
Two Secure Implementations of Sockets
and Their Tradeoffs

Ahren Studer
Computer Science Department

University of Rochester
astuder@cs.rochester.edu

Abstract

As electronic communication grows in popularity and re-
places paper as an accepted official medium, the need for
secure electronic communication increases. Using typical
socket classes, data is sent over the network in a format
so that anyone who reads the data will be able to inter-
pret it correctly. Encryption is only part of the solution
to this problem. The other part is getting the key needed
for encryption or decryption from the client to the server
or vice versa. Public key encryption does offer a solu-
tion to this problem, but the computationally intensive na-
ture does not provide acceptable throughput. In order to
achieve acceptable throughput and still be secure certain
protocols can be used to manage a session key between
two computers without compromising security. This pa-
per covers the implementation of two such protocols, the
tradeoffs made for ease of programming and use, and the
performance of each protocol on a real network. The fi-
nal results find that the computation needed for public key
encryption is approximately one-tenth of a second slower
than trusted third party on current technology. However, a
load under 100 clients could cause the trusted arbitrator’s
queue for service to grow so large that public key encryp-
tion could perform faster.

1 Introduction

With the expansion of computers and electronic com-
munication into almost every facet of human interac-
tion, there is often a need to limit access to informa-
tion. When data is stored on an object and physically
sent to the recipient, it is simple to prevent access
by limiting physical access. However, when data is
transmitted over a wire, or across several networks,
multiple parties may be able to view that same in-

formation by simply noting the signals sent. The so-
lution to this problem is to encrypt the data is some
manner, turning it into meaningless bits. However,
encryption itself is not such a simple answer since
the two parties must obtain keys in a manner so that
eavesdroppers will not also have the keys. The work
of this paper is to generate a set of classes for use in
Java to get the key used for communication to both
end users, without anyone else accessing it, and once
the key is established making sure the cipher used
can not be easily broken.

The remainder of the paper is broken into 5 sec-
tions: some background about ciphers and key man-
agement, the different protocols this work uses to en-
sure only the end users have access to the data, the
tradeoffs made for ease of use rather than perfect se-
curity, a look at the performance of the two methods,
and a final section with some concluding remarks.

2 Background

Several different ciphers have been used over the
centuries to encrypt data, ranging from the simple
shift cipher to state of the art symmetric ciphers like
the current Advanced Encryption Standard (AES),
Rijndael [1] or asymmetric ciphers such as ElGa-
mal [3]. With symmetric key ciphers, knowledge of
the encryption key means the decryption key is easily
acquired. With asymmetric ciphers, the same is not
true, but the computations required relatively takes
much more time than any symmetric ciphers.

Some ciphers can easily be cracked using pattern
matching, statistics or other techniques, providing
the key or the meaning of the ciphertext within a
short amount of time, usually a few hours. How-

1



ever, most asymmetric ciphers, when properly imple-
mented, and some symmetric ciphers like AES and
it’s predecessor DES have only been decrypted us-
ing brute force attacks. During these attacks every
possible key is tried until a logical answer is gen-
erated from the ciphertext. Obviously this takes a
large amount of time. However, with a key space of
58 bits, DES is no longer considered secure due to
the increasing speed of computers. For this reason
Rijndael was developed with a variable key size of
128, 192, or 256 bits, allowing for much greater se-
curity, even from brute force attacks. With AES’s
increased security, relatively fast processing, in com-
parison to asymmetric ciphers, and acceptance as the
cipher system of choice for vital documents by the
NIST, it seems to be the logical choice for the basis
of secure electronic communication. The problem of
getting the key for AES to both users without any
unwanted parties accessing it is the focus of the pro-
tocols discussed in the next section.

3 Key Exchange Protocols

In order for symmetric encryption systems to be use-
ful the key must be sent to both parties in some man-
ner that prevents any unwanted party from receiv-
ing the data. To achieve this goal the following two
methods are used. The first relies on the security of
the RSA cipher [4], and is open to a few attacks. The
second depends on a trusted third party similar to a
slimmed down Kerberos [5]. This is not as vulnera-
ble to attacks, but the centralization of crucial infor-
mation has the typical drawbacks of limited scalabil-
ity and a single point of failure.

3.1 RSA Key Exchange

The key exchange problem was one of the original
reasons for the push for public key cryptography.
With separate keys for encryption and decryption it
is very simple to allow for anyone to encrypt a mes-
sage, here the key, which only the owner of the pri-
vate key can decrypt. With RSA, there are only a
few steps to get the session key from the client to the
server. Once a normal connection is made between
the two computers, the server sends its public key to
the client. Now the client encrypts the session key
using the server’s public key, and sends the cipher-
text back. At this point the client has a local copy

of the session key, and the only version of the ses-
sion key that is transmitted can only be decrypted by
the server’s pubic key. Once the server gets the en-
crypted version of the session key it uses its private
key to decrypt the message, and both machines have
a copy of the session key.

3.2 Trusted Key Distribution Center (KDC)

&%
'$

Client
e

e
e

ee
1

e
e

e
ee 2

&%
'$

&%
'$

KDC Server

%
%

%
%%

%
%

%
%%4

6

KDC protocol Messages

Using a trusted Key Distribution Center (KDC)
and a few messages a session key can easily be
transferred between the client and the server. The
previous figure shows the steps needed for key man-
agement in this protocol. It is also crucial to note
that due to object oriented programming and that
the KDCSocket and KDCServerSocket classes are
children of the Socket class the first real connection
is made between the client and the server. With this
traditional tcp connection established the following
steps are performed to get a secure session key.
(1) The client sends the KDC its IP address and the
IP address of the server it wishes to connect to.
(2) The KDC responds with a ticket
{Ksess, Saddr, Caddr , T imeStamp,LifeT ime, {T}Ks}Kc.
In this ticket K = key, S = server, C = client, T is
a copy of ticket, and anything within brackets is
encrypted using the key to the right of the bracket
(i.e. the T ticket is encrypted with the server’s key
and the clients key).
(3)Now the client decrypts the ticket acquiring the
session key along with the other info.
(4) The client forwards {T}Ks to the server.
(5)The server decrypts the ticket.
(6) If the client is truly who the ticket says it is
the server responds with {T imestamp + 1}Ksess,
signifying it really is the server and it has received

2



the session key.

4 Tradeoffs

In order for these protocols to appear transparent to
the final user, and for ease of programming when us-
ing the developed classes, several issues had to be
addressed. For each of the implementations different
issues had to be addressed.

One common issue that needed addressed for both
of the classes was private key management. Since
both classes should appear to the final user as though
no password is needed, the password must be stored
somewhere locally. For security to be maintained it
would be ideal that users could not access these files,
and then simply decrypt any future messages being
sent to that machine. However, the file that stores the
passwords must be readable by the program execut-
ing on part of the users. For this reason the classes
should be implemented as a system call so the users
do not have to know machine’s passwords to use the
KDC or the private key for the RSA implementa-
tion, and malicious users will not be able to access
the password files. Currently with the classes imple-
mented in Java this issue is yet to be resolved.

4.1 RSA tradeoffs

The current weakness of this key exchange protocol
is its vulnerability to a man in the middle attack. If
the class attempts to make a connection to a server
and another hosts intercepts the request it can re-
spond with its own public key, establish a connec-
tion to the client, and generate its own connection to
the original desired server and simply forward mes-
sages between the two while being able to view all
of the data. The use of a certificate authority (CA)
could be used to prevent this. With a CA in place,
the server would send back its public key encrypted
by the CA’s private key. In this scenario, the client
would then decrypt the message using the CA’s pub-
lic key and acquire the server’s public key. However,
with the class implemented at the user level it would
be simple for anyone to alter the program so that a
different CA could be used, replacing the true CA’s
public key with a key defined by the attacker.

To face this problem this work decided to limit the
transparency of the underlying class. Whenever a
connection is made to the server, the client checks

a cache of previously acquired ip address/public key
pairs. If the server responds with a different public
key than the one stored in the cache, the user is no-
tified and given the choice to proceed or not along
with a display of the new public key. The same op-
tions and information are presented to the user when
a connection is made to a server whose ip address is
not in the cache.

4.2 KDC tradeoffs

The major weakness, and strength, of this key ex-
change protocol is the centralization of vital infor-
mation. The KDC must have knowledge of every
ip address/private key pair of every system that may
use this KDC. Despite the advantage of guaranteed
authentication of clients and users, this method also
results in poor scalability, overhead of extra connec-
tions to the KDC, and a possible focus of attack.

With all key negotiations being routed through the
KDC as the number of users increases the latency
of generating a connection will also increase. This
problem could be addressed by distributing the pri-
vate key list to multiple machines and have copies
of one KDC running on several different machines.
This solution does raise other problems though. An
obvious issue with many copies of the ip addr/private
key list is race conditions when a key is changed at
one location and other KDC’s are relying on stale
values. Another problem with distributing the multi-
ple copies of the KDC is how to control what copy a
program connects to. A central server that redirects
request may actually increase time versus simply ful-
filling requests due to the added I/O of another con-
nection. Letting the programmer decide the address
of the KDC to be used could be an alternative, but
leads to greater trouble. Instead the simple solution
of a single KDC was used.

The added overhead of connecting with the KDC
before being able to securely connect with the end
server added a surprising amount of overhead when
compared to the time required to connect and receive
authentication from the server. This vast difference is
partially the result of having to wait for a new thread
to handle the request. However, the majority of the
time is a result of file access that is delayed until the
KDC is contacted. In order to save time this file
access is done as soon as a connection is made to

3



the server, allowing for it to occur in parallel with
the client’s communication with the KDC. The ex-
act values for the time it takes to get a ticket from the
KDC and the authentication response from the server
is discussed in section5.

The centralization of all the private keys to one
machine is a risk. If the file at the KDC is ever ac-
cessed the attacker has the private key for every ma-
chine that could generate connections through that
KDC. Here the weakness of the KDC being a user
level process is most evident. With the KDC running
as a user program, its private key file is also acces-
sible by the user. To address this a system admin-
istrator could start the program, allowing only privi-
leged key management programs such as add user or
change password to access the password file. Again
by treating passwords on a per ip address basis, users
are freed from certain responsibilities, but security
can be easily compromised if the proper precautions
are not taken.

5 Performance Comparison

To analyze the performance of the two key exchange
protocols measurements were made to find on av-
erage how long it took to make a connection to the
end server and the different operations involved with
this action. Measurements were taken about the de-
lay that results from AES encryption and decrpytion.
However, according to the measurment techniques
available in Java, the time required to operate on a
message was 0ms. Previous work by Caltagirone and
Anantha found that AES with 128-bit block size can
achieve throughput ranging from 230 MBps to 427
MBps depending level of parrallelization and imple-
mentation method, hardware vs. software [2].

5.1 RSA Protocol Performance

Attribute Client Machine Server Machine
Processor Pent. III Pent. IV w/ HT
Proc. Speed 930 MHz 3.2 GHz
Local Net 100 Mbps 100 Mbps

Table 1: Machine Specs for RSA Evaluation

To evaluate the performance of the RSA key ex-
change protocol two hundred connections were made
from one client to a server on another machine across

campus and the time it took to connect was measured
using Java’s System.currentTimeMillis().
During testing no other programs were running on ei-
ther machine that would consume processing power
or network bandwidth. Table 1 shows some values
for the machines used during testing. The timing re-
sults are shown in table 2.

5.2 KDC Protocol Performance

Figure 1: Connection times for the KDC protocol

The data in figure 1 was collected using the same
type of machines used for the RSA performance data
collection. However, every client/server pair used the
930 MHz computer, and the KDC was the 3.2 GHz
hyper-threaded machine. Table 2 gives a breakdown
of the time needed to make connections when only
one connection is being made to the KDC.

Operation Average Time Taken1

Typical TCP Connection 1ms
RSA Connection 303 ms
RSA Encryption 820 µs
RSA Decryption 91.8 ms
Response from 199.2 ms

KDC
Authentication from 2.1 ms

Server

Table 2: Timing Results for Varying Operations of
Importance

1Java’s timing methods only allow for measurement of time in

4



6 Performance Analysis

From the data collected, not much can be said about
the two protocols that is not already known. The
RSA protocol took approximately one-tenth of a sec-
ond longer to establish a connection than the KDC
protocol. Also with the limited number of machines
used for evaluation of the KDC protocol it would be
difficult to extrapolate the point where the computa-
tion required by RSA would be faster than the net-
work communication.

As expected the RSA protocol did not perform as
well as the KDC protocol due to its computational
intensity. However, as shown in table 2 the amount
of computation needed is asymmetric, leaving the
majority of the work on the decryption end. This
is the result of the mathematics behind RSA. Typi-
cally a small exponent is used for the public key, in
this case three, requiring a small number of multipli-
cations. However, for decryption the exponent, d, is
the multiplicative inverse of the encryption exponent
mod ϕ(N) [4], requiring roughly ln(d) multiplica-
tions, which is a large number for an N of 1024 bits.
It is also important to note that the time accounted
for in the table only adds up to 93 ms. The remainder
of this time is consumed by network travel time and
more importantly file I/O to retrieve the keys at the
server side, and check the cache on the client side.

The data in table 2 and figure 1 show that even
with a minor load the KDC protocol achieves much
better performance than the RSA protocol. Examin-
ing the values one thing that seems unusual is the
long time it takes for the KDC to return a ticket.
This is a result of the file I/O (note 200 ms the same
amount of time for file I/O for the RSA protocol) at
the KDC to find the client’s and the server’s private
keys. Once the ticket is returned the remainder of the
protocol is relatively fast and is simply a result of net-
work communication, decryption, computation, en-
cryption and sending the authentication information.

The limited amount of data available determines
a limitation for predicting when the RSA protocol is
faster than the KDC protocol. However, a trend line
can be placed on the data in figure 1 to generate the
equation ConnT ime = 200.49e0.0049n . Setting this

millisecond increments. For this reason the timing of a tcp con-
nection and RSA encryption are questionable, and the operation
may consume more or less than the time quoted in the table.

equation to the average time to establish a connec-
tion using the RSA protocol one finds that it would
require more than 84 clients requesting a service at
the same moment for the slowest one to achieve per-
formance worse than the RSA protocol.

7 Concluding Remarks

This work has developed two nearly transparent Java
classes that offer secure communication when prop-
erly implemented, and analyzed the latency of mak-
ing a connection with these two classes on a real net-
work.

Both of these classes require almost no user in-
teraction for normal operation, and only minimal
work for the programmer to change any TCP socket
program into a TCP socket program with AES en-
cryption and secure key exchange. The RSA key
exchange method allows for two programs to com-
municate without the involvement of a third trusted
party. However, it is vulnerable to a man in the mid-
dle attack if the user does not know in advance what
the server’s public key is. The KDC key exchange
method is not vulnerable to a man in the middle at-
tack, but suffers from several other weaknesses. The
major one is the requirement that both machines in-
volved must register their IP address/private key pair
with the KDC. There is also a single point of fail-
ure, meaning if the KDC loses power or is corrupted
secure communication is no longer possible.

As for the performance of the two classes the re-
sults were as expected. Using a large portion of
the machines available up to twelve computers were
used at a time to collect timing results. Even though
the load on the KDC was increasing, on average the
response time did not seem strongly related to the
load. However, the important fact that the KDC pro-
tocol is faster than the RSA protocol is evident by
the difference of 100 ms between the two protocols’
latencies. With the limited data, a trend line was ex-
trapolated that predicts the KDC will outperform the
RSA protocol as long as less than 84 clients are re-
questing tickets at a time.

Despite its inherent need for more work on the
administrative level the KDC protocol does benefit
from faster connection time, complete transparency
to the end user, and lack of vulnerabilities. However,
in a system where hundreds of requests may be made

5



simultaneously, the use of the RSA protocol may per-
form better due to the lack of a centralized service.

This work has shown the advantages and disad-
vantages of two protocols that, when properly imple-
mented, can provide secure communication. It also
demonstrates that in order for security the underly-
ing method often is not completely transparent to the
user, requiring more time to establish a connection
or even verification of crucial values, like the public
key in the RSA scheme when no information is in the
cache.

References

[1] Announcing the advanced encryption standard (aes).
Federal Information Processing Standards, Publica-
tion 197, 2001.

[2] C. Caltagirone and K. Anantha. High throughput, par-
allelized 128-bit aes encryption in a resource-limited
fpga. In Proceedings of the fifteenth annual ACM
symposium on Parallel algorithms and architectures,
pages 240–241. ACM Press, 2003.

[3] T. ElGamal. A public key cryptosystem and signature
scheme based on discrete logarithms. IEEE Transac-
tions on Information Theory, IT-31:469–473, 1985.

[4] R. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosys-
tems. Comm. ACM, 21:120–126, 1978.

[5] J. Steiner, C. Neuman, and J. Schiller. Kerberos:
An authentication server for open network systems.
In the USENIX Winter Conference, pages 191–202,
1988.

6


