DOCUMENTATION OF LIP

ARJEN K. LENSTRA

1. INTRODUCTION

This is a users manual for LIP, a package containing a variety of functions for
arithmetic on arbitrary length signed integers that is available from Bellcore.
These functions allow easy prototyping and experimentation with new number
theory-based cryptographic protocols. LIP is written entirely in ANSI C, has
proved to be easily portable, is intended to be easy to use, and achieves an
acceptable performance on many different platforms, including 64-bit architec-
tures. We assume that the reader is familiar with ANSI C.

This documentation is organized as follows. The remainder of this section
describes how to get started with LIP, and how programs using one of the earlier
versions of LIP should be changed to use the present version. Section 2 contains
a systematic listing and description of all available functions. With Section 1 this
should suffice for most straightforward applications. (An alphabetic listing of all
functions is given in Appendix A.) A few machine dependent customizations
might have to be carried out before LIP can be compiled and used; they are
given in Section 3. Since LIP is written entirely in ANSI C it is often possible
to achieve greater efficiency by replacing a few internal macros by assembly
language versions; Section 4 describes the relevant macros. Section 5 discusses
some of the LIP-functions in detail. A complete overview of all compilation flags
is given in Appendix B.

The remainder of this section describes how LIP can be obtained and com-
piled, it gives two examples of the usage of LIP, it discusses the main differences
with earlier versions of LIP, describes the error message mechanism in LIP, how
arbitrary length integers are internally represented, how the allocation mecha-
nism works, where bugs in LIP should be reported, and concludes with a remark
that might be useful.

(1.1) Obtaining LIP. LIP is available for free for research or educational pur-
poses. Some LIP related files can be obtained by anonymous ftp from the di-
rectory /usr/spool/ftp/pub/lenstraon flash.bellcore.com. This directory
contains the following files: agreement.ps, agreement.plain, lipdoc.ps.Z,

Thanks to Bob Cain, Scott Contini, Roger Golliver, Achim Flammenkamp, Daniel Grove,
Paul Leyland, Mark Riordan, Selwyn Russell, and Victor Shoup for their contributions and
suggestions, and to many users for reporting bugs.

March 6, 1995, version 0.5.

2 ARJEN K. LENSTRA

and README. The file 1ipdoc.ps.Z contains a compressed version of this docu-
mentation. Upon receipt of a signed and completed paper copy of either agree-
ment.ps or agreement.plain the author will email the file 1ip.tar.Z, a com-
pressed tarfile containing 1lip.c, 1lip.h, liptimer.c, lipdoc.ps, and Make-
filel. These files can be extracted as follows?:

uncompress lip.tar.Z

tar xf lip.tar

(1.2) Compiling LIP. Once the files have been extracted, lip.c should be
compiled once and for all to obtain 1ip.o:

(make lip.o) >& liptimer.out
The file Makefile assumes that ‘gcc’ is available as ANSI C compiler. It uses
optimization level ‘-02’. Edit Makefile if another compiler or optimization level
should be used.

This initial compilation is rather involved. A default 1ip.o is created and used
to run the timer and test program liptimer.c. This results in the outputfile
liptimer.out and an auxiliary file 1ippar.h. The information in lippar.h is
then used to create another version of 1ip.o with supposedly better choices of
various compile-time options. The choices made by liptimer.c are based on the
average multiplication speeds of numbers of various sizes (which can, for several
compile-time options, be found in 1iptimer.out). See Section 3 how liptimer.c
can be customized. Of course, lippar.h can also be changed manually based on
the information in liptimer.out, after which LIP can be re-compiled.

If the compilation does not work, if 1iptimer.c does not execute properly,
or if liptimer.out indicates that something does not work, LIP has to be cus-
tomized. We refer to Section 3 for the settings of some machine dependent con-
stants. Besides the flags that are affected by lippar.h, LIP can be compiled
with a variety of other flags, which are described at appropriate points in the
text below. The flag needed for 64-bit architectures (‘~-DALPHA’) has to be set by
hand, and is not automatically tried by liptimer.c.

From now on we assume that 1ip.o has been created successfully.

(1.3) First example. In LIP the type verylong is used for arbitrary length
signed integers. All variables of type verylong have to be initialized as 0 (zero),
which is most conveniently done upon declaration; thus, to declare a verylong
variable a, write:
verylong a = 0;

The following program, example.1.c, reads the decimal representation of two
integers from standard input into the verylong variables a and b, puts the
product of a and b in the verylong variable ¢ using the function zmul, and
writes the decimal representation of ¢ followed by a newline to standard output.

IThe version of LIP that was used in the RSA-129 project (cf. [1]) can be ftp-ed from
ftp.ox.ac.uk:/pub/math/freelip/freelip_1.0.tar.gz. This version is slightly older than but
fully compatible with the version described here that is available from Bellcore.

2For freelip_1.0.tar.gz use:

gunzip freelip_1.0.tar.gz
tar xf freelip_1.0.tar

DOCUMENTATION OF LIP 3

#include "lip.h"

main ()

{
verylong a = 0;
verylong b
verylong c
zread (&a) ;
zread (&b) ;
zmul (a,b,&c);
zwriteln(c);

non
o O

}

After compilation using

gcc [-0[level]] -o example.l example.l.c lip.o -1lm
or

make example.1
execution of example.1 on input

3199044596370769 -312593329000312\

593329
produces

-1000000000000000000000000000000000001
on standard output. Notice the backslash indicating that the second number
on input continues on the next line; backslashes are also used by the output
functions to split long numbers over two or more lines (but see (3.3)). If instead
of the above output another number or the message

zstart failure: recompile with smaller NBITS
appears, then LIP has to be customized (see Section 3).

Program example.1.c shows two basic principles for the use of functions on
verylong arguments. In the first place, if the value of a verylong is only used
as input to a function, just give the name of the verylong as argument to that
function. For instance, a and b are inputs to the multiplication function zmul,
and c is the input of zwriteln. In the second place, if a verylong might get a
new value as the result of a function, give the address of the verylong (i.e., its
name preceded by a &) as argument to that function. For instance, both a and b
will get new values as result of the calls to zread, and ¢ will get the product of
a and b as result of the call to zmul. The include file 1ip.h contains prototypes
of all LIP-functions, so the compiler will print a warning each time a function is
called with an incorrect argument.

Besides zmul, zread, and zwriteln, other useful basic functions are:

zadd(a,b,&c) c gets the value a + b,

zsub(a,b,&c) c gets the value a — b,

zsq(a,&b) b gets the value a2,

zdiv(a,b,&c,&d) c gets the value [a/b] and d gets a mod b,
zmod (a,b,&c) c gets the value a mod b,

zexpmod(a,b,c,&d) d gets the value aP mod c,

zcompare (a,b) returns the sign of a — b,

4 ARJEN K. LENSTRA

zcopy(a,&b) b gets the same value as a, and

zintoz(n,&a) converts a regular long n to a verylong a,
where d is also of type verylong, and where “ ¢ gets the value a+b” stands for
“the arbitrary length signed integer that is represented by the verylong c gets
the value of the sum of the integers represented by the verylongs a and b”. A
complete listing of the available functions is given in the next section.

Most basic functions allow identical arguments for inputs and outputs (like
‘zadd(a,b,&a)’ or ‘zadd(a,a,&a)’), but some do not (like zmul, zsq, and zexp-
mod); the exceptions are documented in the listing below. If in doubt use different
arguments, and certainly do not use identical arguments for outputs (i.e., the
value of ¢ is undefined after ‘zdiv(a,b,&c,&c)’).

Although it is possible, it is not recommended to use ‘b = a’ to give b the
same value as a, because the effect is unpredictable and entirely different from
‘zcopy (a,&b)’: after ‘b = a’, a change of a’s (or b’s) value might or might not
affect b (or a)—after ‘zcopy(a,&b)’ a change of a’s (or b’s) value does not affect
b (or a).

Please observe the difference between statements like “‘b = a’” and “b=a”.
The first refers to a statement in C, and is consistently put between ¢ and > when
used in text. The latter means that the value of the integer represented by b is
the same as the value of the integer represented by a; similarly b = 0 means that
the value of the integer represented by b is 0.

(1.4) Second example. The following program, example.2.c, uses the built-in
function zrandomprime to generate five more or less random probable primes of
binary lengths 64, 80, 96, 112, 128; the resulting primes are printed in hexadec-
imal on standard output. An explanation of the second argument of zrandom-
prime, the 5 in the call below, can be found in (2.9) and (2.10). In its last argu-
ment zrandomprime expects a function u that upon call u(b,&c), for verylongs
b and c, gives c a random verylong value in the range [0,b—1]. In example.2.c
the built-in pseudo random generator zrandomb is used. To get different primes
for different runs of example.2, zrandomb is initialized with a user selected seed,
using a call to the zrandomb-initialization function zrstart (actually, zrstart
initializes zrandom, and zrandomb uses zrandom). If the call to zrstart is omit-
ted, zrandomb will start from the default seed 7157891 (which is, in a certain
sense, random). Use of zrandom or zrandomb cannot be recommended for gen-
eration of ‘cryptographically strong’ primes, like prospective secret factors of
composite moduli. In such cases the user should use his/her own random gener-
ator in the call to zrandomprime.
#include "lip.h"
main ()
{
verylong seed = 0
verylong prime =
long bitlength;
zread (&seed) ;
zrstart(seed) ;

)
)

DOCUMENTATION OF LIP 5

for (bitlength = 64; bitlength <= 128; bitlength += 16)
{
if (zrandomprime(bitlength,5,&prime,zrandomb))
{
printf("%3d bits: ",bitlength);
zhwriteln(prime) ;
}
else
printf("no %3d bit prime found\n",bitlength);
}

}

Execution of example.2 on input
3199044596370769
might produce®
64 bits:
80 bits:
96 bits:

E94E89DB AA1DO2EB
9DBOCESB 34B1481B 737D
DA819735 AFDC454E ECF4A5BD
112 bits: E60EE460 5F668D38 A747F450 E099
128 bits: BOOBBA22 A0728D77 O7FEBD61 AFD3D9B5
on standard output, whereas input
-312593329000312593329
produces entirely different random primes on standard output:

64 bits:
80 bits:
96 bits:
112 bits:
128 bits:

BE9D28E8 37B57E55

EA98S8EEC5 5F8CBE9E 4DC9

E64BODD6 A86D7269 AD82E6FF

86C93C53 OB724B3F 71981F72 AEOQ3
F85FC716 32CDE29F 8BAF5B52 5A050463

If zrandomb is initialized with seed equal to 0, then it will only produce zeros,
and the primes found by zrandomprime look considerably less random: on input

0

example.2 produces the smallest primes of the specified sizes:

64 bits:
80 bits:
96 bits:
112 bits:
128 bits

80000000 0000001D

80000000 00000000 0017

80000000 00000000 00000009

80000000 00000000 00000000 0033
80000000 00000000 00000000 0000001D

The above hexadecimal output format (a space every eighth digit) can also be
used for input in hexadecimal (using zhread): unlike zread a space does not
indicate the end of the number being read, but a newline does, unless it is
preceded by a backslash (as in zread).

(1.5) Early versions of LIP. The original fixed length unsigned version of LIP,

basic.c, is part of the code that is distributed over the Internet in the ‘Fac-
toring by email’ project (cf. [5]). It was also available for some time from the

3The values produced depend on the contents of lippar.h and might thus vary from ma-
chine to machine.

6 ARJEN K. LENSTRA

ripem.msu.edu ftp server. Because it uses fixed length integers, the parame-
ter passing mechanism in basic.c is different from LIP, which makes the two
packages incompatible unless the following changes are made. Declarations of
the form

long alZSIZEP], b[ZSIZEP], c[ZZSIZEP];
have to be rewritten as

verylong a = 0, b =0, ¢ = 0;
and calls like ‘zadd(a,b,c)’ have to be changed into ‘zadd(a,b,&c)’. After
inclusion of 1ip.h the compiler should be able to indicate which changes of
that sort have to be made. Finally, quite a few function names and parameters
meanings have changed; a non-exclusive list is given below.

Another early version of LIP, lenstra-3.1.c, used to be available from the
same ftp server ripem.msu.edu. That version is compatible with LIP, except
that we have tried to assign the function names in LIP in a more consistent
manner. With the exception of the timing-functions, the names of all functions
operating on verylong arguments are of the form zxxx, where xxx is supposed
to give a rough indication of what the function does. For some functions there
may be two variants: zsxxx where one of the operands (usually the second) is an
ordinary long, and zxxxs where all operands are ordinary longs. In some cases
this led to possible ambiguities (like zsq or zsub), but these should not lead to
serious problems. The following changes have been made:

name in lenstra-3.1.c name in LIP

defaultm zdefaultm

makeodd zmakeodd

pollardrho zpollardrho

zdivide2 z2div

zexp2mod z2expmod

Zexps zZsexp

zexpsmod zsexpmod

Zmexp zmontexp

Zmexp -m_ary zmontexp m_ary

zmont zmontmul

zrstart zrstarts (LIP has a new zrstart)
Zsexp zexpmods

zsinv zinvs

zsjacobi zjacobis

zsmulmod zmulmods (LIP has a new zsmulmod)
zsodinv zinvodds

zssqrt zsqrts

ztimes2 z2mul

Furthermore, in LIP we have adopted the rule that a verylong argument should

always be of type *verylong if its value might change as a result of the function

call, even though its allocated space is guaranteed not to change (which makes

the ‘¢’ in principle superfluous). This led to most of the following changes:
lenstra-3.1.c LIP

DOCUMENTATION OF LIP 7

makeodd (verylong) zmakeodd (xverylong)

pollardrho(verylong, zpollardrho (verylong,
xverylong, *verylong) xverylong,*verylong,long)

zcomposite(verylong, zcomposite (xverylong,
long,long) long,long)

zfree(verylong) zfree (*xverylong)

zmulin (*verylong,verylong) zmulin(verylong,*verylong)

znegate(verylong) znegate (*verylong)

Again, the compiler should be able to indicate where changes have to be made.

(1.6) Error messages in LIP. If LIP detects an error a message is printed on
standard error and the program exits. LIP can be forced to continue after an error
has been detected by compiling it with the ‘~-DNO_HALT’ flag. The error messages
are supposed to be self-explanatory, but if they are not more information can be
found both in Section 2, in 1ip.h in the description of the function mentioned
in the error message, or, as a last resort, in the mostly undocumented source-file
lip.c.

To illustrate this, the following program, example.3.c, reads an ordinary
long p from standard input, and uses the function zinvodds to compute i~*
modulo p for 1 < i < p. Clearly, i~ modulo p only exists if i and p are coprime,
so that an error can be expected if i and p have a factor in common.

#include "lip.h"
main ()
{
register long 1i;
long p;
scanf ("%d",&p) ;
for (i=1;i<p;i++)
printf ("%d inverse modulo %d is %d\n",
i,p,zinvodds(i,p));
}

Execution of example.3 on input

5

produces
1 inverse modulo 5 is 1
2 inverse modulo 5 is 3
3 inverse modulo 5 is 2
4 inverse modulo 5 is 4

on standard output. But execution on input

15
leads to an error message because 3 divides 15 and therefore does not have an
inverse modulo 15:

1 inverse modulo 15 is 1

2 inverse modulo 15 is 8

fatal error:

arguments not coprime in zinvodds

8 ARJEN K. LENSTRA

exit...
The first two lines appear on standard output, the remaining three on standard
error. To separate the output into two files, example. 3 can be executed using

(example.3 > example.3.out) >& example.3.err
Compilation of LIP with -DNO_HALT and execution of (the newly compiled) ex-
ample.3 on input

9
produces:

1 inverse modulo 9 is 1

2 inverse modulo 9 is 5

error:

arguments not coprime in zinvodds

continue...

3 inverse modulo 9 is O

4 inverse modulo 9 is 7

5 inverse modulo 9 is 2

error:

arguments not coprime in zinvodds

continue...

6 inverse modulo 9 is O

7 inverse modulo 9 is 4

8 inverse modulo 9 is 8

Some error messages are of the form ‘... BUG’. This either means that one

or more machine dependent constants have incorrect values (cf. Section 3), or it
means that a bug in LIP has been detected. The latter should be reported to
the author at lenstra@bellcore. com.

(1.7) Representation of arbitrary long integers in LIP. The type verylong
is declared as
typedef long * verylong
which implies that verylong variables are internally represented as arrays of
longs. The user does not have to worry about the allocation of these arrays,
as long as each verylong variable gets the value O before its first use. As an
example, the following program fragment should work fine:
long i;
verylong a;
verylong row[10];
a=0;
for (i=0;i<10;i++)
row[i]=0;
for (i=0;i<10;i++)
zread (&(row([i]));
for (i=0;i<10;i++)
zmulin(row[i],&a);
But a similar fragment, without the initialization of the verylongs, might lead
to unexpected results and is incorrect:

DOCUMENTATION OF LIP 9

long 1i;
verylong a;
verylong row[10];
for (i=0;i<10;i++)
zread (&(row[i]));/* wrong: using uninitialized row[i] */
for (i=0;i<10;i++)
zmulin(row[i] ,&a);/* wrong: using uninitialized a */
If a is a verylong variable, then either the C-statement ‘a == 0’ is true and the
value of the arbitrary length integer represented by a will be interpreted as 0, or
space for a has actually been allocated, and ‘a == 0’ is false. In the latter case
the absolute value of the arbitrary length integer represented by a equals

|afo]|

> ali] - RADIX',

=1

and its sign equals the sign of a[0]. Here RADIX equals 2VBITS where NBITS is a
(small) integer satisfying the requirements mentioned in Section 3. Furthermore,
0 < afi] < RADIX for i = 1,2,...,]a[0]| — 1, and 0 < a[i] < RADIX for i = |a[0]]
except when a[0] = 1 in which case a[l] may be equal to zero.

The amount of space currently allocated for a is kept in a[—1]; the LIP-
functions check this location to see if reallocation is needed. The values of
af|a[0]| + 1] through a[a[—1]] are undefined and cannot be assumed to be zero.

Although the a[i] are accessible to the user, it is not recommended to access
these values directly, or to change them other than by applying any of the LIP-
functions. In particular changing the value of a[—1] may have undesirable side-
effects.

(1.8) Allocation. LIP uses calloc and realloc to (re)allocate space for
verylongs, as described in (2.13). All local verylong variables in any of the
functions in LIP are declared as static. In this way space for those variables
will only be allocated during the first call to a function, unless more space is
needed than in any of the previous calls and the verylong has to be reallocated.
So, all local verylong variables keep the last (and largest) length that has ever
been allocated for them during the present run.

If, however, LIP is compiled with the ‘~DFREE’ flag, local verylong variables
are not made static, and the space that has been allocated during a call will be
explicitly freed at the end of the function (using the function zfree, see (2.13)).
Using this compilation flag might be preferable in circumstances where memory
is scarce.

Similarly, in frequently used user-defined non-recursive functions that use
verylong local variables, it may be more efficient to declare these variables
as static verylong. In recursive functions the verylong variables should, in
general, not be made static, and they should be freed at the end of the function.

(1.9) Bugs in LIP. Although LIP has been tested and used extensively for
several years and on many different platforms, there are certainly several bugs

10 ARJEN K. LENSTRA

left. The author would very much appreciate if bugs are reported directly to him
at lenstra@bellcore.com or at his regular mail address.

(1.10) Remark. Be careful with local changes (in a user-defined function) to a
verylong argument that is passed “by value” (i.e., without a ‘&’): for ordinary
longs a local change will have no effect outside the function, for verylongs this
cannot be guaranteed. As an example, consider the following function:
no_good(verylong a)
{
zsadd(a,1,&a);
zwriteln(a);

If a has value 5 before the call no_good(a), then 6 will be printed, and a will
have value 6 after the call. If however ‘a == 0’ was still true before the call,
then 1 will be printed, and after the call ‘a == 0’ will still be true. Examples
with unpredictable behavior can easily be constructed. Use of this ‘feature’ is
not recommended.

2. AVAILABLE FUNCTIONS

This section contains a systematic listing of all function-prototypes, including a
description of each function, subdivided in the following categories:

1 Auxiliary functions: comparison, (base)conversion, copying,
logarithms, sign manipulations

2 Basic arithmetic: +, —, %, /, mod, powering, squaring

3 Input/output: (hexa)decimal, arbitrary base,
machine dependent

4 Bit manipulation: and, cat, not, (x)or, parity, shift, weight,
get/setbits, high/lowbits, reverse, switch

5 Modular arithmetic: +, —, *, /, powering, squaring

6 Montgomery arithmetic: initialization, +, —, *, /, powering,
squaring

7 Euclidean algorithms: chinese remaindering, (extended) ged,
inverse, jacobi symbol

8 Random number generation: initialization, fixed length, bounded

9 Primality testing and factoring: probabilistic tests, trial division, squfof,

pollard rho, elliptic curve method

10 Prime generation: small primes, fixed length, bounded, fixed
(length or prime) divisor, with generator

11 NIST digital signature algorithm: key generation, signing, verification

12 Timing functions: system time, user time

13 Allocation: get/free space

In the descriptions below, please remember the distinction between “‘b = a’”

and “b = a” and the meaning of “a gets the value ...”, which are explained

in (1.3).

(2.1) Auxiliary functions
void zstart(void)

DOCUMENTATION OF LIP 11

Initializes some global variables that are used in the division functions.
This function will be called automatically, unless LIP is compiled with
the ‘-DSTART’ flag, in which case LIP expects an explicit user-call to
zstart at the beginning of all programs that use LIP, before any other
LIP-functions is used. The message zstart failure: recompile with
smaller NBITS is always fatal, and indicates that the machine depen-
dent constant NBITS has an incorrect value (cf. Section 3).

long zscompare(verylong a, long b)

long zcompare(verylong a, verylong b)
Return 1 if a > b, return 0 if a = b, return —1 otherwise.

long ziszero (verylong a)
Returns 1 if a = 0, returns 0 otherwise.

long zsign(verylong a)
Returns 1 if a > 0, returns 0 if a = 0, returns —1 otherwise.

void zzero(verylong *a)
a gets the value 0.

void zone(verylong *a)
a gets the value 1.

void zintoz(long d, verylong *a)
a gets the value d.

void zuintoz(unsigned long d, verylong *a)
a gets the value d.

void zultoz(unsigned long al[], long b, verylong *c)

c gets the value Z:):_Ol afi]rt, with r = 2CHARLxSIZEOFLONG t, convert
‘unsigned long’ base r representation in a to verylong in c.

long ztoint(verylong a)
Returns attempted conversion of a’s value to long, no overflow check.

unsigned long ztouint(verylong a)
Returns attempted conversion of |a|’s value to unsigned long, no over-
flow check.

long ztoul(verylong a, unsigned long b[], long *c)
Set c to m and b[i] such that |a| = 375" b[i]r?, with 0 < b[i] < 7, with
r = 2CHARLXSIZEQFLONG ¢, convert |a| to an ‘unsigned long’ base r
representation in b. Returns 0 if ¢ on input (which should be the length
of b) is < m; returns 1 otherwise.

long zstrtozbas(char *a, long b, verylong *c)

long zstrtoz(char *a, verylong *c)
c gets the value of the string a whose characters are interpreted as base
|b| digits (with b = 10 for zstrtoz), until a non-digit or a digit > |b| is
encountered, for 0 < |[b| < 16. The first character of a may be a ‘-’ or
a ‘.’ to indicate a negative number. Return the numbers of digits read
from a (excluding the sign), return zero if b = 0 or if |b| > 16. Notice
that, unlike zsread, these functions read a until the first character that
cannot be interpreted as a base |b| digit.

double zdoub(verylong a)

12

void
void

long
long

long
long
void
void

long
long

ARJEN K. LENSTRA

Returns attempted conversion of a’s value to double, no overflow check.
zsbastoz(long a, long b[], long c, verylong *d)
zbastoz(verylong a, verylong b[], long c, verylong *d)

d gets the value Ejggg'bﬁ]ai,to convert base a representation in b to

verylong in d.
zstobas(verylong a, long b, long c[], long *d)
ztobas(verylong a, verylong b, verylong c[], long *d)

Set d to m and c[i] such that |a| = 37" c[i][b]?, with 0 < c[i] < |b], to

convert |al to a base |b| representation in c. Return 0 if d on input (which

should be the length of ¢) is < m, or if |b| < 1; return 1 otherwise.
zstosymbas (verylong a, long b, long c[], long *d)
ztosymbas (verylong a, verylong b, verylong c[], long *d)

As zstobas and ztobas, except that |c[i]| < |b|/2, to convert |a| to a

symmetric base |b| representation in c.
zcopy(verylong a, verylong *b)

b gets the value a—different from ‘b = a’.
zswap (verylong *a, verylong *b)

Exchanges a and b.
z2logs (long a)
z2log(verylong a)

Return 0 if a = 0, return [1 + log, |a|] otherwise (the number of binary

bits needed to represent |a|).

double zslog(verylong a, long b)
double zdlog(verylong a, double b)
double zlog(verylong a, verylong b)

Return double approximation of the base b logarithm of a, only for
a>0andb>1.

double zln(verylong a)

void

void

Returns double approximation of the natural logarithm of a if a > 0,
error message ‘non-positive argument in zln’ otherwise; result un-
defined if error occurs.

zabs (verylong *a)
a gets the value |a|.

znegate(verylong *a)
a gets the value —a.

(2.2) Basic arithmetic

void
void

void

void

void

zsadd(verylong a, long b, verylong *c)
zadd (verylong a, verylong b, verylong *c)
c gets the value a + b.
zsub(verylong a, verylong b, verylong *c)
c gets the value a — b.
zsubpos(verylong a, verylong b, verylong *c)
c gets the value a — b, only for a > b > 0.
z2mul (verylong a, verylong *b)
b gets the value 2a.

DOCUMENTATION OF LIP 13

void zsmul(verylong a, long b, verylong *c)
c gets the value a * b.

void zmul(verylong a, verylong b, verylong *c)
c gets the value a x b, output cannot be input (cf. (5.1)).

void zmulin(verylong a, verylong *b)
b gets the value a * b, output cannot be input a.

void zmul plain(verylong a, verylong b, verylong *c))
c gets the value a * b, output cannot be input, uses ordinary multiplica-
tion (cf. (5.1)).

void zsq(verylong a, verylong *b)
b gets the value a2, output cannot be input (cf. (5.1)).

void zsqin(verylong *a)
a gets the value a2.

void zsq-plain(verylong a, verylong *b)
b gets the value a2, output cannot be input, uses ordinary squaring (cf.
(5.1)).

long z2div(verylong a, verylong *b)

long z2mod(verylong a)
b gets the value sign(a) * [|a|/2], returns a mod 2 € {0,1}.

long zsdiv(verylong a, long b, verylong *c)

long zsmod(verylong a, long b)
c gets the value [a/b], returns a mod b = a— c*b of the same sign as b if
non-zero. Error message division by zero in zsdiv if b = 0; result
undefined if error occurs.

void zdiv(verylong a, verylong b, verylong *c, verylong *d)

void zmod(verylong a, verylong b, verylong *d)
c gets the value [a/b], d gets the value amodb = a — c * b of the
same sign as b if d # 0. Error message division by zero in zdiv or
division by zero in zmod if b = 0; result undefined if error occurs.

zsexp(verylong a, long b, verylong *c)

zexp(verylong a, verylong b, verylong *c)
c gets the value ab, arguments cannot be the same. Error message neg-
ative exponent in zexp if b < 0 and |a| # 1; result undefined if error
occurs. Do not use these functions if modular exponentiation can be
used instead.

long zsqrts(long a))
Returns |[y/a]| if a > 0, returns 0 otherwise.

long zsqrt(verylong a, verylong *b, verylong *c)
b gets the value |[\/a]|, c gets the value a — b2, only if a > 0, output
cannot be input. Returns 1 if a is a square (i.e., if ¢ = 0), returns 0
otherwise. Error message negative argument in zsqrt if a < 0; result
undefined if error occurs.

long zroot(verylong a, long b, verylong *c)
c gets the value [¥/a] (the positive root, if there is a choice), unless one of
the error messages occurs: dth root with d=0 in zroot, or dth root

14 ARJEN K. LENSTRA

with even d of negative number in zroot, or dth root with d<O
of zero in zroot; result undefined if error occurs. Returns 1 if a is a
bth power, returns —1 if error, returns 0 otherwise.

long zispower(verylong n, verylong *f)
If n > 1 and there is an integer = satisfying ¥ = n for some integer
k > 1, returns the largest such k£ and f gets z. Otherwise returns 0 and
leaves f unchanged.

(2.3) Input/output

In the description of the input functions, an ‘empty line’ means a line that

contains no characters except possibly spaces, and a ‘leading space’ is a space

that is not preceded by a non-space character on the same line. A line can contain

at most IN_LINE characters (cf. (3.3)).

long zfread(FILE *f, verylong *a)

long zsread(char *f, verylong *a)

long zread(verylong *a)
Read characters from £ (which is supposed to be open for reading for
zfread and which is equal to standard input for zread), while skipping
leading spaces, empty lines, and everything on a line after a backslash
(but see IN_LINE BREAK in (3.3)), until a non-leading space is read, or
until an end of line which is not preceded by a backslash is read on a
non-empty line. The characters that are read (except for the possible
spaces and backslashes) are interpreted as the decimal representation of
an integer which is assigned to a. Note that all characters from f are
interpreted (until a terminator). This is different from zstrtoz(bas),
which stop reading as soon as a character not in the ‘proper’ range is
encountered. The representation on f can be preceded by a ‘-’ or a *_’ to
indicate a negative number. Return 1 if the representation on f consisted
of the digits 0 through 9 only and nothing else went wrong, returns 0
otherwise.

long zfwrite c(FILE *f, verylong a, long b, char *c, char *d)

long zfwrite(FILE *f, verylong a)

long zswrite(char *f, verylong a)

long zwrite(verylong a)
Write the decimal representation of a to £ (which is supposed to be open
for writing for zfwrite_c and zfwrite, and which is equal to standard
output for zwrite)), using at most approximately b (in zfwrite_c) or
OUT_LINE = 68 (in zfwrite and zwrite) characters per line (cf. (3.3)),
and using a backslash (but see OUT_LINE BREAK in (3.3)) to indicate
continuation on the next line. In zfwrite_c the first line will be pre-
ceded by c, each consecutive line by d, where the lengths of ¢ and 4
are included in the line-length count. Return the decimal length of |a|
(where 0 has decimal length 1). Error messages allocation failure
in zfwrite_c/zswrite or reallocation failure in zfwrite_c/
zswrite indicate that a is too large to be printed; result undefined
if error occurs. In zswrite it is assumed that f is large enough.

long
long

void
void
void

DOCUMENTATION OF LIP 15

zfwriteln(FILE *f, verylong a)
zwriteln(verylong a)

Write the decimal representation of a followed by a new line to the file f
(which is supposed to be open for writing for zfwriteln, and which is
equal to standard output for zwriteln), using at most approximately
OUT_LINE = 68 characters per line (cf. Section 3), and using a back-
slash to indicate continuation on the next line. Return values and error
messages as in zfwrite.

zhfread (FILE *f, verylong *a)
zhsread (char *f, verylong *a)
zhread (verylong *a)

Read characters from £ (which is supposed to be open for reading for
zhfread and which is equal to standard input for zhread), while skip-
ping spaces, empty lines and everything on a line after a backslash (but
see IN_LINE_BREAK in (3.3)), until an end of line which is not preceded
by a backslash is read on a non-empty line. The characters that are read
(except for the possible backslashes and spaces) are interpreted as the
hexadecimal representation of an integer which is assigned to a. This
representation on f can be preceded by a ‘-’ or a ‘_’ to indicate a nega-
tive number. Both lower case ‘a’ through ‘£’ and upper case ‘A’ through
‘F’ are accepted for the digits 10 through 15. All characters that are not
equal to a space or a backslash, or that do not represent one of the digits
0 through 15, are interpreted as 0 (zero).

void zhfwrite(FILE *f, verylong a)
void zhwrite(verylong a)

Write the hexadecimal representation of a to the file £ (which is supposed
to be open for writing for zhfwrite, and which is equal to standard
output for zhwrite) in blocks of at most 8 characters (but see HEX_BLOCK
in (3.3)) separated by spaces (but see HEX_SEP_CHAR in (3.3)), with at
most 7 blocks per line (but see HEX_BLOCKS_PER_LINE in (3.3)), and using
a backslash (but see OUT_LINE_BREAK in (3.3)) to indicate continuation
on the next line. The digits 10 through 15 are represented by ‘A’ through
‘F’, unless LIP is compiled with the ‘-DHEX_LOWER_CASE’ flag, in which
case ‘a’ through ‘f’ will be used.

void zhfwriteln(FILE *f, verylong a)
void zhwriteln(verylong a)

As zhfwrite and zhwrite, respectively, except that the hexadecimal
representation is followed by a newline.

long zbfread(FILE *f, verylong *a)

Reads machine dependent representation of a from the binary file f
(which is supposed to be open for reading), and which was written us-
ing zbfwrite. Returns 1 if successful, returns 0 otherwise. Unexpected
results if a file is read that was created (using zbfwrite) on a ma-
chine with incompatible internal representation of data (though the most
likely result in that case is the error message allocation failed in

16 ARJEN K. LENSTRA

zsetlength).

long zbfwrite(FILE *f, verylong a)
Writes machine dependent representation of a to the binary file £ (which
is supposed to be open for writing). Returns 1 if successful, returns 0
otherwise. The representation on f can be read using zbfread.

long zfread b(FILE xf, verylong *a, verylong b, long c)
Reads characters from f (which is supposed to be open for reading) while
skipping leading spaces, empty lines, and everything on a line after a
backslash, until an end of line which is not preceded by a backslash is
read on a non-empty line, or if a non-leading space is read and |b| <
16 and ¢ = 0. The characters that are read (except for the possible
backslashes and spaces) are interpreted as the base |b| representation of
an integer which is assigned to a. For [b| < 16 and ¢ = 0 the digits 10
through 15 must be represented by ‘a’ through ‘f’ or ‘A’ through ‘F’. For
[b] > 16 or ¢ # 0 non-leading spaces must be used to separate base |b]
‘digits’, which must be represented as decimal numbers. For ¢ = 0 only
the sign of the first digit (‘=’ or ‘_”) will be used, of the other digits the
absolute value will be taken. For ¢ # 0 all digits may have signs. Returns
1 if end of line reached, returns 0 if line of £ that is currently being read
contains more data (which can only happen if [b| < 16 and ¢ = 0). Error
message input base < 2 in zfread b if |b| < 1; no characters read,
no change to a if error occurs.

long zfwrite b(FILE *f, verylong a, verylong b, long c)
Writes the base |b| representation of a to the file £ (which is supposed
to be open for writing) for |b| > 1, using digits {0,1,...,|b| — 1} if
¢ = 0, but using digits centered around zero if ¢ # 0. For ¢ # 0 the
digits will be separated by spaces; otherwise for |b| > 16 the digits
will be represented in decimal and separated by spaces, for |b| = 16 in
blocks as in zhfwrite, for |b| < 16 without spaces, and for |b| < 16
as in zhfwrite for the digits 10 through 15. Returns the number of
digits used for the representation. Error messages output base < 2 in
zfwrite b, allocation failure in zfwrite b (indicating that a is
too large to print), reallocation failure in zfwrite.b (indicating
the same), and zfwriteb bug (to be reported); result undefined if
€rror occurs.

long zfwriteln b(FILE *f, verylong a, verylong b, long c)
As zfurite b, but followed by a newline.

(2.4) Bit manipulation
For a verylong or long x we denote by (xi)i(:mg the bits of |x|, i.e., x; € {0,1}
such that |x| = Zi(:mg x;2", with x;;xy = 1 and where [(x) = —1if x = 0; for i < 0
and i > [(x) we define x; = 0.
void zand(verylong a, verylong b, verylong *c)

The ith bit of ¢ gets the value a; - b;, for i =0,1,....
void zcat(verylong a, verylong b, verylong *c)

void

void
void
long
void
void

long

long
long

long

void

long

long

void
long

void

long

void

DOCUMENTATION OF LIP 17

The ith bit of ¢ gets the value b; for ¢ = 0,1,...,I(b) and the value
ai_l(b)_l for 7 = l(b) + 17 PR
znot (verylong a, verylong *b)
If a = 0 then b gets the value 1, otherwise the ith bit of b gets the value
1—a;, fori=0,1,...1(a) and b gets the same sign as a (unless b = 0).
Notice that I(b) < I(a) if |a] > 0.
zor (verylong a, verylong b, verylong *c)
The ith bit of ¢ gets the value max(a;, b;), for i =0,1,....
zxor(verylong a, verylong b, verylong *c)
The ith bit of ¢ gets the value (a; + b;) mod 2 € {0,1},for i =0,1,....
zodd (verylong a)
Returns 1 if ag = 1, returns 0 otherwise.
zlshift(verylong a, long b, verylong *c)
c gets the value 2P - a if b > 0 and sign(a)-|a|/27P otherwise.
zrshift(verylong a, long b, verylong *c)
c gets the value sign(a)-|a|/2P if b > 0 and 2P - a otherwise.
zmakeodd (verylong *a)
Returns —1 is a = 0, otherwise returns the largest k such that a; = 0
for i = 0,1,...,k, and a gets the value sign(a)-|a|/2F.
zweights(long a)
zweight (verylong a)
Return Eifo) a;.
zbit(verylong a, long b)
Returns ap,.
zgetbits(verylong a, long b, long c, verylong *d)
The sth bit of d gets the value a; ¢ fors =0,1,... ,b—1, and d’s other
bits are set to zero.
zsetbit(verylong *a, long b)
Returns original value of a, and replaces ajp| by 1 (if is was zero). The
sign of a will not be affected (unless it was zero).
zshighbits(verylong a, long b)
Returns a long with sth bit equal to aja)_sq144, for i =0,1,...,s -1,
where s = min(NBITS,b).
zhighbits(verylong a, long b, verylong *c)
The ith bit of c gets the value a;5y_p1q4, fori=0,1...,b—1.
zslowbits(verylong a, long b)
Returns a long with ith bit equal to a;, fori = 0,1,... ,min(NBITS, b)—1.
zlowbits(verylong a, long b, verylong *c)
The ith bit of c gets the value a;, for ¢ = 0,1... ;b — 1, the other bits
become 0.
zreverses (long a)
Returns a long with ith bit equal to aja)—;, for i = 0,1,... ,l(a).
zreverse(verylong a, verylong *b)
The ith bit of b gets the value a;a)_;, for i = 0,1,... ,I(a). Notice that
I(b) might become smaller than [(a).

18

long

ARJEN K. LENSTRA

zswitchbit(verylong *a, long b)
Returns original value of a, and replaces ay, by 1 —ap, . The sign of
a will not be affected (unless it was or becomes zero).

(2.5) Modular arithmetic

In the modular arithmetic functions below it is assumed that the modulus n is
positive and that the inputs (except for the exponents e in the modular expo-
nentiations) are in the range [0,n—1]. If these conditions (which are not checked)
are satisfied, the outputs will also be in the range [0,n — 1]. If n = 0, most func-
tions will give an error message modulus zero in “function-name”; the result
is undefined if this error occurs.

void
void

void
void

long

long

void
void

void

void

void

void

void

zaddmod (verylong a, verylong b, verylong n, verylong *c)
c gets the value (a + b) mod n.

zsubmod (verylong a, verylong b, verylong n, verylong *c)
c gets the value (a — b) mod n.

zsmulmod (verylong a, long b, verylong n, verylong *c)

zmulmod(verylong a, verylong b, verylong n, verylong *c)
c gets the value (a x b) mod n.

zmulmods (long a, long b, long n)
Returns the value (a * b) mod n.

zmulmod26 (long a, long b, long n, double c)
Returns the value (a * b) mod n for ¢ = (double)b/(double)n. Only
for 0 < a,b,n < 226, Often faster than zmulmods.

zmulinmod(verylong a, verylong *b, verylong n)
b gets the value (a * b) mod n

zsqmod (verylong a, verylong n, verylong *c)
c gets the value a2 mod n.

zsqrtmod (verylong a, verylong p, verylong *s)
computes x for which x> = a mod p for prime p, and puts x in *s. If no
such x exists or if p is not prime, then sets *s = 0.

zsqinmod (verylong *a, verylong n)
a gets the value a2 mod n.

zdivmod(verylong a, verylong b, verylong n, verylong *c)
c gets the value (a/b) mod n. Error messages division by zero in
zdivmod (indicating that b = 0, which is not allowed; result undefined if
this happens), and undefined quotient in zdivmod (indicating that
b after removal of common factors with a still has a factor in common
with n). In the latter case a factor of n will be returned in ¢ (if LIP is
forced to continue).

zinvmod(verylong a, verylong n, verylong *b)
b gets the value (1/a) mod n. Error messages division by zero in
zinvmod (indicating that a = 0, which is not allowed; result undefined
if this happens), and undefined inverse in zinvmod (indicating that
a has a factor in common with n). In the latter case a factor of n will
be returned in b (if LIP is forced to continue).

z2expmod (verylong e, verylong n, verylong *b)

void
void

long

long

void

void
void
void

void

DOCUMENTATION OF LIP 19

b gets the value 2€ mod n. Arguments cannot be the same. Error mes-
sage undefined quotient in z2expmod occurs if e negative and 27¢
mod n and n are not coprime, in which case a factor of n will be re-
turned in b (if LIP is forced to continue).
zsexpmod (verylong a, long e, verylong n, verylong *b)
zexpmod (verylong a, verylong e, verylong n, verylong *b)
b gets the value a® mod n. Arguments (except a and b) cannot be the
same. Error message undefined quotient in zexpmod occurs if e neg-
ative and a=—© mod n and n are not coprime, in which case a factor of n
will be returned in b (if LIP is forced to continue).
zexpmods (long a, long e, long n)
Returns a!®l mod n.
zdefault.m(long a)
Returns default window size for m-ary exponentiation (cf. [3: 4.6.3])
with an exponent consisting of a blocks of NBITS bits.
zexpmod m _ary(
verylong a, verylong e, verylong n, verylong *b, long m)
b gets the value a® mod n, computed using the m-ary method with win-
dow size m (unless m < 1, in which case the default window size will be
used, or m > NBITS, in which case NBITS — 1 will be used). This is faster
than zexpmod for large e. Arguments (except a and b) cannot be the
same. Error message undefined quotient in zexpmod m ary occurs if
e negative and a—© mod n and n are not coprime, in which case a factor
of n will be returned in b (if LIP is forced to continue).
zexpmod_doubl (verylong al, verylong el,
verylong a2, verylong e2, verylong n, verylong *b)
zexpmod doub2(verylong al, verylong el,
verylong a2, verylong e2, verylong n, verylong *b)
zexpmod _doub3(verylong al, verylong el,
verylong a2, verylong e2, verylong n, verylong *b)
zexpmod doub(verylong al, verylong el,
verylong a2, verylong e2, verylong n, verylong *b)
b gets the value (al®!' -a2%?) mod n, using, in zexpmod_doubi, windows
of size i, sliding if i > 1, and an appropriate table of products of pow-
ers of al and a2 (cf. [8]). Depending on max{el,e2}, zexpmod doub
uses one of the zexpmod_doubi. Error message negative exponent in
zexpmod _doub (i) if el or e2 negative; result undefined if error occurs.

(2.6) Montgomery arithmetic

Arithmetic modulo some fixed odd modulus n can be done somewhat faster
than ordinary modular multiplication by using Montgomery arithmetic on the
Montgomery representation of the operands involved (cf. [6]). Conversion to and
from the Montgomery representation take one Montgomery multiplication each
per operand, so conversion should only be done before and after a (lengthy)
modular computation.

20 ARJEN K. LENSTRA

To use Montgomery arithmetic, first initialize the odd modulus (by calling
zmstart(n)), and next convert all operands with the exception of exponents
to their Montgomery representation (using ztom). After that, apply the Mont-
gomery addition, subtraction, multiplication, squaring, division, inversion, and
exponentiation functions, all of whose names are of the form zmontabc, to the
converted operands, just as the ordinary modular functions zabcmod would be
applied to the non-converted ones. Finally, after completion of the computation
convert, the results back from their Montgomery representation to the regular
representation (using zmtoz).

Once it is clear how this works, it might be worthwhile to use mixed Mont-
gomery and ordinary arithmetic for multiplications involving small constants
(using zsmontmul); see the source text of zmcomposite for an example of this
‘mixed’ arithmetic.

LIP supports only one Montgomery modulus at a time. There is no mechanism
to prevent nonsensical usage of ‘old’ Montgomery variables with a ‘new’ Mont-
gomery modulus, or even to apply Montgomery functions to non-Montgomery
variables. Some LIP-functions use Montgomery arithmetic and initialize their
own Montgomery modulus; unless the user has explicitly given permission to
overwrite the user’s Montgomery modulus (using zmfree), the user’s Mont-
gomery modulus will be restored. The latter might be costly if it is repeated
very often, so it is always a good idea to zmfree a Montgomery modulus if it is
no longer needed.

If no Montgomery modulus has been initialized, most functions below will
give an error message undefined Montgomery modulus in “function-name”;
the result is undefined if this error occurs.
void zmstart(verylong n)

Initializes Montgomery arithmetic for the modulus n. Error message
even or negative modulus in zmstart if n is even or negative, which
is not allowed; result undefined if error occurs.
void zmfree(void)
A call to zmfree allows the internal arithmetic of other functions to re-
place the Montgomery modulus without restoring a user installed Mont-
gomery modulus.
void ztom(verylong a, verylong *ma)
ma gets the Montgomery representation of the regular integer a.
void zmtoz(verylong ma, verylong *a)
a gets the regular representation of the Montgomery value ma.
void zmontadd(verylong ma, verylong mb, verylong *mc)
mc gets the Montgomery sum of the Montgomery values ma and mb.
void zmontsub(verylong ma, verylong mb, verylong *mc)
mc gets the Montgomery difference of the Montgomery values ma and mb.
void zsmontmul(verylong ma, long d, verylong *mc)
mc gets the Montgomery product of the Montgomery value ma and the
regular long d. Usually this is faster than zmontmul (ma ,md,&mc), where
md is the Montgomery representation of d (and where md can for instance

void

void

void

void

void

void

DOCUMENTATION OF LIP 21

be obtained using zintoz(d,&md) followed by ztom(md ,&md)).

zmontmul (verylong ma, verylong mb, verylong *mc)

mc gets the Montgomery product of the Montgomery values ma and mb.

zmontsq(verylong ma, verylong *mb)

mb gets the Montgomery square of the Montgomery value ma.

zmontdiv(verylong ma, verylong mb, verylong *mc)

mc gets the Montgomery quotient of the Montgomery values ma and mb.
Error messages division by zero in zmontdiv (indicating that mb =
0, which is not allowed; result undefined if this happens), and undefined
quotient in zmontdiv (indicating that mb after removal of common
factors with ma still has a factor in common with the Montgomery mod-
ulus n). In the latter case a factor of n will be returned in me (if LIP is
forced to continue).

zmontinv(verylong ma, verylong *mb)

mb gets the Montgomery inverse of the Montgomery value ma. Error mes-
sages division by zero in zmontinv (indicating that ma = 0, which
is not allowed; result undefined if this happens), and undefined in-
verse in zmontinv (indicating that ma has a factor in common with
the Montgomery modulus n). In the latter case a factor of n will be
returned in mb (if LIP is forced to continue).

zmontexp(verylong ma, verylong e, verylong *mb)

mb gets the value of the Montgomery exponentiation (ma)€, i.e., the
Montgomery representation of a€ mod n, where ma is the Montgomery
representation of a. The argument e cannot be the same as ma or mb.
Error message undefined quotient in zmontexp occurs if e is nega-
tive and an attempt is made to compute the inverse modulo n of some
number that is not coprime with n. In the latter case a factor of n will
be returned in mb (if LIP is forced to continue).

zmontexpm ary(verylong ma, verylong e, verylong *mb, long m)

mb gets the value of the Montgomery exponentiation (ma)€, i.e., the
Montgomery representation of a€ mod n, where ma is the Montgomery
representation of a, computed using the m-ary method (cf. [3: 4.6.3])
with window size m (unless m < 1, in which case the default window
size will be used (cf. zdefault in (2.5)), or m > NBITS, in which case
NBITS — 1 will be used). This is faster than zmontexp for large e. The
argument e cannot be the same as ma or mb. Error message undefined
quotient in zmontexp m ary occurs if e is negative and an attempt
is made to compute the inverse modulo n of some number that is not
coprime with n, in which case a factor of n will be returned in mb (if LIP
is forced to continue).

void zmontexp.doubl(verylong mal, verylong el,

verylong ma2, verylong e2, verylong *mb)

void zmontexp_doub2(verylong mal, verylong el,

verylong ma2, verylong e2, verylong *mb)

void zmontexp_doub3(verylong mal, verylong el,

22

ARJEN K. LENSTRA

verylong ma2, verylong e2, verylong *mb)

void zmontexp doub(verylong mal, verylong el,

verylong ma2, verylong e2, verylong *mb)
mb gets the value of the Montgomery product of the two Montgomery
exponentiations (ma1)®! and (ma2)®?, using, in zmontexp_doubi, win-
dows of size i, sliding if 1 > 1, and an appropriate table of Montgomery
products of Montgomery powers of mal and ma2 (cf. [8]). Depending
on max{el,e2}, zmontexp_doub uses one of the zmontexp_doubi. Error
message negative exponent in zmontexp.doub(i) if el or e2 nega-
tive; result undefined if error occurs.

(2.7) Euclidean algorithms

void

void

void

void

long

long

long

zchirem(verylong a, verylong xa,
verylong b, verylong xb, verylong *c)
¢ is computed such that ¢ = xamod a and ¢ = xb mod b, for positive
a and b, which must be coprime if xa # xb. Error messages zero or
negative argument(s) in zchirem (a or b zero or negative), same
moduli with different remainders in zchirem (a = b but xa #
xb), or moduli not coprime in zchirem (a and b not coprime); result
undefined if error occurs.
zgcd(verylong a, verylong b, verylong *c)
c gets the greatest common divisor of a and b, computed using the
binary gcd algorithm (i.e., no divisions).
zgcdeucl (verylong a, verylong b, verylong *c)
c gets the greatest common divisor of a and b, computed using the
ordinary Euclidean algorithm (which is usually slower than the binary
method, but might be faster in special cases).
zexteucl(verylong a, verylong *xa,
verylong b, verylong *xb, verylong *c)
c gets the greatest common divisor of a and b, and xa and xb get values
such that a-xa + b-xb = ¢, computed using Lehmer’s method (cf.
[3: 4.5.2]). Arguments cannot be the same. Error message non-zero
remainder in zexteucl BUG (to be reported); results undefined if
€rror OCCurs.
zinvs(long a, long b)
Returns an integer z such that z - |a] = ged(a, b) mod b, using ordinary
extended Euclidean algorithm.
zinvodds(long a, long b)
Returns an integer z such that z - |a|] = 1 mod b, for coprime a > 0 and
odd b > 3, using binary method. This is usually much faster than the
method used by zinvs. Returns 0 is b is even. Error message arguments
not coprime in zinvodds; returns zero if error occurs.
zinv(verylong a, verylong b, verylong *c)
Returns zero and c gets the value a—! mod b if a and b are coprime,
computed using Lehmer’s method; returns 1 and c gets the greatest

DOCUMENTATION OF LIP 23

common divisor of a and b if a and b are not coprime. Arguments can-
not be the same. Only for a > 0 and b > 0. Error message zero or
negative argument(s) in zinv if a < 0 or b < 0; result undefined if
€ITOr OCCUrS.

long zjacobi(verylong a, verylong b)
Returns, only for b > 0, the Jacobi symbol of a and b: zero if a and b are
not coprime, 1 if a and b are coprime and there exists an integer x such
that 2 = amod b, and —1 otherwise. Error message non-positive
second argument in zjacobi; result undefined if error occurs.

long zjacobis(long a, long b)
As zjacobi, except that b is required to be odd, but may be negative.
Error message even second argument in zjacobis; result undefined
if error occurs.

(2.8) Random number generation

void zrstart(verylong s)

void zrstarts(long s)
Initialize or reset the seed of the built-in pseudo-random number gener-
ator as s.

void zrseed(verylong *a)
a is set to the current value of the seed of the built-in pseudo-random
number generator.

long zrandom(long bnd)
If bnd > 0, the seed s of the built-in pseudo-random number generator
will be replaced by (s-g) mod p € {0,1,...,p— 1} (where p = 2107 —1
is prime and g = 312! generates (Z/pZ)*) until the resulting s is < p —
(p mod bnd) (to avoid inhomogeneity), and s mod bnd € {0,1,... ,bnd—
1} will be returned; otherwise, if bnd < 0, the seed will not be changed
and zero will be returned. Notice that zrandom will return only zero
if the seed is set to zero (using zrstart or zrstarts). The default
initial value of s is 7157891. This function cannot be recommended for
generation of ‘cryptographically strong’ pseudo-random numbers.

void zrandomb(verylong bnd, verylong *a)
a is set to a more or less randomly (but not homogeneously) selected
integer in the interval [0, bnd — 1], unless the interval is empty in which
case a gets the value zero. To generate the random values necessary to
construct a, zrandomb uses the function zrandom, and as zrandom it
will always set a to zero if the seed is set to zero (using zrstart or
zrstarts). If cryptographic security is important, zrandomb should not
be used, and the user should provide his/her own version of zrandomb.

void zrandoml (long length, verylong *a,

void(*u) (verylong,*verylong))

a is set to a randomly selected integer of precisely |length| bits, with
the same sign as length. The function u, which is used to generate the
random value that is needed to construct a, should give ¢ a more or less
random value in the range [0,b — 1] upon call u(b,&c), for a verylong

24 ARJEN K. LENSTRA

b. If cryptographic security is important, zrandomb should not be used
for u.

(2.9) Primality testing and factoring

long zcomposite(verylong *a, long t, long first)
Ifa< oNBITS/2 or if a even, zcomposite returns 0 if a is prime and 1
otherwise. Otherwise, if a is odd and > ZNBITS/Z, zcomposite returns
1 if it could prove that a is composite (using at most |t| probabilistic
compositeness tests) and that, if t < 0, it is not a prime power; it
returns 0 if |t| probabilistic compositeness tests were unable to prove
that a is composite. The latter happens only with probability (1/4)*!
for composite a, so that if [t| is sufficiently large one may assume that
a is prime if 0 is returned. Furthermore, if t < 0, and still in the case
that a is odd and > 2NBITS/2, zcomposite returns —1 if a factor of a
has been detected (in which case the factor will be returned in a).

zcomposite uses the method from [3: 4.5.4, Alg. P], with the ‘prime

power’ extension from [4: 2.5], for at most |t| bases. If first = 0 all these
bases will be selected (using =zrandom) in the range
[3, min(a, RADIX) — 1]; otherwise |[first| will be used as the first base,
and the other |t| — 1 bases will be selected (using zrandom) in the range
[3, min(a, RADIX) — 1]. This makes it possible to make use of the slightly
faster special arithmetic that is used if |first| = 2.

For large values of t the function zmcomposite is more efficient than
zcomposite (because zmcomposite uses mixed ordinary/Montgomery
arithmetic). For numbers that might have small factors zprobprime is
on average faster than zcomposite (because zprobprime does some trial
divisions before calling zcomposite and zmcomposite).

long zmcomposite(verylong a, long t)

If a < 2NBITS/2 o jf o even, zmcomposite returns 0 if a is prime and 1
otherwise. Otherwise, if a is odd and > oNBITS/ 2, zmcomposite returns
1 if it could prove that a is composite (using at most |t| probabilistic
compositeness tests); it returns 0 if |t| probabilistic compositeness tests
were unable to prove that a is composite. The latter happens only with
probability (1/4)®! for composite a, so that if |t] is sufficiently large one
may assume that a is prime if 0 is returned.

zmcomposite uses the method from [3: 4.5.4, Alg. P] for at most |t]
bases that are selected (using zrandom) in the range [3, min(a, RADIX) —
1]. It uses mixed ordinary/Montgomery arithmetic and is thus slightly
faster than zcomposite.

long zprime(verylong a, long t, long first)
If a < oNBITS/2 o if a even, zprime returns 1 if a is prime and 0
otherwise. Otherwise, if a is odd and > oNBITS/ 2, zprime returns 0
if it could prove that a is composite (using at most |t| probabilistic
compositeness tests); it returns 1 if |t| probabilistic compositeness tests
were unable to prove that a is composite. The latter happens only with

DOCUMENTATION OF LIP 25

probability (1/4)/*! for composite a, so that if |t] is sufficiently large one
may assume that a is prime if 1 is returned.

zprime uses the method from [3: 4.5.4, Alg. P] for at most |t| bases.
If first = 0 all these bases will be selected (using zrandom) in the range
[3, min(a,RADIX) — 1]; otherwise |first| will be used as the first base,
and the other |t| — 1 bases will be selected (using zrandom) in the range
[3, min(a, RADIX) — 1]. This makes it possible to make use of the slightly
faster special arithmetic that is used if |first| = 2.

For large values of t it is more efficient to use zmcomposite than
zZprime.

long zprobprime(verylong a, long t)
Returns 0 if a proved to be composite, returns 1 if compositeness could
not be proved using 1+|t| probabilistic compositeness tests. zprobprime
first attempts to find a small factor using trial division (using ztridiv).
If no small factor could be found, it calls zcomposite(&a,1,2), and if
that did not prove compositeness it calls zmcomposite(a,t).

On average zprobprime is faster than any of the functions above, if
no additional information about the numbers to be tested is known. If a
number is suspected to be prime, however, and trial division is unlikely
to succeed, then zcomposite, zmcomposite, or zprime should be used.

long ztridiv(verylong a, verylong *cofac, long low, long high)
Returns 0 if low < 0 or low > high or high > RADIX. Otherwise,
ztridiv returns the smallest prime factor of a in [Low,high], if any,
and sets cofac equal to the cofactor; returns smallest prime > high
if a has no prime factor in [low,high]. The function ztridiv is only
intended for fairly large a: it does not avoid trial division with primes
> V/lal.

long zfecm(verylong n, verylong *fac, long s, long *nb,

long *bnd, long percent, long t, long info, FILE *fp)

Attempts to find a non-trivial factor of n using the elliptic curve integer
factorization method (ecm), using at most *nb curves with initial first
phase bound *bnd (which grows by percent percent per curve) (cf.
(5.3)). Returns —1 if n could not be proved to be composite using |t|
probabilistic compositeness tests, returns 0 if no factor found or if n <1
and returns 1 if a factor has been found (in which case the factor will be
put in fac). The value of *nb is set to the number of curves used and
the value of *bnd is updated to the last value of *bnd used (same as the
initial value when percent = 0).

If s # 0, the built-in pseudo-random generator zrandom will be initial-
ized with a call to zrstarts with argument 2s+2 for s > 0 and —2s+1
for s < 0;if s = O no call to zrstarts will be made. The curves will then
be randomly selected using zrandom. In this way a different non-zero s
for the same n should lead to a different sequence of curves. This makes
it possible to run zfecm on multiple processors on the same n, but us-
ing different curves. If |info| > 2 various informative messages will be

26 ARJEN K. LENSTRA

printed on *fp, per phase and per curve; for |[info| = 1 they will only
be given per curve, and for info = 0 or fp = NULL, zfecm runs silently.
Error messages impossible return value of zcomposite in zfecm
BUG or two numbers followed by this is a wrong factor, found in
zfecm BUG; both should be reported.

We refer to (5.3) for some hints how nb, bnd, and percent might be
chosen, and how zfecm can be customized. The author would appreciate
to hear about any factor of 38 or more decimal digits found by zfecm.

For applications that do not use zfecm and for which the small
amount of memory needed for some global arrays used by zfecm might
be a problem, LIP can be compiled with the ‘-DN0_ECM’ flag. If both
zfecm and the ‘-DNO_ECM’ flag are used, the first call to zfecm will
result in the message Compile without the -DNO_ECM flag to get
ecm code on standard error.

long zecm(verylong n, verylong *fac, long s, long nb,

long bnd, long percent, long t, long info)

As zfecm, but nb and bnd will not be changed, and fp is standard
output.

long zpollardrho(verylong n, verylong *res, verylong *cof, long t)
Attempts to factor n with Brent’s version of Pollard’s rho using at most
t iterations of the main loop. If t is zero, then runs till factor is found.
The two cofactors are put in res and cof. Returns positive integer if
factor is found, 0 otherwise.

long zsquf (verylong n, verylong *fl, verylong *f2)
Attempts to factor n < RADIX? using Shanks’s ‘squfof.” Returns positive
integer if successful, and puts factors in £1 and £2. Otherwise returns 0.
If n > RADIX? then returns 0 without attempting to factor n.

(2.10) Prime generation

long zpnext(void)
Returns the next small prime, starting at 2, unless zpstart has been
called, in which case the first subsequent call to zpnext returns 3. After
returning the last prime it can generate (which is approximately (2 -
PRIM BND + 1)2) the next call to zpnext wraps around and returns 2.
For the default setting PRIM_BND = 2NBITS/2-1 454 NBITS equal to 30
(but see (3.3)) the largest prime that can be generated by zpnext is
1073840111.

long zpnextb(long bnd)
Returns 0 if bnd > (2-PRIM_BND+1)2 —4-NBITS. Otherwise, the smallest
prime > bnd will be returned, and the small prime generator will be
repositioned in such a way that zpnext returns the small primes from
there on.

void zpstart(void)
Repositions the small prime generator so that the next call to zpnext
will return 3.

void zpstart2(void)

DOCUMENTATION OF LIP 27

Repositions the small prime generator so that the next call to zpnext
will return 2.

long zp(void)
Returns zero if no call to zpnext or zpnextb has been made yet, or if
zpnext or zpnextb has not yet been called after the most recent call to
zpstart or zpstart2. Otherwise, zp returns the prime most recently
returned by zpnext or zpnextb.

long zrandomprime(long length, long t, verylong *p,

void (*u) (verylong,verylongx))

p will be set to zero if |Length| < 2. Otherwise, p will be set to a random
probable prime of precisely |length| bits, with p equal to 3 modulo 4
if length < 0. The function u is as in zrandoml, and will be used to
generate the random values. At most 1+ |t| probabilistic compositeness
tests will be carried out per candidate p-value (cf. (2.9)). Returns 1 if
successful, returns 0 otherwise.

Do not use zrandomb for u if cryptographically strong primes are
needed. zrandomprime works by picking an odd number of the right
size (and residue class mod 4, if length < 0), and keeps adding 2 (or
4) to it until it passes 1 + |t| probabilistic compositeness tests, or until
it is too large in which case zrandomprime starts all over again, thus
following the suggestion from [7: Appendix].

long zrandomgprime (long lp, long 1lq, long t, verylong *p,

verylong *q, verylong *quot, void(*u) (verylong,verylongx))
If 1q < 0, a positive number is expected in q; if 1q > 0, zrandomgprime
attempts to set q to a randomly selected probable prime of precisely
1q bits. Furthermore, zrandomqprime attempts to set p to a randomly
selected probable prime of precisely 1p bits, such that q divides p—1, and
sets quot to the resulting (p—1)/q. The function u is as in zrandoml, and
will be used to generate the random values. At most 1+ |t| probabilistic
compositeness tests will be carried out per candidate p or g-value (cf.
(2.9)). Returns 1 if successful, returns 0 otherwise.

Do not use zrandomb for u if cryptographically strong primes are
needed. zrandomgprime uses zrandomprime to find a q, if necessary,
of the right size that passes 1 + |t| probabilistic compositeness tests.
Once q has been determined, at most 2 - 1p random p’s with q dividing
p — 1 are selected, until p passes 1 + |[t| probabilistic compositeness
tests, thus following the suggestion from [7: Appendix]. This implies
that zrandomgprime can only be expected to work if 1p is substantially
larger than 1q if 1q > 0, or than log,(q) if 19 < 0. Error message wrong
q in zrandomgprime if 1qg < 0 and q < 0; result undefined if error
occurs.

long zrandomfprime(long 1q, long t, verylong fac,
verylong *p, verylong *q, void(*u) (verylong,verylong*))
Repeatedly uses zrandoml (and the function u to generate the random
values) to set q to a probable prime of 1q bits that passes 1 + |t| proba-

28 ARJEN K. LENSTRA

bilistic compositeness tests (cf (2.9)), until p = fac-q+1 is also probably
prime (passing 1+|t| probabilistic compositeness tests). Returns 1 if suc-
cessful, returns 0 otherwise (for instance, if fac < 2 or if fac is odd). Do
not use zrandomb for u if cryptographically strong primes are needed.
long zrandomgprime(long 1q, long t, long small, verylong *p,

verylong *q, verylong *g, void(*u) (verylong,verylong*))
Calls zrandomfprime(lqg,t,factor,p,q,u) with factor = 2 to set q
and p = 2-q+ 1 to two probable primes that pass 1 + |t| probabilistic
compositeness tests each (cf (2.9)), such that g has binary length equal
to 1q, and sets g to a generator of the multiplicative group modulo p. If
small = 0, the generator g will be randomly selected (using u), otherwise
the smallest positive g will be selected. Returns 1 if successful, returns 0
otherwise. Do not use zrandomb for u if cryptographically strong primes
are needed.

(2.11) NIST digital signature algorithm
These functions are not included in the publicly available version of LIP.
long zdsa make key(long lp, long lq, long t, verylong p,
verylong q, verylong g, verylong x, verylong y,
void (*u) (verylong,verylongx))
Attempts to find (using zrandomqprime with u as random generator
and |t| as number of compositeness tests) primes p and q of 1p and 1q
bits, respectively, such that q divides p — 1, and an element g of order q
modulo p such that 0 < g < p (using u). Furthermore, uses u to find an x
in (0,q) and sets y equal to g¥ mod p. Returns 1 is successful, returns 0
otherwise. Notice that p, q, g, x, and y (upon successful return) satisfy
the requirements of the public and private keys for the NIST digital
signature algorithm as described in [7], if |t] is set to at least 50.
Prints a warning message WARNING --- using cryptographically
weak random generator, private key x might be compromised
on standard error if zrandomb is used as the generator u of supposedly
random integers, because x must be generated by a cryptographically
secure random generator.
long zdsa check_public key(verylong p, verylong q, verylong g,
long t)
Returns 0 if either p or q was proved to be composite (using at most
|t| probabilistic compositeness tests), or if q does not divide p — 1, or
if g is not an element of order q modulo p. Returns 1 otherwise. If 0
is returned the requirements for the public key for the NIST digital
signature algorithm are not satisfied.
long zdsa_check private key(verylong p, verylong q, verylong g,
verylong x, verylong y, long t)
Returns 0 if either p or q was proved to be composite (using at most |t|
probabilistic compositeness tests), or if q does not divide p— 1, or if g is
not an element of order ¢ modulo p, or if y does not equal g* mod p. Re-
turns 1 otherwise. If 0 is returned the requirements for the public/private

DOCUMENTATION OF LIP 29

key pair for the NIST digital signature algorithm are not satisfied.
long zdsa sign(verylong p, verylong q, verylong g, verylong m,
verylong x, verylong *k, verylong *r, verylong *s,
void (*u) (verylong,verylongx))
Computes the signature r, s of the message digest m modulo q, using
the public/private key pair p, q, g, x, and the session key k, following
the specifications of the NIST digital signature algorithm from [7]. If k
is in the interval [1,q— 1] upon call, that value will be used; otherwise, if
the value of k is not in [1,q — 1], zdsa_sign uses u as random generator
to find a session key k in [1,q — 1]; the value used will be returned in k.
Returns 1 upon successful computation of the signature.

Prints a warning message WARNING --- using cryptographically
weak random generator, random k might be compromised on stan-
dard error if k was generated by zdsa_sign using zrandomb as the gen-
erator u of supposedly random integers, because k must be generated
by a cryptographically secure random generator.

Error message common factor of k and q in zdsa_sign indicates
that the public key is incorrect; returns 0 if error occurs (and if LIP is
forced to continue), and the common factor will be printed on standard
€error.

On a sparc 10 model 50 a signature for a 512-bit p and a 160-bit
q takes on average about 0.15 seconds, which can be reduced to 0.045
seconds by using the ‘-DSINGLE MUL’ flag.

long zdsa verify(verylong p, verylong q, verylong g, verylong m,
verylong y, verylong r, verylong s)
Returns 1 if r, s is a valid signature (according to the specifications of
the NIST digital signature algorithm from [7]) for the message digest m
modulo q with public key p, q, g, y. Returns 0 if the signature is not
valid.

Error message common factor of s and q in zdsa verify indica-
tes that the public key is incorrect; returns 0 if error occurs (and if LIP is
forced to continue), and the common factor will be printed on standard
€rror.

On a sparc 10 model 50 a verification for a 512-bit p and a 160-bit
q takes on average about 0.2 seconds, which can be reduced to 0.06
seconds by using the ‘-DSINGLE_MUL’ flag.

(2.12) Timing functions

double gettime(void)
Returns the user time plus the system time (in seconds) spent on the
current process till the moment of call. Subtract the value returned at
the first call from the value returned at the second call to find the time
spent on the computation between the two calls.

double getutime(void)
As gettime, but returns user time only.

double getstime(void)

30 ARJEN K. LENSTRA

As gettime, but returns system time only.
void starttime(void)
Starts, or restarts, a timer; to be used with printtime.
void printtime(FILE *f)
Prints the time spent since the last call to starttime to file £ (using
format "%8.51f sec."), followed by a newline, and flushes f.

(2.13) Allocation

void zsetlength(verylong *a, long length, char *s)
Allocates (or reallocates) enough space for a so that it can store an in-
teger of absolute value < RADIX1€P8TR ynless length < SIZE in which
case SIZE will be used instead of length (cf. (3.3)). If LIP is compiled
with the ‘-DPRT REALLOC’ flag each call to zsetlength, including the
calls made by the LIP-functions themselves, will print the message x
(re)allocating to y on standard error, where x is the contents of the
string s, and y the value used for length. In this way the user can get
some idea how often variables are (re)allocated, and to what size, to find
the right initial value of SIZE for his/her application.

In normal use of LIP, the user does not have to make his/her own
calls to zsetlength. If LIP is compiled with the ‘~DNO_ALLOCATE’ flag,
however, the LIP-functions assume that the user has used zsetlength
to allocate space for all verylong operands: except for zsetlength
all LIP-functions will assume that ‘a == 0’ is not true for all their
verylong arguments, if the ‘-DNO_ALLOCATE’ flag is used. But even if
this flag is used, automatic reallocation will take place if it turns out
that not enough space has been allocated for a variable. Error messages
(re)allocation failed in zsetlength, indicating that LIP is out of
space (the name of the function and the attempted allocation size will
be printed as well), and negative size allocation in zsetlength
which indicates a wrong call to zsetlength (and a bug in LIP if the
user did not call zsetlength him/herself).

void zfree(verylong *a)
Frees the space allocated for a. Only useful for variables local to recursive
functions or to functions that are used exclusively in the initial stages
of a computation. For variables in non-recursive functions that are used
throughout a computation it is more efficient to keep the space allocated
for verylong variables allocated for later calls (by declaring them as
static verylong).

3. MACHINE OR USER DEPENDENT CONSTANTS AND INCLUDE FILES

The default settings of all machine or user dependent constants described in this
section can be changed by changing lip.h or 1lip.c, or, for most of them, by
compiling LIP with the appropriate flag(s): for instance, to give SIZE the value
2 instead of the default value 20, compile LIP with the ‘-DSIZE=2’ flag.

(3.1) Machine dependent constants

DOCUMENTATION OF LIP 31

The default settings of the machine dependent constants in LIP is intended
for use on machines where chars have 8 bits, sizeof (long) equals 4, and
sizeof (double) equals twice sizeof (long). For machines with sizeof (long)
and sizeof (double) equal to 8 (such as alpha architectures), the ~-DALPHA or
-DALPHA50 flags can be used for faster arithmetic and more efficient memory
usage (see (5.2)).

The default settings are as follows:

#define CHARL 8
#define SIZEOFLONG 4
#define NBITS 30, or 26 if the ‘~-DSINGLE MUL’ flag is used

CHARL should be set to the number of bits of a char, and SIZEOFLONG should be
set to sizeof (long). These two values depend on the machine and/or the im-
plementation of C on that machine. Given CHARL and SIZEOFLONG, the value for
NBITS should be chosen in such a way that NBITS is a positive even integer strictly
less than CHARL - SIZEOFLONG. By default NBITS is set to 30, the largest possible
value for CHARL = 8 and SIZEOFLONG = 4. The choice NBITS = 26, however,
makes it possible to use a different set of macros and to get, on many machines,
somewhat faster multiplication of verylongs; usage of the ‘~-DSINGLE MUL’ flag
sets NBITS to 26 and activates these alternative macros, but simply using the
‘-DNBITS=26" flag keeps the default macros. Although the ‘-DSINGLE MUL’ flag
often leads to faster multiplication, it also leads to slightly slower addition and
slightly higher memory demands. Furthermore, NBITS = 26 is inconvenient for
some (factoring) applications. Nevertheless, for many applications (like elliptic
curve factoring, cf. (5.3), or DSA, cf. (2.11)) the ‘-DSINGLEMUL’ flag can be
recommended.

If NBITS is chosen exceedingly small (i.e., if NBITS < (CHARL-SIZEOFLONG)/2)
then the macros should be changed to take advantage of that choice. Such a
small choice for NBITS can however not be recommended, because it is more
efficient to use either the largest possible value or the ‘-DSINGLE_MUL’ flag.

(3.2) Remark. The code that is used with the ‘~-DSINGLE_MUL’ flag assumes that
the order of the words in doubles is ‘high-low’ (sparcs). On architectures where
that is incorrect and the order is ‘low-high’, LIP should be compiled with the
‘~DDOUBLES_LOW_HIGH’ flag (decs). If LIP is compiled following the instructions
in (1.2) the right order will be used, if the timer-program decides that using the
‘~-DSINGLE MUL’ flag is optimal.

(3.3) User dependent constants

#define SIZE 20
#define IN_LINE 2048
#define IN_LINE BREAK "\’
#define OUT_LINE 68
#define OUT_LINE_BREAK "\’
#define HEX_BLOCK 8

#define HEX BLOCKS_PER_LINE 7
#define HEX_SEP_CHAR >
#define PRIM_BND (1<<((NBITS>>1)-1))

32 ARJEN K. LENSTRA

SIZE is the default and minimum number of longs that will be allocated for a
verylong variable (cf. (1.7)); it can be set to any integer such that SIZE-NBITS >
CHARL - SIZEOFLONG. The best value depends on the application: a large value
might require fewer reallocations, and a small value might use less memory. In
applications where, for instance, large matrices with verylong entries modulo
some verylong m are used, it is probably best to use the smallest possible SIZE
with SIZE- NBITS > log,(m). To find out which value of SIZE might be good for
a certain application, see the documentation of zsetlength in (2.13).

The input functions for verylongs accept at most IN_LINE characters per line.
The default choice of 2048 should not be too restrictive, because longer lines can
easily be split into smaller ones, as explained in (1.3) and (2.3). OUT_LINE is
an approximate bound for the maximal number of characters per line in the
various output functions for verylongs (cf. (2.3)). On unusually narrow screens
40 might look better than the default choice of 68, and on old lineprinters 130
might be a good choice.

IN_LINE_BREAK and OUT_LINE BREAK are the backslashes that indicate contin-
uation on the next line of verylongs in input or output, respectively. To change
them the source code lip.c has to be changed; they cannot be changed using a
flag. They can assume any character value, but it is obviously not a good idea
to give them confusing values like *=", * %’ or *2°’.

HEX_BLOCK, HEX_BLOCKS_PER_LINE, and HEX_SEP_CHAR determine the format
of hexadecimal output: at most HEX_BLOCKS_ PER_LINE = 7 blocks of at most
HEX_BLOCK = 8 characters per line, separated by a space (HEX_SEP_CHAR). The
values of HEX_BLOCK and HEX_BLOCKS_PER_LINE can be set during compilation;
the source code has to be changed to change HEX_SEP_CHAR into any other char-
acter value.

As explained in (2.10), PRIM_BND determines the bound on the small primes
that can be generated using the small prime generator zpnext. By default
PRIM BND is set to the value above, unless one of the ‘~-DSINGLE MUL’ (cf. (3.1)),
‘-DALPHA’, or ‘~-DALPHA50’ flags is used, in which case PRIM_BND = 2!4. The small
prime generator allocates two arrays consisting of PRIM_BND short ints, so if
NBITS is substantially larger than the default value 30 (as might be the case on
machines where sizeof (long) equals 8), the default setting of PRIM_BND might
require too much memory, and PRIM_BND should be given a smaller value.

(3.4) Include files
It might depend on the operating system which include files are needed. For me
the following include files suffice:
<stddef.h>
<stdio.h>
<math.h>
<malloc.h>
<sys/time.h>
<sys/resource.h>
It seems that on HP workstations one also needs
<syscall.h>

DOCUMENTATION OF LIP 33

and furthermore that on more recent operating systems <sys/time.h> and
<sys/resource.h> have to be replaced by <sys/times.h> and <limits.h>.
It is also possible that the definitions of the timings functions (gettime etc.)
have to be changed on some of those systems.

4. MACROS

The performance of LIP may be improved by replacing a few macros by inline
assembly functions. In this section we list these macros, describe their intended
effect, and indicate which implementations of them are available in LIP. De-
pending on the application it is always a good idea to try compilation with the
‘-DSINGLE MUL’ flag. This flag will be tried automatically if the instructions in
(1.2) are followed to compile LIP. See also Remark (3.2).
static void zaddmulp(long *a, long b, long d, long *t)

Let z=a+t+b-d. As a result of zaddmulp the value z mod RADIX €

{0,1,... ,RADIX — 1} is assigned to a, and t gets the value [z/RADIX].

Only for non-negative integers a, b, d, and t that are all < RADIX, so

that a and t are again non-negative and < RADIX after the call.
static void zaddmulpsq(long *a, long b, long *t)

Let £ = a + b2, As a result of zaddmulpsq the value x mod RADIX €

{0,1,... ,RADIX — 1} is assigned to a, and t gets the value [z/RADIX].

Only for non-negative integers a, b, and t that are all < RADIX, so

that a and t are again non-negative and < RADIX after the call.
There are four versions of zaddmulp and zaddmulpsq available in LIP. The de-
fault version presumes a two’s complement machine in which integer overflow
is ignored and where arithmetic on doubles is fast; it uses one long*long mul-
tiplication, two double*double multiplications, and a few additions. If LIP is
compiled with the ‘-DSINGLE_MUL’ flag (cf. (3.1), (3.2)), another version is used
that makes the same assumptions, but that uses only one double*double mul-
tiplication, and some additions, shifts, and logical operations. The latter version
is often faster than the default version, but uses a smaller value of NBITS, and is
therefore less convenient for certain applications. If neither of these two versions
work, LIP can be compiled with the ‘~-DPLAIN’ or the ‘-DKARAT’ flags, which do
not assume anything on top of C. The ‘-DKARAT’ flag uses less multiplications
but more additions than the ‘-DPLAIN’ flag, and it is usually faster. Compilation
with more than 1 of these flags is not allowed. Obviously, if a particular machine
has a 32 x 32 — 64 bit integer multiplier, then it should be possible to write a
substantially faster inline assembly version of zaddmulp and zaddmulpsq.

static void zaddmulone(long a[], long b[])
Adds b[i] to a[i — 1], for 4 = 1,2,...,b[0], where the a[i] and b[i] are
non-negative integers < RADIX, and normalizes the results (except for
afb[0]}):
long 1i;
long carry = O;
for (i=1; i<=b[0]; i++)

{

34 ARJEN K. LENSTRA

carry += al[i-1] + b[i];
ali-1] carry % RADIX;
carry /= RADIX;
}
al[b[0]] += carry;
Notice that the divisions can easily be replaced by mask or shift op-
erations and that a[b[0]] might be > RADIX after zaddmulone. This is
equivalent to (but faster than) zaddmul (1,a,b) (see below). The arrays
a and b may be assumed to be non-overlapping.
static void zaddmul(long d, long al[l, long b[])
Adds d times b[i] to a[i — 1], for i = 1,2,...,b[0], where 4 and the ai]
and b[i] are non-negative integers < RADIX, and normalizes the results
(except for a[b[0]]):
long 1i;
long carry = 0;
for (i=1; i<=b[0]; i++)
{
zaddmulp(&(ali-11),b[i],d,&carry);
}
alb[0]] += carry;
static void zaddmulsq(long d, long a[], long b[]l)
Adds b[0] times b[¢] to afi —1], for ¢ = 1,2,...,d, where the a[i] and bJi]
are non-negative integers < RADIX, and normalizes the results (except
for a[d]):
long i;
long carry = 0;
for (i=1; i<=d; i++)
{
zaddmulp(&(al[i-1]),b[i],b[0],&carry);
}
ald] += carry;
The above two descriptions assume that zaddmulp is a regular C-function; the
&’s in the calls to zaddmulp should of course be removed if zaddmulp is a macro.
Notice that a[b[0]] in zaddmul and a[d] in zaddmulsq might be > RADIX after
the call. The arrays a and b may be assumed to be non-overlapping, except
that in zaddmul the array &(a[0]) might be identical to the array &(b[1]).
If LIP is compiled with the ‘~-DSINGLEMUL’ flag (cf. (3.1), (3.2)) but without
the ‘-DPLAIN’ or ‘-DKARAT’ flags, the macros for zaddmul and zaddmulsq are
replaced by ordinary (but often faster) functions. These functions do not call
the -DSINGLE MUL-version of zaddmulp, but use an explicit pipeline that exploits
the fact that on some machines floating point and integer operations can run in
parallel.
static void zmmulp(long all)
Adds d = (a/n) mod RADIX times zn[i] to a[i — 1], for ¢ = 1,2,...,
zn[0], where n is the current Montgomery modulus (cf. (2.6)), zn its

DOCUMENTATION OF LIP 35

internal LIP-representation, the a[i] and zn[i] are non-negative integers
< RADIX, and normalizes the results (including a[zn[0]], but not beyond
that):

long i;

long carry = 0;

for (i=1; i<=zn[0]; i++)

{

zaddmulp(&(al[i-1]),zn[i],d,&carry);

}

al[zn[0]] += carry;

if (a[zn[0]] >= RADIX)

a[zn[0]] -= RADIX;
alzn[0]+1] ++;
}

The multiplier d can easily be computed once the inverse zninv of zn[1] modulo
RADIX is known (cf. (1.7)). This inverse is computed in zmstart during the
initialization of the Montgomery modulus, and is kept in the global long zninv
(unless LIP is compiled with the ‘~-DPLAIN’ flag or the ‘-DKARAT’ flag, in which
case it is kept in the global longs zninv1l and zninv2 in such a way that 0 <
zninvl, zninv2 < 4/RADIX and zninv = zninv2 - v/RADIX + zninv1. If LIP
is compiled with the ‘~-DSINGLEMUL’ flag (cf. (3.1), (3.2)) but without the ‘-
DPLAIN’ and ‘-DKARAT’ flags, the macro zmmulp is replaced by an ordinary (but
often faster) function that makes an attempt to use pipelining.

If any of the above macros is replaced by assembly language versions it is
probably a good idea to do the same for the functions zdiv21, zsubmul, and
zmulmods. We refer to 1ip.c for the source code of these functions.

5. DETAILED DESCRIPTION OF SOME LIP-FUNCTIONS

(5.1) Multiplication and squaring

Depending on the size of the operands, LIP uses ordinary (‘pencil-and-paper’, cf.
[3: 4.3.1]) multiplication or squaring if at least one of the operands is sufficiently
small, and Karatsuba’s method (cf. [3: 4.3.3]) otherwise. Karatsuba’s method
is applied recursively until the ordinary method applies, or until the maximum
recursion depth KAR_DEPTH is reached, in which case LIP also resorts to the ordi-
nary method. The default value of KAR_DEPTH is 20, which is more than enough
for most applications; it can be set to any value x using the ‘~-DKAR DEPTH=x’
flag.

To decide when an operand is small, LIP uses the crossover constants
KAR_MUL_CROV for multiplication and KAR_SQU_CROV for squaring: if an operand
has less than KAR_MUL_CROV significant blocks of NBITS bits (i.e., if |a[0]]| <
KAR_MUL_CROV for a verylong operand a, cf. (1.7)), the multiplication functions
consider it to be small (and similarly with KAR_SQU_CROV for the squaring func-
tions). Both constants have default value 30, which can be changed in the usual
way using the appropriate flags. The optimal values, which depend on the ma-

36 ARJEN K. LENSTRA

chine, are best determined experimentally. If LIP is compiled following the in-
structions in (1.2), near optimal values will be selected (and can be found in the
file 1ippar.h).

The multiplication and squaring functions in LIP are not intended for ex-
tensive use on excessively large integers (say, in excess of 10° bits). For such
applications truly ‘fast multiplication’ functions are more suitable than Karat-
suba’s method.

(5.2) Arithmetic on 64-bit architectures

On alpha architectures, longs are 64 bits and doubles have a 52-bit mantissa. If
one wants to use NBITS > 50, then the normal division algorithm may take a
long time, or it may give an incorrect answer. LIP has special code to efficiently
perform division on the alpha so that one can use NBITS = 62. To use this code,
compile LIP with the ‘-DALPHA50’ or ‘-DALPHA’ flag. Both flags will work, but
either one may give more efficient code depending on the application.

The ALPHA50 code will convert the input variables a and b to a 50-bit radix
representation and then perform the division. The result is converted back to a
62-bit radix representation.

The ALPHA code performs the division with a 62-bit radix. In order to do this,
it must be able to quickly compute the quotient ¢ = 7, where a < RADIX® and
RADIX < b < RADIX2. Let R be the RADIX. The normal division code will convert
a and b to a double representation, which we will denote by @ and b. Then it
computes § = a/ b. However, because the double has less bits in the mantissa
than the long on the alpha, |¢ — §| may be as large as 2'2. To deal with this
problem, we first compute ¢ = (%) -&/i). Then we set r = a — ¢; - b and
compute ¢ = (%) -r/ b. Then the value of ¢i + ¢ is no more than 1 larger
than g, which is close enough. This is briefly explained below.

If z is a long, and y = (double) z is a double, then z(1—55) <y < z(1+5%)
due to rounding error in the conversion. So

R — 3072
R

d < ()Z

Also,

because ¢ < 252, Thus, 0 <r < (22 +1)-band 0 < § <2'? +1.If g = then
g2 < @2 < g2 + 1 which is obtained in the same way that ¢; is bounded. Hence
g<q1+g<qg+1

DOCUMENTATION OF LIP 37

(5.3) Elliptic curve method

The implementation of zecm is described in detail in [2]. Here we give a superficial
description of the method, and we explain some of the constants that can be
changed by the user. Let n be the number to be factored, i.e., the first argument
of zecm. First of all, the elliptic curve method (ecm) is a probabilistic method:
ecm cannot be guaranteed to work, but only has a certain probability of success
that depends on the size of the factors of n and the choice of the other parameters.
The probability of success is higher for smaller factors. The method consists of
a number of independent trials; in zecm the maximum number of trials is given
in nb, its fourth argument. Each trial consists of two phases. In the first phase
a random elliptic curve C modulo n and a point = on C are selected, and z*
is computed on C. The value for k depends on the first phase bound (bnd, the
fifth argument of zecm), and is roughly equal to the product of all prime powers
less than bnd. If C' is very lucky the computation of z* fails and a factor of n
is detected, in which case zecm returns 1. Otherwise, if z* has been computed
successfully, the computation moves to the second phase.

In the second phase powers of ¥ are computed and compared, as described
in [2]. If C is lucky a factor of n will be detected at the end of the second phase,
and zecm returns 1. Otherwise, a new random curve might be selected for a new
factoring attempt, until n has been factored, or until nb trials have been carried
out.

As explained in (2.9), the sequence of curves depends on s, the third argument
of zecm. Although it cannot be guaranteed it is quite likely that two different
choices for s (and reasonably small choices for nb) lead to two disjoint sequences
of curves. After each curve the first phase bound is increased by a certain per-
centage (given by percent, the sixth argument of zecm). A good choice would
for instance be 5 or 10 percent. If the initial or thus computed first phase bound
is less than ECM_MINBOUND it will be replaced by ECM_MINBOUND, and similarly if
it is larger than ECM_MAXBOUND it will be replaced by ECM_MAXBOUND. The default
settings for ECM_MINBOUND and ECM_MAXBOUND are 10 and 5000000, respectively,
which can be changed by using the appropriate flags.

There are four ecm-related constants in LIP that require more background,
for which we refer to [2]. In the first phase ECM.BATCH prime powers will be
combined and one inversion modulo n will be carried out per batch. Using the
‘~DECM_BATCH=x’ flag the batch size can be changed to any (integer) value x, cf.
the last paragraph of [2: Section 5]. On a Sparc 10 ‘~-DECM_BATCH=10’ is somewhat
faster than the default value 1, but on a DEC 5000 the default setting is better.

The other three constants are related to [2: (6.3)]. The bound used for the
second phase (Bz in [2: (6.3)]) equals ECM_.MULT = 10 times the first phase bound,
which is, for our implementation, close to optimal. The largest value for e and
t as in [2: (6.3)] are given by ECM_.MAXE and ECM_MAXT, respectively; the default
settings are ECM MAXE = 60 and ECMMAXT = 12. All these constants can be
changed in the usual way with the appropriate flags.

The choice of the number of curves, the first phase bound, and the growth
percentage per curve, all strongly depend on the application and the information

38 ARJEN K. LENSTRA

that might be known about the number n to be factored. In the table below the
optimal choices for nb and bnd are given as a function of the number of decimal
digits of the smallest factor p of n, and for a probability of success of 60%. So,
if p is known to have 15 digits, then nb = 62, bnd = 830, and percent = (are
good choices. In general the number of digits is p is not known. In that case it
is better to take a low bnd for the initial curves, and to let bnd grow with the
number of curves. For instance, nb = 100, bnd = 125, and percent = 5 gives a
good chance to find factors in the 10 to 20 digit range.

log,op nb bnd
12 50 125
13 53 250
14 o7 500
15 62 830
16 68 1500
17 75 2500
18 85 4200
19 100 6500
20 120 10000
21 145 15000
22 175 22000
23 210 32000
24 250 45000
25 300 65000
26 400 85000
27 500 115000
28 650 155000
29 750 205000
30 950 275000

APPENDIX A: ALPHABETICAL LISTING OF ALL LIP-FUNCTIONS

double getstime(void): (2.12)

double gettime(void): (2.12)

double getutime(void): (2.12)

void printtime(FILE *f): (2.12)

void starttime(void): (2.12)

long z2div(verylong a, verylong *b): (2.2)

void z2expmod(verylong e, verylong n, verylong xb): (2.5)
long z2log(verylong a): (2.1)

long z2logs(long a): (2.1)

long z2mod(verylong a): (2.2)

void z2mul(verylong a, verylong *b): (2.2)

void zabs(verylong *a): (2.1)

void zadd(verylong a, verylong b, verylong *c): (2.2)

DOCUMENTATION OF LIP 39

void zaddmod(verylong a, verylong b, verylong n, verylong *c): (2.5)
void zand(verylong a, verylong b, verylong *c): (2.4)
void zbastoz(verylong a, verylong b[], long c, verylong *d): (2.1)
long zbfread (FILE *f, verylong *a): (2.3)
long zbfwrite(FILE *f, verylong a): (2.3)
long zbit(verylong a, long b): (2.4)
void zcat(verylong a, verylong b, verylong *c): (2.4)
void zchirem(verylong a, verylong xa,
verylong b, verylong xb, verylong *c): (2.7)
long zcompare(verylong a, verylong b): (2.1)
long zcomposite(verylong *a, long t, long first): (2.9)
void zcopy(verylong a, verylong *b): (2.1)
long zdefaultm(long a): (2.5)
void zdiv(verylong a, verylong b, verylong *c, verylong *d): (2.2)
void zdivmod(verylong a, verylong b, verylong n, verylong *c): (2.5)
double zdlog(verylong a, double b): (2.1)
double zdoub(verylong a): (2.1)
long zdsa_check private key(verylong p, verylong q, verylong g,
verylong x, verylong y, long t): (2.11)
long zdsa check_public key(verylong p, verylong q, verylong g,
long t): (2.11)
long zdsa make key(long lp, long 1lq, long t, verylong p,
verylong q, verylong g, verylong x, verylong y,
void (*u) (verylong,verylongx)): (2.11)
long zdsa sign(verylong p, verylong q, verylong g, verylong m,
verylong x, verylong *k, verylong *r, verylong *s,
void(*u) (verylong,verylongx)): (2.11)
long zdsa verify(verylong p, verylong q, verylong g, verylong m,
verylong y, verylong r, verylong s): (2.11)
long zecm(verylong n, verylong *fac, long s, long nb,
long bnd, long percent, long t, long info): (2.9)
void zexpmod(verylong a, verylong e, verylong n, verylong *b): (2.5)
void zexpmod doub(verylong al, verylong el,
verylong a2, verylong e2, verylong n, verylong *b): (2.5)
void zexpmod doubl(verylong al, verylong el,
verylong a2, verylong e2, verylong n, verylong *b): (2.5)
void zexpmod doub2(verylong al, verylong el,
verylong a2, verylong e2, verylong n, verylong *b): (2.5)
void zexpmod doub3(verylong al, verylong el,
verylong a2, verylong e2, verylong n, verylong *b): (2.5)
void zexpmod m ary(
verylong a, verylong e, verylong n, verylong *b, long m): (2.5)
long zexpmods(long a, long e, long n): (2.5)
void zexteucl(verylong a, verylong *xa,
verylong b, verylong *xb, verylong *c): (2.7)

40
long

long
long
void
long
long
long
long
long
void
void
void
void
void
void
void
void
void
void
void
void
long
void
long
long
long
long
long
long

ARJEN K. LENSTRA

zfecm(verylong n, verylong *fac, long s, long *nb,

long *bnd, long percent, long t, long info, FILE *fp): (2.9)
zfread (FILE *f, verylong *a): (2.3)
zfread b(FILE *f, verylong *a, verylong b, long c): (2.3)
zfree(verylong *a): (2.13)
zfwrite(FILE *f, verylong a): (2.3)
zfwrite c(FILE *f, verylong a, long b, char *c, char *d): (2.3)
zfwrite b(FILE *f, verylong a, verylong b, long c): (2.3)
zfwriteln(FILE *f, verylong a): (2.3)
zfwriteln b(FILE *f, verylong a, verylong b, long c): (2.3)
zgcd(verylong a, verylong b, verylong *c): (2.7)
zgcdeucl(verylong a, verylong b, verylong *c): (2.7)
zgetbits(verylong a, long b, long c, verylong *d): (2.4)
zhfread (FILE *f, verylong *a): (2.3)
zhfwrite(FILE *f, verylong a): (2.3)
zhfuriteln(FILE *f, verylong a): (2.3)
zhighbits(verylong a, long b, verylong *c): (2.4)
zhread (verylong *a): (2.3)
zhsread(char *f, verylong *a): (2.3)
zhwrite(verylong a): (2.3)
zhwriteln(verylong a): (2.3)
zintoz(long d, verylong *a): (2.1)
zinv(verylong a, verylong b, verylong *c): (2.7)
zinvmod(verylong a, verylong n, verylong *b): (2.5)
zinvodds(long a, long b): (2.7)
zinvs(long a, long b): (2.7)
zispower (verylong n, verylong *f): (2.2)
ziszero (verylong a): (2.1)
zjacobi(verylong a, verylong b): (2.7)
zjacobis(long a, long b): (2.7)

double zln(verylong a): (2.1)
double zlog(verylong a, verylong b): (2.1)

void
void
long
long
void
void
void
void
void
void

void

zlowbits(verylong a, long b, verylong *c): (2.4)
zlshift(verylong a, long b, verylong *c): (2.4)
zmakeodd (verylong *a): (2.4)
zmcomposite(verylong a, long t): (2.9)
zmfree(void): (2.6)
zmod (verylong a, verylong b, verylong *d): (2.2)
zmontadd (verylong ma, verylong mb, verylong *mc): (2.6)
zmontdiv(verylong ma, verylong mb, verylong *mc): (2.6)
zmontexp (verylong ma, verylong e, verylong *mb): (2.6)
zmontexp._doub(verylong mal, verylong el,

verylong ma2, verylong e2, verylong *mb): (2.6)
zmontexp_doubl(verylong mal, verylong el,

verylong ma2, verylong e2, verylong *mb): (2.6)

void
void
void

void
void
void
void
void
void
void
void
void
void
void
long
long
void
void
long
void
void
long
long
long
long

long
long
void
void
long
void
long

long
void
long

long

DOCUMENTATION OF LIP 41

zmontexp-doub2(verylong mal, verylong el,
verylong ma2, verylong e2, verylong *mb): (2.6)
zmontexp_doub3(verylong mal, verylong el,
verylong ma2, verylong e2, verylong *mb): (2.6)
zmontexpm ary(verylong ma, verylong e, verylong *mb,
long m): (2.6)
zmontinv(verylong ma, verylong *mb): (2.6)
zmontmul (verylong ma, verylong mb, verylong *mc): (2.6)
zmontsq(verylong ma, verylong *mb): (2.6)
zmontsub(verylong ma, verylong mb, verylong *mc): (2.6)
zmstart(verylong n): (2.6)
zmtoz(verylong ma, verylong *a): (2.6)
zmul (verylong a, verylong b, verylong *c): (2.2)
zmul _plain(verylong a, verylong b, verylong *c)): (2.2)
zmulin(verylong a, verylong *b): (2.2)
zmulinmod(verylong a, verylong *b, verylong n): (2.5)
zmulmod(verylong a, verylong b, verylong n, verylong *c): (2.5)
zmulmods (long a, long b, long n): (2.5)
zmulmod26 (long a, long b, long n, double c): (2.5)
znegate(verylong *a): (2.1)
znot (verylong a, verylong *b): (2.4)
zodd (verylong a): (2.4)
zone (verylong *a): (2.1)
zor(verylong a, verylong b, verylong *c): (2.4)
zp(void): (2.10)
zpnext (void): (2.10)
zpnextb(long bnd): (2.10)
zpollardrho(verylong n, verylong *res, verylong *cof,
long t): (2.9)
zprime(verylong a, long t, long first): (2.9)
zprobprime(verylong a, long t): (2.9)
zpstart(void): (2.10)
zpstart2(void): (2.10)
zrandom(long bnd): (2.8)
zrandomb(verylong bnd, verylong *a): (2.8)
zrandomfprime(long 1q, long t, verylong fac,
verylong *p, verylong *q, void(*u) (verylong,verylongx)): (2.10)
zrandomgprime (long 1q, long t, long small, verylong *p,
verylong *q, verylong *g, void(*u) (verylong,verylong*)): (2.10)
zrandoml (long length, verylong *a,
void(*u) (verylong,verylong*)): (2.8)
zrandomprime(long length, long t, verylong *p,
void(*u) (verylong,verylongx)): (2.10)
zrandomgprime (long 1lp, long lq, long t, verylong *p,

verylong *q, verylong *quot, void(*u) (verylong,verylong*)): (2.10)

42 ARJEN K. LENSTRA

long zread(verylong *a): (2.3)

void zreverse(verylong a, verylong *b): (2.4)

long zreverses(long a): (2.4)

long zroot(verylong a, long b, verylong *c): (2.2)

void zrshift(verylong a, long b, verylong *c): (2.4)

void zrstart(verylong s): (2.8)

void zrstarts(long s) : (2.8)

void zsadd(verylong a, long b, verylong *c): (2.2)

void zsbastoz(long a, long b[]l, long c, verylong *d): (2.1)
long zscompare(verylong a, long b): (2.1)

long zsdiv(verylong a, long b, verylong *c): (2.2)

long zsetbit(verylong *a, long b): (2.4)

void zsetlength(verylong *a, long length, char xs): (2.13)
void zsexpmod(verylong a, long e, verylong n, verylong *b): (2.5)
long zshighbits(verylong a, long b): (2.4)

long zsign(verylong a): (2.1)

double zslog(verylong a, long b): (2.1)

long zslowbits(verylong a, long b): (2.4)

long zsmod(verylong a, long b): (2.2)

void zsmontmul (verylong ma, long d, verylong *mc): (2.6)
void zsmul(verylong a, long b, verylong *c): (2.2)

void zsmulmod(verylong a, long b, verylong n, verylong *c): (2.5)
void zsq(verylong a, verylong *b): (2.2)

void zsq-plain(verylong a, verylong *b): (2.2)

void zsqin(verylong *a): (2.2)

void zsqinmod(verylong *a, verylong n): (2.5)

void zsqmod(verylong a, verylong n, verylong *c): (2.5)

long zsqrt(verylong a, verylong *b, verylong *c): (2.2)

void zsqrtmod(verylong a, verylong p, verylong xs): (2.5)
long zsqrts(long a)): (2.2)

long zsquf (verylong n, verylong *fl, verylong *f2): (2.9)
long zsread(char *f, verylong *a): (2.3)

void zstart(void): (2.1)

long zstobas(verylong a, long b, long c[], long *d): (2.1)
long zstosymbas(verylong a, long b, long c[], long *d): (2.1)
long zstrtoz(char *a, verylong *c): (2.1)

long zstrtozbas(char *a, long b, verylong *c): (2.1)

void zsub(verylong a, verylong b, verylong *c): (2.2)

void zsubmod(verylong a, verylong b, verylong n, verylong *c): (2.5)
void zsubpos(verylong a, verylong b, verylong *c): (2.2)
void zswap(verylong *a, verylong *b): (2.1)

long zswitchbit(verylong *a, long b): (2.4)

long zswrite(char *f, verylong a): (2.3)

long ztobas(verylong a, verylong b, verylong c[], long *d): (2.1)
long ztoint(verylong a): (2.1)

DOCUMENTATION OF LIP 43

void ztom(verylong a, verylong *ma): (2.6)
long ztosymbas(verylong a, verylong b, verylong c[], long *d): (2.1)
unsigned long ztouint(verylong a): (2.1)
long ztoul(verylong a, unsigned long b[], long *c): (2.1)
long ztridiv(verylong a, verylong *cofac, long low,
long high): (2.9)
void zuintoz(unsigned long d, verylong *a): (2.1)
void zultoz(unsigned long a[l, long b, verylong *c): (2.1)
long zweight(verylong a): (2.4)
long zweights(long a): (2.4)
long zwrite(verylong a): (2.3)
long zwriteln(verylong a): (2.3)
void zxor(verylong a, verylong b, verylong *c): (2.4)
void zzero(verylong *a): (2.1)

APPENDIX B: ALPHABETICAL LISTING OF ALL COMPILATION FLAGS

-DALPHA
LIP will use 62 bit RADIX. See (5.2)
-DALPHA50
LIP will use 62-bit RADIX with 50-bit division. See (5.2)
-DCHARL=x
LIP will assume that there are x bits per byte. Default value 8. See (3.1).
-DDOUBLES_LOW_HIGH
LIP will assume that the order of the words in doubles is ‘low-high’.
Default assumption is ‘high-low’. See (3.1).
-DECM_BATCH=x
Default value 1. See (5.3).
-DECM_MAXE=x
Default value 60. See (5.3).
-DECM_MAXT=x
Default value 12. See (5.3).
-DECM_MULT=x
Default value 10. See (5.3).
-DFREE
Local verylong variables will not be declared static. Therefore, space
for verylong variables will be allocated (and freed) for each call to the
function where they appear. See (1.8).
-DHEX_BLOCK=x
Hexadecimal output will be printed in blocks of at most x characters.
Default value 8. See (3.3) and (2.3).
-DHEX_BLOCKS_PER_LINE=x
Hexadecimal output will be given in at most x blocks per line. Default
value 7. See (3.3) and (2.3).
-DIN_LINE=x

44 ARJEN K. LENSTRA

The maximum number of characters per line upon input of a verylong
variable will be set to x. Default value 2048. See (3.3) and (2.3).
-DKARAT
LIP will use macros that do not assume anything on top of C, and that
use three long * long multiplies to get the product of two NBITS-bits
integers. See (4.1).
-DKAR_DEPTH=x
The maximum recursion depth of Karatsuba multiplication and squaring
will be set to x. Default value 20. See (5.1).
-DKAR_MUL_CROV=x
The crossover point between regular multiplication and Karatsuba mul-
tiplication will be set at x blocks of NBITS nits. Default value 30. See
(5.1).
-DKAR_SQU_CROV=x
The crossover point between regular squaring and Karatsuba squaring
will be set at x blocks of NBITS nits. Default value 30. See (5.1).
-DHEX_LOWER_CASE
Hexadecimal digits 10 though 15 will be printed as ‘a’ through ‘f’. See
(2.3): zhfwrite, zhurite.
-DNBITS=x
LIP will split verylongs in pieces of x bits each. Default value 30, unless
(2.1) is used to compile LIP and the timer-program decides to used the
‘-DSINGLE MUL’ flag, in which case the default vale will be 26. See (3.1)
and (1.7).
-DNO_ALLOCATE
LIP will assume that the user calls zsetlength for the initial allocation
of all verylong variables. See (2.13).
-DNO_ECM
The LIP-function zecm as described in (2.9) will not be compiled. See
(2.9).
-DNO_HALT
Forces LIP to continue after an error has been detected. See (1.6).
-DOUT_LINE=x
The approximate maximum number of characters per line upon output
of a verylong variable will be set to x. Default value 68. See (2.3):
zfwrite(1ln), zswrite, zurite(1n).
-DPLAIN
LIP will use macros that do not assume anything on top of C, and that
use four long * long multiplies to get the product of two NBITS-bits
integers. See (4.1).
-DPRIM_BND=x
The upper bound on the primes generated by the small prime gener-
ator will be set to approximately (2 - PRIMBND + 1)2. Default value
oNBITS/2-1 Gee (3.3) and (2.10): zpnext and zpnextb.
-DPRT_REALLOC

DOCUMENTATION OF LIP 45

LIP will print messages on standard error about (re)allocation of
verylong variables. See (2.13).
-DSINGLE_MUL
LIP will use NBITS = 26 and a different set of macros. See (4.1).
-DSIZE=x
The minimal allocation length for verylongs will be set to x. Default
value 20. See (3.3).
-DSIZEOFLONG=x
LIP will assume that the values of sizeof (long) is x. Default value 4.
See (3.1).
-DSTART
LIP will assume that the user calls zstart once, before using any other
LIP-function. See (2.1): zstart.

REFERENCES

1. D. Atkins, M. Graff, A.K. Lenstra, P.C. Leyland, THE MAGIC WORDS ARE
SQUEAMISH OSSIFRAGE, Proceedings Asiacrypt’94, to appear.

2. W. Bosma, A.K. Lenstra, An implementation of the elliptic curve integer factorization
method, Proceedings Computational Algebra and Number Theory Conference, Sydney
1992, to appear.

3. D.E. Knuth, The art of computer programming, volume 2, Seminumerical algorithms,
second edition, Addison-Wesley, Reading, Massachusetts, 1981.

4. A.K. Lenstra, H. W. Lenstra, Jr., M.S. Manasse, J. M. Pollard, The factorization of the
ninth Fermat number, Math. Comp. 61 (1993), 319-349.

5. A.K. Lenstra, M.S. Manasse, Factoring by electronic mail, Advances in cryptology, Eu-
rocrypt ’89, Lecture Notes in Comput. Sci. 434 (1990), 355-371.

6. P.L. Montgomery,, Modular multiplication without trial division, Math. Comp. 44 (1985),
519-521.

7. NIST, A proposed federal information processing standard for digital signature standard
(DSS), Federal Register 56 (1991), 42980-42982.

8. S.-M. Yen, C.-S. Laih, A.K. Lenstra, Multi-exponentiation, IEE Proc.-Comput. Digit.
Tech. 14 (1994), 325-326.

RooM MRE-2Q334, BELLCORE, 445 SOUTH STREET, MORRISTOWN, NJ 07960, U.S. A.
E-mail address: lenstra@bellcore.com

