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We propose and demonstrate a
new paradigm for active vision
research that draws upon recent
advances in the fields of artifi-
cial life and computer graphics.
A software alternative to the pre-
vailing hardware vision mindset,
animat vision prescribes artificial
animals, or animats, situated in
physics-based virtual worlds as au-
tonomous virtual robots with active
perception systems. To be operative
in its world, an animat must au-
tonomously control its eyes and
muscle-actuated body. Computer
vision algorithms continuously an-
alyze the retinal image streams
acquired by the animat’s eyes, en-
abling it to locomote purposefully
through its world. We describe an
initial animat vision implementa-
tion within lifelike artificial fishes
inhabiting a physics-based, vir-
tual marine world. Emulating the
appearance, motion, and behav-
ior of real fishes in their natural
habitats, these animats are capa-
ble of spatially nonuniform retinal
imaging, foveation, retinal image
stabilization, color object recog-
nition, and perceptually-guided
navigation. These capabilities al-
low them to pursue moving targets
such as other artificial fishes.

Keywords: active vision, artificial
life, artificial animals, autono-
mous agents, physics-based mod-
eling, biomimetic vision systems,
foveation, visual stabilization,
color object detection, vision-
guided navigation
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Introduction
Advances in the emerging field of artificial life (ALife) make possible
a fresh approach to computational vision.1 A major theme in ALife re-
search is the synthesis of artificial animals, or “animats” [1]. Animats, a
term coined by Wilson [2], are computational models of real animals sit-
uated in their natural habitats. A recent breakthrough in animat research
has produced situated virtual agents that realistically emulate animals
of nontrivial evolutionary complexity [3]. This advance prompts us to
propose animat vision, a paradigm which prescribes the use of artificial
animals as autonomous virtual robots for active vision research.2

Our zoomimetic approach to vision is made possible by the confluence
of three recent trends:

1. Advanced physics-based artificial life modeling of natural animals.
2. Photorealistic computer graphics rendering and its efficient imple-

mentation in modern 3D graphics workstations.
3. Active computer vision algorithms.

The basic idea in a nutshell is to implement, entirely in software, realistic
artificial animals and to give them the ability to locomote, perceive, and
in some sense understand the realistic virtual worlds in which they are
situated so that they may achieve individual and social functionality
within these worlds. To this end, each animat is an autonomous agent
possessing a muscle-actuated body capable of locomotion, and a mind
with perception, motor, and behavior centers. The animat is endowed
with functional eyes that can image the dynamic 3D virtual world onto
2D virtual retinas. The perceptual center of the animat’s brain exploits
active vision algorithms to continually process the incoming stream of
dynamic retinal images in order to make sense of what it sees and, hence,
to purposefully navigate its world.

The uninitiated reader may doubt the possibility of implementing ar-
tificial animals rich enough to support serious active vision research.
Fortunately, this hurdle has already been cleared. Recent animat theory
encompasses the physics of the animal and its world, its ability to lo-
comote using internal muscles, its adaptive, sensorimotor behavior, and
its ability to learn. In particular, an animat with these essential capabil-
ities has been implemented that emulates animals as complex as teleost
fishes in their marine habitats [3, 6].

Imagine a virtual marine world inhabited by a variety of realistic
fishes (Fig. 1). In the presence of underwater currents, the fishes employ

1. For an engaging introduction to the ALife field, see, e.g., S. Levy, Artificial Life (Pan-
theon, 1992).

2. The animat vision paradigm was introduced in an earlier version of this paper [4] and
it is further developed in [5].
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Figure 1. Artificial fishes in their
physics-based virtual world as it
appears to an underwater observer.
The 3 reddish fish (center) are
engaged in mating behavior, the
greenish fish (upper right) is a
predator hunting for small prey, the
remaining 3 fishes are feeding on
plankton (white dots). Seaweeds
grow from the ocean bed and sway
in the current.

their muscles and fins to swim gracefully around immobile obstacles
and among moving aquatic plants and other fishes. They autonomously
explore their dynamic world in search of food. Large, hungry predator
fishes stalk smaller prey fishes in the deceptively peaceful habitat. The
sight of predators compels prey fishes to take evasive action. When a
dangerous predator appears, similar species of prey form schools to im-
prove their chances of survival. As the predator nears a school, the fishes
scatter in terror. A chase ensues in which the predator selects victims and
consumes them until satiated. Some species of fishes seem untroubled by
predators. They find comfortable niches and feed on floating plankton
when they get hungry. Driven by healthy libidos, they perform elaborate
courtship rituals to attract mates.

The challenge undertaken in this paper is to synthesize an active
vision system for the fish animat which is based solely on retinal image
analysis. The vision system should be extensible so that it will eventually
support the broad repertoire of individual and group behaviors described
above. It is important to realize that we need not restrict ourselves
to modeling the perceptual mechanisms of natural fishes. In fact, the
animat vision paradigm applies to animats that model any animal—even
a human being—to the level of fidelity that the artificial fish models a
real fish. Indeed, the animat vision system that we develop in this paper
makes no attempt to model fish perception [7]. Instead, we have found
it an interesting and challenging problem to endow the piscine animat
with a biomimetic vision system that enables it to be a functional, active
observer of its world.

The basic functionality of the animat vision system starts with binoc-
ular perspective projection of the 3D world onto the animat’s 2D retinas.
Retinal imaging is accomplished by photorealistic, color graphics render-
ings of the world from the animat’s viewpoint. This projection respects
occlusion relationships among objects. It forms spatially variant visual
fields, with high resolution foveas and low resolution peripheries. Based
on an analysis of the incoming color retinal image stream, the visual cen-
ter of the animat’s brain supplies saccade control signals to the eyes in
order to stabilize the visual fields during locomotion through compen-
satory eye movements (an optokinetic reflex), to attend to interesting
colored targets, and to keep these dynamic targets fixated. The artificial
fish is thus able to approach and track other artificial fishes under visual
guidance. Eventually, its arsenal of active vision algorithms will enable
it to forage, evade predators, find mates, etc.
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The remainder of the paper is organized as follows: the Motivation
and Background section briefly motivates our approach vis-a-vis conven-
tional active vision based on robot hardware, and discusses the back-
ground of our work. The Review of the Fish Animat section reviews the
relevant details of the artificial fish model. The Animat Vision System
section describes the active vision system that we have implemented
in the animat, including the retinal imaging, foveation, color object
detection, and retinal field stabilization algorithms. The Vision-Guided
Navigation section presents results in vision-guided navigation and the
pursuit of moving nonrigid targets—other artificial fish. The final section
presents conclusions and discusses future research.

Motivation and Background

Problems with the Hardware Vision Mindset
Active vision research in most labs today is, in reality, the technologically-
driven pursuit of “hardware vision.” To be sure, applications-minded re-
searchers have legitimate reasons for building robot vision systems, but
the necessary hardware paraphernalia—CCD cameras, pan-tilt mounts,
ocular heads, frame-rate image processors, mobile platforms, manip-
ulators, controllers, interfaces, etc.—can be expensive to fabricate or
acquire commercially, and a burden to maintain in working order.

The animat vision methodology that we advocate in this paper can
potentially liberate a significant segment of the computer vision research
community from the tyranny of hardware. It addresses the needs of sci-
entists who are motivated to understand and ultimately reverse engineer
the powerful vision systems found in higher animals. These researchers
realize that readily available hardware systems are woefully inadequate
models of natural animals—clearly, animals do not have CCD chip eyes,
electric motor muscles, and wheel legs. Moreover, their mobile robots
typically lack the compute power necessary to achieve real-time re-
sponse within a fully dynamic world while running active vision algo-
rithms of much sophistication. Yet in their ambition to understand the
complex sensorimotor functions of real animals, active vision researchers
have been forced to struggle with whatever hardware is available to
them, for lack of a better research strategy; that is, until now.

Further Advantages of the Animat
Vision Approach
Animat vision offers an alternative research strategy for developing
biologically-inspired active vision systems. It circumvents the afore-
mentioned problems of hardware vision. The animat vision concept
is realized with realistic artificial animals and active vision algorithms
implemented entirely in software on readily available 3D graphics work-
stations. Animat vision offers several additional advantages:

One can arbitrarily slow down the “cosmic clock” of the virtual
world relative to the cycle time of the CPU on which it is being simu-
lated. This increases the amount of computation that each agent can
consume between clock ticks without retarding the agent’s responses
relative to the temporal evolution of its virtual world. This, in turn,
permits the development and evaluation of sophisticated new active
vision algorithms that are not presently implementable in real-time
hardware.
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The quantitative photometric, geometric, and dynamic information
that is needed to render the virtual world is available explicitly. Gen-
erally, the animats are privy to no environmental ground truth data,
but must glean visual information “the hard way”—from retinal im-
age streams. However, the readily available ground truth can be
extremely useful in assaying the effective accuracy of the vision al-
gorithms or modules under development.3

Related Work
It should by now be clear to the reader that our goal in this paper is
not to model the vision systems of real fishes, but instead to employ
the artificial fish as a virtual robot for designing general-purpose active
vision systems.4

J. J. Gibson [9], in a sense the grandfather of active vision, stressed in
precomputational terms the importance of modeling the active observer
situated in the dynamic environment. Versions of this paradigm suitable
for mainstream computer vision were introduced in the seminal papers
of Bajcsy [10] and Ballard [11] under the names of active perception
and animate vision, respectively.5 The active vision approach was further
developed by Aloimonos et al. [12] and many others (see, e.g., [13, 14,
15]) into the prevalent paradigm that it is today.

The artificial animals that we advocate in this paper are active “vehi-
cles” in the sense of Braitenberg [16]. We believe that they are as appro-
priate for grounding active vision systems as are the hardware “mobots”
that have come out of the situated robotics work of Brooks and his group
[17] which have been an inspiration to numerous other robotics groups
(see, e.g., the compilation [18]). Undeniably, however, efforts to equip
real-time mobile robots with general-purpose active vision systems have
been hampered by the hardware and the relatively modest abilities of
on-board processors.

Artificial fishes are animats of unprecedented sophistication. They are
autonomous virtual robots situated in a 3D continuous virtual world
governed by physical dynamics. This makes them suitable for grounding
active vision systems. By contrast, Wilson’s original animat [2], which
was proposed for exploring the acquisition of simple behavior rules, is
a point marker on a non-physical 2D grid world that can move between
squares containing food or obstacles. Other simple animats include the
2D cockroaches of Beer [19]. A more sophisticated animat is the kine-
matic dog described by Blumberg and Galyean [20]. Prior animats make
use of “perceptual oracles”—schemes for directly interrogating the vir-
tual world models to extract sensory information about the environment
as needed by the animat. One can also find several instances of “oracle

3. It is often convenient to represent ground truth data iconically in the form of retinocen-
tric intrinsic images, including intensity, range, illumination, reflectance, and object iden-
tity images, and these can be computed easily and quickly by the rendering pipelines of
3D graphics workstations.

4. However, it is interesting that from the point of view of vision science, fishes, which
account for some 22,000 species inhabiting almost every conceivable photic environment
from the clear waters of tropical lagoons to the darkest deep seas, provide ideal models
for the vertebrate visual system. Fish visual systems have been open to a wider variety
of investigations, from biochemistry to ecology, than any other visual system, and many
characteristics of vertebrate vision were initially demonstrated using fish (see [8]).

5. Animat vision should not be confused with Ballard’s animate vision; the latter does not
involve artificial animals.
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Figure 2. The body of an artificial fish
comprises a muscle-actuated biome-
chanical model, perceptual sensors,
and a brain with motor, perception,
behavior, and learning centers. To
the lower left is an artificial fish
graphical display model.

vision” in the behavioral animation literature [21, 22, 23]. Unlike ora-
cle vision, for the animat vision approach to make sense, it is absolutely
necessary that the animat and its world attain a high standard of visual
fidelity.

Review of the Fish Animat
The artificial fish model is developed elsewhere [3, 6, 23]. This section
reviews the animat to a level of detail that suffices to comprehend the
remainder of the paper.

Each artificial fish is an autonomous agent with a deformable body
comprising a graphical display model and a biomechanical model ac-
tuated by internal muscles. As Figure 2 illustrates, the body includes
eyes (among other on-board sensors) and a brain with motor, percep-
tion, behavior, and learning centers. Through controlled muscle actions,
artificial fishes are able to swim in simulated water in accordance with
simplified hydrodynamics. Their functional fins enable them to loco-
mote, maintain balance, and maneuver in the water. Thus the artificial
fish model captures not just 3D form and appearance, but also the basic
physics of the animal and its environment. Though rudimentary when
compared to real animals, the minds of artificial fishes are nonethe-
less able to learn some basic motor functions and carry out perceptually
guided motor tasks within a repertoire of piscine relevant behaviors, in-
cluding collision avoidance, foraging, preying, schooling, and mating.

Motor System
The motor system (see Figure 2) comprises the fish biomechanical
model, including muscle actuators and a set of motor controllers (MCs).
Fig. 3(a) illustrates the mechanical body model which produces realistic
piscine locomotion, using only 23 lumped masses and 91 uniaxial vis-
coelastic elements, 12 of which are actively contractile muscle elements.
These mechanical components are interconnected so as to maintain the
structural integrity of the body as it flexes due to the muscle actions.

Artificial fishes locomote like real fishes, by autonomously contracting
their muscles in a coordinated fashion. As the body flexes it displaces
virtual fluid which induces local reaction forces normal to the body.
These hydrodynamic forces generate thrust that propels the fish forward.
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Figure 3. Biomechanical fish model
(a) Nodes denote lumped masses.
Lines indicate springs (shown at
their natural lengths). Bold lines
indicate muscle springs. Artificial
fishes perceive objects (b) within a
limited field view if objects are close
enough and not occluded by other
opaque objects (only the fish towards
the left is visible to the animat at the
center).
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The model mechanics are governed by Lagrange equations of motion
driven by the hydrodynamic forces. The system of coupled second-order
ordinary differential equations is continually integrated through time by
a numerical simulator.6

The model is sufficiently rich to enable the design of motor controllers
by gleaning information from the fish biomechanics literature. The mo-
tor controllers coordinate muscle actions to carry out specific motor
functions, such as swimming forward (swim-MC), turning left (left-
turn-MC), and turning right (right-turn-MC). They translate natural
control parameters, such as the forward speed or angle of the turn, into
detailed muscle actions that execute the function. The artificial fish is
neutrally buoyant in the virtual water and has a pair of pectoral fins
which enable it to navigate freely in its 3D world by pitching, rolling, and
yawing its body. Additional motor controllers coordinate the fin actions.

Perception System
Artificial fishes gain awareness of their world through sensory percep-
tion. As Figure 3(b) suggests, it is necessary to model not only the
abilities but also the limitations of animal perception systems in order
to achieve natural sensorimotor behaviors. Hence, the artificial fish has
a limited field of view extending frontally and laterally to an effective
radius consistent with visibility in the translucent water (Fig. 3(b)). An
object may be detected only if some visible portion of it (i.e., not oc-
cluded behind some other opaque object) enters the fish’s field of view
(Fig. 3(b)). The perception center of the artificial fish’s brain (see Fig. 2)
includes a perceptual attention mechanism which allows the animat to
attend to the world in a task-specific way, hence filtering out sensory
information superfluous to its immediate behavioral needs. For exam-
ple, the artificial fish attends to sensory information about nearby food

6. The artificial fish model achieves a good compromise between realism and computa-
tional efficiency. To give an example simulation rate, the implementation can simulate a
scenario with 10 fishes, 15 food particles, and 5 static obstacles at about 4 frames/sec
(with wireframe rendering) on a Silicon Graphics R4400 Indigo2 Extreme workstation.
More complex scenarios with large schools of fish, dynamic plants, and full color texture
mapped GL rendering at video resolution can take 5 seconds or more per frame.
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sources when foraging. The animats in our previous ALife simulations
(described in [3, 6, 23]) employ a perceptual oracle scheme accord-
ing to which the artificial fish may satisfy its perceptual needs via direct
interrogation of the 3D world model. In particular, subject to the appro-
priate perceptual limitations, the animat’s on-board sensors query the
geometric and photometric information that is available to the graphics
rendering engine, as well as object identity and dynamic state infor-
mation within the physics-based virtual world. We emphasize that our
goal in the present paper is to replace the perceptual oracle with an
artificial fish active vision system that elicits visual information from reti-
nal images, as is described in the Animal Vision System section of this
paper.

Behavior System
The behavior center of the artificial fish’s brain mediates between its
perception system and its motor system (Fig. 2). A set of innate char-
acteristics determines the (static) genetic legacy, which dictates whether
the fish is male or female, predator or prey, etc. A (dynamic) mental state
comprises variables representing hunger, fear, and libido, whose values
depend on sensory inputs. The fish’s cognitive faculty resides in the ac-
tion selection component of its behavior center. At each simulation time
step, action selection entails combining the innate characteristics, the
mental state, and the incoming stream of sensory information to gen-
erate sensible, survival sustaining goals for the fish, such as to avoid
an obstacle, to avoid predators, to hunt and feed on prey, or to court a
potential mate. The action selector ensures that goals have some persis-
tence by exploiting a single-item memory. The behavior memory reduces
dithering, thereby improving the robustness of prolonged behaviors such
as foraging, schooling, and mating. The action selector also controls the
perceptual attention mechanism. At every simulation time step, the ac-
tion selector activates behavior routines that attend to sensory informa-
tion and compute the appropriate motor control parameters to carry the
fish a step closer to fulfilling its immediate goals. The behavioral reper-
toire of the artificial fish includes primitive, reflexive behavior routines,
such as obstacle avoidance, as well as more sophisticated motivational
behavior routines, such as schooling and mating, whose activation is de-
pendent on the mental state.

Modeling Form and Appearance
Animat vision requires that artificial animals capture the form and ap-
pearance of natural animals with considerable visual fidelity. To this end,
photographs of real fishes, such as the one shown in Figure 4(a), are con-
verted into 3D spline (nurbs) surface body models (Fig. 4(b)). The dig-
itized photographs are analyzed semi-automatically using deformable
models [24], in particular, a “snake-mesh” tool which is demonstrated in
Fig. 4(d–e) on a different fish image. The snake mesh slides freely over
the image and can be manipulated using the mouse. The border snakes
adhere to intensity edges demarcating the fish from the background, and
the remaining snakes relax elastically to cover the imaged fish body with
a smooth, nonuniform coordinate system (Fig. 4(e)). The coordinate sys-
tem serves to map the appropriate image texture onto the spline surface
to produce the final texture-mapped fish body model (Fig. 4(c)).
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Figure 4. (a) Digitized color image
of a fish photo. (b) 3D NURBS surface
fish body. (c) Color texture mapped
3D fish model. Initial (d) and final
(e) snake-mesh on an image of a
different fish.

(a) (b) (c)

(d) (e)

The Animat Vision System
In this section we present the animat vision system that we have devel-
oped for the artificial fish, which makes exclusive use of color retinal
images.

Eyes and Retinal Imaging
The artificial fish has binocular vision. The movements of each eye are
controlled through two gaze angles (θ , φ) which specify the horizontal
and vertical rotation of the eyeball, respectively. The angles are mea-
sured with respect to the head coordinate frame, such that the eye is
looking straight ahead when θ = φ = 0◦.

Each eye is implemented as four coaxial virtual cameras to approx-
imate the spatially nonuniform, foveal/peripheral imaging capabilities
typical of biological eyes. The level l = 0 camera has the widest field of
view (about 120◦) and the horizontal and vertical fields of view for the
level l camera are related by

f lx = 2 tan−1
(
dx/2
2lf 0

c

)
f ly = 2 tan−1

(
dy/2
2lf 0

c

)
(1)

where dx and dy are the horizontal and vertical image dimensions and
f 0
c is the focal length of the wide field of view camera (l = 0).7

Figure 5(a) shows an example of the 64× 64 images that are rendered
by the four coaxial cameras (using the GL library and SGI graphics
pipeline) of the left and right eye. Since the field of view decreases with
increasing l, image l is a zoomed version of the central part of image
l − 1. We refer to the image at level l = 3 as the fovea and the others as
peripheral images. We magnify the level l image by a factor of 23−l and
overlay, in sequence, the four images coincident on their centers starting
with the l = 0 image at the bottom (to form an (incomplete) pyramid),
thus compositing a 512× 512 retinal image with a 64× 64 fovea at the
center of a periphery with radially decreasing resolution (and increasing
smoothing) in 3 steps. Figure 5(b) shows the binocular retinal images

7. If f 0
c is unknown, but the l = 0 field of view is known, then f 0

c is first computed using (1)
with l = 0 and this value is used to specify the field of view at the other levels.
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Figure 5. Binocular retinal imaging.
(a) 4 component images; l = 0, 1, 2,
are peripheral images; l = 3 is
foveal image. (b) Composited retinal
images (borders of composited
component images are shown in
white).

l = 0 l = 1 l = 2 l = 3 l = 0 l = 1 l = 2 l = 3

(a)

Left eye Right eye

(b)

composited from the coaxial images at the top of the figure. To reveal
the retinal image structure in the figure, we have placed a white border
around each magnified component image.

The advantages of the multiresolution retina are significant. Vision
algorithms which process the four 64 × 64 component images are 16
times more efficient than those that would have to process a uniform
512× 512 retinal image.

Active Vision System Overview
Figure 6 shows a block diagram of one ocular channel of the binoc-
ular animat vision system. The system currently consists of two main
modules—a foveation module and stabilization module. Together they
implement a gaze control capability that enables the artificial fish to sta-
bilize the visual world as it locomotes, as well as to detect a visual target
in its field of view, foveate the target, and visually navigate towards the
target. If the target is in motion, the artificial fish can track it visually
and swim in pursuit.

Foveation using Color Object Detection
The mind of the fish stores a set of color models of objects that are of
interest to it. For instance, if the fish is a predator, it would possess
models of prey fish. The models are stored as a list of 64 × 64 color
images in the fish’s memory.

We have adopted into the active vision system the color histogram
methods of Swain [25]. The fish employs these methods to detect and

VIDERE 1:1 Animat Vision 10



Figure 6. Gaze control for one eye
in the animat vision system. The
flow of the algorithm is from right
to left. A: Update gaze angles (θ , φ)
and saccade using these angles. B:
Search current level for model target
and, if found, localize it, else search
lower level. C: Select level to be
processed (see text). F: Reduce field
of view for next level and render.
M: Compute a general translational
displacement vector (u, v) between
images I (t − 1) and I (t). S: Scale the
model’s color histogram for use by
the current level.

GENERATE
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M B

M B

M B
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localize any target that may be imaged in the low resolution periphery
of its retinas. Since each model object has a unique color histogram
(when the background is subtracted from the object) it can be detected
in the periphery by histogram intersection and localized by histogram
backprojection.

Modified Color Histogram Intersection Method
Swain [25] developed a technique called color indexing that efficiently
identifies objects in a database in the presence of occlusion and over
changes in viewpoint. He demonstrated that object color distributions
without geometric information can provide a powerful cue for recogni-
tion.

The effectiveness of the algorithm degrades badly if the area of the ob-
ject in the model image differs substantially from the area of the target
object appearing in the image. Swain suggests scaling the initial model
histogram by d2

M/d
2 where dM is the known range of the model initially

and d is the computed range of the target object at the time of backpro-
jection. We will show later that estimating range is straightforward with
the eyes verged on a target. Unfortunately, this scaling technique did
not work well for the artificial fish, apparently because of noisy depth
measurements and the perspective nonlinearity associated with the wide
field of view cameras.

We developed a more robust intersection measure that is invariant
to scale changes. This new method iteratively scales down an initially
large model color histogram to the approximate size of the target object
appearing in the image.
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Following Swain’s notation in [25], his original histogram intersec-
tion measure is

H =
∑n
j=1 min(Ij ,Mj)∑n

j=1 Mj

(2)

where I is the image color histogram, M is the model color histogram,
and n is the number of histogram bins used. This measure is effective
only if the model histogram is properly scaled. To overcome this limita-
tion, note that the match value H gives the percentage of pixels from
the model that have corresponding pixels of the same color in the image
(hence,H = 0.9 means that there is a 90% chance the model appeared in
the image; however, the value of H can drop significantly; e.g., H = 0.1
if there is a scale difference between target and model). This suggests
that we can use H itself to scale the model histogram M. Our experi-
ments revealed that this is not always effective, but that it can be im-
proved by scaling the histogram iteratively; i.e., recomputing H after
every scaling of M until the value of H increases above a set threshold,
say 0.9. This technique may be expressed as

Mi+1
k =Mi

kH
i =Mi

k

∑n
j=1 min(Ij ,Mi

j)∑n
j=1 M

i
j

; k = 1, . . . , n (3)

where i is the iteration number. Equation 3 is iterated until the value
of Hi either exceeds the threshold, indicating the presence of the model
in the image, or remains constant below threshold (or decreases), in-
dicating that the model matches nothing in the image. The equation
converges after a few iterations (usually 2 to 4 if the target size is not
too much smaller than the model).

The iterative technique may degenerate in cases when the model
is not present in the image, while a similar color combination is. The
problem is that the model histogram gets scaled to the size of the false
target to yield a large intersection match value, hence a false alarm.

To overcome this problem, we employ a new intersection measure
after scaling the model histogram using (3). Our measure makes use of a
weighted histogram intersection method inspired by the local histogram
method proposed by Ennesser and Medioni [26]. Our measure is

HN =
∑n
j=1 Wj min(Ij ,Mj)∑n

j=1 Mj

(4)

where the weighting histogram W is given by Wj =Mj/2lPj . Here P
is the color histogram of the peripheral image (at level l = 0). As is
noted by Ennesser and Medioni, the weighted intersection technique
increases the selectivity of the method by placing more importance on
colors that are specific to the model. In our experiments, HN provided
very good separation between intersection match values for false targets
(HN < 0.2) and true targets (HN > 0.8).

An alternative method, which also gives good results, is to incorporate
the weighting histogram inside the iteration of equation (3) as follows:

Mi+1
k =Mi

k

∑n
j=1(M

i
j/2

lPj)min(Ij ,Mi
j)∑n

j=1 M
i
j

(5)

The scaled M is then used iteratively to compute the intersection match
value HN as before.
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Localization using Color Histogram
Backprojection
Once the model histogram has been properly scaled as described above,
Swain’s backprojection algorithm works well in localizing the pixel posi-
tion of the center of the detected target in the foveal image. A thorough
description of this algorithm is available in [25].

Saccadic Eye Movements
When a target is detected in the visual periphery, the eyes will saccade
to the angular offset of the target to bring it within the fovea. With the
object in the high resolution fovea, a more accurate foveation is obtained
by a second pass of histogram backprojection. A second saccade typically
centers the object accurately in both left and right foveas, thus achieving
vergence.

When the fish is executing a rapid turn, however, the target could
partially exit the fovea (l = 3). Part of it will appear in the next coarser
image (l = 2). Three saccades are then typically used to regain a foveal
fix on the target. The first saccade detects the portion of the target still
in the fovea and makes an initial attempt to foveate the target, on the
second saccade the target is brought closer to the center of the fovea,
and finally the third saccade accurately centers the target in both foveas
to verge the eyes.

Module A in Figure 6 performs the saccades by incrementing the gaze
angles (θ , φ) with differential angles (1θ ,1φ) in order to rotate the eyes
to the required gaze direction. When the pixel location of the target,
computed from the left or right images at level l, is (xc, yc), the correction
gaze angles for the eye are given by

1θ = tan−1
(
xc

2lfc

)
1φ = tan−1

(
yc

2lfc

)
(6)

If the target object comes too near the eyes and fills the entire fovea,
the algorithm foveates the target at the next coarser level (e.g., l = 2),
where the field of view is broader and the target has a more reasonable
size for detection and localization. Note that (6) computes the correction
angles at level l, but the same corrected (θ , φ) are used to render all the
other levels.

Visual Field Stabilization using Optical Flow
It is necessary to stabilize the visual field of the artificial fish because its
body undulates as it swims. The optokinetic reflex in animals stabilizes
vision by measuring image motion and producing compensatory eye
movements. Once a target is verged in both foveas, the stabilization
process assumes the task of keeping the target foveated as the fish
locomotes.

Stabilization is achieved by computing the displacement (u, v) be-
tween the current and previous foveal images and updating the gaze
angles to (θ +1θ , φ +1φ). The displacement is computed as a transla-
tional offset in the retinotopic coordinate system using a least squares
minimization of the optical flow constraint equation between image
frames at times t and t − 1 [27, 28]. The flow constraint equation is
given by [29]

uIx + vIy + It = 0 (7)
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where Ix, Iy, and It are the derivatives of the image intensity, such that

I (x, y, t)= 1
3

[R(x, y, t)+G(x, y, t)+ B(x, y, t)] (8)

where R, G, and B denote the color component channels. The error
function

E(u, v)=
∑

x,y∈ fovea
(uIx + vIy + It)2 (9)

is minimized by simultaneously solving the two equations ∂E/∂u = 0
and ∂E/∂v = 0 for the image displacement (u, v).

The correction angles (1θ ,1φ) for a displacement of (u, v) between
the images at level l are computed using (6) by replacing (xc, yc) with
(u, v). If the displacement computed from the foveal images (at level
l = 3) is too small (indicating the target is close enough to fill the fovea),
the algorithm stabilizes at the next lower level where the target does not
fill the entire image area.

The flow constraint displacement estimation method is accurate only
for small displacements between frames. Consequently, when the dis-
placement of the target between frames is large enough that the method
is likely to produce bad estimates, the fix is regained by invoking the
foveation module to re-detect and re-foveate the target, as described ear-
lier.

Each eye is controlled independently during foveation and stabiliza-
tion of a target. Hence, the two eyes must be correlated to keep them
verged accurately on the target and not drifting in different directions.
The correlation is performed by computing the displacement (u, v) be-
tween the left and right foveal images (at l = 3), and correcting the gaze
angles of the right eye to (θR +1θR, φR +1φR) using (6).

Once the eyes are verged on a target, it is straightforward for the
active vision system to estimate the range to the target from the gaze
angles. Referring to Figure 7, the range is

d = b cos(θR) cos(θL)
sin(θL − θR) cos(θP )

(10)

where b is the baseline between the two eyes, and θP = 1
2 (θR + θL) is

the left/right turn angle [29]. When the eyes are verged on a target the
vergence angle is θV = (θR − θL) and its magnitude increases as the fish
comes closer to the target [30].

Vision-Guided Navigation
The artificial fish can employ the direction of gaze of its eyes to effec-
tively navigate its world. In particular, it is natural to use the gaze angles
as the eyes are fixated on a target to navigate towards the target. The θ
angles are used to compute the left/right turn angle θP shown in Fig-
ure 7, and the φ angles are similarly used to compute an up/down turn
angle φP = 1

2 (φR + φL). The fish’s turn motor controllers are invoked to
execute a left/right turn—left-turn-MC for negative θP and right-
turn-MC for positive θP (see the Motor System subsection)—with |θP |
as parameter when |θP |> 30◦. An up/down turn command is issued to
the fish’s pectoral fins if |φP |> 5◦, with a positive φP interpreted as up
and negative as down.
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Figure 7. Gaze angles and range to
target geometry.
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Pursuit of Nonrigid Targets in Motion
The problem of pursuing a moving target that has been fixated in the
foveas of the artificial fish’s eyes is simplified by the gaze control mecha-
nism described above. The fish can robustly foveate a moving target and
chase it by using the turn angles (θP , φP ) computed from the gaze angles
that are continuously updated by the foveation/stabilization algorithms.

We have carried out numerous experiments in which the moving tar-
get is a reddish fish whose color histogram model is stored in the mem-
ory of a predator fish equipped with the active vision system. Figure 8
shows plots of the gaze angles and the turn angles obtained over the
course of 100 frames in a typical experiment as the predator fixates on
and actively pursues a prey target. Figure 9 shows a sequence of im-
age frames acquired by the observer fish during its navigation (only
the left retinal images are shown). Frame 0 shows the target visible in
the low resolution periphery of the fish’s eyes (middle right). Frame 1
shows the view after the target has been detected and the eyes have
saccaded to foveate the target (note that the size decrease of the target
after foveation is a perspective effect). The subsequent frames show the
target remaining fixated in the fovea, despite the side-to-side motion of
the fish’s body as it swims towards the target. Fixation is achieved by
stabilizing the eyes with compensating saccade signals. The signals are
indicated in Figure 8 by the undulatory responses of the θ angles.

Figure 8 shows that the vergence angle tends to increase in magnitude
as the fish moves closer to the target (around frame 100). In comparison
to the θ angles, the φ angles show little variation, because the fish does
not undulate vertically very much as it swims forward. It is apparent
from the graphs that the gaze directions of the two eyes are nicely
correlated; that is, (θR, φR) follows (θL, φL), with θR − θL indicating the
reciprocal of range to the target.

Notice that in frames 87–117 of Figure 9, a yellow fish whose size
is similar to the target fish passes behind the target. In this experiment
the fish with active vision was instructed to treat all non-reddish objects
as totally uninteresting and not worth foveating. Because of the color
difference, the yellow object does not distract the fish’s gaze from its red-
dish target. This demonstrates the robustness of the color-based fixation
algorithm.
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Figure 8. Gaze angles (saccade
signals) vs. time (frames) of the
observer fish while pursuing the
reddish target fish.
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Conclusion and Future Work
This paper has presented work that spans the fields of computer vision,
artificial life, and computer graphics. Our research was motivated in
part by the realization that many active vision researchers would rather
not have their progress impeded by the limitations and complications
of currently available hardware. Animat vision offers a viable, purely
software alternative to the prevailing hardware vision mindset.

To demonstrate the animat vision approach, we have employed a
physics-based, virtual marine world inhabited by lifelike artificial fishes
that emulate the appearance, motion, and behavior of natural fishes
in their physical habitats. Artificial fishes are virtual zoological robots
(“zoobots”) that offer active vision researchers greater mobility and ma-
neuverability, lower cost, and higher reliability/repeatability than can
be expected from present-day physical robots. Moreover, these physics-
based virtual robots are governed in their virtual world by the same
principles that physical robots are subject to in the physical world, hence
they share the attraction of situated physical robots for the purposes of
active vision research.

In a relatively short period of time we have successfully implemented
within the framework of the artificial fish animat a set of active vision
algorithms for foveation and vergence of interesting targets, for retinal
image stabilization, and for pursuit of moving targets through visually-
guided navigation. Note, however, that the automated analysis of the
class of retinal images that confront our vision algorithms is by no means
easy.

In future work we will endeavor to develop a more extensive arsenal
of active vision algorithms to support the complete behavioral reper-
toire of artificial fishes. The animat vision approach allows us to do this
in stages without ever compromising the complete functionality of the
artificial fish. We anticipate that the active vision suite that we are de-
veloping will be relevant in whole or in part to physical robotics (e.g.,
autonomous underwater vehicles). In conclusion, it appears that artifi-
cial animals in their virtual worlds can serve as a proving ground for
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Figure 9. Retinal image sequence
from the left eye of the active vision
fish as it detects and foveates on
a reddish fish target and swims in
pursuit of the target. The target
appears in the periphery (middle
right) in frame 0 and is foveated in
frame 1. The target remains fixated
in the center of the fovea as the
fish uses the gaze direction to swim
towards it (frames 7–117). The
target fish turns and swims away
with the observer fish in visually
guided pursuit (frames 135–152).
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theories that profess sensorimotor competence in animal or robotic situ-
ated agents.
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