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In this paper I try to show that
through recovering epipolar ge-
ometry we can provide a unified
approach to the problems of im-
age matching and segmentation in
stereo, motion, and object recog-
nition, which have been treated
separately so far. Stereo matching
has been known as a 1D search
problem, while matching in mo-
tion and object recognition have
been known as 2D search prob-
lems. I show that by recovering
epipolar geometry underlying the
images, the correspondence search
problems in motion and object
recognition can also be changed to
be 1-dimensional. I propose a new
approach to recovering epipolar ge-
ometry for multiple rigid motions
using feature points in two uncali-
brated images. Using the recovered
epipolar equations, the edge im-
ages are then easily matched and
segmented. Examples are shown
for matching and segmenting mo-
tion images with multiple rigid
motions, and for matching model
view against input view and local-
izing the 3D object in the input
view.

Keywords: clustering, correspon-
dence, epipolar geometry, motion,
object recognition, robust estima-
tion, stereo

A Unified Approach to Image Matching
and Segmentation in Stereo, Motion,
and Object Recognition via Recovery
of Epipolar Geometry

Gang Xu1

Introduction
In this section, we review correspondence problems in stereo, motion,
and object recognition from the point of view of epipolar geometry and
show that once the epipolar geometry is recovered, all can be redefined
as a 1D correspondence search problem plus a segmentation problem
that can be solved simultaneously.

Stereo
Stereo is one of the earliest problems treated in computer vision [12, 6].
The epipolar constraint has been well known from the beginning, and
is used to ease the difficulty of matching. Most algorithms assume that
the epipolar lines are given a priori, and thus pose the stereo matching
problem as a 1D search problem.

The classical technique for obtaining the epipolar geometry is by
using an object with known shape and sizes [4, 23, 22, 3]. Often, two
cameras are mechanically set to have parallel optical axes, such that the
epipolar lines are horizontal in both images [6].

Here we would like to point out that, first, human eyes do not work
this way [5]. Rather, they do correspondence using vergence; thus the
angle between the two eyes is not zero and is constantly changing.
Second, even if we try carefully to arrange the imaging geometry that
way, there is still error, and usually the corresponding points are not
strictly on the same horizontal lines.

Therefore, in the general case, calibration is necessary to recover
the epipolar geometry accurately. As will be seen later, the epipolar
geometry can be recovered from two uncalibrated images alone, without
the use of any calibration apparatus. Once this is done, we say that the
two images are weakly calibrated [15, 31].

Motion
Motion is also one of the oldest problems in computer vision. Ullman’s
pioneering work on this problem has had great influence on later re-
search [24]. The problem has been divided into two smaller ones. The
first is correspondence, which decides how points “flow” between consec-
utive images in the image sequence. The second is called structure-from-
motion, which determines the 3D structure and motion of the objects
from matched points in the images. Most of the past research tries to
solve one of the above two problems.

For the correspondence problem, the difficulty is considered to be
the aperture problem, as shown in Figure 1. That is, in motion, unlike
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Figure 1. The aperture problem.

aperture 

problem

stereo, the displacement is not a priori considered constrained to be one-
dimensional; rather, it is two-dimensional. The array of displacements is
called optical flow. Thus, if we see things locally with a small aperture,
then there are an indefinite number of possible solutions. Solutions are
uniquely determined only for those structures like corners, junctions,
spots, etc., which are characterisitic enough to be uniquely localized
and distinguished (see Fig.1). Only if we see things with apertures large
enough to include these structures can we propagate their flows as
constraints, and use them to determine flows for other points, which
otherwise would not have unique solutions.

This idea leads to a whole family of algorithms which impose a 2D
smoothness constraint on the flow field [8, 7]. For points which happen
to have unique solutions, their flows are so determined. For points which
do not have unique structures, their flows are determined by minimizing
a global sum of derivatives of the flow field.

This family of approaches has three common problems. Firstly, corre-
spondence determined this way is not guaranteed to produce the correct
result. For example, in the case of rigid motion, optical flow obtained
by imposing a 2D smoothness constraint does not satisfy the rigidity
constraint in general. Secondly, the smoothness constraint is not valid
along flow discontinuities. Unfortunately, these discontinuities are not
known a priori. Thus, applying this constraint blindly not only gives
wrong answers along these discontinuities, but these wrong answers can
also propagate to neighboring areas, whose influence can reach very far
from those discontinuities. Thirdly, minimizing a global functional of 2D
flows is very computationally costly. Even the deepest descent method,
which is the least costly algorithm currently available, consumes a lot
of computation power. Let alone those algorithms that seek global min-
imums.

Object Recognition
Object recognition is another of the hardest problems in vision. Actually,
it is called the final objective of vision. Marr claims, “Vision is the process
of knowing what is where through seeing” [11]. “knowing what” is
exactly the problem of object recognition.

The approaches to object recognition have been deeply influenced by
Marr’s philosophy [11]. Marr claims that to recognize 3D objects, one
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must have enough 3D information about the objects to be recognized;
thus only when the full 3D shape is recovered from images can the
process of recognition start. Under his influence, most early approaches
to object recognition assume that 3D object models are given a priori,
and the task is then to find a particular transformation that projects
the model onto a particular part of the image, usually segmented from
the background in advance. The problem with this approach is that 3D
models are not easily available. It is not easy to determine the shape
of objects from input images through stereo, or motion, or other visual
cues.

Recently, there have been a number of attempts to avoid 3D object
models, but instead to use 2D model views. Ullman proposes to use lin-
ear combination of matched model views as object models. [25]. Poggio
proposes to use a number of matched views to train an approxima-
tion network whose internal representation functions as an object model
[14]. Xu proposes to use only one image as an object model [27].

Anyway, if the problem of object recognition is posed as one of match-
ing model views with the input image—which not only includes the tar-
get objects but also the background—then correspondence between the
model views, and between model view(s) and input view, becomes es-
sential and necessary. We believe that correspondence, localization and
recognition are essentially the same process.

Correspondence in Stereo, Motion, and Object
Recognition as a 1D Search
Now we redefine the three problems from the perspective of epipolar
geometry. The correspondence problem in both motion and object recog-
nition is changed to be a 1D search problem, similar to that in stereo, if
the epipolar geometry underlying the images is recovered.

As described above, the stereo correspondence can be solved in a two-
step process. In the first step, the epipolar geometry is determined, and
in the second step, the correspondence is determined as a 1D search
along epipolar lines.

If the scene is stationary, there is no difference between two motion
images and a pair of stereo images. What differs between a general mo-
tion problem and a general stereo problem is that, in a motion problem,
we can have different motions simultaneously. The camera can move,
the scene can move in a different way, and more importantly, there can
be multiple objects moving independently in the scene. In stereo, only
the camera moves. Thus, between general motion images, there can be
multiple epipolar geometries, while in stereo there can only be one.

If we can somehow recover all the epipolar geometries underlying
two motion images, then the search for correspondence is reduced from
2-dimensional to 1-dimensional. Thus, the aperture problem no longer
exists, though ambiguity still exists, or multiple candidates still exist
along the epipolar lines, as in stereo matching. The problem of using
model views for 3D object recognition can be further divided into two
cases. One is of using only one model view, and the other is of using
multiple views. Here we stress that, in either case, the correspondence
between the model and input views, and between model views is essen-
tial. Matching model views is nothing but matching two uncalibrated
stereo images. It is also basically the same thing as matching the model
view with the input view.
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If the object in one model view is the same as the object in the input
view, then they should satisfy the epipolar geometry, and the points in
model views can be matched against the points in the input view. The
problem is again divided into one of finding possible epipolar geometry
between a model view and the input view, and one of matching image
points based on the recovered epipolar geometry between the model
view and the input view. If the input view also includes other objects
and background, finding the corresponding points to the model is also
localizing the object from other objects and background.

The part of recovering epipolar geometry between a model view and
an input view is essentially the same as that in uncalibrated stereo.
The difference is that usually there are other objects and background
in the input view, which, as described later, brings difficulty to epipolar
equation recovery.

Relation to Previous Work
It is noted that recovering epipolar geometry between two uncalibrated
images under full perpective projection has been proposed by Zhang et
al. [32]. In this paper we are concerned with weak perspective projec-
tion. There are only 4 degrees of freedom in the epipolar geometry under
weak perspective projection [17], while for full perspective projection
there are 7. This reduction in complexity gives us more freedom to treat
problems like multiple rigid motions, and object recognition with large
portions of background.

It is known to be difficult to robustly recover multiple epipolar geome-
tries from two views without a given correspondence [20]. In this paper
we propose a new clustering technique to solve this problem. Also it is
novel to see the image matching and correspondence problems in stereo,
motion and object recognition as an identical problem and approach it
from the viewpoint of epipolar geometry.

For a more comprehensive description of the epipolar geometry un-
der both the full and weak perspective projections, and the epipolar
geometry-based approach to stereo, motion and object recognition,
please refer to the recent monograph “Epipolar Geometry in Stereo, Mo-
tion and Object Recognition: A Unified Approach”[29].

Epipolar Equation under Weak Perspective
Projection
It is well known that under orthographic, weak perspective and parap-
erspective projections, the epipolar equation is linear about image co-
ordinates [9, 17, 29]. To be self-contained, a derivation of the epipolar
equation is given here first, and a geometric interpretation is then given
to the equation.

Deriving the Epipolar Equation
We start from the rigid motion equation

X = RX′ + t (1)

To eliminate Z and Z′ we multiply vT = [ r23 −r13 0 ] to both sides
of it, yielding

vT X = vT RX′ + vT t (2)

Thus (2) leads to
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−r23X + r13Y − r32X
′ + r31Y

′ + r23tX − r13tY = 0 (3)

Assuming the weak perspective projection, we can rewrite the above
equation as

− r23
Zc

f
(u− u0)+ r13

Zc

f
(v − v0)− r32

Z′c
f ′

(u′ − u′0)+ r31
Z′c
f ′

(v′ − v′0)

+ r23tX − r13tY = 0 (4)

where (u, v) and (u′, v′) are the measurable image coordinates. Here
we assume that the camera optical axis is perpendicular to the image
plane, and the vertical and horizontal sizes of pixels are the same. (In
the case of CCD cameras, this model is close to reality.) Equation 4 can
be rewritten as

pu+ qv + su′ + tv′ + c = 0 (5)

where

p =−r23
Zc

f

q = r13
Zc

f

s =−r32
Z′c
f ′

t = r31
Z′c
f ′

c = r23
Zc

f
u0 − r13

Zc

f
v0 + r32

Z′c
f ′

u′0 − r31
Z′c
f ′

v′0 + r23tX − r13tY

Geometric Interpretation
There are many different ways to define a 3D rotation. One of them is
to define an arbitrary 3D rotation by three consecutive rotations around
the coordinate axes, that is, a rotation by α around the z-axis first, then a
rotation by β around the new y-axis, and finally a rotation by−γ around
the new z-axis.

R = Rz(α)Ry(β)Rz(−γ ) (6)

(α, β, −γ ) are the same as the Euler angles, which are widely used
in kinematics of robot manipulators [13]. Note that −γ defined with
respect to the first image is equivalent to rotating the second image by
γ .

The first and third rotations are actually two rotations within the
image planes, while only the second rotation is related to depth. Rep-
resenting R by the three angles α, β and −γ , we have

R =
 cos α − sin α 0

sin α cos α 0
0 0 1

  cos β 0 sin β

0 1 0
− sin β 0 cos β

  cos γ sin γ 0
− sin γ cos γ 0

0 0 1


=
 cos α cos β cos γ + sin α sin γ cos α cos β sin γ − sin α cos γ cos α sin β

sin α cos β cos γ − cos α sin γ sin α cos β sin γ + cos α cos γ sin α sin β

− sin β cos γ − sin β sin γ cos β


Substituting the components of R for 4, we have
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sin β
(−Zc

f
u sin α + Zc

f
v cos α + Z′c

f ′
u′ sin γ − Z′c

f ′
v′ cos γ

+ tX sin α − tY cos α + r23Zcu0

f
− r13Zcv0

f

+ r32Z
′
cu
′
0

f ′
− r31Z

′
cv
′
0

f ′
)= 0 (7)

If β 6= 0, the above can be rewritten as

−u sin α + v cos α − ρ(−u′ sin γ + v′ cos γ )+ λ= 0 (8)

where α, γ , ρ, λ have two sets of values:

α1 = atan2(−p, q)

γ1 = atan2(s,−t) (9)

ρ1 =
√

p2 + q2

s2 + t2

λ1 = c√
p2 + q2

(10)

or

α2 = atan2(p,−q)

γ2 = atan2(−s, t) (11)

ρ2 =
√

s2 + t2

p2 + q2

λ2 = −c√
p2 + q2

(12)

where atan2(x, y) is the function for arctangent used in C programming.
It is easy to get the second set of parameters by multiplying −1 to the
two sides of (8). It is noted that

α1 − α2 =±π

γ1 − γ2 =±π

ρ1 = ρ2

λ1 =−λ2

We further define

θ = α − γ (13)

α, γ , θ , ρ and λ are called motion parameters. They are the only motion
information that can be determined from the epipolar equation.

Here, ρ stands for the scale change between the two images caused
by different depths Zc and Z′c and possibly different pixel scales, and
λ stands for the translation along the direction perpendicular to the
epipolar lines.

The first two terms of (8) can be thought of as the new vertical
coordinate after a rotation of the first image by α, and the next two terms
as the new vertical coordinate after a rotation of the second image by γ .
Then the equation can be understood as saying that the new vertical
coordinates are the same after a vertical translation of the first image by
λ (see Fig. 2.) A similar interpretation was independently developed by
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Figure 2. Corresponding points have
the same horizontal coordinates after
rotation, scaling and translation.

a

g

r

l

Shapiro et al. in [17], but they did not consider λ and the ambiguity in
α and γ .

If β is zero, the epipolar equation disappears. The motion can be
completely determined as a scaling, a rotation, and a 2D translation,
which we call 2D affine motion. We do not go into details, but only
mention that the situation can be distinguished by examining the point
coordinates. Details can be found in [29].

Recovery of Epipolar Geometry
from Point Matches
In this section, we describe how to determine the epipolar equations,
given point matches in pixel coordinates. Neither intrinsic nor extrinsic
parameters are assumed to be known. The only assumption is that the
points undergo a rigid transformation between the two camera coordi-
nate systems.

Let the point match be mi = [ui, vi]T in the first image and m′i =
[u′i, v′i]T in the second image. They must satisfy the epipolar equation
m̃T

i FAm̃′i = 0. It is expanded as

f13ui + f23vi + f31u
′
i + f32v

′
i + f33 = 0 (14)

which is linear in image coordinates. If we define f = [f13, f23, f31, f32]T

and ui = [ui, vi, u′i, v′i]T , then the above equation can be rewritten as

uT
i f + f33 = 0 (15)

It is easy to see that there are 4 degrees of freedom in the epipolar
equation. Thus in general, a minimum of 4 pairs of matched points are
required to uniquely determine the affine fundamental matrix.

If more than 4 point matches are available, we can use the least-
squares method to determine the epipolar equation more robustly.

We can minimize the sum of squared Euclidean distances to the epipo-
lar lines on which they are supposed to lie. For the first image and second
image, they are respectively
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d2
1 =

n∑
i=1

ε2
i

f 2
13 + f 2

23

d2
2 =

n∑
i=1

ε2
i

f 2
31 + f 2

32
(16)

Since the scales of the two images are generally different, it is rea-
sonable to allow the two to make different contributions to the final
result. Taking into account this scale change ρ, the criterion can then
be a weighted sum of the two with the weights representing the scale
change:

C1 = 1
1+ ρ2 d2

1 +
ρ2

1+ ρ2 d2
2 = 2

n∑
i=1

ε2
i

f 2
13 + f 2

23 + f 2
31 + f 2

32
=

2
n∑

i=1

(pi
T f + f33)

2

fT f

(17)

This can also be considered as minimization of summation of squared
distances of the 4D points ui to the 4D hyperplane uT f + f33 = 0.

There is a classical solution to the above minimization problem. The
solution of f33 is

f33 =−
∑n

i=1 uT
i f

n
=−uT

0 f (18)

where u0 = [u0, v0, u′0, v′0]T = 1
n

∑n
i=1 ui is the average of all ui ’s.

Let vi = ui − u0 and W =∑n
i=1 vivT

i . As W is symmetric and gener-
ally positive semi-definite, it has n real non-negative eigenvalues and n

associated eigenvectors. The solution of f is the eigenvector associated
with the smallest eigenvalue of W . For details, see [29, 17].

Note that the rank of W should be 3 if the motion can be modelled
by the epipolar equation. If it is 2, then it is because either the motion is
only a 2D affine motion or the 3D points are all coplanar.

Recovery of Multiple Epipolar Equations
by Clustering
In the last section we described how to estimate epipolar equations,
given a set of matched points in two images, that belong to the same
rigid object or motion. In this section, we describe the problem of finding
multiple epipolar equations as a problem of unsupervised clustering in
the parameter space.

Given two images and feature points in them, the task is to segment
the feature points into groups that each represent a rigid motion. This
can be understood as a combination of segmentation and outlier rejec-
tion. The only constraint we use is that if the point matches belong to
the same rigid motion, they must satisfy the same epipolar geometry.

We employ the generate-and-clustering strategy. In the weak perspec-
tive projection case, for each group of 4 neighboring point matches we
can determine one epipolar equation. One epipolar equation, in turn,
is projected onto the parameter space as two points. The task then be-
comes one of finding clusters in that space, where each pair of clusters
represents an epipolar equation supported by those groups of corre-
sponding points residing within that cluster.
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Note that here we only work with weak perspective projection. The
general approach should work as well for the full perspective projection,
though with more difficulty as the dimensionality increases [21, 20].

Space of Motion Parameters vs. Space
of Equation Coefficients
There are two spaces that we can possibly use for clustering: one is the
space specified by the coefficients of the epipolar equation; the other is
the space of motion parameters α, θ , ρ and λ, which can be computed
from the epipolar equations.

The coefficients have uniform variances, but they are not independent
of each other. For instance, the squared sum of f31 and f32 and that of
f13 and f23 have very high correlation. Also the ratio of f31 and f32 and
that of f13 and f23 have high correlation.

While the motion parameters computed from those coefficients have
different variances, they are generally independent of each other. Based
on the above property, we choose to use the space of motion parameters
for clustering.

Definitions and Assumptions
Based on the above observations, we can model the points in the pa-
rameter space as a summation of probability processes representing the
clusters, and a random process representing points resulting from wrong
hypotheses of wrong correspondences. Since they are random, the prob-
ability of their forming clusters is small. Let the cluster centers be µµi, i =
1, . . . , c. The density function can be written as

p(x|µ)=
c∑
i

P (ωωi)p(x|ωωi, µµi)+ aP (ωω0) (19)

subject to

c∑
i=1

P(ωωi)+ P(ωω0)= 1 (20)

where p(x|ωωi, µµi) is the probability distribution for cluster ωωi with center
µµi, P(ωωi) is the probability of belonging to i-th cluster, P(ωω0) is the
probability of belonging to none of the clusters, and aP (ωω0) is the
constant density function corresponding to the random process.

p(x|ωωi, µµi) has to be a function decreasing monotonically with dis-
tance from the center µµi. Usually a Gaussian function is used. This
means that, due to errors arising from discretization and calculations,
there is a difference between the estimated epipolar equation and the
true epipolar equation, and the difference obeys the Gaussian distribu-
tion. Suppose that the covariance matrix is identical for all clusters. Then
the Gaussian distribution can be written as

p(x|ωωi, µµi)= (2π)−2 |66 |− 1
2 exp{−1

2
(x− µµi)

T 66−1(x− µµi)} (21)

P(ωωi), i = 0, . . . , c are not known a priori. They can be estimated if
the number of points for each cluster and the number of random points
are known. Assuming that the total number of points in the space is n,
the number of points for the i-th cluster is ni, and the number of random
points is n0, subject to

∑c
i=0 ni = n, then
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P(ωωi)= ni

n
, i = 0, . . . , c (22)

Needless to say, the ease of finding the clusters depends on how many
random points exist. Thus it is vital to limit the number of random
points, that is, P(ωω0).

Estimating Covariance Matrix
Assuming that the distribution of points in the motion parameter space
obeys a Gaussian function, it is necessary to estimate its covariance
matrix in order to use it for clustering. Though the covariance matrix
varies with different images and different motions, it is still feasible to
assume that a few typical covariance matrices represent the range within
which any variance matrix may reside. Thus the approach we take is
to estimate a few variance matrices from examples, and use them for
clustering.

Now suppose we are given n points x1, x2, . . . , xk, . . . , xn. µ is esti-
mated as

µµ= 1
n

n∑
k=1

xk (23)

and the covariance matrix is estimated as

66 = 1
n

n∑
k=1

(xk − µµ)(xk − µµ)T (24)

The covariance matrix we use for clustering is
1231.437134 −32.256741 −0.746871 440.431793
−32.256741 8.477827 0.007116 22.509176
−0.746871 0.007116 0.003669 −0.882438

440.431793 22.509176 −0.882438 539.617126


which is computed using Equation 24 from local groups of known corre-
spondences between two real images.

The Maximal Likelihood Approach
Assuming that the n samples S = {x1, x2, . . . , xn} are independent of each
other, the joint density is the mixture density,

P(S|µµ)=
n∏

k=1

p(xk|µµ) (25)

where µµ = {µµ1, µµ2, . . . , µµc}. The maximal likelihood approach tries to
seek a µµ that maximizes P(S|µµ).

A µµ that maximizes P(S|µµ) also maximizes log P(S|µµ). The constraint
on µµ is

∇µµi
log P(S|µµ)= 0 , i = 1, . . . , c (26)

From (25), we define q as

q ≡∇µµi
log P(S|µµ)=∇µµi

n∑
k=1

log p(xk|µµ)=
n∑

k=1

∇µµi
log p(xk|µµ)

i = 1, . . . , c

(27)
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Substituting (19) for the above equation yields

q =
n∑

k=1

{ 1
p(xk|µµ)

∇µµi
{

c∑
j=1

p(xk|ωωj , µµj)P (ωωj)+ aP (ωω0)}}

i = 1, . . . , c

(28)

Assuming independence of µµi and µµj(i 6= j), we have

∇µµi
p(xk|µµ)=∇µµi

{p(xk|ωωi, µµi)P (ωωi)} = P(ωωi)∇µµi
p(xk|ωωi, µµi)

i = 1, . . . , c.
(29)

Thus,

q =∇µµi
log P(S|µµ)=

n∑
k=1

P(ωωi)

p(xk|µ)
∇µµi

p(xk|ωωi, µµi)

i = 1, . . . , c

(30)

Using the Bayesian rule, the above equation can be rewritten as

q =
n∑

k=1

P(ωωi|xk, µ)∇µµi
{log[p(xk|ωωi, µµi)]} , i = 1, . . . , c (31)

Substituting (21) for the above equation and setting q to be zero
yields

q =
n∑

k=1

P(wi|xk, µµ)66−1(x− µµi)= 0 , i = 1, . . . , c (32)

That is,

µµi =
∑n

k=1 P(ωωi|xk, µµ)xk∑n
k=1 P(ωωi|xk, µµ)

, i = 1, . . . , c (33)

For samples where P(ωωi|xk, µµ) is small, little is contributed to µµi. This
is intuitively appealing and suggests using only those samples which are
close to µµi.

Equation 33 is difficult to apply directly, but it does suggest an itera-
tive procedure. If we can obtain reasonable initial estimates for µµi(0), i =
1, . . . , c, they can be updated using

µµi(t + 1)=
∑n

k=1 P(ωωi|xk, µµ(t))xk∑n
k=1 P(ωωi|xk, µµ(t))

, i = 1, . . . , c (34)

until no significant change is available. This procedure involves updating
the class means by readjusting the weights on each sample at each itera-
tion. It provides a theoretical basis for the c-means clustering algorithm
[16].

From the Bayesian rule, we get

P(ωωi|xk, µµ)=
P(ωωi)(2π)−

d
2 |66 |− 1

2 exp{−1
2‖xk − µµi‖26−1}∑

i P (ωωi)(2π)−
d
2 |66 |− 1

2 exp{−1
2‖xk − µµi‖26−1} + aP (ωω0)

(35)

where ‖xk −µµi‖266−1 = (xk −µµi)
T 66−1(xk −µµi). It is clear from the above

equation that the probability P(ωωi|xk, µµ) is large when xk is close to µµi.
This suggests classifying xk to class ωωi when ‖xk − µµi‖266−1 is small.
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If xk is much closer to µµi than to any other µµj , then

p(xk|µµ)≈ P(ωωi)(2π)−
d
2 |66 |− 1

2 exp{−1
2
‖xk − µµi‖26−1} + aP (ωω0)

Further, if the number of random points is also small, i.e., P(ωω0) is
small, then P(ωωi|xk, µµ)≈ 1. Substituting this for (34), it becomes a mere
average, i.e.,

µµi(t + 1)=
∑

xk⊂R xk∑
xk⊂R 1

(36)

where R denotes the range of xk such that ‖xk − µµi‖266−1 < T . Here T is
a suitable threshold determining the size of R.

If the number of random points is not small, then P(ωωi|xk, µµ) is not
close to 1, which means that a mere average does not give a correct
answer.

Whether or not a class can be regarded as a cluster depends on how
many points are in that class. For each class, we can count the number
of points falling in that class; this count has to be larger than a threshold
for any class to be regarded as a cluster representing a true epipolar
equation.

Robust Estimation Using the Exponential
of a Gaussian Distribution
As analyzed in the last subsection, if there are no random points the
center can be determined as the mean vector of all the points falling
within the range. However, if there are random points, merely taking
the mean of all points is risky, because any random point within the
range, but near the boundary of the range; results in a greater deviation
from the true value. Thus, it is desirable to allow less contribution from
points far from the center and more contribution from points close to the
center.

To limit the influence of random points, we can use a function that
decreases faster than the Gaussian with the distance from the center.
One such option is the exponential of the Gaussian,

p(xk|ωωi, µi)= cw exp{exp(−1
2
‖xk − µµi‖266−1)} − cw (37)

where cw is a constant chosen such that the integral of the distribution
over the whole space is equal to 1. Differentiating the function with
respect to xk yields

exp{exp(−1
2
‖xk − µµi‖266−1)} exp(−1

2
‖xk − µµi‖266−1)66

−1(xk − µµi)

Since exp{exp(−1
2‖xk − µµi‖266−1)} is always larger than 1, this function

decreases faster than the Gaussian function itself. For its integral to be
the same as that of the Gaussian, cw must be larger than (2π)−

d
2 |66 |− 1

2 ,
the coefficient of the Gaussian.

Substituting cw for equation 31, which does not depend on specific
distribution functions, and setting q to be zero yields

µµi =
∑n

k=1 P(ωωi|xk, µµ) exp(−1
2‖xk − µµi‖266−1)xk∑n

k=1 P(ωωi|xk, µµ) exp(−1
2‖xk − µµi‖266−1)

i = 1, . . . , c. (38)
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This means that µµi is formed as a weighted summation of the xk, sug-
gesting an iterative procedure.

From the Bayesian rule,

P(ωωi|xk, µµ)=
P(ωωi)cw exp{exp(−1

2‖xk − µµi‖26−1)}∑
i P (ωωi)cw exp{exp(−1

2‖xk − µµi‖26−1)} + aP (ωω0)

(39)

Compared with using the Gaussian distribution, for points close to µµi,
P(ωωi|xk, µµ) is even closer to 1, because cw is larger than (2π)−

d
2 |66 |− 1

2 .
This confirms that using the exponential of a Gaussian does produce
more robust results than using the Gaussian itself.

We now have an iterative procedure,

µµi(t + 1)=
∑

xk⊂R w(xk, µµi(t))xk∑
xk⊂R w(xk, µµi(t))

(40)

where w(xk, µµi(t))= exp{−1
2 (xk −µµi(t))

T 66(xk −µµi(t))} and R is defined
as the range within which points are classified as belonging to class ωωi.
This equation shows that the center is a weighted mean of the points,
with the points close to the center having larger weights, while points
less close to the center have smaller weights. It agrees with our intuition.
It can be proven that Equation 40 is actually an extension to a larger
dimension of the 1D Welsch M-estimator [29].

The denominator can actually be used as a measure of the concentra-
tion of points. It does not merely count the number of points, but also
takes the distribution into account. The more concentrated the points
are, the higher the value. Renaming the denominator as C, we have

C =
∑

xk⊂R

exp{−1
2

(xk − µµi)
T 66−1(xk − µµi)} (41)

Only those classes whose concentrations are higher than a threshold are
regarded as indicating true epipolar equations.

Disparity and Spatial Disparity Space
Assuming that the epipolar geometry is recovered, finding correspon-
dence between two motion images, or between a model view and an
input view, is similar to that in stereo matching. Here we define disparity
as the displacement of a pair of corresponding points along the epipolar
lines in the two images.

Defining Disparity
It is easier to define disparity for images taken under the weak per-
spective projection. For how to define disparity under full perspective
projection, see [29]. Given the coefficients of the epipolar equation, we
can define the following transformation[

ū

v̄

]
=
[

cos α sin α

− sin α cos α

] [
u

v

]
(42)

and [
ū′
v̄′
]
= ρ

[
cos γ sin γ

− sin γ cos γ

] [
u′
v′
]
+
[

0
−λ

]
(43)
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such that every pair of corresponding points in the two new images have
the same vertical coordinates.

v̄ = v̄′ (44)

This situation is the same as the standard stereo images in the parallel
camera case. It is thus easy to define the disparity. It is simply the differ-
ence between the horizontal coordinates of the corresponding points in
the two new images,

d = ū− ū′ (45)

For a point (u, v), given disparity d, its correspoding point in the other
image (u′, v′) can be directly computed as[

u′
v′
]
= 1

ρ

[
cos γ − sin γ

sin γ cos γ

] [
cos α sin α

− sin α cos α

] [
u

v

]
+ 1

ρ

[
cos γ − sin γ

sin γ cos γ

] [−d

λ

] (46)

For the other direction, given a point (u′, v′) and d, the corresponding
point (u, v) is computed by the following equation,[

u

v

]
= ρ

[
cos α − sin α

sin α cos α

] [
cos γ sin γ

− sin γ cos γ

] [
u′
v′
]

+
[

cos α − sin α

sin α cos α

] [
d

−λ

] (47)

Spatial Disparity Space and Smoothness
Looking for a correspondence for each point is the same as determining
disparity for each point. This problem can be intuitively represented as a
search in a 3D space, with the image as the first and second dimensions
and disparity as the third dimension. This space (called Spatial Disparity
Space or SDS) was originally proposed by Yang et al. for stereo matching
[30].

Figure 3 gives an illustration of the space. Let us explain what SDS
represents and how the constraints can be rephrased in terms of SDS.

A point (u, v, d) means a pair of correspondences between (u, v) in
the first and (u′, v′) in the second image which has the disparity of
d. The uniqueness constraint simply means that in SDS, each column
(u, v) can have only one active point, that is, one disparity. If each
column has only one active point, then the active points form a surface.
The continuity constraint can be understood as a requirement that the
neighboring columns should have continuous disparities. If there is a
jump in disparity, it means a discontinuity.

In stereo, to find correspondence for each point in the left image is the
same as finding a surface in SDS with u− v coordinates identical to the
left image. Usually we impose the smoothness constraint on matching,
which is the same as requiring the surface to be as smooth as possible
(there are several different mathematical representations for quantitiz-
ing smoothness [19]).

In motion, when there are different rigid motions, as long as their
epipolar equations have been recovered, we can add as many blocks of
SDS as there are motions, so that each block represents one motion. The
uniqueness constraint applies again. That is, each column can have only
one active node along it, no matter how many blocks there are, and no
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Figure 3. Spatial Disparity Space for
stereo matching.

u

v
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Figure 4. The Extended Spatial
Disparity Space for multiple motions.
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matter in which block the active node resides. We call this multi-block
Spatial Disparity Space Extended Spatial Disparity Space, or ESDS.

Figure 4 gives an illustration of ESDS. Note that there are inactive
insulator layers between every two neighboring blocks, so that local
operations do not cover two different blocks. Also note that for 2D affine
motions, each block has only one layer, which does not represent a range
of possible disparities, but only represents whether that point belongs to
a particular 2D affine motion.

In object recognition, once a possible epipolar equation is recovered,
the SDS can be established in the same manner as in stereo. Each node
represents a match between a point in the model image and a point in
the input image.

If the u − v coordinates of the ESDS are identical with the model
image, then the task is to find which node is the true match. In this case,
there is only one block.

VIDERE 1:1 A Unified Approach to Image Matching and Segmentation 36

Videre rough pages 1997/9/10 14:26



If the u− v coordinates of the ESDS are identical to the input image,
the ESDS can represent the problem of finding identities for all the
parts of the input image in the model database. Each part of the input
image is matched against a particular model under a particular epipolar
equation. The final result is a set of models that match individual parts
of the input image. In this case, the problem is similar to that in multiple
motions.

As always is the problem in matching, there are multiple candidates
for correspondence. In terms of SDS, initially there are more than one
active nodes for each column, of which at most one is correct. The
problem of matching is to find out which candidate is the correct one.

The constraint commonly used for choosing one from the multiple
candidates is the smoothness constraint. That is, the candidates that
maximize a particular measure of smoothness over the whole visual field
are selected as the matches. This is based on observations that surfaces
in our physical world are always smooth except at discontinuites. [19]

Uncalibrated Stereo
Matching different images of a single scene remains a difficult task,
despite many years of research. The only geometric constraint between
two images is the epipolar constraint. However, in uncalibrated stereo,
the epipolar geometry is unknown, because motion between two images
can be arbitrary in this case. It is very important to develop a robust
technique to match two uncalibrated images, which is the basis not only
for stereo, but also for object recognition using model views.

The approach we propose aims at exploiting the only geometric con-
straint, i.e., the epipolar constraint, to establish robust correspondences
between two weak perspective images of a single scene [26]. How-
ever, in order to reduce the complexity of the algorithm, we still exploit
heuristic techniques to find an initial set of matches. We first extract
high curvature points, and then match them using a classical correla-
tion technique, followed by a new clustering technique. More precisely,
our algorithm consists of three steps:

Establish initial correspondences using some classical techniques.
Estimate robustly the epipolar geometry.
Establish correspondences using estimated epipolar geometry as in
classical stereo matching.

The basic idea is first to estimate robustly the epipolar geometry, and
then reduce the general 2D image matching problem to 1D stereo match-
ing.

Note that Zhang et al. have proposed a matching technique for uncal-
ibrated images under full perspective projection [32]. Since we assume
weak perspective projection, computation is simpler in our technique,
which allows us to simultaneously detect multiple epipolar equations
for the case of multiple rigid motions.

Tentative Matching Between Feature Points by
Correlation and Rotating Correlation Windows
First, feature points corresponding to high curvature points are extracted
from each image. There are several techniques. Here we use the one
proposed by Deriche et al. [2].

Since the epipolar geometry is not yet known, the search for a cor-
respondence should be performed, theoretically, on the whole image.
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Given a feature point m1 in image 1, we use a correlation window of size
(2n+ 1)× (2m+ 1) centered at this point. We then perform a standard
correlation between point m1 in the first image and all feature points m2
in the second image.

For a pair of points to be considered a match candidate, the correla-
tion score must be higher than a given threshold. For each point in the
first image, we thus have a set of match candidates from the second im-
age (the set is possibly null); and at the same time we have also a set
of match candidates from the first image for each point in the second
image.

In uncalibrated stereo, the images may have been taken by cameras in
different poses, thus large image torsions are possible. To deal with this
problem, we have to allow the image windows to rotate. It is sufficient
to rotate image windows in only one of the images. Since the two images
play a symmetric role, rotating either of them is the same. Let us rotate
windows in image 1.

There is no definite answer to the question of resolution of rotation
angles. Empirical data show that 16 angles are usually sufficient. Each
angle represents 22.5 degrees. Let us call them αk, k = 1, . . . , 16. Now
for each feature point in image 1, we can prepare 16 windows.

If there are M feature points in image 1 and N feature points in image
2, then we have to compute the matching scores for 16×M× N times.

Since here we assume that the scene is stationary, it is not possible to
have feature points being matched with largely different rotation angles.
This is especially true for the weak perspective projection, as the image
torsions α and γ are everywhere identical in the images.

This property implies that if the image is rotated for the correct angle,
then matching scores should be high for all the corresponding feature
points with that rotation angle. Under the weak perspective projection,
this angle corresponds to θ . If we rotate image 2 by θ , then the correla-
tion will give high matching scores for all corresponding feature points
with that rotation angle θ . This suggests a histogram algorithm for evalu-
ation of the rotation angle. As in the last subsection, if the score is higher
than a predetermined threshold, that pair of feature points is considered
a match candidate, with rotation angle θk. We can define an indicator
S(m1i, m2j , θk) for the pair of points m1i, m2j with angle θk, which is 1
if the score is higher than the threshold, and 0 otherwise. Now we can
further define a counter for θk,

C(θk)=
∑

i=1,M

∑
j=1,N

S(m1i, m2j , θk), k = 1, . . . , 16.

Once a single outstanding peak is found, only the match candidates
with this particular rotation angle are used for later processes. Usually,
ambiguity remains to be cleared.

Unique Correspondence by Robust Estimation
of Epipolar Geometry
Using the correlation technique described in the previous subsection a
point in the first image is usually paired to more than one point in the
second image (which we call match candidates), and vice versa. For weak
perspective images, there are only 4 degrees of freedom in the epipolar
geometry. We can apply the clustering technique to robustly estimate
the underlying epipolar geometry. The clustering technique is also good
at rejecting outliers. To produce a hypothesis of epipolar geometry, we
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Figure 5. If a particular match
candidate is inconsistent with other
match candidates, it can be removed
by computing the sum of relative
distance differences with respect to
all other match candidates. O O’

Image 1 Image 2

need 4 pairs of point matches, which project onto the parameter space
as a pair of points. To limit the number of points that lie outside the
clusters, we need to further reduce the ambiguity in the initial matches.
The essence here is that relative distances among neighboring points do
not change drastically between images.

Suppose that we are given a list of match candidates uk =
[uk, vk, u′k, v′k]T , k = 1, . . . , n between point [uk, vk]T in the first image
and [u′k, v′k]T in the second image. We now define the relative distance
difference between uk and ul as

rkl =
√

(uk − ul)2 + (vk − vl)2 −
√

(u′k − u′l)2 + (v′k − v′l)2√
(uk − ul)2 + (vk − vl)2 +

√
(u′k − u′l)2 + (v′k − v′l)2

(48)

To measure consistency of a particular match candidate uk with other
match candidates, we compute

Rk =
n∑

l=1,l 6=k

rkl (49)

As illustrated in Figure 5, if a particular match candidate is inconsis-
tent with other match candidates, R tends to be very large. If it is larger
than a threshold, then it is discarded from the list without further con-
sideration. By doing so, the number of match candidates can be further
reduced. In general, however, matches are still not unique.

In our current implementation, the threshold is the average of R for
all match candidates.

To generate one hypothesis of epipolar geometry we need 4 point
matches. If we generate groups of 4 point matches randomly, the num-
ber of generated hypotheses can become very large, if the number of
feature points is over 10 or 15. The strategy we use to limit the num-
ber of hypotheses is to only generate local groups of point matches. For
each pair of match candidates, we only generate groups by finding the 3
closest neighbors.

As illustrated in Figure 6, for a pair of points O and O′, we find the
3 closest neighbors for O. As the neighboring points do not necessarily
have unique matches, there is usually more than one group of 4 point
matches. For each group, we compute the relative distance difference r

using Equation 48. If one of the match candidates causes inconsistency,
then this group is discarded. If no group remains for the current 3
neighbors, then the trouble-making neighbor is removed, and the next
closest neighbor is chosen to form new groups, until at least one group
passes the consistency check.
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Figure 6. If a particular match
candidate in the neighborhood
is inconsistent with other match
candidates, it is removed and the
next closest neighbor is chosen.

Image 1 Image 2

A’

O O’

A

C

B B’

C’

For each group that passes the consistency check we compute one
epipolar geometry, and project two points corresponding to the same
epipolar geometry onto the parameter space. And after this, the clus-
tering algorithm described in Section 4 is applied to find clusters in the
parameter space. The corresponding epipolar equations are determined
by substituting the motion parameters of the cluster centers for (8).

Once the epipolar equations are determined, we can check which
initial match candidates satisfy the epipolar equation while keeping con-
sistent with other matches. By doing this, the individual match that did
not have chances to form correct groups can also be found.

Image Matching with the Recovered Epipolar
Geometry
Once the fundamental matrix has been determined robustly, we can use
the recovered epipolar constraint to determine correspondence for other
image features, such as edge points.

Under the weak perspective projection, once the epipolar equations
are recovered, disparity can be defined according to (45). Then the
matching of edge images can be greatly simplified by making use of this
constraint. We can construct the Spatial Disparity Space, in which all
possible matches are represented as an active node. We need not search
over all the image, once feature points like corners have been matched.
The disparities for the matched feature points are computed and used as
a rough estimate of the disparity range we need to search over.

Next, the task is to choose only one match for each edge point and
delete all others by maximizing the smoothness in the SDS. A stochastic
measure of smoothness can be defined as

E(u, v, d)=
∑

u

∑
v

1u∑
i=−1u

1v∑
j=−1v

(1dmin(u+ j , v + j))2

i2 + j2 (50)

where 1dmin(u + j , v + j) is the possible minimal difference between
d(u, v) and other active nodes for (u+ j , v + j).

There are different algorithms to minimize this energy. We found in
our examples that minimizing the energy independently for each edge
point gives sufficiently good results, because the search range is quite
limited due to knowledge of feature point matching. This algorithm
is possibly the simplest among all possible minimization algorithms.
It is also used in our approaches to the motion correspondence and
segmentation problem, and to the object recognition and localization
problem, as described in the following sections.
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Figure 7. Two uncalibrated views of
a Mac computer.

Figure 8. Clusters found for two
views of a Mac computer: α1 =
−6.553879, α2 = 175.980881, θ1 =
−2.845327, θ2 =−2.244064, ρ1 =
0.996819, ρ2 = 0.999406, λ1 =
−5.645007, and λ2 = 2.335877.

An Example of Matching Uncalibrated
Stereo Images
Using the techniques described so far, we have successfully found the
epipolar equation of the following pair of uncalibrated stereo images
and matched the two images using the recovered epipolar equation.

Figure 7 shows two uncalibrated images of a Mac computer. Assum-
ing the two images are taken by a weak perspective camera, we first
extract feature points from the images, find possible matches by rotated
template matching, and then use the inconsistency check to exclude in-
consistent matches. From each pair of matches, the closest 3 neighbors
in the first image are located, which form groups of 4 pairs of point
matches. For each group, if the 4 pairs of matches are consistent with
each other, an epipolar geometry is determined. If no group remains
after the consistency check, then the trouble-making neighbor is found
and removed, and the next closest neighbor is included. This process
repeats until we can determine epipolar geometry. The computed epipo-
lar geometries are then projected onto the motion parameter space, and
clustering technique is used to find clusters in it. The result is shown in
Figure 8. The concentration of the clusters for the true epipolar geome-
try is several times larger than other “clusters.” The feature points that
satisfy the recovered epipolar equation are numbered and shown in Fig-
ure 9. The epipolar equation is then recomputed using these matched
points as

0.003u− 0.591v − 0.056u′ + 0.576v′ + 10.0= 0

The edge images (Figure 10) are then matched using the recovered
epipolar equation. The matched edge points in image 2 with respect to
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Figure 9. Matched feature points are
marked by the same numbers.

Figure 10. Edges in the two images.

Figure 11. Edge points matched in
image 1 with respect to image 2.

image 1 are shown in Figure 11. It can be seen that most edge points
are correctly matched. The unmatched points near the upper left and
bottom right corners are due to the mispositioning of epipolar lines for
a few pixels along the perpendicular direction.

The matched edge images can be used as model views for recognizing
and localizing the Mac computer in other images. See Section 8.
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Multiple Rigid Motions: Correspondence
and Segmentation
Motion correspondence and segmentation has been one of the main
research topics in computer vision.

We start with matching feature points like corners and junctions de-
tected by a corner detector and match them by template correlation.
They are then grouped by the epipolar constraint. The obtained epipolar
equations are then used for correspondence, as the epipolar constraint
reduces the search space from 2 dimensions to 1 dimension, thus elim-
inating the “aperture” problem. It looks like a problem of stereo match-
ing, but it differs in that there is more than one set of epipolar lines in
the images and the boundary is not given.

Segmenting Multiple Motions by Matching
Feature Points
Now given two images, we first match feature points by template cor-
relation techniques. Secondly, to find the epipolar equations underlying
the two images, we use the generate-and-test strategy, that is, we gener-
ate hypotheses of groups of matched points, compute epipolar equations
for them, and then see which are shared by many points. The clustering
algorithm is discussed in detail in Section 4.

The procedure is:

1. Find corners, junctions, and other feature points in the two images.
2. Establish correspondence between the two sets of feature points by

computing correlation between local image patterns around feature
points.

3. For each matched point in image 1, find the k(k ≥ 3) (in the current
implementation, k is 6) closest neighbors, and form a group for each
combination of 3 neighbors.

4. For each group, compute the epipolar equation and the correspond-
ing motion parameters; if the points undergo a 2D affine motion (if
the third eigenvalue of W is smaller than 1.0 in this implementa-
tion), then determine the 2D affine motion equations and motion
parameters; if the computed motion parameters are too large, dis-
card the group.

5. Find clusters in the motion parameter space.
6. For each cluster, compute the epipolar equation.
7. Merge individual matches that satisfy the epipolar motion equa-

tions.

In the current implementation, k is 6. Due to the limited number of
feature points in each image, the computation is not as terrible as one
might imagine, even though we have to determine the equations for
each combination of local groups. Moreover, much of the computation
can be done in parallel. The 2D affine motions, if any, can be found in
the same way.

We have implemented the algorithm to recover the multiple epipo-
lar equations from feature matching in motion images. Two image se-
quences are used. One is taken by a moving camera of a scene including
a static background and a moving soccer ball. Since the camera is mov-
ing, every point in the image is apparently moving. The second image
sequence is taken by a static camera of a scene in which two soccer balls
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Figure 12. Motion image 1 (left) and
motion image 2 (right).

Figure 13. The optical flow of feature
points.

Figure 14. The clusters for the 2
balls in motion parameter space.
There are too few points from
the background to form a cluster.
For ball 1, α1 = 66.773567, α2 =
−122.562492, θ1 = −7.010643,
θ2 = −7.681648, ρ1 = 1.007331,
ρ2 = 1.013413, λ1 = −27.145382,
and λ2 = 29.840086. For ball 2,
α1= 129.210052, α2=−50.059856,
θ1 = −9.476761, θ2 = −9.445133,
ρ1 = 0.992618, ρ2 = 0.990300, λ1 =
−0.544330, and λ2 =−0.357600.

move independently in front of a static background. Thus there are three
motions: the two balls undergoing rigid motions represented by epipolar
equations, and the background represented by a 2D affine motions. We
only have space to show the results for the second sequence.

First, feature points are detected by a modified feature detection
operator, see [1, 10]. They are matched through the image sequence
(as long as possible). Since the motion between successive images may
not be sufficient for clusters to emerge in the motion parameter space,
the decision is prolonged until the motion flows are long enough to
determine reliable epipolar equations.

Figure 12 shows an example where there are two balls moving inde-
pendently; Figure 13 shows the flow of the feature points. The clusters
for the two balls are located in the motion parameter space shown in Fig-
ure 14. The results of segmentation of the flows are shown in Figure 15.
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Figure 15. The flows of ball 1 (left)
and ball 2 (right).

Figure 16. Disparities defined along
multiple epipolar lines.

epi-line 1

epi-line 2

1st image 2nd image

.

.

Note that the clustering is not necessary for every pair of consecutive
images. Actually, once the feature points are classified into different mo-
tions and objects, the groupings can be kept through the image sequence
as long as they are visible.

Matching and Segmenting Edge Images
with Known Epipolar Equations
Once the epipolar equation is known, by rotating the two images so that
the corresponding points always lie on the same horizontal lines, we can
define disparity by d = ū− ū′. To find correspondence for each point is to
find which epipolar geometry it belongs to, and to determine its motion
disparity associated with that epipolar geometry.

The problem is best illustrated in Extended Spatial Disparity Space.
As shown in Fig. 41, the Extended Spatial Disparity Space (ESDS) has
m layers. Fi represents an epipolar motion. For SDS, there is only one
such layer. In ESDS, each node represents a possible correspondence
between I1 and I2, thus a disparity under one of the epipolar geometry.
The height of each layer corresponds to the disparity range, which may
be different from motion to motion. If we allow the disparity changes
from −D to D, then the disparity range will be 2D + 1.

For the 2D affine motions, the thickness of each layer is only 1 pixel,
because the motion is completely determined.

For each edge point in the first frame, we find out the possible corre-
sponding edge points in the second frame, for which the corresponding
disparity, or corresponding nodes in the ESDS, are marked active. The
operation is illustrated in Figure 16.

For each column, we usually have multiple active nodes (in Figure 16
there are two epipolar lines and 4 active nodes), thus making it nec-
essary to use the smoothness constraint to choose only one from among
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Figure 17. The box range for count-
ing support from neighboring edge
points.

S

S
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x
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d
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.

the 4 candidates. It can be easily seen from Figure 16 that correct match-
ing does have smoother disparity changes.

The criterion for selection is the smoothness constraint. That is, we
select the disparity that is least different from the disparity values of its
neighbors. For each disparity, we define a box centered at that node,
with the size to be Sx, Sy and Sd (Figure 7). Each active node within the
box is counted (since these represent possible disparities), according to
a point system, which gives 2 points if there is no disparity difference,
1 point if the disparity difference is equal to 1 pixel, and 0 points oth-
erwise. This is a kind of support for the disparity from neighbors. The
higher the total number of points is, the more neighboring points have
similar disparities. This, as a smoothness measure, is different from the
derivatives defined for a continuous field. Here, for discrete edge points,
we can only define a kind of stochastic measure for smoothness.

The total score for a node C(u, v, d) is defined as

C(u, v, d)=
∑
y∈Sy

∑
x∈Sx

max
d∈Sd

P (x, y, d) (51)

where P(x, y, d) is the score that the node (x, y, d ′) contributes to
C(u, v, d):

P(x, y, d)=
{

2 d − d ′ = 0
1 d − d ′ = ±1
0 otherwise

Along each column in the ESDS, or for each image point (u, v), the
disparity node which has the largest count is selected as the true match,
and the motion that this disparity represents is the motion that this edge
point belongs to.

As the disparity value cannot change very much between successive
images, this simple measure gives a good estimate of the disparity varia-
tion. Experimental results show astonishingly good correspondences and
correct segmentation between edge images.

We have tested the above algorithm to a number of motion images.
Figure 18 shows a pair of edge images taken out from the second

image sequence. The epipolar equations for the two moving balls and
the motion equations for the background are computed and used for
matching the two edge images. The results are shown in Figure 19 for
ball 1 and ball 2, and in Figure 20 for the background.

It can be seen from these figures that most of the edge points are
correctly segmented. This is encouraging, because we used only very
simple local operations. Some of the misclassified edge points are due
to poor performance of the edge detectors, which fail to detect some
edge points at important locations. For more about this approach, refer
to [28].
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Figure 18. Motion image 1 (left) and
motion image 2 (right).

Figure 19. Segmented ball 1 (left)
and 2 (right).

Figure 20. The matched edge points
for the background.

3D Object Recognition and Localization
The conventional approaches to 3D object recognition are mostly based
on 3D object models. Unfortunately, however, 3D data are not always
available for every object. Therefore, it is a natural choice to avoid 3D
models and to use 2D model views instead. Then the problem becomes
one of matching between model images, and matching between a model
image and an input image. Again the epipolar constraint can be ap-
plied.

Recognition and Localization with
a Single Model View
Using only one model view for 3D object identification is essentially an
underconstrained problem in two senses [27]. First, there is no guaran-
tee that we will be able to find a set of unique correspondences. Second,
even if we can find a unique solution, there is no guarantee that the two
views are of the same object. One extreme example is that some objects
may appear completely the same in an image but differ in 3D shape.
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On the other hand, we believe that many things can be done with
just one model view. Though the case of same-appearance-different-
shape is possible in theory, this is a rare case in practice. It is excluded
from consideration in computer vision from the standpoint of general
viewpoint. Our hope is that our approach can at least reduce the possible
matches in a large object database to a manageable number, sometimes
to only one. In the case of multiple solutions, we can then use a second
model view to remove the ambiguity. This is described later.

The problem of matching a model view with an input view is simi-
lar to that of matching uncalibrated stereo images. However, there are
two major differences between them. First, since in general there are
also other objects than the target object, there is inherently more am-
biguity in the data. Secondly, while in object recognition the lighting
conditions may change significantly, in stereo we can assume that the
two images are taken at the same time, thus the lighting conditions do
not change very drastically between them. Therefore, the problem of
matching model and input views is generally more difficult.

Basically, we use the same procedure as that used for matching uncal-
ibrated stereo images.

Find corners, junctions and other high curvature points as feature
points.
Find match candidates between the two sets of feature points by
correlation technique, while allowing identical image torsions.
Form groups of neighboring 4 pairs of matches whose spatial rela-
tions are preserved.
Estimate an epipolar equation for each such group, and find clusters
in the motion parameter space.
Match edge points using an estimated epipolar equation.

For details of each step, see Section 6.
Since there are feature points from other objects in the input image,

there is a higher possibility that the true match is not found or not in-
cluded in match candidates. And this possibility increases as the number
of feature points from other objects increases. Since we use the local
image pattern correlation to find match candidates, this possibility, of
course, also depends on how the image patterns of target object and
other objects resemble each other. If they look different, then the possi-
bility does not increase. However, if they look similar, then the possibility
increases.

The above algorithm was tested with the example of an office scene.
The Mac computer was placed in an office, and an input image (Fig-
ure 21) was taken with the background included. The two images used
in “An Example of Matched Uncalibrated Stereo Images” are separately
used here as model views to locate the Mac computer in the input im-
age. The feature points in all these images are first extracted. Using the
procedure described above, the feature points in Mac image 1 and in the
input image are matched. The clusters found are shown in Figure 22,
and the matched points are numbered and shown in Figure 23.

The edges in the input image, and the edge points corresponding to
those in the model image found in the input image using the recovered
epipolar equation, are shown in Figure 24.

The same things can be done between the second Mac image and the
input image. The clusters found are shown in Figure 25, and the matched
points are numbered and shown in Figure 26.
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Figure 21. Input view with back-
ground.

Figure 22. Cluster found between
the first model view and the input
view of the Mac computer: α1 =
3.400936, α2 = 173.576248, θ1 =
−4.769201, θ2 =−5.203446, ρ1 =
1.059555, ρ2 = 1.051757, λ1 =
44.560696, and λ2 =−45.441090.

Using the recovered epipolar equation, edge images can also be
matched. The edge points corresponding to those in the second model
image are found in the input image and shown in Figure 27, together
with the original input edge image.

To see how the epipolar equation affects the matching of edge images,
we matched the model edge image and the input edge image by the
same matching algorithm using a wrong epipolar equation. The matched
edge points in the input edge image are shown in Figure 28 together with
the input edge image. As expected, the edge points are not smooth.

To compare with the result using the correct epipolar equation, we
compute the energy defined in (50) for the matching result using correct
epipolar equation and that using wrong epipolar equation.
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Figure 23. The matched points are
marked by numbers in model image
1 (left) and in the input image
(right).

Figure 24. Edges in the input image
(left). Edges in the input image
matched with respect to model
image 1 (right).

Figure 25. Clusters found between
the second model view and the
input view of the Mac computer:
α1=−2.713166, α2= 177.041748,
θ1 = 1.943668, θ2 = 1.194336,
ρ11.154302=, ρ2= 1.156942, λ1=
96.984818, and λ2=−93.706825.

Recognition and Localization with Multiple
Model Views
While recognizing a 3D object with one model view is inherently under-
constrained, using two model views (which must be different) is the-
oretically sufficient. This conclusion can be obtained from the linear
combination theorem by Ullman and Basri [25], and from trifocal ten-
sor theory [18]. In the following, we first show that the intersection of
epipolar lines is not an appropriate representation, then we derive the
linear combination expression by representing the image coordinates as
basis vectors, from which we can easily determine how to choose basis
vectors.
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Figure 26. The matched points are
marked by numbers in model image
2 (left) and in the input image
(right).

Figure 27. Edges in the input image
(left). Edges in the input image
matched with respect to model
image 2 (right).

Figure 28. Edges in the input image
(left). Edges in the input view
matched with respect to model
image 2 using a wrong epipolar
equation (right).

Intuitively, with two model views, we can draw two epipolar lines in
the input image, and the corresponding point should coincide with their
intersection.

Suppose we have two model views. We denote points in the first and
second model views by (u′, v′) and (u′′, v′′), respectively, and a point in
the input view as (u, v). If the corresponding points in the three views
have been identified, then we have three epipolar equations

P1u+Q1v + S1u
′ + T1v

′ + C1 = 0 (52)

P2u+Q2v + S2u
′′ + T2v

′′ + C2 = 0 (53)

P3u
′ +Q3v

′ + S3u
′′ + T3v

′′ + C3 = 0 (54)

only two of which are independent. To solve for the coefficients, we need
at least 4 triples of points. Once the coefficients are determined, we can
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express a point in the input view by its corresponding points in the two
model views,[

u

v

]
=−

[
P1 Q1
P2 Q2

]−1 [
S1u
′ + T1v

′ + C1
S2u
′′ + T2v

′′ + C2

]
(55)

Visually, point (u, v) is the intersection of the two epipolar lines. It is
thus natural, that if the two lines are parallel, or if the two equations
(52) and (53) are not linear-independent, then increasing the number
of model views does not solve the problem. Visually, this means that if
the epipolar lines overlap each other, then there is an infinite number of
solutions for (u, v).

There is another way of determining the coefficients of the linear
combination, by using the concept of basis vectors. This does not require
the epipolar lines to be parallel [29].

From the two model views of the Mac computer, we have tried to use
the matched edge points in the model views to synthesize the Mac image
so that it superimposes with that part in the input view.

Using the techniques described above, we can first match the feature
points in the two model views and the input view, and then match the
edge points using the recovered epipolar equations.

Let us denote a point in the input view by (u, v), a point in model
view 1 by (u′, v′), and a point in model view 2 by (u′′, v′′). Then the three
recovered epipolar equations for (u, v)− (u′, v′), for (u, v)− (u′′, v′′) and
for (u′, v′)− (u′′, v′′) are respectively

0.059751u′ − 0.677430v′ − 0.107834u+ 0.725183v − 38.169512= 0

0.038198u′′ + 0.673137v′′ − 0.064981u− 0.735666v + 56.323223= 0

0.012576u′ + 0.712034v′ + 0.054180u′′ − 0.699938v′′ − 11.399557= 0

For the two model views, α and γ are −1.011837◦ and 3.414448◦,
respectively. If we choose 3 basis vectors, then u′, u′′ and v′′ should be
chosen such that the basis vectors are as separate as possible (see [29]).

From the epipolar equations, we can determine the equations for
linear combination as

u= 0.417222u′ + 0.518943u′′ − 0.013828v′′ + 37.847492

v =−0.036853u′ + 0.006085u′′ + 0.916225v′′ + 73.217812
(56)

Note that we can also use 4 basis vectors instead of 3.
Using (56), an edge image is synthesized and superimposed with

the input view (Figure 29). The synthesized edges are shown in black,
and the edges in the original input view in gray. It is evident that the
synthesized data is very close to the data in the input view.

Conclusion
In this paper I have shown a unified approach to the correspondence and
segmentation problems in stereo, motion, and object recognition by re-
covering the epipolar geometry underlying the images. Algorithms are
proposed to solve the specific problems of recovering multiple epipo-
lar geometries from the images, modeling the difference between the
images as one-dimensional disparities in the Spatial Disparity Space,
and matching the edge images by smoothness. The experimental results
show that this new approach to motion and object recognition is simpler
and more effective when compared with the conventional ones. There is
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Figure 29. Synthesized edge image
superimposed with the original input
view.

a question of the performance of the epipolar geometry recovery algo-
rithm when the number of feature points becomes large. Further study
is being conducted on this.
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