
Article 2

Real-Time Single-
Workstation Obstacle
Avoidance Using
Only Wide-Field Flow
Divergence

Ted Camus
David Coombs
Martin Herman
Tsai-Hong Hong

Videre: Journal of Computer Vision Research

Quarterly Journal

Summer 1999, Volume 1, Number 3

The MIT Press

Videre: Journal of Computer Vision Research (ISSN 1089-2788) is a
quarterly journal published electronically on the Internet by The MIT
Press, Cambridge, Massachusetts, 02142. Subscriptions and address
changes should be addressed to MIT Press Journals, Five Cambridge
Center, Cambridge, MA 02142; phone: (617) 253-2889; fax: (617)
577-1545; e-mail: journals-orders@mit.edu. Subscription rates are:
Individuals $30.00, Institutions $125.00. Canadians add additional
7% GST. Prices subject to change without notice.

Subscribers are licensed to use journal articles in a variety of ways,
limited only as required to insure fair attribution to authors and the
Journal, and to prohibit use in a competing commercial product. See
the Journals World Wide Web site for further details. Address inquiries
to the Subsidiary Rights Manager, MIT Press Journals, Five Cambridge
Center, Cambridge, MA 02142; phone: (617) 253-2864; fax: (617)
258-5028; e-mail: journals-rights@mit.edu.

© 1999 by the Massachusetts Institute of Technology

This paper describes a real-time
robot vision system that uses only
the divergence of the optical flow
field for both steering control and
collision detection. The robot has
wandered about the lab at 20 cm/s
for as long as 26 min. without
collision. The entire system is
implemented on a single ordinary
UNIX workstation. Dense optical
flow data are calculated in real
time across the entire wide-angle
image. The divergence of this
optical flow field is calculated
everywhere and used to control
steering and collision-avoidance
behavior. Divergence alone has
proven sufficient for steering past
objects and detecting imminent
collision. The major contribution is
the demonstration of a simple,
robust, minimal system that
uses flow-derived measures to
control steering and speed to avoid
collision in real time for extended
periods.

Keywords: real-time, robotic
vision, obstacle avoidance, optical
flow, flow divergence, time-to-
contact, low-level perception,
RCS

Real-Time Single-Workstation Obstacle
Avoidance Using Only Wide-Field
Flow Divergence

Ted Camus,1 David Coombs,2

Martin Herman,3 Tsai-Hong Hong2

1 Introduction
Mobile robots that drive at reasonable speeds (20 cm/s indoors) must
robustly sense and avoid obstacles in real time. Image motion provides
powerful cues for understanding scene structure. Divergence of optical
flow (the sum of optical flow derivatives in two perpendicular direc-
tions) is theoretically unaffected by camera rotation, so it gives a robust
measure of scene structure for a moving observer. The robot system
described here uses flow divergence to steer around obstacles while it
attempts to achieve a goal (which for now is simply to drive straight
ahead). When the obstacle avoidance is insufficient to avoid collision,
the divergence data warn the robot of the impending collision. The robot
stops, turns, and resumes wandering straight ahead in the new direc-
tion. These integrated behaviors have driven the robot around the lab
at 20 cm/s for as long as 26 min. without collision. Because this wan-
dering behavior is already a real-time capability, there is promise that
future increases in computational power will fuel development of both
increasingly robust basic skills and additional behaviors for robots.

The simplicity of the system improves robustness and makes the sys-
tem easier to extend. The system uses only a single framegrabber, a
single processor, a single image stream, and a single low-level percept
for all control functions. Simple robust filters are chosen in lieu of com-
plex filters that require sensitive system modeling and synchronization.
These filters are able to ignore momentary noise and artifacts that result
from system module interactions, which enables modules to cooperate
without delicate synchronization.

In addition, the obstacle-avoidance system is extensible. Egocentric
hazard maps are derived from divergence data, goals, and steering his-
tory. A composite hazard map is used to steer the vehicle. This design
supports the use of multiple cues, which can be incorporated with ad-
ditional hazard maps. Additional redundant or complementary sensing
modes can be exploited by the existing framework.

Our approach achieves real-time intelligent behavior by using mini-
malist visually derived representations. In such representations, a mini-
mal amount of information required to achieve the given task is
extracted from the imagery [2, 4]. The representations contain only
task-relevant information (i.e., relevant to obstacle avoidance), and the
information is represented in only 2-D image coordinates. The control
algorithms directly use observable image information represented in the
2-D image sequence; a 3-D reconstruction is not required [18, 31]. Such
an approach is particularly useful in closing control loops with vision at

1. This research was conducted while the
first author held a National Research Council
Research Associateship at NIST. Sensar, 121
Whittendale Drive, Moorestown, NJ 08057.
tedcamus@sensar.com.
2. National Institute of Standards and
Technology, Intelligent Systems Division, 100
Bureau Dr. Stop 8230, Gaithersburg, MD
20899-8230, {dcoombs,thong}@nist.gov.
3. NIST, Information Access and User
Interfaces Division, 100 Bureau Drive
Stop 8940, Gaithersburg MD 20899-8940.
mherman@nist.gov.

Copyright © 1999
Massachusetts Institute of Technology
mitpress.mit.edu/videre.html

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 30

Figure 1. Obstacle-avoidance system
architecture.

motorswide angle video

2. Compute diver-
gence everywhere

4. Derive hazard
maps from diver-

gence, goal, history

1. Compute full
optical flow

5. Decide desired di-
rection; detect immi-

nent collision

6. Determine steer-
ing, speed; deter-
mine gaze control

7. Issue steering,
speed and gaze

commands

3. Apply spatial and
temporal median fil-

ters

Sensory Processing
(SP)

World Modeling
(WM)

Behavior Generation
(BG)

Servo

Primitive
(Prim)

Elemental
Move

(E-Move)

lower levels of a multilevel control system [1] (Figure 1). The limited
body-centered data that are used are mapped into the local visual space
for steering and speed control policies. A minimalist approach requires
fewer calibrations, fewer scene hypotheses, and less computation. It is,
therefore, simpler and faster.

The obstacle-avoidance system we describe in this paper is designed
in accordance with the real-time control system (RCS) hierarchical archi-
tecture described in [1]. RCS decomposes goals both spatially and tem-
porally to meet system objectives. The system monitors its environment
with sensors and updates models of the states of the system itself and
the world. Figure 1 describes the functionality of the obstacle-avoidance
system in the first three levels of the RCS hierarchy.

RCS is composed of three parallel legs—sensory processing (SP),
world modeling (WM), and behavior generation (BG)—that interact to
control complex systems. The hierarchical levels run in parallel and are
labeled, from highest to lowest, tribe, group, task, e-move (elemental-
move), prim (primitive), and servo. The BG modules control physical
devices. The WM modules supply information to both the BG hierarchy
and the SP hierarchy. The WM modules maintain a database of system
variables and filter and analyze data using support modules. The SP
modules monitor and analyze sensory information from multiple sources
in order to recognize objects, detect events, and filter and integrate
information. The world model uses this information to maintain the
system’s best estimate of the past and current states of the world and
to predict future states of the world.

The testbed mobile robot is shown in Figure 2 (a). Video images
are obtained from an onboard uncalibrated camera with a 115 deg.
field of view. The camera is mounted on a pan motor, and the robot’s
view from this camera is shown in Figure 2 (b). Figure 1 sketches the
obstacle-avoidance system consisting of seven processing modules. The
SP modules compute flow and divergence everywhere in the image.
The WM modules apply spatial and temporal median filters to reduce
momentary fluctuations in the divergence field. The BG modules use
divergence to steer the robot around obstacles seen in the wide camera
view and provide the body and gaze controllers with desired driving,
steering, and gaze (in this case, simply pan) velocities. Using active gaze
control, the camera is rotationally stabilized to reduce the magnitude

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 31

Figure 2. Robot and its view. (a) Test
mobile robot; (b) Robot’s view of the
lab through its 115 deg. wide-angle
lens.

(a) (b)

of the flows in the image stream. When the camera points too far away
from the heading, a saccade is made toward the heading. These saccades
introduce momentary disturbances of the flow data, but the temporal
median filter effectively eliminates disruptive effects. When divergence
data indicate an imminent collision ahead, the robot stops, turns away,
and resumes wandering.

2 Full Optical Flow Estimation
Robust, real-time optical flow is now becoming a practical means of
robotic perception given new fast algorithms and increasingly faster
hardware. Given that our entire system (flow, divergence, and body con-
trol) is implemented on a single workstation without the benefit of a
real-time operating system, it is important to have sufficient processor
idle time available to buffer the overhead of the operating system. Oth-
erwise, the image-capture frame rate could vary from frame to frame.
Camus [7, 8] describes a robust, real-time correlation-based optical flow
algorithm that returns dense data even in areas of relatively low texture.
This is the starting point of our implementation.

In correlation-based flow such as in [5, 17, 21], the motion for the
pixel at [x, y] in one frame to a successive frame is defined to be the
displacement of the patch Pν of ν × ν pixels centered at [x, y], out
of (2η + 1) × (2η + 1) possible displacements (where η is an arbitrary
parameter dependent on the maximum expected motion in the image).
We determine the correct motion of the patch of pixels by simulating
the motion of the patch for each possible displacement of [x, y] and
considering a match strength for each displacement. If φ represents a
matching function that returns a value proportional to the match of
two given features (such as the absolute difference between the two
pixels’ intensity values, E1 and E2 respectively), then the match strength
M(x, y; u, w) for a point [x, y] and displacement (u, w) is calculated by
taking the sum of the match values between each pixel in the displaced
patch Pν in the first image and the corresponding pixel in the actual
patch in the second image:

∀(u, w)M(x, y; u, w)=
∑

(i,j)∈Pν
φ(E1(i, j)− E2(i + u, j + w)) (1)

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 32

Figure 3. Time delays and distances.
(a) As the maximum pixel shift
increases linearly, the search area
increases quadratically; (b) How-
ever, with a constant shift distance
and variable discrete time delays,
search over time is linear. A

B

A

C

Constant time delay, variable distances. Constant distance, variable time delays.

C

B

t 1

t 2

(a) (b)

The actual motion of the pixel is taken to be that of the particular
displacement, out of (2η + 1) × (2η + 1) possible displacements, with
the maximum neighborhood match strength (or equivalently, minimum
patch difference); thus, this is called a “winner-take-all” algorithm.

This algorithm has many desirable properties. Due to the relatively
large size of the matching window, the algorithm generally does not
suffer from the aperture problem except in extreme cases [5, 8], and it
tends to be very resistant to random noise. Because the patch of a given
pixel largely overlaps with that of an adjacent pixel, match strengths
for all displacements for adjacent pixels tend to be similar (except at
motion boundaries). Therefore, the resultant optical flow field tends to
be relatively smooth, without requiring any additional smoothing steps.
In gradient-based optical flow, on the other hand, noise usually results in
direct errors in the basic optical flow measurements due to the sensitivity
of numerical differentiation. Finally, because one optical flow vector is
produced for each pixel of input (except for a small η + �ν/2� border
where flow may not be calculated), optical flow measurement density is
100%.

A significant limitation with the traditional correlation-based algo-
rithm is that its time complexity grows quadratically with the maximum
possible displacement allowed for the pixel [5, 9] (Figure 3 (a)). Intu-
itively, as the speed of the object being tracked doubles, the time taken to
search for its motion quadruples, because the area over which we have
to search is equal to a circle centered at the pixel with a radius equal to
the maximum speed we wish to detect.

However, note the simple relationship between velocity, distance, and
time:

vel= δdist
δtime

.

Normally, in order to search for variable velocities, we keep the in-
terframe delay, δt , constant and search over variable distances (pixel
shifts):

�ν = �d

δt
, d ≤ η.

However, we can easily see from Figure 3 (a) that doing so results
in an algorithm that is quadratic in the range of velocities present.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 33

Figure 4. Space-time correlation
search of Camus’ real-time optical
flow algorithm. (top) The search
area for the example pixel (1, 1)
in this example is shown in the
current frame (Image t). This search
begins from a previous frame (2
such previous frames are shown);
(middle) The correlation match
is the sum-of-absolute differences
between the corresponding pixels’
intensity values in a patch centered
at the given pixel (a patch size of
7× 7 is used in all examples; these
patches are not shown for clarity);
(bottom) Optical flow is calculated
to be the best-matching pixel shift
divided by the corresponding frame
delay.

search2−D

in space

Image t−2 Image t

0 1 2 3
0 1 2 30

1

2

3

0

1

2

3

0 1 2 3

Image t−1

Image t−1 Image t

0 1 2 3
0 1 2 3

0

1

2

3

0 1 2 30

1

2

3

Image t−2

Delta t :1

M
ax

im
um

1−D search

Delta t :2
d(space)

d(time)

Flow
= in time

Alternatively, we can keep the shift distance, δd, constant and search
over variable time delays (Figure 3 (b)):

�ν = δd

�t
.

In this case, we generally prefer to keep δd as small as possible (for
example a single pixel) in order to avoid the quadratic increase in search
area. (Note, however, there is nothing preventing an algorithm based on
both variable �d and �t .) This temporal matching concept is depicted
in Figure 4. This time-space trade-off reduces a quadratic search in space
into a linear one in time (at a cost of measurement precision), resulting
in a very fast algorithm: optical flow can be computed on 32 × 64
images, quantizing flow speeds into 5 bins, at 35 frames per second on
an 80 MHz Themis HyperSPARC1 10 computer. Although this algorithm
is not as accurate as many other optical flow algorithms, it is generally
superior in terms of computational efficiency [23].

In our implementation, an original half-height image of 256 × 512
pixels, captured with a 115 deg. field-of-view camera, is subsampled to
32× 64 pixels using a simple block-subsampling algorithm which aver-
ages an N ×N block of pixels. This simple subsampling is very fast and
effective for this correlation-based algorithm (although perhaps not for
other flow algorithms [8]). In this case, blocks of 8× 8 pixels would be

1. Certain commercial equipment, instruments, or materials are identified in this paper
in order to adequately specify the experimental procedure. Such identification does not
imply recommendation or endorsement by NIST, nor does it imply that the materials or
equipment identified are necessarily best for the purpose.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 34

averaged into a single value. In practice, this requires more image band-
width than is available using the framegrabber’s VME bus connection to
the Themis HyperSPARC 10 board’s main memory. Therefore, the images
are first subsampled by a factor of 2 on each side (yielding one-fourth
the image data) using the framegrabber’s own image scaling function.
(This is the only function performed on the framegrabber other than
capturing the images and transferring them to the host’s memory.) Be-
cause the framegrabber’s method of subsampling is not as effective as
the one we use in software, the final subsampling by a factor of 4 on a
side is performed on the host workstation itself.

The above algorithm returns quantized optical flow values. Although
this is adequate for various robotic-vision tasks [6, 14, 15, 25], it is
not sufficient for our application, because the calculation of divergence
requires the ability to measure spatial derivatives of the optical flow.
Because quantized optical flow is basically a step function, these deriva-
tives do not exist. Consistent with theory, it was found that the diver-
gence of the optical flow field could not be estimated successfully using
only the quantized algorithm. Attempting to interpolate the optical flow
field itself is not appropriate in this case, because the quantizations are
relatively coarse and the flow field is already dense. Smoothing the opti-
cal flow field would require extremely large masks and would, therefore,
likely cover multiple objects simultaneously. This would be especially
problematic in our case in which a wide-angle lens is used and individ-
ual objects occupy only a small fraction of the visual field. Calculating
a least-squares best fit to the correlation surface as in [3] was ruled out
due to real-time performance requirements. (See efficiency experiments
in [22, 24].) In order to satisfy our real-time requirements, a fast approx-
imation method was used to derive continuously valued flow fields.

To avoid a computationally expensive search for the true flow, the
two-dimensional interpolation is decomposed into two one-dimensional
interpolations; the first estimates the magnitude of a flow vector and the
second estimates its precise angle. (The initial flow is returned as X and
Y components. This is then converted to polar coordinates.) Both the
directional component (consisting of one of eight possible directions or
no motion) as well as the magnitude component (consisting of the time
delay in frames) are quantized. The first one-dimensional interpolation
is along the magnitude component of the flow. The correlation match
values for the best motion of a given pixel along with the match values
for the “virtual” flow vectors of “adjacent” magnitudes in the same
direction (i.e., of plus and minus one time delay in frames) are used. For
example, in Figure 4 assume that the shift of (0, 1) pixels with a delay
of 2 frames (equivalently a motion of (0, 1/2) pixels per frame) has the
best correlation match of any pixel shift. The correlation match values
used for interpolation in this example are those that correspond to the
pixel shifts of (0, 1) over 3 frames and (0, 1) over 1 frame, or “virtual”
motions of (0, 1/3) and (0, 1/1) pixels per frame respectively. (If the
peak correlation match magnitude is 1 pixel per frame, interpolation
cannot be performed.) Roof interpolation is used to find the total time
delay corresponding to the minimum correlation match value as shown
in Figure 5 (a). Two lines are formed connecting the best correlation
match strength and the match strengths corresponding to those two time
delays which immediately bracket the former time delay. The negative
value of the steeper of the two slopes is then substituted for the more
gradual of the two. The abscissa of the intersection point of these two
lines is taken as the new interpolated magnitude component of the flow.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 35

Figure 5. Image flow interpolation.
(a) Parabolic and roof methods;
(b) Angular estimation of flow
vector.

1/4 1/3 1/2

correlation
 match
 strength

parabolic
magnitude
estimate

roof−peak
magnitude
estimate

pixels
 per
frame

 maximum correlation
 strength for a 1−pixel
 shift occurs after a
 time delay of 3 frames

quantized magnitudes
next to vector with
max correlation strength

(a)

 best
match

direction of best matching
vector along with the two
adjacent magnitude vectors

vectors adjacent to
direction of best match

estimated
flow vector

 vectors
adjacent to direction
 of best match

(b)

The second interpolation is along the angular component of the flow
(Figure 5 (b)). The first step is to calculate the match values for “virtual”
flow vectors of neighboring vector directions but with the same magni-
tude as just calculated for that pixel. (Because we calculate the correla-
tion match values for only eight directions of motion, this means that the
motion vector with the best correlation match has two neighboring direc-
tions at 45 deg. on either side.) This interpolation is not trivial because
the magnitude of the motion along the diagonals is the

√
2 times that

of motion along the north, south, east and west directions for a given
velocity (time delay). In order to perform the second one-dimensional
interpolation, it is necessary to estimate the correlation match values of
the neighboring directions at the same magnitude as the best matching
flow vector. Although the roof interpolation was slightly more accurate
than parabolic interpolation for finding a real-valued magnitude for a
given optical flow vector, it was found to have the disadvantage of not
returning as accurate a correlation match value estimate. A more accu-
rate correlation match value estimate was instead found by calculating
the coefficients of an interpolating parabola and taking the correlation
match value at the same magnitude as found during the roof interpo-
lation stage (Figure 5 (a)). The following formulas for the parabola

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 36

coefficients can be derived given a parabola ax2 + bx + c:

a = (y2 − y0)+ (x0 − x2)(y1 − y0)/(x1 − x0)

(x2)2 − (x0)2 + (x0 − x2)((x1)2 − (x0)2)/(x1 − x0)
,

b = y1 − y0 − a((x1)
2 − (x0)

2)

x1 − x0
,

c = y0 − a(x0)
2 − bx0,

where (x0, y0), (x1, y1), and (x2, y2) are the points used to fit the pa-
rabola.

These formulas are used to estimate the correlation match strengths
for neighboring “virtual” flow vectors that correspond to the same mag-
nitude as that of the best matching flow vector; these three parabolic
interpolations are shown in Figure 5 (b). A final parabolic interpola-
tion is then calculated using these three estimated correlation match
strengths, and is also shown in Figure 5 (b).

An example of the optical flow output of this algorithm is shown in
Figure 6. The top part of this figure shows two 256× 256 pixel images,
spaced ten images apart, of a typical image sequence resulting from a
robot’s own forward motion. The bottom of this figure shows graylevel
images indicating the magnitude of the optical flow vectors at each
point; brighter pixels correspond to faster motion. Figure 6 (c) shows
the output of the quantized optical flow algorithm on these ten images

Figure 6. Quantized and interpolated
optical flow results. (a) frame 25 of
approach to two chairs; (b) frame
35; (c) quantized flow (pixel bright-
ness indicates image motion magni-
tude); (d) interpolated flow.

(a) (b)

(c) (d)

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 37

(subsampled to 64 × 64 pixels in size). This can be compared to the re-
sults of the interpolated optical flow algorithm, seen in Figure 6 (d).
The quantized optical flow field (Figure 6 (c)) contains a total of only
19 discrete motion magnitudes, whereas the interpolated optical flow
field (Figure 6 (d)) yields a continuously valued flow field, which, when
quantized to eight bits for display, contains 144 separate motion magni-
tudes. Although the original quantization boundaries are still visible in
many places, this interpolated optical flow algorithm represents a greatly
improved motion vector resolution over the quantized optical flow algo-
rithm and will prove sufficient for our purposes. Also, note that in both
cases the flow estimates are dense even on the relatively weakly textured
laboratory floor.

When compared to computing flow without interpolation, the use of
two one-dimensional interpolations cuts the frame rate approximately
in half: real-valued optical flow can be computed on 32 × 64 images,
calculating and interpolating five speeds per frame, at 17 frames per
second on an 80 MHz Themis HyperSPARC 10 computer. In our obstacle-
avoidance application, the flow is run at only about 4 Hz. This consumes
from 20 to 25% of the processor’s total time and allows the entire
obstacle-avoidance system to run comfortably on a single workstation
with a consistent frame rate and about a 20% processor idle time to
buffer unexpected operating system events.

3 Spherical Pinhole Camera Model
Most authors assume a simple planar pinhole camera model in deriving
equations. We will argue that the 115 deg. wide-angle camera used
in our system more closely approximates a spherical pinhole camera
model than the traditional planar pinhole model. The local area at any
point (x, y) on the spherical imaging surface can be approximated by a
tangent planar surface with (x, y) = (0, 0) at the tangent point. In the
next section, we will exploit this observation to use properties of image
flow divergence that hold at (x, y)= (0, 0) in a planar pinhole imaging
model. This tangent planar surface approximation extends the results
for (x, y) = (0, 0) in a planar pinhole coordinate system to all points
(x, y) in a spherical pinhole coordinate system, as long as all calculations
performed are limited to a local area around the given (x, y).

An image from the 115 deg. wide-angle camera appears in Fig-
ure 7 (a). This image is visibly distorted, as expected with a wide-angle
camera. To show that the wide-angle camera more closely approximates
a spherical pinhole camera model, we warp the wide-angle image into
a planar pinhole camera image under the spherical pinhole camera as-
sumption. If this assumption is true, the warped image should appear
relatively flat and undistorted.

There are two steps to this process. First, we transform a spherical
pinhole camera retina into a planar pinhole camera retina; i.e., we warp
an image created from a spherical pinhole camera into an equivalent
image as it would appear if it were created from a traditional planar pin-
hole camera. This is shown in Figure 8 (left half). However, we are not
given true spherical retinas as imaging surfaces. We are given flat, dis-
torted images. Thus, prior to this transformation, we must convert the
flat, distorted image into its equivalent spherical retinal representation,
as shown in Figure 8 (right half). Note that this latter mapping is uni-
form and is equivalent to simply “rolling” a flat planar representation
onto a spherical retina. Thus, the complete sequence involved to map a

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 38

Figure 7. Wide-angle optics. (a) Ac-
tual wide-angle image; (b) Same
image warped to a planar image
assuming that the wide-angle cam-
era approximates a spherical pinhole
camera model.

(a) (b)

Figure 8. Spherical projection cam-
era model. (left half) warping a
spherical pinhole camera retina to
a planar pinhole camera retina as
a function of equal angle from the
center of projection; (right half) uni-
formly mapping a spherical pinhole
camera image to a flat image as
a function of equal linear distance
from the center of the imaging sur-
face.

light
rays

spherical
 retina

planar retina

 spherical
 to planar
 retinal
 warping

 center of
projection

spherical
to planar
 uniform
 image
mapping

spherical pinhole model image (presented in the form of a flat, distorted
image) is to take its spherical imaging surface equivalent (shown in Fig-
ure 8 (right half)) and map it to its planar imaging surface equivalent
(shown in Figure 8 (left half)).

The result of this mapping/warping process on Figure 7 (a), using a
focal length equivalent of 150 pixels (given an image width of 256 pix-
els), results in Figure 7 (b), which is clearly much less distorted than
the former image. From experiments such as these, we conclude that
our 115 deg. wide-angle camera is better approximated by a spherical
pinhole camera model than a more traditional planar pinhole camera
model. As described previously, this fact is exploited in the next section.

4 Divergence for Obstacle Avoidance
Process 2 (Figure 1) computes flow divergence. Divergence of flow can
be used to estimate time to contact (Tc). Both theory and implementa-
tion are discussed here as well as considerations for employing Tc for
obstacle detection by a moving robot.

The equations for the x and y components of optical flow (Ox, Oy)

due to general camera motion (arbitrary translation and rotation) in a
stationary environment given a planar projection coordinate system are

Ox = (1/z)(−Tx + xTz)+ (xyωx − (1+ x2)ωy + yωz) (2)

Oy = (1/z)(−Ty + yTz)+ ((1+ y2)ωx − xyωy − xωz) (3)

where z is the depth of the object in the environment relative to the
camera, and (Tx, Ty, Tz) and (ωx, ωy, ωz) are the translational and ro-
tational motion of the environment relative to the camera [35]. This

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 39

camera frame is a right-handed coordinate system centered behind the
image plane with the positive X direction extending leftward, positive Y
upward, and positive Z forward. The divergence of an optical flow field
(parameterized by image coordinates (x, y)) is defined as

∇◦(Ox, Oy)= ∂Ox

∂x
+ ∂Oy

∂y
(4)

Note that
∂Ox

∂x
= ∂ρ

∂x
(−Tx + xTz)+ ρTz + yωx − 2xωy (5)

∂Oy

∂y
= ∂ρ

∂y
(−Ty + yTz)+ ρTz + 2yωx − xωy (6)

where ρ = 1/z. From Equations (4) through (6), at (x, y)= (0, 0):

∇◦(Ox, Oy)= ∂ρ

∂x
(−Tx)+ 2ρTz + ∂ρ

∂y
(−Ty). (7)

This can be rewritten in terms of the gradient
(
∂z
∂x

, ∂z
∂y

)
as

∇◦(Ox, Oy)= 2Tz
z
+ 1

z2

(
∂z

∂x
,
∂z

∂y

)
· (Tx, Ty) (8)

∇◦(Ox, Oy)= 2Tz
z
+ 1

z
F · (Tx, Ty) (9)

where F = 1
z

(
∂z
∂x

, ∂z
∂y

)
is the surface gradient [10]. As stated, this equa-

tion holds for a planar coordinate system at (x, y)= (0, 0). Because we
are modeling our wide-angle camera using a spherical coordinate sys-
tem, the spherical imaging surface at every point (x, y) can be approx-
imated by a tangent planar surface with (x, y) = (0, 0) in that tangent
plane’s local coordinate system. A precise derivation of the consequences
of this assumption is future work. The local Z axis is the ray through
the point (x, y). Equation (9) now holds for every point in the image of
the wide-angle camera that is well approximated by a spherical pinhole
camera model. From Equation (9),

∇◦(Ox, Oy)= 2Tz
z

(10)

whenever the imaged surface is perpendicular to the local Z axis, or
the gradient of the surface, F, is perpendicular to the transverse velocity
(Tx, Ty), or the transverse velocity is zero.

As will be explained below, we use relatively large image masks for
computing divergence. In our lab experiments, these masks, when pro-
jected out into the 3-D scene, usually cover a scene area one to four
square meters. There are often many surfaces, at different orientations,
in such an area in our scenes. We believe that, when the surface gra-
dients (expressed in the local camera coordinate system) are averaged
in such an area, the average gradient tends to be very small. Given two
(nearly planar) surface segments of the same size in 3-D space, the seg-
ment with large gradient (i.e., steep slope in the local coordinate system)
will project into a much smaller area of the image than the segment with
small gradient (i.e., which is nearly perpendicular to the line of sight).
Therefore, surfaces with small gradients should tend to contribute more
to the “average surface gradient” within the mask area than surfaces
with large gradients. Because of these effects, the first term in the right

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 40

Figure 9. Flow divergence templates.

side of Equation (9) usually dominates the second term. For surfaces
near the direction of motion, (Tx, Ty) is small. This further reinforces the
domination of the first term.Therefore, we can estimate time to contact
directly from Equation (10).

Divergence is a particularly useful measure for obstacle avoidance
during visual navigation because it is invariant under the rotational
motion of the sensor that is inevitable due to imperfect stabilization.

Equation (10) suggests that divergence has only time as its dimen-
sion. The values of divergence over any significant area represent the
inverse of time to contact, i.e., the time needed to reach an object at
depth Z with velocity Tz in the Z direction. A family of simple fixed-flow
divergence templates can be applied to any image sequence to estimate
divergence [28]. Each template is symmetrically divided into positive
and negative halves (Figure 9). Flow divergence is calculated by con-
volving the template with a window in the flow image and computing
the sum of the optical flow derivatives in perpendicular directions. In
particular, the convolution of the first two such templates may be per-
formed extremely quickly using a box filter as described in [7, 8]. In
order to improve the consistency of the divergence estimates, we apply
temporal and spatial median filters to the individual divergence values
(process 3 in Figure 1).

5 Simple Robust Filters
Median filtering performed on dense two-dimensional data can use fast
running-histogram methods such as in [19] if the dynamic range of the
data and desired quantization resolution of the median value can be
specified. The algorithm described in [19] was intended for finding the
true median and reduces an O(nm) complexity algorithm to approxi-
mately O(n) per pixel for an n×m filtering window, where n<m. It can,
however, be generalized to the separable median [26] which approxi-
mates a two-dimensional true median filter by the successive application
of two orthogonal one-dimensional median filters: first, the median of
each row of a two-dimensional window is computed, and then the me-
dian of these row medians is returned as the separable median. This
transformation reduces the time complexity from O(n) for the running-
histogram method alone to approximately constant time for the com-
bined method. To the authors’ knowledge, this is the first time that this
combined, approximately constant-time median-filtering algorithm has
been used in image analysis. Because of this, its utility will be explored
further.

Exploiting this combined approach assumes that there are only a
limited number of histogram bins, which would not be the case with
floating-point data. In that case, one could modify the algorithm to
first quantize the data into a histogram of 256 bins (for example). The
true median could then be found by performing a quicksort partitioning
[30] on that bin which contains the midpoint of the histogram for that
pixel’s local window. In our case, however, the divergence data are
already quantized to eight-bit values (necessary in order to reduce the

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 41

data bandwidth in the previous system’s implementation [11]), so this
extension is not necessary.

Although the separable median filter is not guaranteed to find true
median values, it reduces noise almost as well as a true median filter
[26]. By definition, the true median is greater than or equal to half the
data in the data set and less than or equal to the other half of the data.
The separable median, however, is greater than or equal to all points less
than or equal to those row medians that are less than or equal to the
separable median. By definition, the separable median is greater than
or equal to 50% of the row medians; therefore, the separable median is
greater than or equal to 25% of the data. Similarly, the separable median
is guaranteed to be less than or equal to 25% of the data. Its relationship
to the rest of the data is unknown.

The “breakpoint” of an estimator is defined as the smallest fraction (or
percent) of contamination of a data set that can result in an arbitrarily
incorrect value [32]. In the case of least sum of squares (a nonrobust
estimator), that percent tends to 0% for large n (i.e., a single outlier
can cause an arbitrarily incorrect result). In the case of the true median
filter, that percent is 50%. In the case of the separable median filter, that
percent is 25%, given our arguments above. Although this means that
the separable median filter is not as robust as the true median filter, it
still performs extremely well in most cases.

The current system first performs an 11× 17 (height by width) spa-
tial median filter on the divergence estimates. (The filter’s proportions
roughly paralleled the proportions of the 256 × 512 image field). Be-
cause our robot operates in a 2-D world (i.e., its motion is constrained
to two degrees of freedom: speed and steering), we use the 11× 17 fil-
ter to produce a single horizontal array of divergence values, which is
centered on the middle row of each image.

The 1-D divergence arrays are stored in a history buffer of 1-D arrays
of spatially filtered divergence estimates. The dimensions of the tempo-
ral filter are eleven pixels in space (horizontally within each array) and
eleven frames in time (across arrays). Because of the temporal median
filter’s width, the filtered divergence information has a latency of five
frames or approximately 1.25 seconds. This effect is offset, however, by
the ability of the system to sense obstacles at a range of up to several
meters.

Both the separable and true median filters have the desirable prop-
erty of preserving horizontally and vertically aligned edges. This means
that—unlike many other averaging or smoothing filters—these filters
have no temporal hysteresis. Unlike the true median filter, however, the
separable median filter has the additional desirable property of preserv-
ing corners [26]. Preserving corners can be advantageous in ordinary
image processing but is especially valuable in our application, because
an erosion of an object’s full spatial or temporal extent could create the
illusion of an open space and cause a collision. This corner preserva-
tion can also prevent distinct objects from blurring together [29], which
could be equally undesirable because some valid pathways may other-
wise falsely appear to be blocked.

When performing the separable temporal median filter, the order of
the two 1-D median operations can make a difference in some cases
[29]. By performing the spatial 1-D median filter first, we slightly em-
phasize spatial coherence over temporal continuity.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 42

6 Driving Control
Processes 5, 6, and 7 (Figure 1) control driving and gaze. The robot’s
task is to avoid obstacles while achieving mobility goals. In general, such
goals might be specified by coordinates in a map, features that uniquely
identify a location, or simply features that satisfy a precondition required
for the next subtask (e.g., the mobility goal might be positioning the
robot to pick up an object.) Ideally, the robot would survey the visual
data to identify the direction nearest its desired path that is also a safe
direction in which to travel.

In these experiments, the goal is to maneuver without collision using
only flow divergence to sense the environment. The robot’s behavioral
goal is simply to drive forward, steering away from obstacles in its path,
and to stop and turn when it senses that collision is imminent. The robot
drives at up to 20 cm/s, and the speed is regulated to keep visual data
(i.e., flow and divergence estimates) within measurable ranges and to
avoid detrimental behavior that results when high rates of speed and
steering occur simultaneously. The steering policy uses the sensed flow
divergences to steer around obstacles while attempting to steer toward
the provided goal direction. (In these experiments, the goal direction
was always straight ahead for simplicity.) Indication of imminent colli-
sion in the central quarter of the camera’s divergence data causes the
robot to stop, turn away, and resume wandering. This sequencing is
implemented with a finite-state automaton, with a command associ-
ated with each state (Figure 10). Some state transitions are triggered
by sensed events, and others merely provide command sequencing. For
instance, the system remains in the refractory state until visual motion
lingering from the brisk turn is no longer seen by the visual system. An
interesting consequence of this behavior is that the robot in the refrac-
tory state will remain still while a person moves in its view.

The robot steering and collision detection improve when the robot
turns relatively slowly for two reasons: temporal consistency of the spa-
tial locus of samples for divergence estimation is improved, and accuracy
of motion estimates themselves is improved. Therefore, the behavior
and motor control systems are designed to reduce rotation of the cam-
eras, which is accomplished by stabilizing the cameras with active motor
commands and by limiting rotation of the body so that the gaze sta-
bilization system is not overstressed. Despite these precautions, gaze
stabilization is imperfect, and some data are contaminated. However,
the edge-preserving spatiotemporal median filtering effectively discards
intermittent unusable data.

The steering policy is implemented using hazard maps derived from
flow divergence, the desired goal direction, and the target heading, θ ′,

Figure 10. Body control automaton.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 43

Figure 11. Trace of robot’s view.
(a) Robot’s view of the gauntlet
of office chairs before the trial;
(b) Trace of median-filtered flow
divergence maps (brighter intensity
indicates larger divergence, top row
is current); (c) Trace of hazard
maps with selected goal direction
highlighted in white; (d) XY path
trace beginning at (0, 0).

(a)

xy
0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0.00 200.00

XY Path
Y (cm)

X (cm)

(b) (c) (d)

that was previously selected by the steering policy. Each hazard map is
a one-dimensional horizontal array that encodes the “risk” associated
with each possible steering direction. Traces of median-filtered flow di-
vergence maps and composite hazard maps are shown in Figure 11 (b)
and (c). The target heading selected in each hazard map is highlighted
in white. The path of the robot in this trial appears in (d) for the gaunt-
let of office chairs seen in (a) from the robot’s viewpoint before the trial
began.

A hazard map is derived from the divergence map. During each steer-
ing control cycle, it encodes not only the present divergence data, but
also the past steering choices of the robot to help the robot commit to
passing an obstacle on one side without switching back and forth. The
hazard map is a 64-element-wide map per sample interval that indicates
obstacles and also encodes the cost of crossing local maxima in the diver-
gence map, starting from the previously selected heading. Imagine the
divergence map as a cross-section of a topographic map, such as the di-
vergence map trace of Figure 11 (b). Obstacles are indicated by hills and
open spaces by valleys. In the previous cycle, the steering policy selected
a heading value and committed to one of the valleys in the divergence
map. In the present cycle, a different valley may appear deeper, but the
cost of changing course to pass on the other side of an obstacle that has

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 44

not yet been cleared is represented by the cost of crossing the hill to
reach the valley on the other side.

Similarly, another hazard map is derived from the desired goal direc-
tion and the previously selected heading (accounting for the gaze angle).
This map appears roughly as a shallow trough centered between the pre-
viously selected heading and the goal heading, which has the effect of
drawing the selected heading back to the goal direction in the absence
of obstacles in this path.

These hazard maps are combined into a single hazard map by sum-
ming the component hazard maps. The steering policy chooses the direc-
tion of minimum hazard in the composite hazard map, with a preference
for directions nearest the previously selected heading in case of a tie. The
result in general is that, if any sensing mode shows strong evidence of
danger in some direction, it is unlikely that direction will be chosen.

Summarizing, the image-based heading ψ is a heading angle in image
space, the gaze angle φ is relative to the robot’s current heading θ , and
from these the new target heading θ ′ is calculated:

θ ′ = θ + φ + ψ . (11)

When a new desired heading θ ′ is chosen, the robot steers smoothly
to it with saturated negative feedback controls [13]. Desired change in
heading, �θ , is simply the difference between the desired heading and
current heading.

�θ = θ ′ − θ (12)

The steering control policy uses a saturated steering velocity propor-
tional to the desired heading:

θ̇ = Saturate
(
ks ·�θ · 1

Tb
, s
)

. (13)

The gain ks (usually < 1) determines how quickly the steering is servoed
to the desired heading. Time is normalized to seconds by dividing by
the body control cycle time, Tb. Thus, angular velocity is expressed in
degrees/s rather than degrees/cycle. For instance, setting ks = 0.3 will
command a velocity that would reduce the error by 30% in the next
control cycle (assuming nearly instantaneous acceleration of the steering
motor). The angular velocity is saturated at ±s deg/s (e.g., 6 deg/s) to
limit the peak rotation rate to reasonable levels. There are three reasons
for this limit. First, the latency of robot command execution is quite
large, and the command cycle is not entirely uniform. Therefore, it is
possible to overshoot the desired heading if the rotational velocity is
too high, because the controller might not be able to stop steering at
the right time. Second, motion estimation suffers if the camera rotates
too fast, because our computation of flow is based on a correlation
method that limits motion to less than one pixel per frame. Poor flow
measurements degrade divergence estimates. This impacts the quality
of steering and stopping. Third, slower steering improves the temporal
consistency of flow data for divergence estimation. Although the median
filtering is quite robust to disturbances, cleaner data produce smoother
estimates over time. The second and third issues would be of no concern
if gaze were perfectly stabilized, but stabilization is not perfect, and the
residual camera rotation is correlated with the steering rate.

Like steering, the robot’s speed is regulated to maintain all systems
within their operating ranges. The robot’s top speed is set at 20 cm/s

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 45

based on empirical trials in showing that divergence estimation was
compromised at faster driving speeds when the robot steered at the
rates necessary to negotiate the lab. (The crash tests reported later
in this paper were run at speeds up to 80 cm/s, but these tests used
no steering.) Impairment of divergence estimation was proportional to
steering rate. Below the top speed, the robot attempts to keep visual
data within measurable ranges. Robot speed is increased when observed
flows are too near noise levels, and speed is decreased when flows are
too large for the estimation system to observe. Specifically, the speed
is increased to keep the maximum observed flow estimate above a set
value (50% of the maximum flow estimate that can be detected by the
system). This ensures that most flows are large enough to be within the
operating range of the flow estimator. Similarly, robot speed is decreased
when too many flow estimates (50%) are saturated (have the maximum
value the estimator can detect).

7 Gaze Control
The nonlinear gaze control is a nystagmus, a repetitive eye motion of
slow-phase rotations punctuated by quick-phase rapid returns. It is also
implemented as a finite-state automaton (Figure 12). The camera is
rotated at velocity φ̇ =−θ̇ to counter the body rotation and stabilize the
camera images. The gaze control also checks the deviation of the gaze
angle, φ, from the robot’s heading and snaps the camera back to the
heading if the limit is exceeded (limit= 12◦).

The nystagmus quick phase that returns gaze to the vehicle’s heading
turns the gaze beyond the current heading in the direction the robot is
turning: φ = kgθ̇ . This heuristic attempts to reduce the number of quick
phases required by putting gaze a little bit ahead of the vehicle heading,
rather than always lagging behind it.

The saccades that perform the quick-phase return to realign gaze with
the robot’s heading briefly produce extremely large optical flows. These
large flows often are encountered by the flow estimator. Although the
resulting divergence estimates are unusable, the edge-preserving spatio-
temporal median filtering effectively discards them, providing only the
divergences observed preceding and following the saccade.

8 Experiments and Results
Experiments with the obstacle-avoidance system were performed in a
laboratory containing office furniture, robot, and computing equipment.
Furniture and equipment lined the walls, and free space was roughly
7 by 4 m in the center of the lab. Office chairs provided obstacles. In

Figure 12. Gaze control automaton.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 46

addition, there was some space leading to doors in two corners of the
lab. In all experiments, a single camera with a 115 deg. field of view
was used. Only the half-height band in the center of the image was
processed. (See Figure 11 (a) for an example of the robot’s view of
the lab.) Three sets of experiments were performed: (1) “crash tests”
evaluated the system’s ability to detect obstacles and warn of imminent
collision, (2) the robot was forced to run a gauntlet of office chairs to
evaluate its ability to avoid obstacles while traveling through the room,
and (3) wandering trials tested the robot’s ability to move about for
extended periods of time.

8.1 Crash Tests
Initial experiments tested the robot’s ability to detect obstacles and warn
of imminent collision. To test the robot’s ability to detect objects across
the wide visual field, a row of chairs was placed across the far end of
the lab. The robot drove straight toward the chairs at fixed speeds. (See
Figure 13.) The system should not only detect obstacles at a reasonable
distance but also continue to detect obstacles as they are approached
until they are no longer visible in the bottom of the image. To evaluate
this property, the robot did not attempt to stop to avoid collision, but
rather drove into the chairs until the bumper triggered the systems to
shut down (due to collision).

Examples are shown in Figure 14 (20 cm/s), Figure 15 (30 cm/s), Fig-
ure 16 (40 cm/s), and Figure 17 (50 cm/s), all beginning at a distance of
4 m from the chairs. The upper-left quarter (a) of each frame is the orig-
inal 256× 512 pixel image, taken from a 115 deg. wide-angle lens, sub-
sampled to 128× 256 pixels. Results of processing the image are shown
clockwise (b through d). The upper-right quarter (b) shows the optical
flow “needle” plot calculated from a 32× 64 subsampled version of the
original image with the needle diagram itself subsampled to 16× 32 for
clarity. The lower-right quarter (c) of each frame shows a time-space plot
of the 1-D divergence estimates, median-filtered in space (11× 17 pixel
window centered on the middle row of each image) but not in time. In
these plots, brighter areas indicate higher divergence and thus closer ob-
jects. (Each individual plot is automatically contrast-adjusted for better
clarity.) In these plots, time moves upward. Thus, the 1-D divergence
map for the current frame is found at the top of the subimage with the

Figure 13. Frames from a 20 cm/s
approach to chairs 4 m distant.
(a) frame 0; (b) frame 30; (c) frame
60; (d) frame 70.

(a) (b)

(c) (d)

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 47

Figure 14. Frame 64 of a 20 cm/s
approach to chairs 4 m distant.
(a) intensity frame 64: original
256× 512 pixel image, taken from
a 115 deg. wide-angle lens, subsam-
pled to 128× 256 pixels; (b) optical
flow “needle” plot: calculated from
a 32 × 64 subsampled version of
the original image, with the nee-
dle diagram itself subsampled to
16 × 32 for clarity; (c) divergence
plot (top row is current): time-space
plot of the 1-D divergence estimates,
median-filtered in space (11 × 17
pixel window centered on the mid-
dle row of each image). Brighter
areas indicate higher divergence and
thus closer objects (automatically
contrast-adjusted for better clarity);
(d) median-filtered divergence: the
same divergence plot but median
filtered in time (eleven frames) as
well as in space (eleven pixels). This
filtered 1-D map of divergence es-
timates is used at each frame to
control the robot’s steering. The
clockwise progression enables direct
comparison of the filtered result with
the image. E.g., the high divergence
show by the bright region of the top
row of (d) reflects the looming chair
seen above in (a).

(a) (b)

(d) (c)

31 previous frames displayed in addition. The lower-left quarter (d) of
each frame shows the same divergence plot but median filtered in time
(eleven frames) as well as in space (eleven pixels). The second filtered
1-D map of divergence estimates is used at each frame to control the
robot’s steering. In the examples, the divergence due to imminent colli-
sion with the chairs can be clearly seen. The divergence due to a nearby
stepladder and some cables that were suspended from the ceiling on the
right side of the lab (visible in Figure 11 and Figure 13) can also be
seen in the history of the time-space divergence plots. Because of the
temporal median filter’s width, the filtered divergence information has
a latency of five frames or approximately 1.25 seconds. As shown in the
figures, however, this effect is offset by the ability of the system to sense
objects well in advance.

The system is able to detect objects (at divergence estimates above
the noise level) at ranges up to 6 m (the maximum testable in the
lab) at forward speeds ranging from 0.1 to 0.8 m/s. The divergence
estimate arising from an object rises reasonably smoothly as the object is
approached, and the object continues to be visible until the robot is very
near to it. These results represent a considerable improvement in both
range and persistence of detection over the results reported in [11], in

Figure 15. Frame 49 of a 30 cm/s ap-
proach to chairs 4 m distant. (a) in-
tensity frame 49; (b) optical flow
“needle” plot; (c) divergence plot
(top row is current); (d) median-
filtered divergence.

(a) (b)

(d) (c)

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 48

Figure 16. Frame 36 of a 40 cm/s ap-
proach to chairs 4 m distant. (a) in-
tensity frame 36; (b) optical flow
“needle” plot; (c) divergence plot
(top row is current); (d) median-
filtered divergence.

(a) (b)

(d) (c)

Figure 17. Frame 30 of a 50 cm/s ap-
proach to chairs 4 m distant. (a) in-
tensity frame 30; (b) optical flow
“needle” plot; (c) divergence plot
(top row is current); (d) median-
filtered divergence.

(a) (b)

(d) (c)

Figure 18. Space collision threshold
as a function of robot speed.

Threshold indicating imminent collision
threshold

divergence

60.00

70.00

80.00

90.00

100.00

0.00 20.00 40.00 60.00 80.00

50.00
v (cm/s)

which objects were detected in the narrow range of 1 to 2.5 m from
the vehicle. Based on these trials, an imminent-collision function was
derived for robot speeds up to 0.8 m/s (Figure 18).

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 49

Figure 19. Frame 28 of a 20 cm/s
obstacle-avoidance test run. (a) in-
tensity frame 28; (b) optical flow
“needle” plot; (c) divergence plot
(top row is current); (d) median-
filtered divergence.

(a) (b)

(d) (c)

Figure 20. Frame 43 of a 20 cm/s
obstacle-avoidance test run. (a) in-
tensity frame 43; (b) optical flow
“needle” plot; (c) divergence plot
(top row is current); (d) median-
filtered divergence.

(a) (b)

(d) (c)

8.2 Gauntlet Trials
The robot ran a gauntlet of office chairs to demonstrate the system’s
ability to avoid obstacles while traversing the lab. (The lab setup and
results for a run are shown in Figure 11.) The robot deflected left to
avoid the chairs blocking its path and then continued traversing the
room, deflecting to the right to avoid the opposite row of chairs. After
deflecting right, the robot’s path was partially blocked by the end of a
desk (as shown in Figure 19), causing the robot to deflect left. After
the robot deflected left, its closest obstacle was a chair as shown in
Figure 20. The robot then deflected right and headed toward the door.
(The robot’s complete path is shown in Figure 11 (d).) In these trials,
the robot traveled at 20 cm/s and steered at a maximum rate of 8 deg.

Gaze stabilization contributed considerably to the effectiveness of
the system by reducing the magnitude of the optical flows while the
robot was steering. In control trials without gaze stabilization, analysis
of the data showed that optical flows observed while the robot was
steering routinely exceeded the range of the flow-estimation system. The
resulting corrupted data rendered obstacles “invisible,” and the robot
consequently failed to continue seeing obstacles as it executed evasive
maneuvers.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 50

The simple memory of the steering policy, together with the spatio-
temporal edge-preserving median filtering of divergence and assigning a
cost to “crossing ridges” in the divergence data (discussed in Section 6),
served to commit the robot to a single course around an obstacle until
it was cleared. In control trials without these features, the robot was
sometimes lured back toward an obstacle by lower hazard estimates on
the far side of the obstacle.

An MPEG video of an example test run may be found in the hypertext
portion of this paper. It demonstrates the relationships between the
image, the optical flow, the divergence estimates, and the time-filtered
divergence estimates that control the robot’s steering behavior.

8.3 Wandering Trials
The third set of experiments tested duration. In the wandering trials, the
robot was permitted to wander about the relatively uncluttered lab one
day while the authors prepared a report of the present work. Through-
out the day, the authors ran thirteen trials and collected data. In these
trials, the robot was started toward open space from various locations in
the lab. The longest trial lasted 26 min. The path of the robot in the fi-
nal 8 min. of this trial is shown in Figure 21 (d). Three moderate length
paths of about 7 min. are shown entirely in Figure 21 (a through c).
The mean trial length was roughly 7.1 min. and the median length was
6.75 min. While the robot generally drove back and forth along simi-
lar paths, it also often worked its way out of such limit cycles. These

Figure 21. Wandering trial paths: x-
y plots. (a) Trial 0, 7.67 minutes;
(b) Trial 9, 7.22 minutes; (c) Trial
12, 6.75 minutes; (d) Trial 1, last 8
of 26 minutes.

−200.00

−150.00

−100.00

−50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

−150.00 −100.00 −50.00 0.00 50.00

X − Y plot: trial 0, 7.67 minutes
Y (cm)

X (cm)
−50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

−200.00 −150.00 −100.00 −50.00 0.00 50.00

X − Y plot: trial 9, 7.22 minutes
Y (cm)

X (cm)

(a) (b)

−50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

−300.00 −250.00 −200.00 −150.00 −100.00 −50.00 0.00

X − Y plot: trial 12, 6.75 minutes

X (cm)

Y (cm)

−200.00

−150.00

−100.00

−50.00

0.00

50.00

100.00

150.00

−300.00 −200.00 −100.00 0.00 100.00 200.00

X − Y plot: trial 1, last 8 of 26 minutes
Y (cm)

X (cm)

(c) (d)

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 51

results were achieved with extremely simple behavior control. More-
sophisticated behavior control making use of various mechanisms (e.g.,
an explicit notion of segmented objects, adaptation) to derive or inter-
pret hazard maps can be expected to shorten the time to escape such sit-
uations. The robot also covered a considerable fraction of the lab’s open
space in the longer trials. The failure modes that most commonly ter-
minated these trials with collision are discussed in Section 9. While this
performance falls far short of the ideal of limitless collision-free (how-
ever crude) mobility as a base of competence, it is promising enough to
be considered as a low-level competence in a goal-directed mobile robot
system.

9 Discussion
Some researchers [20, 33, 34] have proposed using divergence or flow
derivatives for visual cues, but did provide real-time implementations
of these ideas. Nelson and Aloimonos [27, 28] used directional flow
divergence for stop-and-look obstacle avoidance (not real-time smooth
driving). Their environments were simplified, and they did not demon-
strate extensive robust behavior over extended periods of time.

Duchon et al. [14, 15, 16] demonstrated flow and flow-derived time-
to-contact for free wandering at 5 cm/s for as long as 5 min. In a second
implementation, speeds of up to 30 cm/s have been achieved, and
unrecorded trials have lasted up to 25 min. without collision. Their most
robust steering strategy was balancing peripheral flows, i.e., comparing
left and right peripheral flows to steer the robot down a conceptual
corridor (referred to as corridor following, flow balancing, centering,
etc.). However, the corridor-following technique is not well suited to
goal-oriented behavior. In [16], target chasing and flow balancing are
combined by summing the egocentric heading changes dictated by both
systems. It is possible for this strategy of combining behaviors to result in
taking a heading that is dangerous because there is no way for behaviors
to eliminate all dangerous headings from consideration.

Coombs et al. [11, 12] also used flow to implement corridor follow-
ing and used divergence to detect imminent collision. The present work
achieves similar results using divergence alone and is, therefore, not lim-
ited to corridor following. The present system supports goal-directed
behavior while providing local obstacle avoidance. The method of es-
timating optical flow described in this paper has been shown to detect
obstacles as far away as 6 m under good conditions. On the other hand,
the flow returned from the PIPE image-processing computer used in [11,
12] was limited to a range of approximately 1 to 2.5 m due to the dif-
ficulty of detecting edges of distant surfaces. The range of our system
is even more remarkable given the coarse resolution (32 × 64) of the
images used. In addition, our system implements both wide-angle and
narrow-angle camera functions using only one wide-angle camera and a
single framegrabber, unlike the two cameras and video channels used in
[11, 12].

System performance depends on many factors. Underlying the diver-
gence estimates are optical flow measurements. Although divergence is
theoretically unaffected by camera rotation, rotation contributes directly
to optical flow. The system calculates optical flow using a correlation
method, which, like all techniques, has limited spatiotemporal sensitiv-
ity. In particular, large flows are underestimated, so fast camera rotation
can corrupt the optical flow estimates on which the divergence estimates

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 52

rely. Similarly, differential measures such as flow and divergence are in-
herently susceptible to noise.

Our system relies on gaze stabilization and robust data filters to cope
with these problems. Rotational stabilization of the camera reduces flow
magnitudes to manageable levels. The brief disturbances introduced by
saccades that reorient the camera to the robot’s heading are effectively
ignored by the spatial and temporal median filters that also suppress
noise (in contrast to a nonrobust smoothing filter which would be af-
fected). This enables the sensing and behavior modules to complement
one another without requiring tight coordination among them.

Optical flow also depends on the field of view and scene texture.
Although the optical flow algorithm used requires very little texture
given adequate lighting [7, 8], naturally the obstacle must appear in the
field of view in order to be detected. Even with a wide-angle (115 deg.)
lens, not all obstacles will be visible.

There are two main causes of collision. The first case involves a colli-
sion with an obstacle in one of the lower corners of the full-sized image.
Currently, due to real-time requirements, only a central 256-pixel band
of the 512-pixel height image is used in calculating flow. Grabbing the
bottom 256 rows of the 512 rows available would enable these objects
to be seen. However, lowering the visual band taken from the full field
of view is undesirable because this also lowers the top edge of the image
and thus limits the maximum visual range of the system. Given that the
current image size allows for about a 20% idle time to buffer OS events,
it is likely that a more refined system (perhaps making use of real-time
OS facilities) could use this available CPU time to process a larger image.

The second most common cause of collision involves a very narrow
object, such as the back of a chair viewed edge-on; such an object does
not have enough spatial extent to trigger a reaction from the system. Be-
cause very wide images are being subsampled (from a width of 512 pix-
els down to 64 pixels), these objects may be only a few pixels wide in the
image and are therefore difficult to detect. This is especially true given
the spatial filtering performed to increase robustness.

A sensible extension would be construction of a local map of space to
help prevent such collisions, although this would introduce new prob-
lems, such as maintaining the map’s integrity. Our hazard maps with
the steering policy’s limited hysteresis provides a simple local spatiotem-
poral map that has proved sufficient to carry the robot around most
obstacles in its path without introducing a complex spatial memory or
world map. Dealing with very narrow objects remains future work.

It has been argued that there are computational advantages in keep-
ing the search radius of the optical flow algorithm as small as one pixel
[7, 8] and keeping the frame rate high. It should be noted that, be-
cause images are subsampled from a size of 256× 512 pixels down to
32× 64 pixels, a single-pixel shift at the new coarser scale is equal to an
eight-pixel shift at the original resolution. In addition, because subpixel
flows are detected, a magnitude of 0.5 pixels per frame corresponds to
a four-pixel shift at the original resolution, 0.25 pixels per frame cor-
responds to a two-pixel shift, etc. Even so, when the robot is rotating,
the optical flow velocities can be extremely high. (Adding to this effect
is the fact that the camera is mounted approximately 30 cm in front of
the rotational axis; each “rotation” of the robot results in combination
of a rotation and a translation of the camera in inertial space.) In this
application, we could easily modify the search space to detect faster ve-
locities in only the horizontal directions, where the greater flows occur.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 53

This would allow the vehicle to turn faster without saturating the com-
puted flows, with only a linear increase in the computational time.

In the previous version of the optical flow algorithm [7, 8], the cor-
relation match values are not saved as they are calculated, because only
the best-matching correlation match is needed. Instead, as each one is
calculated, it is compared with the current best match and saved if it
is the new best match or discarded if it is not. In the new version de-
scribed here, the correlation match values are interpolated, and thus all
match values are saved. Although this requires only 553 KB of memory
for current parameters, cache thrashing could become a performance
bottleneck for higher image and velocity resolutions. Future versions will
be streamlined to reduce this effect.

Sensorimotor interactions also affect overall performance. There are
significant latencies in the sensing, estimation, and control modules
shown in Figure 1. These modules are only loosely synchronized. Al-
though in general the latency for each module equals its cycle time, in
some cases the latency is a bit greater. The modules produce and con-
sume data at various rates, and the interactions of the unequal cycle
times have considerable consequences. Flow and divergence estimates
are produced approximately every 260 ms (just under 4 Hz). The robot
accepts speed and steering commands at about 3 Hz. At a robot veloc-
ity of 20 cm/s, visual data become available about every 5 cm of robot
travel and steering is adjusted about every 7 cm. To avoid losing valu-
able data, especially time-critical impending-collision indications, the
behavior controller runs at 20 Hz, evaluating any fresh data and writing
appropriate steering and speed commands. These commands are only
single-buffered, so only the most recent command is read by the robot
controller when it is ready for a new one. This minimizes the overall la-
tency in the system. However, it also means the behavior controller does
not know exactly which command is being executed unless the robot
controller sends an acknowledgment that identifies the accepted com-
mand. This condition, coupled with considerable latencies in executing
a robot command, means it is difficult for the control (and sensing)
systems to know precisely what the robot is doing, short of installing
high-speed low-latency feedback sensors. Consequently, the systems are
designed to require only approximate knowledge of the robot’s current
motion state if they use any at all. Instead, for instance, robust data fil-
ters are able to ignore momentary noise and artifacts that result from
system module interactions, and this enables modules to cooperate with-
out delicate synchronization.

10 Conclusions
A robot system is presented that uses only real-time image flow diver-
gence to avoid obstacles while driving toward a specified goal direction
(straight ahead in this demonstration) in a lab containing office furni-
ture, robot, and computing equipment. The robot has wandered around
the lab at 20 cm/s for as long as 26 min. without collision. To our knowl-
edge, this is the first such demonstration of real-time smooth wandering
for extended periods of time using only flow divergence.

The paper describes how flow divergence is computed in real time
to provide the robot’s sense of space and also how steering, collision
detection, and camera-gaze control are used together to avoid obstacles
while attempting to drive in the specified goal direction. The major
contribution is the demonstration of a simple, robust, minimal system

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 54

that uses flow-derived measures to control steering and speed to avoid
collision in real time for extended periods.

Although image motion has long been considered a fundamental ele-
ment in the perception of space, attempts to use it in real-world mobility
tasks have always been hampered by problems such as noise, brittle-
ness, and computational complexity. We demonstrate that robust image
motion cues can be extracted using a single ordinary UNIX workstation
to safely move about a complex environment in real time for extended
periods.

These results demonstrate that real-time robot vision and control can
be achieved with careful implementations on ordinary computing plat-
forms and environments. Similarly, an extensible framework can com-
bine simple robust components in a manner that minimizes require-
ments for tight synchronization.

References
[1] J. Albus. Outline for a theory of intelligence. IEEE Transactions on

Systems, Man and Cybernetics, 21(3):473–509, 1991.
[2] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision.

International Journal of Computer Vision, 1: 333–356, 1988.
[3] P. Anandan. A computational framework and an algorithm for the

measurement of visual motion. International Journal of Computer
Vision, 2:283–310, 1989.

[4] D. Ballard and C. Brown. Principles of animate vision. CVGIP: Image
Understanding, 56(1):3–21, 1992.

[5] H. Bülthoff, J. Little, and T. Poggio. A parallel algorithm for real-
time computation of optical flow. Nature, 337(6207):549–553, 9
Feb 1989.

[6] T. Camus. Real-Time Optical Flow. PhD Thesis, Brown University
Technical Report, CS-94-36, 1994.

[7] T. Camus. Real-time quantized optical flow. IEEE Workshop on
Computer Architectures for Machine Perception, Como, Italy,
September 18–20. IEEE Computer Society Press, Los Alamitos,
CA, 1995.

[8] T. Camus. Real-time quantized optical flow. Journal of Real-Time
Imaging (special issue on Real-Time Motion Analysis), Vol. 3,
pages 71–86, Academic Press, 1997.

[9] T. Camus and H. Bülthoff. Space-time trade-offs for adaptive real-
time tracking. In W.J. Wolfe and W.H. Chun (eds.), Mobile Robots
VI, Proc. SPIE 1613, pages 268–276, November 1991.

[10] R. Cipolla and A. Blake. Surface orientation and time to contact
from image divergence and deformation. In Proc. of Computer
Vision-ECCV ’92, the Second European Conference on Computer
Vision, Santa Margherita Ligure, Italy, pages 187–202. May 19–22,
1992.

[11] D. Coombs, M. Herman, T.-H. Hong, and M. Nashman. Real-time
obstacle avoidance using central flow divergence and peripheral
flow. In Proc. of ICCV 1995, the Fifth International Conference on
Computer Vision. Cambridge, Massachusetts, June, 1995.

[12] D. Coombs, M. Herman, T.-H. Hong, and M. Nashman. Real-time
obstacle avoidance using central flow divergence and peripheral
flow. IEEE Transactions on Robotics and Automation, 14(1):49–59,
1998.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 55

[13] R. Dorf. Modern Control Systems. Addison-Wesley, 1980.

[14] A.P. Duchon and W.H. Warren. Robot navigation from a Gibsonian
viewpoint. Proc., SMC 1994, IEEE International Conference on
Systems, Man, and Cybernetics, pages 2272–2277. San Antonio, TX,
October 2–5, 1994.

[15] A. Duchon, W. Warren, and L. Kaelbling. Ecological robotics:
Controlling behavior with optical flow. In J.D. Moore and J.F.
Lehman (eds.), Proceedings of the Seventeenth Annual Conference of
the Cognitive Science Society, pages 164–169. Pittsburgh, PA, July
22–25. Lawrence Erlbaum Associates, Mahwah, NJ, 1995.

[16] A. Duchon, W. Warren, and L. Kaelbling. Ecological robotics.
Adaptive Behavior, 6(3/4):473–507, 1998.

[17] R. Dutta and C. Weems. Parallel dense depth from motion on the
image understanding architecture. Proceedings of the IEEE CVPR,
154–159, 1993.

[18] M. Herman, M. Nashman, T.-H. Hong, H. Schneiderman, D.
Coombs, G.-S. Young, D. Raviv, and A.J. Wavering. Minimalist
vision for navigation. In Y. Aloimonos (ed.), Visual Navigation: From
Biological Systems to Unmanned Ground Vehicles, pages 275–316.
Lawrence Erlbaum Associates, Mahwah, NJ, 1997.

[19] T. Huang, G. Yang, and G. Tang. A fast two-dimensional median
filtering algorithm. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 1:13–18, February 1979.

[20] J. Koenderink and A. van Doorn. Optic flow. Vision Research,
26(1):161–180, 1986.

[21] J. Little and J. Kahn. A smart buffer for tracking using motion data.
IEEE Workshop on Computer Architectures for Machine Perception,
New Orleans, LA, pages 257–266. IEEE Computer Society Press,
Los Alamitos CA, 1993.

[22] H. Liu. A general motion model and spatio-temporal filters for 3-D
motion interpretations. PhD Thesis, Technical Report CAR-TR-789
and CS-TR-3525, University of Maryland, 1995.

[23] H. Liu, T.-H. Hong, M. Herman, T. Camus, and R. Chellapa. Accuracy
vs. efficiency trade-offs in optical flow algorithms. Computer Vision
and Image Understanding, Vol. 72, No. 3, pages 271–286. Academic
Press, December 1998.

[24] H. Liu, T.-H. Hong, M. Herman, and R. Chellapa. Accuracy vs.
efficiency trade-offs in optical flow algorithms. Proceedings of
the Fourth European Conference on Computer Vision, Cambridge,
England, April 1996.

[25] J. McCann. Neural Networks for Mobile Robot Navigation, Masters
Thesis, Brown University, February 1995.

[26] P. Narendra. A separable median filter for image noise smoothing.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
3(1):20–29, January 1981.

[27] R. Nelson and Y. Aloimonos. Using flow field divergence for obstacle
avoidance in visual navigation. In Proc. DARPA Image Understanding
Workshop, 548–567, April 1988.

[28] R. Nelson and Y. Aloimonos. Obstacle avoidance using flow field
divergence. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(10):1102–1106, October 1989.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 56

[29] T. Nodes and N. Gallagher. Two-dimensional root structures
and convergence properties of the separable median filter. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 6:1350–
1365, December 1983.

[30] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.
Numerical Recipes in C (second edition). Cambridge University
Press, 1992.

[31] D. Raviv and M. Herman. Visual servoing from 2-D image cues.
In Y. Aloimonos (ed.), Active Perception, pages 191–226. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1993.

[32] P. Rousseeuw and A. Leroy. Robust Regression and Outlier Detection.
John Wiley & Sons, Inc., 1987.

[33] W.B. Thompson and J.K. Kearney. Inexact vision. Proceedings of
Workshop on Motion: Representation and Analysis (Charleston, SC,
May 7–9), pages 15–21, 1986.

[34] M. Tistarelli and G. Sandini. On the advantages of polar and log-
polar mapping for direct estimation of time-to-impact from optical
flow. IEEE-PAMI, April, 1993.

[35] G.S. Young, T.H. Hong, M. Herman, and J.C.S. Yang. New visual
invariants for terrain navigation without 3-D reconstruction.
International Journal of Computer Vision, 28(1):45–71, June 1998.

VIDERE 1:3 Obstacle Avoidance Using Only Wide-Field Flow Divergence 57

Editors in Chief

Christopher Brown, University of Rochester
Giulio Sandini, Università di Genova, Italy

Editorial Board

Yiannis Aloimonos, University of Maryland
Nicholas Ayache, INRIA, France
Ruzena Bajcsy, University of Pennsylvania
Dana H. Ballard, University of Rochester
Andrew Blake, University of Oxford, United Kingdom
Jan-Olof Eklundh, The Royal Institute of Technology (KTH), Sweden
Olivier Faugeras, INRIA Sophia-Antipolis, France
Avi Kak, Purdue University
Takeo Kanade, Carnegie Mellon University
Joe Mundy, General Electric Research Labs
Tomaso Poggio, Massachusetts Institute of Technology
Steven A. Shafer, Microsoft Corporation
Demetri Terzopoulos, University of Toronto, Canada
Saburo Tsuji, Osaka University, Japan
Andrew Zisserman, University of Oxford, United Kingdom

Action Editors

Minoru Asada, Osaka University, Japan
Terry Caelli, Ohio State University
Adrian F. Clark, University of Essex, United Kingdom
Patrick Courtney, Z.I.R.S.T., France
James L. Crowley, LIFIA—IMAG, INPG, France
Daniel P. Huttenlocher, Cornell University
Yasuo Kuniyoshi, Electrotechnical Laboratory, Japan
Shree K. Nayar, Columbia University
Alex P. Pentland, Massachusetts Institute of Technology
Ehud Rivlin, Technion—Israel Institute of Technology
Lawrence B. Wolff, Johns Hopkins University
Zhengyou Zhang, Microsoft Research, Microsoft Corporation
Steven W. Zucker, Yale University

