

# Videre: Journal of Computer Vision Research

Quarterly Journal Winter 2000, Volume 1, Number 4 The MIT Press

ADORE: Adaptive Object Recognition

Article 4

Bruce A. Draper Jose Bins Kyungim Baek Videre: Journal of Computer Vision Research (ISSN 1089-2788) is a quarterly journal published electronically on the Internet by The MIT Press, Cambridge, Massachusetts, 02142. Subscriptions and address changes should be addressed to MIT Press Journals, Five Cambridge Center, Cambridge, MA 02142; phone: (617) 253-2889; fax: (617) 577-1545; e-mail: journals-orders@mit.edu. Subscription rates are: Individuals \$30.00, Institutions \$125.00. Canadians add additional 7% GST. Prices subject to change without notice.

Subscribers are licensed to use journal articles in a variety of ways, limited only as required to insure fair attribution to authors and the Journal, and to prohibit use in a competing commercial product. See the Journals World Wide Web site for further details. Address inquiries to the Subsidiary Rights Manager, MIT Press Journals, Five Cambridge Center, Cambridge, MA 02142; phone: (617) 253-2864; fax: (617) 258-5028; e-mail: journals-rights@mit.edu.

© 2000 by the Massachusetts Institute of Technology

# ADORE: Adaptive Object Recognition

Bruce A. Draper, Jose Bins, Kyungim Baek<sup>1</sup>

Many modern computervision systems are built by chaining together standard vision procedures, often in graphical programming environments such as Khoros, CVIPtools, or IUE. Typically, these procedures are selected and sequenced based on a programmer's intuition rather than sound scientific principles. This paper presents a theoretically sound method for constructing object-recognition strategies by modeling object recognition as a Markov decision process (MDP). The result is a system called ADORE (Adaptive Object *Recognition*) that automatically learns object-recognition strategies from training data. Experimental results are presented in which ADORE is trained to recognize five types of houses in aerial images, and where its performance can be (and is) compared to optimal.

**Keywords:** object recognition, reinforcement learning, Markov processes, computer vision

#### **1** Introduction

As the field of computer vision matures, fewer and fewer vision systems are built from scratch. Instead, computer vision systems are built by sequencing together standard vision procedures, including (but by no means being limited to) image smoothing and enhancement, edge and corner extraction, region segmentation, straight line and curve extraction, grouping, symbolic model matching (including Hausdorf matching, key feature matching, and heuristic search), appearance matching, pose determination, and depth from stereo, motion, or focus. Separately, each of these procedures addresses part of the computer-vision problem. Together, they form end-to-end vision systems that perform specific tasks.

Computer-vision software environments help application programmers build end-to-end systems by providing libraries of image-processing and/or computer-vision procedures; often, they also provide a visual programming language and GUI for chaining these procedures together. In Khoros, for example, programmers build applications by selecting procedures (called "glyphs") from menus and graphically connect the output of one procedure to the input of another [27]. CVIPtools is a similar software environment intended primarily for academic use [33]. The Image Understanding Environment (IUE) is primarily an object-oriented software library, but also includes a GUI for sequencing procedures [23]. (The IUE is still under development at the time of writing, but a preliminary version is available from http://www.aai.com/AAI/IUE/IUE.html.)

Software tools such as Khoros, CVIPtools, and IUE make it easier for programmers to form and test sequences of vision procedures. Unfortunately, they do not help programmers select procedures for specific tasks, or compare one control strategy to another. Programmers are left to choose vision procedures based on intuition, and to refine sequences of procedures by trial and error.

The goal of the Adaptive Object Recognition (ADORE) project is to provide a theoretically sound mechanism for dynamically selecting vision procedures for specific tasks based on the current state of the interpretation. In the future, we hope to build systems that can adapt to any recognition task by dynamically selecting actions from among dozens (if not hundreds) of vision procedures. At the moment, however, this ambitious goal exceeds our grasp. This paper describes an initial prototype of ADORE that learns to find houses in aerial images using a library of ten vision procedures. The result is a prototype end-to-end objectrecognition system that dynamically selects vision procedures based on a Markov decision process (MDP) model. This paper describes two experiments with the prototype of ADORE: one in which ADORE succeeds in finding a nearly optimal recognition strategy, and one in which it is less successful.

<sup>1.</sup> Department of Computer Science, Colorado State University, Fort Collins, CO, USA 80523 (draper|bins|baek)@cs.colostate.edu)

Copyright © 2000 Massachusetts Institute of Technology mitpress.mit.edu/videre.html

**Figure 1.** A nadir-view image of a residential section of Ft. Hood, Texas.



Figure 2. A duplex.



# 2 Examples of Static and Dynamic Control

Before describing ADORE in detail, let us first illustrate the problem it will be asked to solve. Figure 1 shows a nadir-view aerial image. The task is to find instances of specific styles of houses, such as the duplex in figure 2, using a library of ten general-purpose vision procedures. (Descriptions of all ten procedures can be found in section 5.2.) To adapt to the task, ADORE is given access to training images; each training image comes with a training signal that gives the positions and orientations of duplexes in the training image. ADORE's role is to dynamically select and execute procedures so as to produce duplex (and only duplex) hypotheses.

ADORE recognizes objects (in this case, duplexes) by iteratively selecting and executing vision procedures. For example, ADORE might begin by selecting to apply a rotation-free correlation procedure [28] to extract regions of interest from the image. Alternatively, it might apply a statistical distribution test [25] or a probing routine for the same purpose. All three procedures generate object hypotheses, but ADORE learns from the training data that for this task—where the duplexes are almost identical to each other, and lighting differences and perspective effects are minimal—pixel-level correlation outperforms the other two procedures. ADORE therefore chooses to begin with the rotation-free correlation procedure.

The next step is more complex. Figure 3 shows three regions of interest (ROIs) produced by correlation. The ROI on the left of figure 3 matches the position and orientation of a duplex very well. In fact, none of the ten procedures in the current procedure library can improve this hypothesis, so the best strategy for ADORE is to accept it. The ROI on the right in figure 3, on the other hand, does not correspond to a duplex. The best strategy is therefore to reject it.

The ROI in the middle of figure 3, on the other hand, is more interesting. This ROI roughly matches a duplex, but the ROI is below and slightly rotated from the true position of the duplex. In this case, the best **Figure 3.** A demonstration of dynamic control. The three ROIs above were all created by rotation-free correlation, yet the best strategy for refining these hypotheses depends on the quality of the ROIs, and not the history of how they were created. In this case, the best strategy is to accept the ROI on the left, reject the ROI to the right, and refine the ROI in the middle through segmentation followed by the generalized Hough transform.

**Figure 4.** The middle ROI from figure 3 after refinement via segmentation and the generalized Hough transform.





strategy is to refine the hypothesis by resegmenting the image chip [10] and applying a generalized Hough transform [5] to align the extracted region boundary with the object template. Figure 4 shows the resulting hypothesis after these two procedures are applied.

Examples like the one in figure 3 demonstrate the importance of dynamic control. In all three cases, the first procedure was the same: correlation. The choice of the next procedure, however, depended on the quality of the data (in this case, ROI) produced by the previous step. In general, control strategies should choose procedures based not only on static properties of the object class and image domain, but also on properties of the data produced by previous procedures.

#### **3 Related Work**

Long before the appearance of software support tools like Khoros, researchers argued for specialized recognition strategies built from reusable low-level components. As far back as the 1970s, Arbib argued from psychological evidence for specialized visual "schemas" built from reusable procedures [4]. In the 1980s, Ullman developed a similar theory, in which primitive "visual routines" are combined to form specialized recognition strategies [32]. Later, Aloimonos [2] and Ikeuchi & Hebert [16] argued for specialized recognition strategies made from primitive vision operations in the context of visual robotics.

In practice, researchers have been building systems with specialpurpose recognition strategies for twenty years. In the late 70s and early 80s, researchers built AI-style production and blackboard systems to select and sequence vision procedures for specific tasks. Nagao & Matsuyama's production system for aerial image interpretation [24] was one of the first, and it led to several long-term development efforts, including SPAM [22], VISIONS/SCHEMA [11], SIGMA [15], PSEIKI [3], and OCAPI [9]. More recently, other researchers [8,17,19] have applied AI-style planning technology to infer control decisions from databases describing the task and the available procedures.

Unfortunately, knowledge-based systems were often ad hoc. Researchers formulated rules for selecting procedures based on their intuition and refined these rules through trial and error. (See [12] for a description of the knowledge-engineering process in object recognition.) As a result, there is no reason to believe that the control policies emerging from these heuristics were optimal or even good, nor was there any way to directly compare systems or evaluate their control policies.

Recently, researchers have tried to put the control of object recognition on a stronger theoretical foundation using Bayes nets (TEA1 [29] and SUCCESSOR [21]). Unfortunately, the design of Bayes nets can itself become an ad hoc knowledge-engineering process. Other researchers try to eliminate the knowledge-acquisition bottleneck by learning control policies from examples. Researchers at Honeywell use genetic algorithms to learn target-recognition strategies [1], while reinforcement learning has been used by Draper to learn control strategies [13] and by Peng & Bhanu to learn parameters for vision procedures [26]. Maloof et al. train classifiers to accept or reject data instances between steps of a static sequence of procedures [20].

#### 4 Object Recognition as a Supervised Learning Task

The goal of the ADORE project is to avoid knowledge engineering by approaching object recognition as a supervised learning task. Developers train ADORE to recognize a specific object by providing training images and training signals, where a training signal gives the desired output for a training image. ADORE learns control strategies that re-create the training signal as closely as possible. These control strategies can then be used to hypothesize new object instances in novel images.

ADORE learns control strategies by modeling object recognition as a Markov decision process. In general, a Markov decision process is defined in terms of a set of states, a set of actions, and a control policy that map states onto actions. In this case, the state of the system is determined by data tokens produced by vision procedures. For example, the state of the system might be an ROI, a set of 2-D line segments, or a 2-D contour. The actions are vision procedures, such as correlation and the generalized Hough transform. Actions change the state of the system by producing new data tokens from the current data tokens. A control strategy (or control policy) is a function that maps states onto actions. In the context of ADORE, control policies map data tokens onto vision procedures, thereby selecting the next action in the recognition process.

At the software level, ADORE is divided into two distinct components: an offline learning system that learns object-specific recognition strategies from training images, and a runtime execution monitor that implements these control strategies by iteratively applying vision procedures to data. Since the goal of the learning process is to develop a control strategy that maximizes the performance of the execution monitor, we will describe the runtime execution monitor first and the learning system second.

#### 4.1 The Execution Monitor

The runtime execution monitor is a three-step loop that implements dynamic control policies. On each cycle, the execution monitor:

- 1. Measures properties of the current data, producing a feature vector. The length and contents of this feature vector depend on the type of the data; for example, the features describing an image (average intensity, entropy, and so forth) are different from those describing a 2-D contour (length, curvature, contrast).
- 2. Selects a vision procedure. This selection is made according to the control policy, which is a function mapping feature vectors onto vision procedures. (See section 4.2.)
- 3. Applies the selected procedure to the current data, thereby producing new data. If the selected procedure is one of the special procedures *accept()* or *reject()*, then the procedure will not return a new data token and the loop terminates. (*Accept()* presents the hypothesis to the user as an object instance; *reject()* does not and is a mechanism for discarding incorrect hypotheses.)

The loop begins when an image is presented to the system as the initial data; the monitor then executes the loop until the *accept()* or *reject()* procedure fails to return any data, at which point the recognition process stops.

Of course, this simple description glosses over some important details, the most important of which is that many vision procedures return multiple outputs. For example, the peak detection procedure (section 5.1) may detect several peaks in a likelihood image corresponding to possible hypotheses. Similarly, other detection, matching, and grouping routines may return multiple hypotheses. When this happens, we assume that the outputs hypothesize unique instances of the target object class, and fork as many new instances of the execution monitor as are needed to pursue these hypotheses.

In terms of software, the execution monitor is independent of the vision-procedure library. Each vision procedure is an independent Unix executable; a library file tells the execution monitor the number and type of input arguments for each procedure, the number and type of output arguments, and the Unix pathname. The design goal is to allow vision procedures to be added or removed from the system by simply editing the library file. Similarly, the execution monitor is independent of particular data representations, because all data tokens are kept in files. For each data type, the library file tells the execution monitor

- 1. the name of the data type (so the monitor can match data tokens with arguments to vision procedures),
- 2. the length of the feature vector, and
- 3. the path of the Unix executable for measuring features.

Thus new data types, like new vision procedures, can easily be added to the system.

#### 4.2 Control Policies

Control strategies are represented by policies that select vision procedures based on data feature vectors. Since good control strategies depend on the target object class and image domain, a different strategy is learned for every object-recognition task.

To learn theoretically justifiable control strategies, object recognition is modeled as a Markov decision process (MDP). Although a general introduction to MDPs is beyond the scope of this article, MDPs are structurally similar to finite-state machines. The system begins in some state  $s_1$  and applies an action  $a_1$ , thereby creating a transition to a new state  $s_2$ . This process repeats itself, creating a series of states and actions,  $s_1, a_1, s_2, a_2, s_3, \ldots$ . Unlike a finite-state machine, however, the state transitions in an MDP are probabilistic; when an action  $a_i$  is applied in state  $s_n$ , the resulting state is selected from a probability distribution associated with the state/action pair  $\langle s_n, a_i \rangle$ . Because every state/action pair has a different probability distribution, the system selects which action to apply at every state. This selection is made by a control policy, which is a mapping of states onto actions. Finally, every state transition has a reward (or penalty) associated with it. The problem associated with a Markov decision process is to find the control policy that maximizes the expected reward over time (this is sometimes called the Markov Decision Problem).

In ADORE, object recognition is cast as a Markov decision problem by equating actions with computer-vision procedures (for example, correlation, Hough transform). These procedures produce and consume data tokens such as images, regions, and line groups. The state of the system is determined by a feature vector that describes the current data token. Vision procedures are modeled as probabilistic because, even though we know the type of data they produce (for example, edge-detection procedures create edges), we do not know in advance what feature values that resulting data will have.

The rewards associated with state transitions are determined by taskspecific reward functions. When the user's goal is to optimize recognition rates regardless of cost, the reward associated with every procedure other than *accept()* is zero. When the system invokes *accept()*, it signals that it has found an instance of the object class, and it is rewarded (or penalized) according to how well that hypothesis matches the training signal. (The error function used to compare hypotheses to the training signal is also task specific; for the duplex example, we use the percent of overlap between the hypothesis and the ground truth.) If the goal is to optimize a cost/quality tradeoff, every procedure other than *accept* and *reject* is penalized according to its runtime.

In this framework, a control policy is a function that maps feature vectors onto actions. This mapping is limited by the practical constraint that most vision procedures can be applied only to one type of data. The control policy is built from a set of Q functions, one for every vision procedure. In Markov control theory, Q(s, a) is the function that predicts the expected reward over time that will follow from applying action *a* in state *s*. For example, ADORE trains a Q function to predict the future reward that will follow from segmenting ROIs (in the context of the current task), based on the features of the ROI. It also trains a Q function for predicting the rewards that follow image correlation, curve matching, and every other procedure in the procedure library. The control policy evaluates these Q functions on the current data and selects the procedure with the highest Q value.

It is important to note that the Q-function predicts the total future reward that follows a procedure, and not just the immediate reward. As described above, in most object-recognition tasks, the system does not get a positive reward until the final step when it accepts a (hopefully correct) hypothesis. As a result, Q functions predict the quality of the hypothesis that eventually follows a procedure, even if it takes several additional steps to form or refine that hypothesis.

## 4.3 Offline Learning

The control and artificial intelligence literatures contain many techniques for learning optimal Q functions for control problems with discrete state spaces. If the transition probabilities associated with the actions are known (a so-called *process model*), dynamic programming will estimate Q values and produce an optimal control policy. In the absence of a process model, reinforcement learning (most notably the temporal difference [30] and Q-learning [34] algorithms) have been shown to converge to optimal policies in a finite number of steps.

Unfortunately, the object-recognition problem as defined here depends on a continuous state space of feature vectors. These feature vectors measure the quality of aspects of the intermediate representations returned by the vision procedures, but it is not obvious how to divide the space of feature vectors into a finite set of states a priori. Fortunately, Tesauro [31] and Zhang & Dietterich [35] have shown empirically that neural nets can approximate Q functions over continuous feature spaces within a reinforcement learning system and still produce good control policies. Unfortunately, their method required hundreds of thousands of training cycles to converge. ADORE has a sequence of continuous feature spaces, one for each data representation (such as images, ROIs, and contours) and would require getting a sequence of neural nets to converge on a single control policy. Although theoretically possible, we have not yet succeeded in making this work.

Instead, we train Q functions by optimistically assuming that the best control policy always selects the action that yields the highest possible future reward for every data token. Strictly speaking, this assumption is not always true: A control policy maps points in feature space onto actions, and it is possible for two different tokens to have the same feature measurements and yet have different "optimal" actions. Nonetheless, the optimistic assumption is approximately true, and it breaks the dependence between Q functions, allowing each neural net to be trained separately.

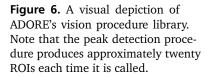
In particular, we approximate Q functions by training backpropagation neural networks. The training samples are data tokens extracted from the training images. We apply all possible sequences of procedures to every training sample to determine which procedure yields the maximum reward. A neural-network Q function is trained for every vision procedure using the data features as input and the maximum reward as the output. In this way, the neural net learns to approximate the future reward from an action under the optimistic control assumption. (Complicating the picture somewhat, we "bag" the neural nets to reduce variance; see [14].)

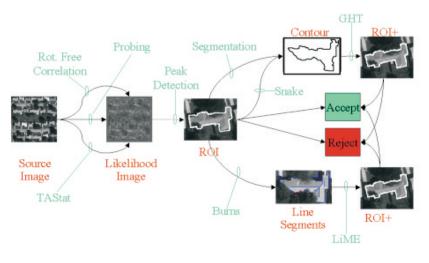
#### 5 Experiments

#### 5.1 Task 1: Duplex Recognition

To test ADORE in a tightly controlled domain, we trained it to recognize houses in aerial images like the one in figure 1. In the first experiment, the goal is to find duplexes of the type shown in figure 2. The training signal is a bitmap that shows the position and orientation of the duplexes in the training images; figure 5 shows the training signal matching the image shown in figure 1. The reward function is the percentage of pixel overlap between the hypothesis and the training signal. This evaluation function ranges from one (perfect overlap) to zero (no overlap). **Figure 5.** The duplex training signal for the image shown in figure 1.







## 5.2 The Vision Procedure Library

The vision procedure library contains ten vision procedures, as depicted in figure 6. Three of the procedures produce likelihood images (with orientation information) from intensity images and a template.<sup>1</sup> The rotation-free correlation procedure [28] correlates the template at each position in the image by first rotating the template until the direction of the edge at the center of the template corresponds to the edge direction at the center of the image window. The TAStat procedure is a modification of the algorithm in [25]. For every image window, it also rotates a mask of the object until it aligns with the local edge data, and then measures the difference between the intensity distributions of the pixels inside and outside of the mask. The greater the difference between the intensity distributions, the more likely the mask matches an object at that location and orientation in the image. Finally, the probing procedure also uses edge information to rotate the template for each image window, and then samples pairs of pixels in the image window, looking for edges that match the location of edges in the template.

ROIs are image chips that are hypothesized to correspond to object instances; each ROI includes a mask that details the hypothesized position and orientation of the object. ROIs can be extracted from likelihood images using a peak detection procedure, which finds the top N peaks in

<sup>1.</sup> In all of our experiments, we assume that a template of the object is available.

**Figure 7.** Duplexes extracted from two images. In the image on the left, all three duplexes were correctly identified. On the right image, a false positive appears on the upper right side. The half-visible duplex to the bottom right is the only false negative encountered during testing.



a likelihood image. For these experiments, the peak detection procedure was parameterized to extract twenty peaks from each likelihood image.

Five procedures can be applied to any ROI. Two of these actions are the special procedures mentioned in section 4.1: *accept()* and *reject()*. The other three options are:

- 1. an active contour procedure [18] that modifies the outline of an ROI mask to maximize the energy under the boundary;
- 2. a segmentation procedure [10] that extracts the boundary of a new region (as a 2-D contour) within the image chip; or
- 3. a straight-line extraction procedure [7].

A generalized Hough transform procedure [5] matches 2-D image contours to the contour of a template, thus creating a new ROI. A symbolic line-matching procedure (LiME [6]) finds the rotation, translation, and scale that maps template (model) lines onto image lines, again producing an ROI. It should be noted that LiME transforms hypotheses in scale as well as rotation and translation, which puts it at a disadvantage in this fixed-scale domain.

## 5.3 Duplex Results

To test the system's ability to learn duplex-recognition strategies, we performed N-fold cross-validation on the set of eight Fort Hood images. In other words, we divided the data into seven training images and one test image, trained ADORE on seven training images, and evaluated the resulting strategy on the test image. We repeated this process eight times, each time using a different image as the test image. All the results presented this paper are from evaluations of test images.

Figure 7 shows the results of two tests, with the ROIs extracted by ADORE outlined in white on top of the test images. As a crude measure of success, ADORE found 21 out of 22 duplexes, while producing six false positives. The only duplex not found by ADORE can be seen in the image on the right of figure 7. (It is the duplex that is half off the bottom right-hand corner of the image.) Every duplex that lies completely inside an image was recognized. (The right side of Figure 7 also shows one of the six false positives.)

It would be incomplete just to analyze ADORE in terms of false positives and false negatives, however. Much of the benefit of ADORE's dynamic strategies lies in their ability to refine imperfect hypotheses, not just make yes/no decisions. ADORE maximizes its reward function by creating the best hypotheses possible, given the procedure library. Table 1 gives a quantitative measure of ADORE's success. The leftmost entry in table 1 gives the average reward across all 22 positive duplex instances from the optimal strategy, where the optimal strategy is determined by exhaustive search. The second entry gives the average reward generated **Table 1.** Comparison between theoptimal policy, the policy learnedby ADORE, and the four best staticpolicies.

|               | Optimal<br>Policy | ADORE<br>Policy | Accept or<br>Reject | Segment | Active<br>Contours |
|---------------|-------------------|-----------------|---------------------|---------|--------------------|
| Avg<br>Reward | 0.8991            | 0.8803          | 0.7893              | 0.8653  | 0.7775             |

by the strategy learned by ADORE. As further points of comparison, we implemented three static control strategies, all of which begin by applying the rotation-free correlation procedure. The third entry in table 1 gives the average reward for duplex instances if the correlation ROIs are accepted or rejected without further refinement. The fourth entry gives the average reward if the ROIs created by correlation are segmented and then repositioned by matching the region boundary to the duplex template boundary via a generalized Hough transform. (This is the sequence of actions shown in figure 4.). The fifth entry gives the average reward if active contours (snakes) are applied to the correlation ROIs, followed once again by the generalized Hough transform. These last three procedures correspond to the three best "static" control policies—that is, the three best strategies that do not dynamically select procedures based on token features, other than to classify (accept or reject) hypotheses.

Two conclusions can be drawn from table 1. First, the strategy learned by ADORE for this (admittedly simple) task is within approximately 98% of optimal. Second, the dynamic strategy learned by ADORE, although not perfect, is better than any fixed sequence of actions. As a result, our intuitions from section 2 are validated: We achieve better performance with dynamic, rather than static, control strategies.

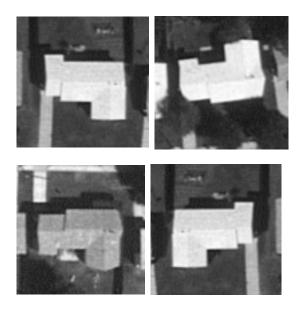
## 5.4 Task 2: Finding Smaller Houses

Having succeeded in finding a good strategy for recognizing duplexes, we changed the training signals and templates to recognize four other styles of houses. (The templates for these styles are shown in figure 8.) The same procedure library and token features were used for these styles as for the duplex. After training, ADORE identified 18 of 19 instances of the house style A but generated 22 false positives. Combining the results from house styles A through D, ADORE found 47 out of 61 instances, while generating 85 false positives.

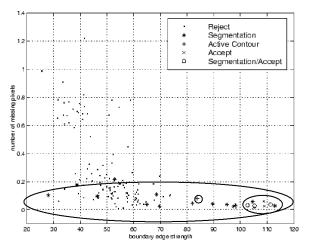
On one hand, these results are encouraging. We used the same procedure library and features to find five different classes of objects by training five different control policies, and we succeeded in finding 77% of all object instances (albeit with many false positives)—despite the fact that the styles of houses can be easily confused, to the extent that two of the house styles are mirrors of two of the other styles.

On the other hand, these results were clearly not as good as the previous results with the duplexes. Why were these harder than finding duplexes? The most critical control decision (given our limited procedure library) occurs after ROIs are extracted from likelihood images. At this point, ADORE has a choice of five procedures: segmentation, active contours, line extraction, accept, or reject. Of these five actions, line extraction is never optimal, but the other four actions are all optimal for some choice of ROI.

Control policies select actions based on feature vectors. By inspecting the weights of the neural-net Q functions for the five procedures mentioned above (all of which are applied to ROIs) when trained for duplex **Figure 8.** Templates of four other styles of houses. Note that the boundaries of the templates are similar to each other.



**Figure 9.** ROIs plotted in two dimensions of the eleven-dimensional feature space. The shape of the points indicates the optimal control decision for each ROI. (Open circles represent ROIs that receive roughly the same reward whether they are accepted as is or refined through segmentation.) The ellipses correspond to our interpretation of the decision boundaries learned by the neural networks.



recognition, we discovered that two of the eleven ROI features dominated the control decision. One feature was the average edge strength along the boundary of the ROI. The second was the percentage of pixels outside the mask that matched the average intensity value of pixels under the mask. (We informally refer to these as "missing" pixels, because their intensities suggest that they were accidentally left out of the hypothesis.)

Figure 9 shows the value of these two features for every duplex training sample. Training samples are coded in figure 9 according to which of the five actions (accept, reject, segment, active contour, or line extraction) are optimal. Samples marked with an open circle in figure 9 correspond to ROIs that receive approximately the same reward whether segmented or accepted as is.

Based mostly on the boundary strength and missing pixel features, ADORE learned a strategy that worked well for duplexes. If we interpret the behavior of the Q functions in terms of these two features, the duplex-recognition strategy can be approximately described as follows (see figure 9): ROIs with very high boundary edge strength and very few "missing" pixels should be accepted as is. If an ROI hypothesis has less edge strength but relatively few missing pixels, then the ROI should be segmented to adjust the boundary. Although many false hypotheses are segmented according to this rule, there is another control decision after segmentation where false hypotheses can be rejected and true ones accepted if the adjusted boundary still has low edge strength. There is also one small region in feature space where the active contour procedure is optimal. This is harder to explain and may result from the training set being a little too small, or it may be a decision triggered by some combination of the other nine features. Finally, if the missing pixel count is high or the edge strength is low, the ROI should be rejected. The solid boundaries in figure 9 are our hand-drawn interpretation of the control policy's decision boundaries.

When we look at the other house-recognition tasks, however, we find that the same features do not discriminate as well. If you overlay the four templates shown in figure 8, it turns out that most of the boundaries are aligned. If an ROI for style A is incorrectly placed over an instance of styles B, C, or D, the average edge strength is still very high. (The same is true for ROIs of styles B, C, and D.) As a result, the edge strength feature does not discriminate between these styles of houses. Because every hypothesis must identify the type of house, ADORE has a hard time learning to distinguish true hypotheses from false ones, resulting in (gracefully) degraded performance. In effect, the difference in feature space between one style and another is too small to support a more reliable strategy. The policies learned by ADORE make the most of the feature set it is given and identify most instances correctly, but to improve performance on this task will require new and better features.

#### 6 Conclusion

We have built a prototype adaptive object-recognition system capable of learning object-specific recognition strategies, given a procedure library and features that describe intermediate data tokens (hypotheses). When the intermediate-level features are descriptive enough to support intelligent control decisions, the result is a near-optimal object-recognition system. When the intermediate-level features are less descriptive, ADORE still learns the best control policy relative to these (weak) features, but the resulting performance is naturally degraded.

#### Acknowledgment

This work was supported by DARPA through the U.S. Army TEC under contract DACA76-97-K-0006.

#### References

- [1] W. Au and B. Roberts. Adaptive configuration and control in an ATR system. *IUW*, pages 667–676, 1996.
- [2] J. Aloimonos. Purposive and qualitative active vision. *IUW*, pages 816–828, September 1990.
- [3] K. Andress and A. Kak. Evidence accumulation and flow of control in a hierarchical spatial reasoning system. *AI Magazine*, 9(2):75–94, 1988.
- [4] M. Arbib. The Metaphorical Brain: An Introduction to Cybernetics as Artificial Intelligence and Brain Theory. Wiley Interscience, New York, 1972
- [5] D. Ballard. Generalizing the Hough transform to detect arbitrary shapes. *PR*, 13(2):11–122, 1981.

- [6] R. Beveridge. *LiME users guide*. Technical report 97-22, Colorado State University Computer Science Department, 1997.
- [7] B. Burns, A. Hanson, and E. Riseman. Extracting straight lines. PAMI, 8(4):425–455, 1986.
- [8] S. Chien, H. Mortensen, C. Ying, and S. Hsiao. Integrated planning for automated image processing. *Integrated Planning Applications*, AAAI Spring Symposium Series, pages 26–35, March 1995.
- [9] V. Clement and M. Thonnat. A knowledge-based approach to integration of image processing procedures. *CGVIP*, 57(2):166–184, 1993.
- [10] D. Comaniciu and P. Meer. Robust analysis of feature space: color image segmentation. *CVPR*, pages 750–755, 1997.
- [11] B. Draper, R. Collins, J. Brolio, A. Hanson, and E. Riseman. The schema system. *IJCV*, 2(2):209–250, 1989.
- [12] B. Draper and A. Hanson. An example of learning in knowledge directed vision. *Theory and Applications of Image Analysis*, pages 237–252. World Scientific, Singapore, 1992.
- [13] B. Draper. Modelling object recognition as a Markov decision process. *ICPR*, D95–99, 1996.
- [14] B. Draper and K. Baek. Bagging in computer vision. *CVPR*, pages 144–149, 1998.
- [15] V. Hwang, L. Davis, and T. Matsuyama. Hypothesis integration in image understanding systems. *CGVIP*, 36(2):321–371, 1986.
- [16] K. Ikeuchi and M. Hebert. Task oriented vision. *IUW*, pages 497– 507, 1990.
- [17] X. Jiang and H. Bunke. Vision planner for an intelligent multisensory vision system. *Automatic Object Recognition IV*, pages 226–237, 1994.
- [18] M. Kass, A. Witken and D. Terzopoulis. Snakes: Active contour models. *IJCV* 1(4):321–331, 1988.
- [19] A. Lansky, et al. The COLLAGE/KHOROS link: Planning for image processing tasks. *Integrated Planning Applications*, pages 67–76. AAAI Spring Symposium Series, 1995.
- [20] M. Maloof, P. Langley, S. Sage, and T. Binford. Learning to detect rooftops in aerial images. *IUW*, 835–846, 1997.
- [21] W. Mann and T. Binford. SUCCESSOR: Interpretation overview and constraint system. *IUW*, pages 1505–1518, 1996.
- [22] D. McKeown, W. Harvey, and J. McDermott. Rule-based interpretation of aerial imagery. *PAMI*, 7(5):570–585, 1985.
- [23] J. Mundy. The image understanding environment program. *IEEE Expert*, 10(6):64–73, 1995.
- [24] M. Nagao and T. Matsuyama. A Structural Analysis of Complex Aerial *Photographs*. Plenum Press, New York, 1980.
- [25] D. Nguyen. *An iterative technique for target detection and segmentation in IR imaging systems*. Technical Report, Center for Night Vision and Electro-Optics, 1990.
- [26] J. Peng and B. Bhanu. Closed-loop object recognition using reinforcement learning. *PAMI*, 20(2):139–154, 1998.
- [27] J. Rasure and S. Kubica. The KHOROS application development environment. In *Experimental Environments for Computer Vision*, World Scientific, New Jersey, 1994.

- [28] S. Ravela, B. Draper, J. Lim, and R. Weiss. Tracking object motion across aspect changes for augmented reality. *IUW*, pages 1345– 1352, 1996.
- [29] R. Rimey and C. Brown. Control of selective perception using Bayes nets and decision theory. *IJCV*, 12(2):173–207.
- [30] R. Sutton. Learning to predict by the methods of temporal differences. *ML*, 3(9):9–44, 1988.
- [31] G. Tesauro. Temporal difference learning and TD-Gammon. *CACM*, 38(3):58–68, 1995.
- [32] S. Ullman. Visual routines. Cognition, 18:97–156, 1984.
- [33] S. Umbaugh. *Computer Vision and Image Processing: A Practical Approach using CVIPtools*. Prentice Hall, New Jersey, 1998.
- [34] C. Watkins. *Learning from delayed rewards*. PhD thesis, Cambridge University, 1989.
- [35] W. Zhang and T. Dietterich. A reinforcement learning approach to job-shop scheduling. *IJCAI*, 1995.

99