
Article 4

ADORE: Adaptive
Object Recognition

Bruce A. Draper
Jose Bins
Kyungim Baek

Videre: Journal of Computer Vision Research

Quarterly Journal

Winter 2000, Volume 1, Number 4

The MIT Press

Videre: Journal of Computer Vision Research (ISSN 1089-2788) is a
quarterly journal published electronically on the Internet by The MIT
Press, Cambridge, Massachusetts, 02142. Subscriptions and address
changes should be addressed to MIT Press Journals, Five Cambridge
Center, Cambridge, MA 02142; phone: (617) 253-2889; fax: (617)
577-1545; e-mail: journals-orders@mit.edu. Subscription rates are:
Individuals $30.00, Institutions $125.00. Canadians add additional
7% GST. Prices subject to change without notice.

Subscribers are licensed to use journal articles in a variety of ways,
limited only as required to insure fair attribution to authors and the
Journal, and to prohibit use in a competing commercial product. See
the Journals World Wide Web site for further details. Address inquiries
to the Subsidiary Rights Manager, MIT Press Journals, Five Cambridge
Center, Cambridge, MA 02142; phone: (617) 253-2864; fax: (617)
258-5028; e-mail: journals-rights@mit.edu.

© 2000 by the Massachusetts Institute of Technology

Many modern computer-
vision systems are built by
chaining together standard vision
procedures, often in graphical
programming environments such
as Khoros, CVIPtools, or IUE.
Typically, these procedures are
selected and sequenced based on
a programmer’s intuition rather
than sound scientific principles.
This paper presents a theoretically
sound method for constructing
object-recognition strategies by
modeling object recognition
as a Markov decision process
(MDP). The result is a system
called ADORE (Adaptive Object
Recognition) that automatically
learns object-recognition strategies
from training data. Experimental
results are presented in which
ADORE is trained to recognize five
types of houses in aerial images,
and where its performance can be
(and is) compared to optimal.

Keywords: object recognition,
reinforcement learning, Markov
processes, computer vision

ADORE: Adaptive Object Recognition
Bruce A. Draper, Jose Bins,
Kyungim Baek1

1 Introduction
As the field of computer vision matures, fewer and fewer vision sys-
tems are built from scratch. Instead, computer vision systems are built
by sequencing together standard vision procedures, including (but by no
means being limited to) image smoothing and enhancement, edge and
corner extraction, region segmentation, straight line and curve extrac-
tion, grouping, symbolic model matching (including Hausdorf matching,
key feature matching, and heuristic search), appearance matching, pose
determination, and depth from stereo, motion, or focus. Separately, each
of these procedures addresses part of the computer-vision problem. To-
gether, they form end-to-end vision systems that perform specific tasks.

Computer-vision software environments help application program-
mers build end-to-end systems by providing libraries of image-pro-
cessing and/or computer-vision procedures; often, they also provide
a visual programming language and GUI for chaining these proce-
dures together. In Khoros, for example, programmers build applications
by selecting procedures (called “glyphs”) from menus and graphically
connect the output of one procedure to the input of another [27].
CVIPtools is a similar software environment intended primarily for
academic use [33]. The Image Understanding Environment (IUE) is
primarily an object-oriented software library, but also includes a GUI
for sequencing procedures [23]. (The IUE is still under development
at the time of writing, but a preliminary version is available from
http://www.aai.com/AAI/IUE/IUE.html.)

Software tools such as Khoros, CVIPtools, and IUE make it easier for
programmers to form and test sequences of vision procedures. Unfor-
tunately, they do not help programmers select procedures for specific
tasks, or compare one control strategy to another. Programmers are left
to choose vision procedures based on intuition, and to refine sequences
of procedures by trial and error.

The goal of the Adaptive Object Recognition (ADORE) project is to
provide a theoretically sound mechanism for dynamically selecting vi-
sion procedures for specific tasks based on the current state of the inter-
pretation. In the future, we hope to build systems that can adapt to any
recognition task by dynamically selecting actions from among dozens (if
not hundreds) of vision procedures. At the moment, however, this ambi-
tious goal exceeds our grasp. This paper describes an initial prototype
of ADORE that learns to find houses in aerial images using a library
of ten vision procedures. The result is a prototype end-to-end object-
recognition system that dynamically selects vision procedures based on
a Markov decision process (MDP) model. This paper describes two ex-
periments with the prototype of ADORE: one in which ADORE succeeds
in finding a nearly optimal recognition strategy, and one in which it is
less successful.

1. Department of Computer Science, Col-
orado State University, Fort Collins, CO, USA
80523 (draper|bins|baek)@cs.colostate.edu)

Copyright © 2000
Massachusetts Institute of Technology
mitpress.mit.edu/videre.html

VIDERE 1:4 ADORE: Adaptive Object Recognition 86

Figure 1. A nadir-view image of a
residential section of Ft. Hood, Texas.

Figure 2. A duplex.

2 Examples of Static and Dynamic Control
Before describing ADORE in detail, let us first illustrate the problem it
will be asked to solve. Figure 1 shows a nadir-view aerial image. The
task is to find instances of specific styles of houses, such as the duplex in
figure 2, using a library of ten general-purpose vision procedures. (De-
scriptions of all ten procedures can be found in section 5.2.) To adapt to
the task, ADORE is given access to training images; each training image
comes with a training signal that gives the positions and orientations
of duplexes in the training image. ADORE’s role is to dynamically se-
lect and execute procedures so as to produce duplex (and only duplex)
hypotheses.

ADORE recognizes objects (in this case, duplexes) by iteratively se-
lecting and executing vision procedures. For example, ADORE might
begin by selecting to apply a rotation-free correlation procedure [28]
to extract regions of interest from the image. Alternatively, it might ap-
ply a statistical distribution test [25] or a probing routine for the same
purpose. All three procedures generate object hypotheses, but ADORE
learns from the training data that for this task—where the duplexes are
almost identical to each other, and lighting differences and perspective
effects are minimal—pixel-level correlation outperforms the other two
procedures. ADORE therefore chooses to begin with the rotation-free cor-
relation procedure.

The next step is more complex. Figure 3 shows three regions of in-
terest (ROIs) produced by correlation. The ROI on the left of figure 3
matches the position and orientation of a duplex very well. In fact, none
of the ten procedures in the current procedure library can improve this
hypothesis, so the best strategy for ADORE is to accept it. The ROI on the
right in figure 3, on the other hand, does not correspond to a duplex. The
best strategy is therefore to reject it.

The ROI in the middle of figure 3, on the other hand, is more in-
teresting. This ROI roughly matches a duplex, but the ROI is below and
slightly rotated from the true position of the duplex. In this case, the best

VIDERE 1:4 ADORE: Adaptive Object Recognition 87

Figure 3. A demonstration of dy-
namic control. The three ROIs above
were all created by rotation-free cor-
relation, yet the best strategy for
refining these hypotheses depends
on the quality of the ROIs, and not
the history of how they were created.
In this case, the best strategy is to ac-
cept the ROI on the left, reject the
ROI to the right, and refine the ROI
in the middle through segmentation
followed by the generalized Hough
transform.

Figure 4. The middle ROI from figure
3 after refinement via segmentation
and the generalized Hough trans-
form.

strategy is to refine the hypothesis by resegmenting the image chip [10]
and applying a generalized Hough transform [5] to align the extracted
region boundary with the object template. Figure 4 shows the resulting
hypothesis after these two procedures are applied.

Examples like the one in figure 3 demonstrate the importance of
dynamic control. In all three cases, the first procedure was the same:
correlation. The choice of the next procedure, however, depended on
the quality of the data (in this case, ROI) produced by the previous step.
In general, control strategies should choose procedures based not only
on static properties of the object class and image domain, but also on
properties of the data produced by previous procedures.

3 Related Work
Long before the appearance of software support tools like Khoros,
researchers argued for specialized recognition strategies built from re-
usable low-level components. As far back as the 1970s, Arbib argued
from psychological evidence for specialized visual “schemas” built from
reusable procedures [4]. In the 1980s, Ullman developed a similar
theory, in which primitive “visual routines” are combined to form spe-
cialized recognition strategies [32]. Later, Aloimonos [2] and Ikeuchi
& Hebert [16] argued for specialized recognition strategies made from
primitive vision operations in the context of visual robotics.

In practice, researchers have been building systems with special-
purpose recognition strategies for twenty years. In the late 70s and early
80s, researchers built AI-style production and blackboard systems to
select and sequence vision procedures for specific tasks. Nagao & Mat-
suyama’s production system for aerial image interpretation [24] was
one of the first, and it led to several long-term development efforts, in-
cluding SPAM [22], VISIONS/SCHEMA [11], SIGMA [15], PSEIKI [3],
and OCAPI [9]. More recently, other researchers [8,17,19] have applied

VIDERE 1:4 ADORE: Adaptive Object Recognition 88

AI-style planning technology to infer control decisions from databases
describing the task and the available procedures.

Unfortunately, knowledge-based systems were often ad hoc. Re-
searchers formulated rules for selecting procedures based on their in-
tuition and refined these rules through trial and error. (See [12] for a
description of the knowledge-engineering process in object recognition.)
As a result, there is no reason to believe that the control policies emerg-
ing from these heuristics were optimal or even good, nor was there any
way to directly compare systems or evaluate their control policies.

Recently, researchers have tried to put the control of object recogni-
tion on a stronger theoretical foundation using Bayes nets (TEA1 [29]
and SUCCESSOR [21]). Unfortunately, the design of Bayes nets can itself
become an ad hoc knowledge-engineering process. Other researchers
try to eliminate the knowledge-acquisition bottleneck by learning con-
trol policies from examples. Researchers at Honeywell use genetic al-
gorithms to learn target-recognition strategies [1], while reinforcement
learning has been used by Draper to learn control strategies [13] and by
Peng & Bhanu to learn parameters for vision procedures [26]. Maloof et
al. train classifiers to accept or reject data instances between steps of a
static sequence of procedures [20].

4 Object Recognition as a Supervised
Learning Task
The goal of the ADORE project is to avoid knowledge engineering by
approaching object recognition as a supervised learning task. Developers
train ADORE to recognize a specific object by providing training images
and training signals, where a training signal gives the desired output
for a training image. ADORE learns control strategies that re-create the
training signal as closely as possible. These control strategies can then
be used to hypothesize new object instances in novel images.

ADORE learns control strategies by modeling object recognition as
a Markov decision process. In general, a Markov decision process is
defined in terms of a set of states, a set of actions, and a control policy
that map states onto actions. In this case, the state of the system is
determined by data tokens produced by vision procedures. For example,
the state of the system might be an ROI, a set of 2-D line segments, or a
2-D contour. The actions are vision procedures, such as correlation and
the generalized Hough transform. Actions change the state of the system
by producing new data tokens from the current data tokens. A control
strategy (or control policy) is a function that maps states onto actions.
In the context of ADORE, control policies map data tokens onto vision
procedures, thereby selecting the next action in the recognition process.

At the software level, ADORE is divided into two distinct compo-
nents: an offline learning system that learns object-specific recognition
strategies from training images, and a runtime execution monitor that
implements these control strategies by iteratively applying vision pro-
cedures to data. Since the goal of the learning process is to develop a
control strategy that maximizes the performance of the execution moni-
tor, we will describe the runtime execution monitor first and the learning
system second.

4.1 The Execution Monitor
The runtime execution monitor is a three-step loop that implements
dynamic control policies. On each cycle, the execution monitor:

VIDERE 1:4 ADORE: Adaptive Object Recognition 89

1. Measures properties of the current data, producing a feature vector.
The length and contents of this feature vector depend on the type
of the data; for example, the features describing an image (average
intensity, entropy, and so forth) are different from those describing
a 2-D contour (length, curvature, contrast).

2. Selects a vision procedure. This selection is made according to the
control policy, which is a function mapping feature vectors onto
vision procedures. (See section 4.2.)

3. Applies the selected procedure to the current data, thereby produc-
ing new data. If the selected procedure is one of the special pro-
cedures accept() or reject(), then the procedure will not return a
new data token and the loop terminates. (Accept() presents the hy-
pothesis to the user as an object instance; reject() does not and is a
mechanism for discarding incorrect hypotheses.)

The loop begins when an image is presented to the system as the
initial data; the monitor then executes the loop until the accept() or
reject() procedure fails to return any data, at which point the recognition
process stops.

Of course, this simple description glosses over some important details,
the most important of which is that many vision procedures return mul-
tiple outputs. For example, the peak detection procedure (section 5.1)
may detect several peaks in a likelihood image corresponding to possible
hypotheses. Similarly, other detection, matching, and grouping routines
may return multiple hypotheses. When this happens, we assume that the
outputs hypothesize unique instances of the target object class, and fork
as many new instances of the execution monitor as are needed to pursue
these hypotheses.

In terms of software, the execution monitor is independent of the
vision-procedure library. Each vision procedure is an independent Unix
executable; a library file tells the execution monitor the number and
type of input arguments for each procedure, the number and type of
output arguments, and the Unix pathname. The design goal is to allow
vision procedures to be added or removed from the system by simply
editing the library file. Similarly, the execution monitor is independent
of particular data representations, because all data tokens are kept in
files. For each data type, the library file tells the execution monitor

1. the name of the data type (so the monitor can match data tokens
with arguments to vision procedures),

2. the length of the feature vector, and
3. the path of the Unix executable for measuring features.

Thus new data types, like new vision procedures, can easily be added
to the system.

4.2 Control Policies
Control strategies are represented by policies that select vision proce-
dures based on data feature vectors. Since good control strategies de-
pend on the target object class and image domain, a different strategy is
learned for every object-recognition task.

To learn theoretically justifiable control strategies, object recognition
is modeled as a Markov decision process (MDP). Although a general
introduction to MDPs is beyond the scope of this article, MDPs are struc-

VIDERE 1:4 ADORE: Adaptive Object Recognition 90

turally similar to finite-state machines. The system begins in some state
s1 and applies an action a1, thereby creating a transition to a new state
s2. This process repeats itself, creating a series of states and actions,
s1, a1, s2, a2, s3, Unlike a finite-state machine, however, the state
transitions in an MDP are probabilistic; when an action ai is applied in
state sn, the resulting state is selected from a probability distribution as-
sociated with the state/action pair < sn, ai >. Because every state/action
pair has a different probability distribution, the system selects which ac-
tion to apply at every state. This selection is made by a control policy,
which is a mapping of states onto actions. Finally, every state transi-
tion has a reward (or penalty) associated with it. The problem associ-
ated with a Markov decision process is to find the control policy that
maximizes the expected reward over time (this is sometimes called the
Markov Decision Problem).

In ADORE, object recognition is cast as a Markov decision problem by
equating actions with computer-vision procedures (for example, corre-
lation, Hough transform). These procedures produce and consume data
tokens such as images, regions, and line groups. The state of the system
is determined by a feature vector that describes the current data token.
Vision procedures are modeled as probabilistic because, even though we
know the type of data they produce (for example, edge-detection pro-
cedures create edges), we do not know in advance what feature values
that resulting data will have.

The rewards associated with state transitions are determined by task-
specific reward functions. When the user’s goal is to optimize recognition
rates regardless of cost, the reward associated with every procedure
other than accept() is zero. When the system invokes accept(), it signals
that it has found an instance of the object class, and it is rewarded (or
penalized) according to how well that hypothesis matches the training
signal. (The error function used to compare hypotheses to the training
signal is also task specific; for the duplex example, we use the percent of
overlap between the hypothesis and the ground truth.) If the goal is to
optimize a cost/quality tradeoff, every procedure other than accept and
reject is penalized according to its runtime.

In this framework, a control policy is a function that maps feature
vectors onto actions. This mapping is limited by the practical constraint
that most vision procedures can be applied only to one type of data. The
control policy is built from a set of Q functions, one for every vision
procedure. In Markov control theory, Q(s, a) is the function that predicts
the expected reward over time that will follow from applying action a in
state s. For example, ADORE trains a Q function to predict the future
reward that will follow from segmenting ROIs (in the context of the
current task), based on the features of the ROI. It also trains a Q function
for predicting the rewards that follow image correlation, curve matching,
and every other procedure in the procedure library. The control policy
evaluates these Q functions on the current data and selects the procedure
with the highest Q value.

It is important to note that the Q-function predicts the total future
reward that follows a procedure, and not just the immediate reward. As
described above, in most object-recognition tasks, the system does not
get a positive reward until the final step when it accepts a (hopefully
correct) hypothesis. As a result, Q functions predict the quality of the
hypothesis that eventually follows a procedure, even if it takes several
additional steps to form or refine that hypothesis.

VIDERE 1:4 ADORE: Adaptive Object Recognition 91

4.3 Offline Learning
The control and artificial intelligence literatures contain many tech-
niques for learning optimal Q functions for control problems with dis-
crete state spaces. If the transition probabilities associated with the ac-
tions are known (a so-called process model), dynamic programming will
estimate Q values and produce an optimal control policy. In the absence
of a process model, reinforcement learning (most notably the tempo-
ral difference [30] and Q-learning [34] algorithms) have been shown to
converge to optimal policies in a finite number of steps.

Unfortunately, the object-recognition problem as defined here de-
pends on a continuous state space of feature vectors. These feature vec-
tors measure the quality of aspects of the intermediate representations
returned by the vision procedures, but it is not obvious how to divide the
space of feature vectors into a finite set of states a priori. Fortunately,
Tesauro [31] and Zhang & Dietterich [35] have shown empirically that
neural nets can approximate Q functions over continuous feature spaces
within a reinforcement learning system and still produce good control
policies. Unfortunately, their method required hundreds of thousands of
training cycles to converge. ADORE has a sequence of continuous feature
spaces, one for each data representation (such as images, ROIs, and con-
tours) and would require getting a sequence of neural nets to converge
on a single control policy. Although theoretically possible, we have not
yet succeeded in making this work.

Instead, we train Q functions by optimistically assuming that the best
control policy always selects the action that yields the highest possible
future reward for every data token. Strictly speaking, this assumption is
not always true: A control policy maps points in feature space onto ac-
tions, and it is possible for two different tokens to have the same feature
measurements and yet have different “optimal” actions. Nonetheless,
the optimistic assumption is approximately true, and it breaks the de-
pendence between Q functions, allowing each neural net to be trained
separately.

In particular, we approximate Q functions by training backpropaga-
tion neural networks. The training samples are data tokens extracted
from the training images. We apply all possible sequences of procedures
to every training sample to determine which procedure yields the max-
imum reward. A neural-network Q function is trained for every vision
procedure using the data features as input and the maximum reward
as the output. In this way, the neural net learns to approximate the
future reward from an action under the optimistic control assumption.
(Complicating the picture somewhat, we “bag” the neural nets to reduce
variance; see [14].)

5 Experiments

5.1 Task 1: Duplex Recognition
To test ADORE in a tightly controlled domain, we trained it to recognize
houses in aerial images like the one in figure 1. In the first experiment,
the goal is to find duplexes of the type shown in figure 2. The training
signal is a bitmap that shows the position and orientation of the duplexes
in the training images; figure 5 shows the training signal matching the
image shown in figure 1. The reward function is the percentage of pixel
overlap between the hypothesis and the training signal. This evaluation
function ranges from one (perfect overlap) to zero (no overlap).

VIDERE 1:4 ADORE: Adaptive Object Recognition 92

Figure 5. The duplex training signal
for the image shown in figure 1.

Figure 6. A visual depiction of
ADORE’s vision procedure library.
Note that the peak detection proce-
dure produces approximately twenty
ROIs each time it is called.

5.2 The Vision Procedure Library
The vision procedure library contains ten vision procedures, as depicted
in figure 6. Three of the procedures produce likelihood images (with
orientation information) from intensity images and a template.1 The
rotation-free correlation procedure [28] correlates the template at each
position in the image by first rotating the template until the direction of
the edge at the center of the template corresponds to the edge direction
at the center of the image window. The TAStat procedure is a modifi-
cation of the algorithm in [25]. For every image window, it also rotates
a mask of the object until it aligns with the local edge data, and then
measures the difference between the intensity distributions of the pix-
els inside and outside of the mask. The greater the difference between
the intensity distributions, the more likely the mask matches an object
at that location and orientation in the image. Finally, the probing proce-
dure also uses edge information to rotate the template for each image
window, and then samples pairs of pixels in the image window, looking
for edges that match the location of edges in the template.

ROIs are image chips that are hypothesized to correspond to object
instances; each ROI includes a mask that details the hypothesized posi-
tion and orientation of the object. ROIs can be extracted from likelihood
images using a peak detection procedure, which finds the top N peaks in

1. In all of our experiments, we assume that a template of the object is available.

VIDERE 1:4 ADORE: Adaptive Object Recognition 93

Figure 7. Duplexes extracted from
two images. In the image on the
left, all three duplexes were correctly
identified. On the right image, a
false positive appears on the upper
right side. The half-visible duplex
to the bottom right is the only false
negative encountered during testing.

a likelihood image. For these experiments, the peak detection procedure
was parameterized to extract twenty peaks from each likelihood image.

Five procedures can be applied to any ROI. Two of these actions are
the special procedures mentioned in section 4.1: accept() and reject().
The other three options are:

1. an active contour procedure [18] that modifies the outline of an ROI
mask to maximize the energy under the boundary;

2. a segmentation procedure [10] that extracts the boundary of a new
region (as a 2-D contour) within the image chip; or

3. a straight-line extraction procedure [7].

A generalized Hough transform procedure [5] matches 2-D image
contours to the contour of a template, thus creating a new ROI. A sym-
bolic line-matching procedure (LiME [6]) finds the rotation, translation,
and scale that maps template (model) lines onto image lines, again pro-
ducing an ROI. It should be noted that LiME transforms hypotheses in
scale as well as rotation and translation, which puts it at a disadvantage
in this fixed-scale domain.

5.3 Duplex Results
To test the system’s ability to learn duplex-recognition strategies, we
performed N-fold cross-validation on the set of eight Fort Hood images.
In other words, we divided the data into seven training images and one
test image, trained ADORE on seven training images, and evaluated
the resulting strategy on the test image. We repeated this process eight
times, each time using a different image as the test image. All the results
presented this paper are from evaluations of test images.

Figure 7 shows the results of two tests, with the ROIs extracted by
ADORE outlined in white on top of the test images. As a crude measure
of success, ADORE found 21 out of 22 duplexes, while producing six
false positives. The only duplex not found by ADORE can be seen in the
image on the right of figure 7. (It is the duplex that is half off the bottom
right-hand corner of the image.) Every duplex that lies completely inside
an image was recognized. (The right side of Figure 7 also shows one of
the six false positives.)

It would be incomplete just to analyze ADORE in terms of false pos-
itives and false negatives, however. Much of the benefit of ADORE’s
dynamic strategies lies in their ability to refine imperfect hypotheses, not
just make yes/no decisions. ADORE maximizes its reward function by
creating the best hypotheses possible, given the procedure library. Table
1 gives a quantitative measure of ADORE’s success. The leftmost entry in
table 1 gives the average reward across all 22 positive duplex instances
from the optimal strategy, where the optimal strategy is determined by
exhaustive search. The second entry gives the average reward generated

VIDERE 1:4 ADORE: Adaptive Object Recognition 94

Table 1. Comparison between the
optimal policy, the policy learned
by ADORE, and the four best static
policies.

Optimal ADORE Accept or Segment Active
Policy Policy Reject Contours

Avg 0.8991 0.8803 0.7893 0.8653 0.7775
Reward

by the strategy learned by ADORE. As further points of comparison, we
implemented three static control strategies, all of which begin by ap-
plying the rotation-free correlation procedure. The third entry in table 1
gives the average reward for duplex instances if the correlation ROIs are
accepted or rejected without further refinement. The fourth entry gives
the average reward if the ROIs created by correlation are segmented and
then repositioned by matching the region boundary to the duplex tem-
plate boundary via a generalized Hough transform. (This is the sequence
of actions shown in figure 4.). The fifth entry gives the average reward
if active contours (snakes) are applied to the correlation ROIs, followed
once again by the generalized Hough transform. These last three proce-
dures correspond to the three best “static” control policies—that is, the
three best strategies that do not dynamically select procedures based on
token features, other than to classify (accept or reject) hypotheses.

Two conclusions can be drawn from table 1. First, the strategy learned
by ADORE for this (admittedly simple) task is within approximately 98%
of optimal. Second, the dynamic strategy learned by ADORE, although
not perfect, is better than any fixed sequence of actions. As a result, our
intuitions from section 2 are validated: We achieve better performance
with dynamic, rather than static, control strategies.

5.4 Task 2: Finding Smaller Houses
Having succeeded in finding a good strategy for recognizing duplexes,
we changed the training signals and templates to recognize four other
styles of houses. (The templates for these styles are shown in figure 8.)
The same procedure library and token features were used for these styles
as for the duplex. After training, ADORE identified 18 of 19 instances of
the house style A but generated 22 false positives. Combining the results
from house styles A through D, ADORE found 47 out of 61 instances,
while generating 85 false positives.

On one hand, these results are encouraging. We used the same pro-
cedure library and features to find five different classes of objects by
training five different control policies, and we succeeded in finding 77%
of all object instances (albeit with many false positives)—despite the fact
that the styles of houses can be easily confused, to the extent that two
of the house styles are mirrors of two of the other styles.

On the other hand, these results were clearly not as good as the pre-
vious results with the duplexes. Why were these harder than finding
duplexes? The most critical control decision (given our limited proce-
dure library) occurs after ROIs are extracted from likelihood images. At
this point, ADORE has a choice of five procedures: segmentation, active
contours, line extraction, accept, or reject. Of these five actions, line ex-
traction is never optimal, but the other four actions are all optimal for
some choice of ROI.

Control policies select actions based on feature vectors. By inspecting
the weights of the neural-net Q functions for the five procedures men-
tioned above (all of which are applied to ROIs) when trained for duplex

VIDERE 1:4 ADORE: Adaptive Object Recognition 95

Figure 8. Templates of four other
styles of houses. Note that the
boundaries of the templates are
similar to each other.

Figure 9. ROIs plotted in two di-
mensions of the eleven-dimensional
feature space. The shape of the
points indicates the optimal con-
trol decision for each ROI. (Open
circles represent ROIs that receive
roughly the same reward whether
they are accepted as is or refined
through segmentation.) The ellipses
correspond to our interpretation of
the decision boundaries learned by
the neural networks.

recognition, we discovered that two of the eleven ROI features domi-
nated the control decision. One feature was the average edge strength
along the boundary of the ROI. The second was the percentage of pix-
els outside the mask that matched the average intensity value of pixels
under the mask. (We informally refer to these as “missing” pixels, be-
cause their intensities suggest that they were accidentally left out of the
hypothesis.)

Figure 9 shows the value of these two features for every duplex train-
ing sample. Training samples are coded in figure 9 according to which
of the five actions (accept, reject, segment, active contour, or line ex-
traction) are optimal. Samples marked with an open circle in figure 9
correspond to ROIs that receive approximately the same reward whether
segmented or accepted as is.

Based mostly on the boundary strength and missing pixel features,
ADORE learned a strategy that worked well for duplexes. If we interpret
the behavior of the Q functions in terms of these two features, the
duplex-recognition strategy can be approximately described as follows
(see figure 9): ROIs with very high boundary edge strength and very
few “missing” pixels should be accepted as is. If an ROI hypothesis has

VIDERE 1:4 ADORE: Adaptive Object Recognition 96

less edge strength but relatively few missing pixels, then the ROI should
be segmented to adjust the boundary. Although many false hypotheses
are segmented according to this rule, there is another control decision
after segmentation where false hypotheses can be rejected and true
ones accepted if the adjusted boundary still has low edge strength.
There is also one small region in feature space where the active contour
procedure is optimal. This is harder to explain and may result from the
training set being a little too small, or it may be a decision triggered by
some combination of the other nine features. Finally, if the missing pixel
count is high or the edge strength is low, the ROI should be rejected.
The solid boundaries in figure 9 are our hand-drawn interpretation of
the control policy’s decision boundaries.

When we look at the other house-recognition tasks, however, we find
that the same features do not discriminate as well. If you overlay the
four templates shown in figure 8, it turns out that most of the boundaries
are aligned. If an ROI for style A is incorrectly placed over an instance
of styles B, C, or D, the average edge strength is still very high. (The
same is true for ROIs of styles B, C, and D.) As a result, the edge
strength feature does not discriminate between these styles of houses.
Because every hypothesis must identify the type of house, ADORE has
a hard time learning to distinguish true hypotheses from false ones,
resulting in (gracefully) degraded performance. In effect, the difference
in feature space between one style and another is too small to support
a more reliable strategy. The policies learned by ADORE make the most
of the feature set it is given and identify most instances correctly, but to
improve performance on this task will require new and better features.

6 Conclusion
We have built a prototype adaptive object-recognition system capable of
learning object-specific recognition strategies, given a procedure library
and features that describe intermediate data tokens (hypotheses). When
the intermediate-level features are descriptive enough to support intelli-
gent control decisions, the result is a near-optimal object-recognition sys-
tem. When the intermediate-level features are less descriptive, ADORE
still learns the best control policy relative to these (weak) features, but
the resulting performance is naturally degraded.

Acknowledgment
This work was supported by DARPA through the U.S. Army TEC under
contract DACA76-97-K-0006.

References
[1] W. Au and B. Roberts. Adaptive configuration and control in an ATR

system. IUW, pages 667–676, 1996.
[2] J. Aloimonos. Purposive and qualitative active vision. IUW, pages

816–828, September 1990.
[3] K. Andress and A. Kak. Evidence accumulation and flow of control

in a hierarchical spatial reasoning system. AI Magazine, 9(2):75–94,
1988.

[4] M. Arbib. The Metaphorical Brain: An Introduction to Cybernetics
as Artificial Intelligence and Brain Theory. Wiley Interscience, New
York, 1972

[5] D. Ballard. Generalizing the Hough transform to detect arbitrary
shapes. PR, 13(2):11–122, 1981.

VIDERE 1:4 ADORE: Adaptive Object Recognition 97

[6] R. Beveridge. LiME users guide. Technical report 97-22, Colorado
State University Computer Science Department, 1997.

[7] B. Burns, A. Hanson, and E. Riseman. Extracting straight lines.
PAMI, 8(4):425–455, 1986.

[8] S. Chien, H. Mortensen, C. Ying, and S. Hsiao. Integrated planning
for automated image processing. Integrated Planning Applications,
AAAI Spring Symposium Series, pages 26–35, March 1995.

[9] V. Clement and M. Thonnat. A knowledge-based approach to
integration of image processing procedures. CGVIP, 57(2):166–184,
1993.

[10] D. Comaniciu and P. Meer. Robust analysis of feature space: color
image segmentation. CVPR, pages 750–755, 1997.

[11] B. Draper, R. Collins, J. Brolio, A. Hanson, and E. Riseman. The
schema system. IJCV , 2(2):209–250, 1989.

[12] B. Draper and A. Hanson. An example of learning in knowledge
directed vision. Theory and Applications of Image Analysis, pages
237–252. World Scientific, Singapore, 1992.

[13] B. Draper. Modelling object recognition as a Markov decision
process. ICPR, D95–99, 1996.

[14] B. Draper and K. Baek. Bagging in computer vision. CVPR, pages
144–149, 1998.

[15] V. Hwang, L. Davis, and T. Matsuyama. Hypothesis integration in
image understanding systems. CGVIP, 36(2):321–371, 1986.

[16] K. Ikeuchi and M. Hebert. Task oriented vision. IUW, pages 497–
507, 1990.

[17] X. Jiang and H. Bunke. Vision planner for an intelligent multisensory
vision system. Automatic Object Recognition IV , pages 226–237,
1994.

[18] M. Kass, A. Witken and D. Terzopoulis. Snakes: Active contour
models. IJCV 1(4):321–331, 1988.

[19] A. Lansky, et al. The COLLAGE/KHOROS link: Planning for image
processing tasks. Integrated Planning Applications, pages 67–76.
AAAI Spring Symposium Series, 1995.

[20] M. Maloof, P. Langley, S. Sage, and T. Binford. Learning to detect
rooftops in aerial images. IUW, 835–846, 1997.

[21] W. Mann and T. Binford. SUCCESSOR: Interpretation overview and
constraint system. IUW, pages 1505–1518, 1996.

[22] D. McKeown, W. Harvey, and J. McDermott. Rule-based
interpretation of aerial imagery. PAMI, 7(5):570–585, 1985.

[23] J. Mundy. The image understanding environment program. IEEE
Expert, 10(6):64–73, 1995.

[24] M. Nagao and T. Matsuyama. A Structural Analysis of Complex Aerial
Photographs. Plenum Press, New York, 1980.

[25] D. Nguyen. An iterative technique for target detection and
segmentation in IR imaging systems. Technical Report, Center
for Night Vision and Electro-Optics, 1990.

[26] J. Peng and B. Bhanu. Closed-loop object recognition using
reinforcement learning. PAMI, 20(2):139–154, 1998.

[27] J. Rasure and S. Kubica. The KHOROS application development
environment. In Experimental Environments for Computer Vision,
World Scientific, New Jersey, 1994.

VIDERE 1:4 ADORE: Adaptive Object Recognition 98

[28] S. Ravela, B. Draper, J. Lim, and R. Weiss. Tracking object motion
across aspect changes for augmented reality. IUW, pages 1345–
1352, 1996.

[29] R. Rimey and C. Brown. Control of selective perception using Bayes
nets and decision theory. IJCV , 12(2):173–207.

[30] R. Sutton. Learning to predict by the methods of temporal
differences. ML, 3(9):9–44, 1988.

[31] G. Tesauro. Temporal difference learning and TD-Gammon. CACM,
38(3):58–68, 1995.

[32] S. Ullman. Visual routines. Cognition, 18:97–156, 1984.
[33] S. Umbaugh. Computer Vision and Image Processing: A Practical

Approach using CVIPtools. Prentice Hall, New Jersey, 1998.
[34] C. Watkins. Learning from delayed rewards. PhD thesis, Cambridge

University, 1989.
[35] W. Zhang and T. Dietterich. A reinforcement learning approach to

job-shop scheduling. IJCAI, 1995.

VIDERE 1:4 ADORE: Adaptive Object Recognition 99

