chance of any cell having trash in it.  The results in this paper were 

generated using a 4 by 4 grid, though both the percent of trash and size of the 

grid are arbitrary. 

Rewards 

 The agent received rewards of 20 points for collecting trash and 50 points 

for returning home after all trash had been collected.  For each movement or 

empty pickup attempt, the agent was penalized 1 point.  These values were 

chosen arbitrarily and varied during experimentation in an attempt to produce 

optimal behavior. 

Simulator Implementation 

 This section describes some of the important implementation details of the 

simulator.  The complete implementation of the simulator, written in python, can 

be found in the in the appendix of this paper. 

 In this simulator, a state is defined as a 3-tuple of: 

(currentPosition, trashAtLocation, numTrashCollected) 

• currentPosition is a 2-tuple of integers representing of the agent’s grid 

location (x, y) 

• trashAtLocation is a Boolean, True if there is/was trash at the agent’s 

current position and False otherwise 

• numTrashCollected is a integer representing the number of trash items 

collected thus far 
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We used this style of state description so that we could account for each 

important dimension governing the agent’s behavior.  The agent needs to learn 

the value of each grid square as it varies with the number of each trash items 

collected and whether or not the agent has already found trash at that location. 

Main Loop 

 The entire simulator was driven by a short loop that evaluated the 

previous action and then chooses the best available action, performs the action, 

and then repeats. 

 
Main Loop of TrashMan.py 

 
Lines 2 and 3 initialize the starting position and value of the first state such 

that lines 6 and 7 can repeatedly generate the explore and collect policy of the 

agent.  Line 5 acts as a measure of performance for each trial of the agent, fewer 

actions are expected on each trial as the agent’s policy gets closer to the optimal 

policy for this environment. 

Taking Actions 

Taking an action must update the agent’s state, but it cannot update the 

environment until after the Q-learning function has had a chance to analyze the 

rewards associated with that action in the environment.  Additionally, the only 
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chance to calculate rewards in the simulator is when the agent takes actions.  

Thus the combined method for taking actions and calculating rewards: 

 
Action Taking and Reward Calculating Function 

Line 5 shows the default reward for any action is the penalty for being 

alive.  If the agent successfully collects trash (lines 6-8) or is at the starting 

location after collecting all of the disbursed trash (lines 23-24), then the agent is 

rewarded instead of penalized.  Finally, on each of the agent’s movement actions 

the position of the agent is checked and the action is ignored if it would move the 

agent outside the environment. 
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Learning 

By far the most complicated function in the simulator is the function that 

implements the Q-learning aspect of the agent’s behavior.  The function must 

first compute the value of taking that action based on the received reward and 

then calculate the next best action to take.  Finally the environment must be 

updated to reflect the results of the agent’s actions before the next action can be 

taken. 

 
Agent’s Q-Learning Function (Part 1 of 2) 

First, the function checks to see if that state-action pair has ever been 

tried before and if it hasn’t, the state-action pair is initialized with an arbitrary 

value in the Q-table (lines 5-6).  Likewise, if the frequency table does not have a 

value for the state-action pair, the value is initialized at 0 (lines 8-9).  Once the 

two important tables are set, the frequency of the state-action pair is incremented 

(line 12) before our implementation of Equation 1 is executed. 

 Line 15 of this function is probably the most important line in the simulator 

– it’s where the learning takes place!  All of it should look familiar from Equation 
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1, with the exception of getMaxQ(state) which merely returns the highest 

possible Q-value for an action in the specified state. 

 
Agent’s Q-Learning Function (Part 2 of 2) 

After the completion of line 15, the environment can be updated to reflect 

the result of the actions.  If the agent picked up trash (lines 20-23), then the trash 

must be removed from that location and the relevant accounting variables 

updated.  If the agent completed its task, then the world must be reset with a new 

trash grid and the agent’s action history must be cleared (lines 25-32).  

Otherwise, the function sets up the state and action variables so that the function 

can be called again after the action it returns is executed. 

Results 

 After running the simulator for many trials with many different values for 

the constants (α, γ, N, reward scale values, exploration tendency, etc) we could 
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not get the Q-value table to converge.  In every configuration, the simulator 

would oscillate between two state-action pairs and repeatedly increase each 

pair’s Q-value.  Since each member of the oscillation loop was the other 

member’s previous state-action pair, the rate of growth for both Q-values was 

exponential. 

 The following two graphs show the exponential growth of the Q-values.  

The X-axis is in a log10 scale.  As shown, both oscillating cases grew their Q-

values to over 10250 in less than 350 action steps before crashing the simulator. 
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North/South Loop

0

50

100

150

200

250

300

350

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248

Log(Q(s,a))

Ac
tio

ns

 

Due to diverging behavior of the Q-values in the Q-table, we were unable 

to construct an agent that learned a useable collection strategy and hence 

cannot report on the results of a meaningful policy. 

Discussion and Future Work 

 It’s important to note that the simulator’s Q-table did not 

immediately diverge.  The agent was able to successfully complete its task many 

times before the seemingly inevitable divergence.  It’s unclear whether or nor the 

agent successfully learned even part of an optimal policy before the Q-table 

diverged. 

 
 The divergence of the Q-value table was not entirely unexpected.  

Gordon(1) and Weiring(3) have separately discussed the nature of Q-learning and 

the inability to guarantee its convergence in many circumstances.  Gordon 

specifically addresses the problem of oscillations leading to divergence and 
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Weiring discusses how off-policy reinforcement learning methods often cause the 

system to diverge. 

One possible reason for the divergence in our system is that the 

environment is too dynamic for Q-learning’s standard update style.  The standard 

update can result in very fast swings of Q-values, and thus quickly break the 

averaging nature of Q-learning. 

 We believe that the Q-learning algorithm for active reinforcement learning 

in this environment may not have been the correct algorithm to use, specifically 

because of the diverging results we encountered. 

Other active learning algorithms with stronger convergence properties and 

averaging updating methods instead of standard updating methods may fair 

better in this environment.  Additionally, it’s very possible to describe this 

environment with different state-action pairs that could be better suited for 

learning then those currently used by our simulator. 
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Distribution of Work 

• Tom O’Neill wrote this paper 

• Leland Aldridge was the mathematical brains behind understanding and 

implementing Q-learning 

• Harry Glaser coded most of the simulator and read parables about 

learning during debugging sessions 

 

Notes to TAs 

CB suggested we deviate from the project spec and pursue Q-learning 

applied to an agent in a garbage collection environment - given the amount of 

passive learning code already supplied made the “hook it up to quagents and 

run it” significantly less of a learning project than implementing something like 

Q-learning.  Thanks!
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Appendix: TrashMan.py Source Code 



TrashMan.py
1   # Q-learning agent for "trash world"
2   # 
3   # by Leland Aldridge, Harry Glaser, Tom O'Neill
4   # for CSC 242 Project 4: Learning
5   # 4/21/2006
6   
7   import sys, random
8   
9   # useful utilities
10   def debug(s):
11   if DEBUG:
12   print s
13   
14   def enum(*args):
15   g = globals()
16   i = 0
17   for arg in args:
18   g[arg] = i
19   i += 1
20   return i
21   
22   
23   # GLOBALS #####################################################################
24   
25   # Macros
26   NUM_ACTIONS = enum('ACTION_PICKUP',
27   'ACTION_NORTH',
28   'ACTION_EAST',
29   'ACTION_SOUTH',
30   'ACTION_WEST')
31   DEBUG = False
32   GRID_LENGTH = 4
33   THRESH = .2
34   TRASH_CHAR = '1'
35   CLEAR_CHAR = '-'
36   Q_INIT = 0
37   
38   # Learning tables
39   Q = {} # indexed by (a, s) utility of taking action a in state s
40   Nsa = {} # indexed by (a, s) number of times action a has been taken when in state s
41   trash = {}
42   
43   # Learning parameters
44   ALPHA = 0.5 # learning factor
45   GAMMA = 0.5 # discount factor
46   N = 5 # number of times to try an action to get a good feel for it
47   
48   # globals
49   trashes = 0 # num trashes left
50   picked = 0 # num trashes collected
51   curPos = (0, 0) # current position
52   grid = [] # the world
53   actions = 0 # num actions taken so far
54   
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55   # remembered information
56   prevState = None
57   prevAction = None
58   prevReward = None
59   
60   # Utilities
61   REWARD_SUCCESS = 50
62   REWARD_PICKUP = 20
63   PENALTY_ALIVE = -1
64   
65   
66   # read grid from file
67   def readGrid(filename = 'quagent.itemgrid'):
68   line_num = 0
69   itemGrid = []
70   for i in range(GRID_LENGTH):
71   itemGrid += [[]]
72   for j in range(GRID_LENGTH):
73   itemGrid[i] += [False]
74   
75   infile = open(filename)
76   i = -1
77   for line in infile:
78   i += 1
79   j = -1
80   if i >= GRID_LENGTH:
81   break
82   for c in line:
83   j += 1
84   if j >= GRID_LENGTH:
85   break
86   if c == TRASH_CHAR:
87   itemGrid[i][j] = True
88   elif c != CLEAR_CHAR:
89   sys.stderr.write('Error: invalid token, line ' + str(i) + ', col ' + str

(j) + ': ' + c + '\n')
90   return itemGrid
91   
92   # construct random grid
93   def makeGrid():
94   global trashes
95   itemGrid = []
96   for i in range(GRID_LENGTH):
97   itemGrid += [[]]
98   for j in range(GRID_LENGTH):
99   if random.random() < THRESH:
100   itemGrid[i] += [True]
101   trashes+=1
102   else:
103   itemGrid[i] += [False]
104   
105   return itemGrid
106   
107   # print grid to stdout
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108   def printGrid(itemGrid):
109   for i in itemGrid:
110   for j in i:
111   sys.stdout.write(str(j) + ' ')
112   sys.stdout.write('\n')
113   
114   
115   # take the specified action: returns the reward for that action
116   def takeAction(action):
117   global curPos, trashes, grid, picked, actions
118   x, y = curPos
119   reward = PENALTY_ALIVE
120   if action == ACTION_PICKUP:
121   if grid[curPos[0]][curPos[1]]:
122   reward = REWARD_PICKUP
123   elif action == ACTION_NORTH:
124   if y < GRID_LENGTH - 1:
125   y += 1
126   elif action == ACTION_EAST:
127   if x < GRID_LENGTH - 1:
128   x += 1
129   elif action == ACTION_SOUTH:
130   if y > 0:
131   y -= 1
132   elif action == ACTION_WEST:
133   if x > 0:
134   x -= 1
135   
136   curPos = (x, y)
137   if curPos == (0, 0) and trashes == 0 and reward != REWARD_PICKUP:
138   reward = REWARD_SUCCESS
139   
140   return reward
141   
142   
143   # returns the highest possible Q-value for an action in the specified state
144   def getMaxQ(state):
145   action = None
146   max = 0
147   
148   for curAction in range(NUM_ACTIONS):
149   key = (state, curAction)
150   if not Q.has_key(key):
151   Q[key] = Q_INIT
152   if action == None:
153   action = curAction
154   max = Q[key]
155   else:
156   n = Q[key]
157   if n >= max:
158   action = curAction
159   max = n
160   return max
161   
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162   # returns the current reward for exploring further
163   def exploration(utility, frequency):
164   if frequency < N:
165   return REWARD_SUCCESS
166   else:
167   return utility
168   
169   # determines the best action to take in the current state
170   def argmaxexplo(state):
171   bestaction = -1
172   oldmaxexplo = 0
173   
174   for action in range(NUM_ACTIONS):
175   key = (state, action)
176   if not Q.has_key(key):
177   Q[key] = Q_INIT
178   if not Nsa.has_key(key):
179   Nsa[key] = 0
180   
181   e = exploration(Q[key], Nsa[key])
182   
183   if bestaction == -1:
184   oldmaxexplo = e
185   bestaction = action
186   
187   if e > oldmaxexplo:
188   oldmaxexplo = e
189   bestaction = action
190   return bestaction
191   
192   # Q-learning function    
193   def Qlearning(reward, state):
194   global prevState, prevAction, prevReward, trashes, grid, actions, picked
195   if prevState != None:
196   if not Q.has_key((prevState, prevAction)):
197   Q[(prevState, prevAction)] = Q_INIT
198   
199   if not Nsa.has_key((prevState, prevAction)):
200   Nsa[(prevState, prevAction)] = 0
201   
202   # update visited states
203   Nsa[(prevState, prevAction)] += 1
204   
205   # Q-learning equation
206   Q[(prevState, prevAction)] += ALPHA * Nsa[(prevState, prevAction)] * (reward +

GAMMA * getMaxQ(state) - Q[(prevState, prevAction)])
207   #debug:print prevState, prevAction, Q[(prevState, prevAction)]
208   
209   # updates
210   pos = state[0]
211   if reward == REWARD_PICKUP:
212   grid[curPos[0]][curPos[1]] = False
213   trashes -= 1
214   picked += 1
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215   elif reward == REWARD_SUCCESS:
216   prevState = None
217   prevAction = None
218   prevReward = None
219   print "GRID CLEAN! actions:", actions
220   actions = 0
221   grid = makeGrid()
222   picked = 0
223   else:
224   prevState = state
225   prevAction = argmaxexplo(state)
226   prevReward = reward
227   
228   return prevAction
229   
230   # init and main loop
231   def run():
232   global trashes, curPos, grid, picked, actions, ALPHA, GAMMA, N
233   
234   # init
235   grid = makeGrid()
236   printGrid(grid)
237   
238   ALPHA = float(sys.argv[1])
239   GAMMA = float(sys.argv[2])
240   N = int(sys.argv[3])
241   
242   print "ALPHA: ", ALPHA, "\nGAMMA: ", GAMMA, "\nN: ", N, "\nGRID_LENGTH: ",

GRID_LENGTH
243   
244   # main loop
245   firststate = ((0,0),grid[0][0], 0)
246   action = Qlearning(Q_INIT, firststate)
247   while True:
248   actions += 1
249   reward = takeAction(action)
250   action = Qlearning(reward, (curPos, grid[curPos[0]][curPos[1]], picked))
251   
252   
253   run()
254   
255   
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