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We present a novel technique for
effectively calibrating a binocular
stereo rig using the information
from both scenes and classical cal-
ibration objects. The calibration
provided by the classical methods
is only valid for the space near the
position of the calibration object.
Our technique tries to make the
best use of the rigidity of the ge-
ometry between two cameras. The
idea is to first estimate precisely the
epipolar geometry which is valid
for a wide range in space from
all available matches, extracted
from both the environment and the
calibration objects. This allows us
to conduct an accurate projective
reconstruction. Using the a pri-
ori knowledge of the calibration
object, we are finally able to cali-
brate the stereo rig in a Euclidean
space. The proposed technique
has been tested with a number of
real images, and significant im-
provement has been observed. A
WWW demo with more examples
and experimental data is available
at http://www.inria.fr/robotvis/
personnel/zzhang/
CalibEnv/CalibEnv.html.
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Introduction
The technique described in this article has been developed as part of a
perception system for applications of planetary intervention, although
the technique itself can be used in other applications. A correlation-
based binocular stereovision system has been chosen because of its ro-
bustness. Since a metric reconstruction of the environment is necessary
for the path planning and navigation of the planetary rover, the stereovi-
sion system must be calibrated strongly, in the sense that a 3-D Euclidean
reconstruction can be performed. The calibration should be performed
on site, because if we do it before launching it will soon not be valid due
to, for example, vibration and temperature variation during the flight.

Classical calibration techniques first estimate the perspective projec-
tion matrix for each camera, and then deduce the epipolar geometry
from the projection matrices. The calibration of each camera is per-
formed by observing a calibration object whose geometry is known with
a very good precision in 3-D space, and can be done very efficiently. This
is illustrated in Figure 1, where the calibration apparatus is a two-plane
model, on which a checker pattern is painted. The coordinates of the
corners on the checker pattern are known precisely with respect to a co-
ordinate system attached to this apparatus. However, this approach is
difficult to bring into operation for space applications, because human
interaction is usually required to place the calibration apparatus such
that it is visible from both cameras. Since, up to now, there is no robust
and fully automatic self-calibration technique, the calibration object can-
not yet be thrown away, and we mount it on the vehicle. Furthermore,
the classical approach suffers from two problems:

The fact that the set of image points in one camera corresponds
to the set of image points in the other camera is not used in the
classical approach, which degrades the precision of the estimation
of the epipolar geometry.
The calibration is only valid for the volume around the position of
the calibration object. The performance of the calibration degrades
when we go away from that position.

The second problem is more critical in our situation. Because the cali-
bration object is mounted on the vehicle, its distance to the cameras is
only about 1.5 meters, and the range of interest is up to 10 meters or
more. Refer again to Figure 1. The circle around the calibration object
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Figure 1. Illustration of classical
camera calibration.

ROBOTVIS

illustrates the valid work volume within which the calibration is valid.
On the outside of it, the calibration will become worse and worse. The
reason is that calibration is a process of fitting a camera model to a set
of data. The model is only an approximation of the real camera, and
furthermore the data is noisy. The fitted model can describe well the ob-
served data, but not so for the space where no data is available. This
is similar to the problem of extrapolation in numerical analysis. Extrap-
olation is much more hazardous than interpolation, because much less
constraint is available for a point to be extrapolated. We can also con-
sider a dual example: if the calibration object occupies only a small part
of the image, the calibration will be poor for the other part of the image.

The calibration technique proposed in this paper overcomes the above
two problems:

The first stage of our calibration technique is to estimate the epipo-
lar geometry between two cameras by minimizing the sum of the
squared distances between points and their epipolar lines.
Matches from the environment, which do not belong to the calibra-
tion object, can and should be used in the estimation of the epipolar
geometry in order to increase its validity range.

Furthermore, our algorithm can take advantage of the rigidity of the
geometry between two cameras by incorporating matches established
at different instants, thus yielding an estimate of the epipolar geometry
asymptotically valid for the whole range.

The idea underlying our approach is based on the now well-known
fact that a projective structure can be reconstructed from two views
given that the epipolar geometry is known [3, 6]. If the positions of
a set of points are known in 3-D Euclidean space, then the projective
distortion matrix (collineation) can be computed to bring the projective
structure to a Euclidean one, which eventually allows us to recover the
camera projection matrices. Our method thus consists of the following
steps:

1. Estimate the epipolar geometry using all available information.
2. Compute the camera perspective projection matrices with respect to

a projective reference frame.
3. Reconstruct projectively the points belonging to the calibration ob-

ject in 3-D space.
4. Estimate the collineation matrix between the projective structure

and the known Euclidean structure.
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5. Compute the camera perspective projection matrices with respect to
the Euclidean reference frame attached to the calibration object.

Determining the Epipolar Geometry
of the Stereo
The most crucial step is determining the epipolar geometry, because
everything else depends on the precision of the estimated epipolar ge-
ometry. The epipolar geometry can be described by a 3 × 3 matrix F,
which is known as the fundamental matrix. This matrix is defined up to
a scale factor, and its determinant is zero. Thus, the fundamental matrix
is only defined by seven parameters.

In order to estimate the fundamental matrix, we must establish cor-
respondences between two images. In order to reduce the amount of
information to be processed, we first extract a set of points of interest in
each image, which correspond to points of high curvature. We then try
to match these points between images using a classical correlation tech-
nique, followed by a relaxation procedure which uses contextual infor-
mation (neighborhood) to disambiguate matching candidates. However,
as the two matching techniques use heuristics and the only geometric
constraint, i.e., the epipolar constraint, is not available, there exist in-
evitably a number of false matches. The false matches will severely affect
the precision of the fundamental matrix, or even make the estimation
useless, if we directly use the whole set of matches. For this reason, we
apply a robust technique called least-median-squares to detect these false
matches, in order to estimate accurately the fundamental matrix. The
idea underlying this technique is to find a fundamental matrix which
is consistent with a majority of matches by searching in the parame-
terization space. This is a very robust technique, and can detect false
matches as numerous as 50% of whole data. This stage has been fully de-
scribed in [11]. An automatic and robust algorithm has been developed
to estimate the unknown epipolar geometry, in terms of the fundamental
matrix, between two images.

All matched points are then used together to effectively estimate the
fundamental matrix F:

min
∑
i

wi

(
d2(mi, Fm′i)+ d2(m′i, FTmi)

)
where wi stands for the uncertainty measure associated to each mea-
sured point match (mi, m′i), and d(m, l) denotes the Euclidean distance
from point m to the line l. Linear and nonlinear criteria, as well as
different parameterizations for F, have been considered in [8, 11] to
accurately determine F.

Computing the Camera Projection Matrices
Once we have computed the epipolar geometry (in terms of the funda-
mental matrix) between two images, we are able to compute a projective
reconstruction of the scene. In this section, we show how to compute the
camera projection matrices with respect to a projective basis.

Factorization Method
Let F be the fundamental matrix for the two cameras. There are an infi-
nite number of projective bases which all satisfy the epipolar geometry.
One possibility is to factor F as a product of a skew matrix [e′]× (e′ is in
fact the epipole in the second image) and a matrix M, i.e., F= [e′]×M.
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Here [e]× is the skew matrix such that [e]×x= e× x (and× denotes the
cross product). A canonical representation can then be used: P= [I 0]
and P′ = [M e′].

The factorization of F into [e′]×M is generally not unique, because if
M is a solution, then M + e′vT is also a solution for any vector v. One
way to do the factorization is as follows [7]. Since FT e′ = 0, the epipole
in the second image is given by the eigenvector of matrix FFT that has
the smallest eigenvalue. Using the relation

‖v‖2I3 = vvT − [v]2× for all vector v ,

we have

F= 1
‖e′‖2 (e

′e′T − [e′]2×)F=
1
‖e′‖2 e′e′T F︸ ︷︷ ︸

0

+[e′]×
(
−[e′]×
‖e′‖2 F

)
︸ ︷︷ ︸

M

The first term on the right hand is equal to 0 because FT e′ = 0. We can
thus define the M matrix as

M=−[e′]×
‖e′‖2 F

This decomposition is used in [1].

Choosing a Projective Basis
Another possibility is to choose as a projective basis five pairs of points,
any four points of which not being coplanar, between the two cameras.
We can, of course, choose five corresponding points we have identified.
However, the precision of the final projective reconstruction will depend
heavily upon the precision of the pairs of points. In order to overcome
this problem, we have chosen the following solution. We first choose five
arbitrary points in the first image, noted by mi (i = 1, . . . , 5). For each
point mi, its corresponding epipolar line is given by l′i = Fmi. We can
now choose an arbitrary point on l′i as m′i, the corresponding point of
mi. Finally, we should verify that none of the four points are coplanar,
which can be easily done using the fundamental matrix ([3], credited
to Roger Mohr). The advantage of this method is that the five pairs of
points satisfy exactly the epipolar constraint.

Once we have five pairs of points (mi, m′i), (i = 1, . . . , 5), we can
compute the camera projection matrices as described in [3].

Which Method?
For the moment, the second method is used. Theoretically, the two
methods should produce identical results. It is, however, possible that
the results differ because of numerical stability due to the configuration
of the projective basis.

Projective Reconstruction
Now that the camera projection matrices of the stereo with respect to
a projective basis are available, we can reconstruct 3-D structures with
respect to that projective basis from point matches. This reconstruction
can be done for all matches, but for calibration purposes, we only need
to reconstruct those points corresponding to the calibration objects.

Given a pair of points in correspondence: m = [u, v]T and m′ =
[u′, v′]T . Let x̃ = [x, y, z, t]T be the corresponding 3-D point in space
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with respect to the projective basis chosen before. Following the pinhole
model, we have

s [u, v, 1]T = P [x, y, z, t]T (1)

s ′
[
u′, v′, 1

] = P′ [x, y, z, t]T (2)

where s and s ′ are two arbitrary scalars. Denote pi be the vector corre-
sponding to the i-th row of P, and p′i be the vector corresponding to the
i-th row of P′. The two scalars can then be computed as

s = pT3 x̃ s′ = p′3
T x̃

Eliminating s and s′ from Equation (1) and Equation (2) yields the
following equation:

Ax̃= 0 (3)

where A is a 4× 4 matrix given by

A = [p1 − up3, p2 − vp3, p′1 − u′p′3, p′2 − v′p′3
]T

As the projective coordinates x̃ are defined up to a scale factor, we can
impose ‖x̃‖ = 1, then the solution to Equation (3) is well known to be
the eigenvector of matrix ATA that has the smallest eigenvalue.

If we assume that no point is at infinity, then we can impose t = 1,
and the projective reconstruction can be done exactly in the same way
as for the Euclidean reconstruction.

The previous method has the advantage of providing a closed-form
solution, but it has the disadvantage that the criterion that is minimized
does not have a good physical interpretation. Instead, we can carry
out the minimization in the image plane, that is, we can minimize the
following criterion:

(u− pT1 x̃

pT3 x̃
)2 + (v − pT2 x̃

pT3 x̃
)2 + (u′ − p′1

T x̃

p′3
T x̃
)2 + (v′ − p′2

T x̃

p′3
T x̃
)2

Hartley and Sturm [5] show that it can be formulated as solving a
sixth order polynomial. We use any standard iterative minimization tech-
nique, where the initial estimate of x̃ can be obtained by using the above
closed-form technique.

We have implemented both methods. Our experiences show that
the improvement through the nonlinear minimization is rather small,
mainly because the points on the calibration pattern are very pre-
cisely localized. Other projective reconstruction techniques can be found
in [5, 9].

Estimating the Projective Distortion Matrix
Now we have reconstructed a set of 3-D points x̃i = [xi, yi, zi, ti]T (i =
1, . . . , n) with respect to a projective basis. For each of these points,
we know precisely its 3-D coordinates in a Euclidean reference frame,
because it belongs to the calibration object. Let the set of 3-D Euclidean
points be X̃i = [Xi, Yi,Zi, 1]T (i = 1, . . . , n). The projective points x̃i are
related to the Euclidean points X̃i by a collineation (a 4 × 4 matrix),
which we would like to call the projective distortion matrix D, i.e.,

λi [xi, yi, zi, ti]T = D [Xi, Yi, Zi, 1]T (4)
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or

λix̃i = DX̃i (5)

where

D=

D11 D12 D13 D14
D21 D22 D23 D24
D31 D32 D33 D34
D41 D42 D43 D44


and λi is an arbitrary scalar, because D is only defined up to a scale
factor.

From Equation (5), the two vectors x̃i and DX̃i are related by a
scalar. Let v = DX̃i = [v1, v2, v3, v4]T , then we have the following three
independent equations:

yiv1 − xiv2 = 0

ziv1 − xiv3 = 0 (6)

tiv1 − xiv4 = 0

Let x= [D11,D12, . . . ,D44]T be the vector of the 16 parameters of the
distortion matrix to be computed. It is easy to show that Equation (6) is
equivalent to the following equation:

Bix= 0 (7)

where

Bi =
 yiX̃Ti −xiX̃Ti 0 0
ziX̃Ti 0 −xiX̃Ti 0
tiX̃Ti 0 0 −xiX̃Ti

 (8)

Given n correspondences (X̃i, x̃i), we have n equations of the type
of Equation (7). The problem is then to estimate x by minimizing the
following error function:

F =
n∑
i=1

(Bix)2 = xT

 n∑
i=1

BTi Bi

 x (9)

Let B=∑n
i=1 BTi Bi, which is a symmetric matrix. As D is only defined up

to a scale factor, we can normalize x with ‖x‖ = 1. It is well known that
the solution to Equation (9) is the eigenvector of B corresponding to the
smallest eigenvalue of B.

Many other methods exist for estimating the projective distortion
matrix [10]. The above method is simple, but it is not clear what is
being minimized. We are currently evaluating different methods. One
meaningful cost function is the sum of squared distances between the
reconstructed points and the known 3-D Euclidean points:

F =
n∑
i=1

‖Xi − X̂i‖2

where X̂i is the vector consisting of the first 3 elements of D−1x̃i divided
by its fourth element.
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Figure 2. A two-plane model used in
the classical calibration technique.

Table 1. Comparison of average
distance with different fundamental
matrices. The underlined numbers
compare the calibration result with
the proposed technique and that
with the classical one for the “head”
image.

Distance (pixels)

Fundamental Matrix Two-Plane Head All

two-plane 0.10 1.90 1.19

head 5.22 0.90 3.63

all 0.18 0.97 0.72

Recovering the Euclidean Camera Projection
Matrices
Let the Euclidean camera projection matrices be M and M′. Following
the pinhole model, we have

s [u, v, 1]T =M [X, Y , Z, 1]T

s′
[
u′, v′, 1

]T =M′ [X, Y , Z, 1]T

Compare the above equations with Equation (1) and Equation (2), and
we have at once the Euclidean camera projection matrices given by

M= PD
M′ = P′D

Now the calibration of the binocular stereo is achieved. The calibration
matrices are estimated with respect to the world coordinate system asso-
ciated to the calibration object, but taking into account the information
from the environment.

Experimental Results
Here is an example. Figure 2 shows a stereo pair of a two-plane model
which is used by the classical calibration technique [4]. The two im-
ages are taken simultaneously. The corners (indicated by crosses) are
detected with very high precision by intersecting the lines of the check-
ered pattern. Since the coordinates of their corresponding points are
known in space, we can compute the perspective projection matrix for
each camera, from which we can deduce the epipolar geometry (de-
noted by Ftwo−plane). The average distance between the detected corners
and their epipolar lines is 0.1 pixels (see Table 1 for a comparison of the
results). This suggests that the calibration result is very good, as far as
the two-plane model is concerned, at this specific position.

VIDERE 1:1 An Effective Technique for Calibrating a Binocular Stereo 64

Videre rough pages 1997/9/10 14:26



Figure 3. The stereo pair of Hervé’s
head, together with several epipolar
lines given by the classical calibra-
tion technique.

Figure 4. Disparity map obtained
with the correlation technique using
Ftwo−plane. The darker a point is,
the closer it is to the cameras.
Completely white points are those
not correlated.

However, the calibration is not as valid for other parts of space. Fig-
ure 3 shows a pair of images taken by the same stereo rig. The matches
have been established automatically by the program image-matching as
described in [11] without using Ftwo−plane. The corresponding epipolar
geometry is denoted by Fhead, and the average distance between points
and epipolar lines is 0.9 pixels. If we consider Ftwo−plane (obtained with
the classical calibration technique), the average distance becomes 1.9
pixels, which is quite high. In Figure 3, the epipolar lines corresponding
to match 11, 30, 39, and 131 are displayed, respectively. An obvious de-
viation can be observed. As a matter of fact, our correlation-based stereo
system does not work correctly if Ftwo−plane is used. The result is shown
in Figure 4, where we see that only a small part of the face has been cor-
related. On the other hand, the epipolar geometry Fhead is not valid for
the points on the two-plane model (the average distance is 5.22 pixels).
The epipolar lines corresponding to match 0, 24, and 48 are shown in
Figure 2.

Now, we combine both sets of matches found on the two-plane model
and on the head, and compute another fundamental matrix which is
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Figure 5. 3-D reconstruction of
the two-plane model: orthographic
projections on one of the planes of
the two-plane model and on a plane
orthogonal to both planes.

Figure 6. 3-D reconstruction of
Hervé’s head: two projections.

denoted by Fall. The average distance for the whole set of matches is 0.72
pixels. If we only consider the set of matches on the head, the average
distance is 0.97 pixels, which should be compared with 1.9 pixels when
the epipolar geometry estimated by the classical method is used (see
Table 1 for a complete comparison of the results).

From Fall and the knowledge of the two-plane model, we calibrate the
stereo rig using the technique described in this paper. The calibration is
now valid both for the two-plane model and for the head. The 3-D recon-
struction of the two-plane model is shown in Figure 5. This calibration
also makes the correlation-based stereo system work decently. The tech-
nique described in [2] is then used to reconstruct the head in 3-D space,
which is shown in Figure 6. This should be compared to that shown in
Figure 4.

Conclusion
We have described a novel method for calibrating a binocular stereo by
using the information from the scene (although the 3-D positions are not
known) as well as that from a classical calibration object. The method is
divided into five steps:

1. Estimate the epipolar geometry using all available information.
2. Compute the camera perspective projection matrices with respect to

a projective reference frame.
3. Reconstruct projectively the points belonging to the calibration ob-

ject in 3-D space.
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4. Estimate the collineation matrix between the projective structure
and the known Euclidean structure.

5. Compute the camera perspective projection matrices with respect to
the Euclidean reference frame attached to the calibration object.

The idea is to first estimate precisely the epipolar geometry which is
valid for a wide range in space from all available matches. This allows us
to conduct a projective reconstruction. Using the a priori knowledge of
the calibration object, we are eventually able to calibrate the stereo rig
in a Euclidean space. Experiments show that we improve the validity of
the calibration parameters by integrating additional visual information
other than that from the calibration object.

In order to quantify how much accuracy in the epipolar geometry is
lost due to the change in distance, and how much improvement in the
accuracy of 3-D reconstruction is gained with the proposed technique,
one should, as the reviewer suggests, perform additional experiments
by taking a sequence of images of the same calibration object, but at
different distances. This is a part of our future work.
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