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Abstract
Most application’s performance is impacted by the amount of avail-
able memory. In a traditional application, which has a fixed work-
ing set size, increasing memory has a beneficial effect up until the
application’s working set is met. In the presence of garbage col-
lection this relationship becomes more complex. While increasing
the size of the program’s heap reduces the frequency of collections,
collecting a heap with memory paged to the backing store is very
expensive. We first demonstrate the presence of an optimal heap
size for a number of applications running on a machine with a spe-
cific configuration. We then introduce a scheme which adaptively
finds this good heap size. In this scheme, we track the memory us-
age and number of page faults at a program’s phase boundaries.
Using this information, the system selects the soft heap size. By
adapting itself dynamically, our scheme is independent of the un-
derlying main memory size, code optimizations, and garbage col-
lection algorithm. We present several experiments on real applica-
tions to show the effectiveness of our approach. Our results show
that program-level heap control provides up to a factor of 7.8 over-
all speedup versus using the best possible fixed heap size controlled
by the virtual machine on identical garbage collectors.
Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection),
Optimization
General Terms Algorithms, Languages, Performance
Keywords garbage collection, paging, adaptive, program-level,
heap sizing

1. Introduction
Their is a strong correlation between memory allocation and pro-
gram performance. Traditionally, this relationship has been defined
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using the concept of a working set. An application’s working set is
the set of objects with which it is currently operating. The amount
of memory needed to store these objects is called the application’s
working set size. When the available memory is less than an appli-
cation’s working set size, throughput is limited by the time the ap-
plication spends waiting for memory to be paged in or out. Until the
working set size it reached, we can improve program performance
by increasing the available memory and thereby reducing the num-
ber of page faults. Once an application’s working set fits into main
memory the application stops paging, so increasing memory further
may not improve performance.

Garbage collection automatically reclaims memory allocated
dynamically and thus relieves the programmer of the need to ex-
plicitly free blocks of memory. Increasing the memory available
to a garbage-collected application also tends to decrease its exe-
cution time, but for a different reason. By increasing the size of
its heap, an application can perform fewer garbage collections and
thereby improve its throughput. While we could size the heap to
just fit the working set, this would require the collector to spend
more time collecting the heap and increase execution times accord-
ingly. Setting a larger heap size in the virtual machine reduces the
need to collect the heap and, generally, reduces the total time spent
in collection. Selecting larger heap sizes, therefore, improves per-
formance by reducing the overhead due to garbage collection.

While decreasing the frequency of garbage collection, using
larger heaps may not improve performance. First, as the heap
grows, individual collection may take longer as the collector ex-
amines more objects. These larger heaps also increase the changes
the heap will not fit into memory and must have pages evicted to
virtual memory. Another downside is that the live data in the heap
may be scattered over a larger area. This scattering reduces data
locality and hurts the performance of caches and the TLB. Ulti-
mately, larger heap sizes requires balancing the benefit of fewer
collections with the costs of reduced locality and paging.

The exact trade-off between frequent GC and paging is hard
to predict, because it really depends on the application, the virtual
machine, the operating system, other programs in the environment,
and all of their interactions. We will show that the relationship
follows a common pattern. This pattern includes an optimal heap
size value, which we can adaptively identify during the program
execution to minimize the execution time.



Scope of adaptation Changes Required

PAMM VM, OS, ProgramProgram
Automatic Heap VM / OS VM / OSSizing [22]
GC Hints [5] Program Program
BC [11] VM /OS VM / OS
Preventive Program Program
GC [9]

Table 1. Comparison of different adaptive memory management
schemes

There are two levels at which the heap size can be controlled: at
the program level and the virtual machine level. Past work has ex-
amined this problem in a number of ways. Yang et al. estimated the
amount of available memory using an approximate reuse distance
histogram [22]. A linear model controlled adjustments to the heap
size so that the physical memory was utilized fully. Maintaining
these histograms required modifying the operating system and so
their evaluation was done in simulation. An alternative approach by
Hertz et al. modified the garbage collector and OS to avoid touch-
ing pages written to the backing store and thereby reduced the cost
of collecting a large heap [11]. Andreasson et al. used reinforce-
ment learning to find the best times to perform garbage collection.
Because it must first be trained, this strategy is effective only after
tens of thousands of time steps (decision points) have passed [2].
We note that each of these schemes made changes to the operating
system and/or virtual machine.

Programs usually run in repetitive patterns. We call each in-
stance of the pattern a phase. While different compilers (or virtual
machines using just-in-time compilation) produce different opti-
mized code, the compilers do not alter the relationships between
phases. As a result, a program expresses surprisingly uniform be-
havior across phases which can be used to adapt the heap size. Even
better, this adaption can be independent of the compiler and vir-
tual machine, since the phase behavior is also independent. More-
over, this approach is independent of the underlying architecture
and memory management scheme.

Based on the program phase information, we propose a method
of program-level adaptive memory management, or PAMM. We
add the PAMM controller using program instrumentation. The con-
troller acquires data available from many layers of the system, such
as the operating system, virtual machine, and the application itself.
By using data such as the current size of the heap and the number
of page faults incurred, our controller can calls for GC when it is
needed. Table 1 compares PAMM with several previously proposed
adaptive memory management schemes.

The rest of the paper is organized as follows: Section 2 pro-
vides the background information of phases. Section 3 describes
the program level memory management scheme in detail. Sec-
tion 4 presents the implementation details and the benchmarks we
used. Section 5 presents our experimental results on the six bench-
mark applications and compares them with the brute force search
method. Section 7 discusses the related word and Section 6 con-
cludes our work.

2. Behavior Phases in Programs
Many programs have repetitive (yet input-dependent) phases that
users understand well at an abstract, intuitive level, even if they
have never seen the source code. For example, a database iterates
over the data records to find the results matching a given query and
a server application processes incoming requests one by one. Other
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Figure 1. Phases detected for pseudoJBB. The heap size increases
steadily and evenly until a GC is called.

programs like programming environment tools, compression and
transcoding filters, and interpreters have similar phase behavior.
While a phase usually spans many functions and loops, it has only
one starting point and one ending point and may occur multiple
times during the program run.

Program-level adaptive memory management is based upon
phase information for three important reasons. First, phases provide
a high level summarization of a program. The behavior of the phase
instances are quite similar, so we do not need to measure every
possible phase to get a reasonable measurement. Second, phases
are very repetitive, so the memory usage of the program is split
evenly by the phase boundaries. Third, a phase usually represents
a memory usage cycle. Garbage collection is best performed at a
phase boundary, because it is at these points in the program that all
temporary objects will be dead and ready for collection.

One way of detecting the phases is through active profiling.
Active profiling uses regular inputs to induce behavior repeat-
able enough for analysis and phase marking.Other techniques have
also been proposed previously and could be used for program-
level adaptive memory management. For instance, Georges et
al. selected Java methods whose behavior variation is relatively
small [10]. There are also many algorithms which exploit aspects of
the program structure such as loops and procedures [4, 10, 13, 16],
regions [12], and call sites [15] to determine phase boundaries.

Figure 1 shows the phase information for a run of pseudoJBB
with a 512MB heap. The x-axis of this figure is the logical time
within a run and the y-axis shows the heap size at a point in time.
The two drops in the figure correspond with the two GCs calls
made. We can see that the phases split the memory usage evenly.
Figure 2 provides us more detailed information. Each vertical dot-
ted line shows the boundary of 100 phase instances that consume
fewer than 150K bytes. Because of the way in which the virtual ma-
chine reports the heap size, we cannot obtain more detailed memory
usage statistics. As objects are allocated, the heap size does not al-
ways increase because new objects can be placed in the fragmented
space between existing objects. As a result, we see multiple phase
instances with the same heap size.
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Figure 2. A detailed view of the phases of pseudoJBB. Each ver-
tical dotted line corresponds to a phase and there are 100 phases in
this figure. Because of limitations of the VM, we cannot get more
detailed heap size information.
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Figure 3. Flow graph of program-level memory management

3. Program-level Memory Management
For ease of this discussion, we begin by introducing our terminol-
ogy. The VM controlled heap size is the target heap size, often spec-
ified via a command-line argument, that is maintained by the Vir-
tual Machine. We also call this size the VM bound or hardbound.
By contrast, the program controlled heap size is the target heap
size maintained at the program level. We also call the program con-
trolled heap size the program bound or softbound. Note that the
program cannot control the space that GC needs, although the VM
can. The size of the heap at any instant in the program run we call
the current heap size. The current heap size can be computed by
subtracting the free heap memory from the total memory.

Figure 3 shows the control flow graph of our program-level
adaptive memory management approach. This begins with us in-
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Figure 4. Behavior of pseudoJBB using GenCopy with 192M
physical memory

strumenting the original program to get the phase information.
Then, during the program run, we invoke the test function each time
we finish executing a specific number of phase instances. ¿From the
current heap size and the number of page faults the process has in-
curred, the controller decides whether or not to make a GC call. Af-
ter the GC completes, the PAMM controller adjusts the softbound
using the number of page faults duing the garbage collection and
the reason the heap was collected.

3.1 Monitoring Frequency

There are two principles used to decide upon the monitoring fre-
quency. The monitoring must be frequent enough to provide timely
information when deciding to invoke the collector. But it must also
be infrequent enough that it does not impose a substantial overhead.
On average, each call to the test function takes about 0.14 millisec-
onds. Thus, for most applications, we can safely perform thousands
of checks without dragging down program throughput.

Phases boundaries provide us with many potential opportunities
to check whether the heap must be collected and, when needed, in-
voking the collector. We cannot just check at every phase boundary,
however. For example, pseudoJBB has as many as 221,804 phases
and, were we to call the test function at each of these, we would
add more than 30 seconds to the running time of this minute-long
program. In practice, we avoid this problem by specifying a fre-
quency for checks (e.g., n pseudoJBB we check only once every
100 phase boundaries). By calling the test function less frequently
an execution performs only slightly more than 2000 checks, which
is sufficient for deciding upon tens of GC calls.

Manual selection of a suitable frequency is easy. Dynamic se-
lection is also possible according to the two principles in the above.
The adaptive solution would be useful if the program is composed
of several different types of phases and the frequency can not be
fixed. In our experiments, we use the manual solution.

3.2 Making Decisions

Figures 4 through 6 show the behavior of pseudoJBB running at
different hardbounds using 3 different GC algorithms: GenCopy,
CopyMS, and MarkSweep. In all these figures, the page faults
include both those caused by the mutator and those caused by
the garbage collector. The total collection time includes delays in
collection that occur as a result of paging.
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Figure 5. Behavior of pseudoJBB using CopyMS with 192M
physical memory
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Figure 6. Behavior of pseudoJBB using MarkSweep with 192M
physical memory

We can observe that for each GC scheme, the total execution
time first drops down, then quickly goes up and drops down slowly
at last. There exist multiple locally optimal hard bounds. However,
there does exist an optimal point, such that:

1. When the hard bound is smaller than the point, the total collec-
tion time correlates with the total execution time very well and
the number of pages faults remains steadily low.

2. When the heap size goes beyond the point, both the total execu-
tion time and the number of page faults increase dramatically.
However, the number of pages faults correlates better with the
execution time.

Based on these observations, we propose our program-level
adaptive control scheme. We set a large VM bound for the virtual
machine when we start the virtual machine. We also maintain a
softbound. At each monitoring point, we poll the virtual machine
for the current heap size of the program and poll the OS the number
of page faults accumulated from the last GC call. For one case, if
the current heap size is greater than the softbound, we instruct Jikes

RVM to perform a garbage collection. By this, we control the heap
size from the program level. We call this case a reach-softbound
invocation. For the other case, if that number of page faults since
last GC is above a certain level, we consider that the softbound
goes beyond the optimal point and invoke GC. Considering that
the system may be not stable, for the second case, we add the
requirement that the current heap size should be bigger than the
heap size after last GC call by at least 2M. WE call this case a
paging invocation.

The number of page faults caused by the current process can be
obtained from the file “/proc/self/stat”. This file is actually a pseudo
file and is used as an interface to the kernel data structure. Since it
is maintained in the memory, it is efficient to read from it.

3.3 Adjusting the Softbound

After the GC call, our controller need to change the softbound
to adapt to the environment. These includes two possible actions:
increasing or decreasing.

To help adjusting the softbound, we introduce two new vari-
ables: left mark and right mark. The left mark is the very softbound
where we increase our softbound and the right mark is the very
softbound where we decrease our softbound. We also assume there
is a predefined step size. In our experiment, the step is set to be
10M.

Our initial softbound is set at the right beginning of the program.
It is currently set to be the current heap size plus 2 steps. The left
mark is set to be the current heap size.

The softbound is increased as follows: First, the current soft-
bound is recorded as the left mark. If right mark does not exist, the
softbound is increased by the step size . Otherwise, it is to be the
mean of the current softbound and the right mark. However, there
do exist cases where the right mark is incorrectly set to be smaller
than the optimal point because of the changes in the environment
or some random reasons. To get over those cases, we force both the
softbound and the right mark to increase by 1M, if their distance is
smaller than 2M.

The softbound is decreased as follows: First, the right mark is
set to be the current softbound. We then move the softbound to the
mean of softbound and left mark. To deal with the case in which
the left mark is incorrectly set, we force the softbound and the left
mark to decrease by 1M if their distance is smaller than 2M. Since
it is of no use if the soft bound is smaller than the current heap size
after GC, we make sure that the smallest value of softbound is 1M
away from the current heap size.

From the previous description, it is easy to see that we actually
follow a binary search scheme to find the optimal softbound.

The next question is when to invoke increase and decrease. We
measure the page faults incurred by the current GC call. If the num-
ber is smaller than a specified threshold, e.g., 10 in our experiment,
and the GC is a reach-softbound invocation, we consider there is
still room to boost the performance, so we increase the softbound.
In the other case, if the number of page faults is no smaller than
the threshold, we decide to decrease the softbound, regardless the
reason the type of GC being triggered.

4. Experimental Methodology
To evaluate the effectiveness of adaptive heap sizing we must com-
pare the total execution time for a number of benchmarks. For this
analysis we compared the results on 4 SPECjvm98 benchmarks [8],
as well as pseudoJBB [7] and ipsixql [17]. 201 compress is a high-
performance application to compress and uncompress large files,
based on the Lempel-Ziv method. In our experiment, it compresses
and uncompresses 5 different files 5 times each. We have identi-
fied 2 different phases, one is within the compress process and
the other is in the decompress process. 202 jess is a Java expert



Benchmark Phasemarks Monitoring Parameters
frequency

201 compress 2 32768 -s100 -M1 -m1 -a
202 jess 2 100 -s100 -M1 -m1 -a
209 db 1 10 -s100 -M1 -m1 -a
227 mtrt 1 100 -s100 -M1 -m1 -a
ipsixql 8 100 1, 7
pseudoJBB 8 250 140000

Table 2. Benchmarks and their parameters

shell system based on NASA’s CLIPS expert shell system. In our
experiment, it is used to solve the Number Puzzle Problem. We
have identified two different phases: one is to parse the expres-
sions and the other is to execute a simple function call. 209 db
is a small database management program that performs several
database functions on a memory-resident database. The only phase
we identified is to process one data function. 22t mtrt is origi-
nally dual-threaded ray tracer. However, since we currently cannot
manage multiple-threaded programs, we changed it to be single-
threaded. The only phase identified in the benchmark is the render-
ing of a pair of pixels. Ipsixql is an XML database program from
the DeCapo benchmark suite with a set of 7 queries. Because we
identified the phases of Ipsixql via instrumentation with Soot [21],
we do not know the meaning of the 8 phases. pseudoJBB is a single
threaded simulation of a warehouse system which repeatedly pro-
cess 6 different types of transactions. It is modified from SPECjbb
benchmark to perform only a fix number of random loads, and has
7 phases identified during the warehouse initialization. The other
phases process transactions one by one. Table 2 shows the related
information for each benchmark we used.

All of the experimentation is done using the Jikes compiler
(version 1.22) and Jikes RVM (version 2.4.0). When the program-
level adaptive memory management is active, the virtual machine
is instructed to use a 512 Mbyte heap. In order to have a realistic
evaluation of running time, we need to execute the benchmark suite
with any optimizations that would typically exist. At the same time,
we wish to separate the program execution time from the virtual
machine’s optimizations. We use the second-run technology first
proposed by Bacon et al. [3]. Prior to the timed executions we run
the benchmark once with adaptive optimization active. This allows
the virtual machine to recompile hot methods. During the timed
executions the adaptive optimization system is deactivated so that
each trial will be the same. This allows us to isolate the program
running time from the optimization overhead. The execution times
reported are the minimum of three trials.

The Jikes RVM can be built with several different garbage col-
lectors and optimization schemes. In addition to testing the various
benchmarks under different collection routines, each benchmark
is evaluated using two different optimization schemes. In the Fas-
tAdaptive builds the included classes have all been compiled with
the optimizing compiler, and the adaptive compilation of hot meth-
ods is done 1. In the BaseBase builds, the optimizing compiler is
not used, and adaptive compilation is unavailable.

All of the benchmarks were evaluated on 2GHz Pentium 4
processors running Linux kernel version 2.6.12 with 512Mb of
physical memory. To simulate a more constrained system, we limit
the amount of system memory available to the virtual machine.
This limited-memory effect is achieved by pinning memory pages
in the operating system. For each benchmark the physical memory

1 ”Fast” actually indicates that a fully optimized compilation is done, but
the assertions are removed.

is artificially constrained to values between 96 Megabytes and 192
Megabytes.

We use two different approaches to identifying the phases of
the benchmarks, depending on whether or not the source code
is available. In the simpler case where the source is available,
the phases are identified manually. Because the function of the
benchmark is known, we can insert control at points that are known
to execute once per phase. When the source code is not available for
direct modification, we use the Soot Java optimization framework
to identify the insertion points through profiling. Using Soot, we
analyze the number of times a particular instruction in the Java code
is executed. Based on the statistics information, we determine the
phases manually, and insert the control mechanism there.

4.1 Garbage Collectors

Because we want the adaptive heap sizing to be dependent only on
the program behavior, we will illustrate its advantages in the pres-
ence of three different garbage collectors: Mark-Sweep, CopyMS,
and GenCopy. These collectors are hybrids of other collection
schemes. All of them have in common that they are “stop the
world” approaches that halt the program mutator during collection.

Basic Mark-Sweep (MS) garbage collection traverses the entire
object reachability graph. Each object is marked when it is scanned
during the search, and unmarked objects are known to be garbage.
In the Jikes RVM objects are allocated in blocks of specific sizes,
which are maintained in a free-list. Objects that are not marked are
simply returned to the list.

Copying memory management allocates objects sequentially
into one space of memory. When the space becomes full, the ob-
jects are traced as in Mark-Sweep. The difference is that rather than
marking objects and managing the free space at the end, objects are
copied into another memory space when they are touched. The end
result is that the second space has reachable objects consolidated
at the beginning, and new objects can again be allocated sequen-
tially after them. The scheme toggles back and forth between two
memory spaces.

Generational garbage collection also uses multiple spaces of
memory. New objects are allocated into the “nursery,” and copied
into a “mature” space. The major departure from the copying
scheme is that the spaces are not swapped. New objects are al-
ways allocated into the nursery, and collection is only performed
on regions that are full. This allows collection to be concentrated
on the newer objects, which are more likely to be garbage. A write
barrier must be used to track references from older spaces into
younger spaces to avoid scanning them for reachability.

CopyMS uses two memory regions. New objects are allocated
sequentially into the first region, which is a copying space. When
the region is filled, reachable objects are copied into the second
space, which is managed using Mark-Sweep. No write barrier is
present, and every collection is performed over the whole heap.

GenCopy is a generational scheme in which a mature space is
managed with a standard Copy approach . In the Jikes implementa-
tion, the nursery size is unbounded, so initially the nursery fills the
entire heap. Each time the nursery is collected its size is reduced by
the size of the survivors. Whole heap collection is done only is the
nursery size falls below a static threshold.

The memory requirements and usage of the garbage collection
schemes are very different. In a Copying collector the virtual ma-
chine must allocate an area of memory twice as large as the heap
size being used. Additionally, it will potentially touch every page in
the page working set. In the Generational approach, the amount of
memory needed does not need to exceed the heap size, as space is
transferred from the nursery to the mature space when objects are
moved. In most cases, the collector will only have to touch memory
pertaining to the youngest elements, which are likely to be in mem-
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physical memory, FastAdaptive GC scheme is used

ory. In the Mark-Sweep case, all of the objects may be touched, but
no extra memory needs to be explicitly reserved2.

5. Experimental Results
The curve we wish to optimize can be seen in Figure 7, where
the total execution time can be seen to drop to a minimum, rise
again as paging becomes more pronounced, and then slowly drop as
the frequency of garbage collections becomes trivial. The general
shape of this curve is the same for each of the garbage collectors,
and is constant for the adaptive cases that each attempt to identify
an optimal heap size for the given main memory size. Because the
adaptive approach responds to changes in program behavior, the
optimal heap size will likely not be found immediately. The result
is that the total execution time with adaptive heap sizing may not
be as low as the optimal execution time.

2 Clearly, some internal fragmentation will occur using free-lists of blocks.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

Used heap size (M)

E
xe

cu
tio

n 
tim

e 
(s

)

GenCopy
CopyMS
MarkSweep
Adap GenCopy
Adap CopyMS
Adap MarkSweep

Figure 9. Execution time of pseudoJBB vs. heap size with 192MB
physical memory, FastAdaptive GC scheme is used

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Used heap size (M)

E
xe

cu
tio

n 
tim

e 
(s

)
GenCopy
CopyMS
MarkSweep
Adap GenCopy
Adap CopyMS
Adap MarkSweep

Figure 10. Execution time of ipsixql vs. heap size with 128MB
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Figure 16 depicts the exact heap size immediately before each
invocation of the garbage collector during an execution of pseudo-
JBB using the program-level adaptive memory management. This
figure is meant to illustrate how our strategy continually adapts the
heap size for pseudoJBB.

We can see that the curves of MarkSweep and CopyMS col-
lectors quickly converge to a stable point in as few as 4 phases.
If we look at the detailed type of each GC, we will find that most
of the first few are reach-softbound invocations and the late ones
are mostly paging invocations. Actually, for all of the examples,
the page faults play an important role in finding the optimal soft-
bound. After the softbound is stabilized, the heap size before GC
still increases at a slow rate, however, the GC now incurs very few
page faults. A reasonable explanation is that due to the paging, the
process pushes those useless pages out.

For GenCopy, all of the collections are performed on the nursery
space. The curve of GenCopy keeps increasing and does not stabi-
lize until phase 99,892. Prior to that there are two places where
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Figure 12. Execution time of 201 compress vs. heap size with
96MB physical memory, FastAdaptive GC scheme is used

a lot of collections are initiated. These two places coincide with
the warehouse initializations. The initializations incur a lot of page
faults and cause the GC to be called frequently. After the initializa-
tions, the system quickly stabilizes. At last, though the heap size
still increases, each garbage collection takes only tens of millisec-
onds and causes very few page faults.

In the case of ipsixql with 128 megabytes of physical memory
using the FastAdaptive MarkSweep build of the Jikes RVM, the
running time at the optimal heap size was 12.6 seconds, while the
running time was 207.7 seconds on average and 375.4 seconds in
the worst case3. The optimal heap size results in an execution time
that is 16.46 times faster than the average case. Averaged over all
of the benchmarks we have evaluated, the mean execution time for
a benchmark is 4.9 times longer than the minimum execution for
the same benchmark.

3 The worst case here is only considering those executions that complete. If
the heap size is extremely low, the execution may fail entirely.
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Figure 13. Execution time of 202 jess vs. heap size with 96MB
physical memory, FastAdaptive GC scheme is used
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Figure 14. Execution time of 209 db vs. heap size with 96MB
physical memory, FastAdaptive GC scheme is used

While it is clear that finding the optimal heap size results in
significant performance gains, it is also the case the finding the
optimal heap size is not trivial. The optimal value depends on the
garbage collector, the amount of physical memory present, and the
particular program being executed, and the compiler optimizations
that have been used.

Looking at Figure 7 we see that there is a significant differ-
ence between the performance of the MarkSweep garbage collec-
tor and that of the CopyMS collector. Not only are the execution
times quite different, but their behavior is such that one improves
while the other worsens. While the choice of garbage collector
can have a significant impact on program performance, the results
shown in Figure 8 show that with program-level adaptation the spe-
cific garbage collector may become inconsequential. While this is
not the case for every benchmark (particularly when the available
memory is quite constrained), it is the common case.

The optimal heap size is also affected when the compiler op-
timizations are changed. Figures 7 and 8 illustrate that the opti-
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Figure 15. Execution time of 227 mtrt vs. heap size with 96MB
physical memory, FastAdaptive GC scheme is used
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Figure 16. Heap size before the GC, tested for pseudoJBB using
192M physical memory, all GC schemes use FastAdaptive

mal heap size for GenCopy (the best collector for that benchmark)
changes from 120 megabytes to 160 megabytes. By comparing Fig-
ure 8 to Figure 9 we can identify the impact of changing the amount
of physical memory on the execution times. In this case the optimal
heap size for the GenCopy collector changes again from 160 to 88
megabytes.

The results depicted in Figures 8 & 11 support the intuitive
notion that that the optimal heap size also depends on the executed
program. Here the CopyMS collector has the optimal performance
in both cases, but the optimal heap size changes from 48 to 56
megabytes. Because of the number of factors that come together in
determining the optimal heap size, identifying it prior to execution
is impossible.

Table 3 lists the speedup of the adaptive scheme over the best,
the second best, and the third best performance of VM-controlled
heap sizes for the three garbage collectors. On average across
all programs, memory and compiler configurations, the adaptive

scheme is 9% slower than the best performance of GenCopy,
10% slower than CopyMS, but 113% faster than MarkSweep (due
mainly to the large improvements in two cases). For GenCopy, the
largest slowdown is 39% for jess, and the greatest improvement is
26% for optimized pseudoJBB on 128MB memory. For the other
two garbage collectors, the speedup ranges from -45% to 780%
compared to the best performance of VM-controlled heap size. The
slowdown is due partly to the overhead of the run-time controller
and partly to the startup cost and mis-steps in the adaptation. On
the other hand, since the adaptive scheme uses different heap sizes
for different stages of the execution, it achieves a faster speed than
the best fixed heap size for over a third of test configurations. In
the extreme case, optimized pseudoJBB on 128MB memory using
MarkSweep, the adaptive heap control is 7.8 times faster than the
best fixed heap size, even though both schemes use an identical
garbage collector.

In Table 3, we also compare our adaptive scheme with the de-
fault Jikes RVM setting. The default setting of Jikes RVM has ini-
tial and maximum heap size to be 50 megabytes and 100 megabytes
for FastAdaptive case, and 20 megabytes and 100 megabytes for the
BaseBase case. We can see that on average across all of the bench-
marks, our strategy have 64% speedup for GenCopy, 524% speedup
for CopyMS and 553% speedup for MarkSweep. Our adaptive
scheme works very well for all of the benchmarks except pseu-
doJBB. We are uniformly slower than the best fixed heap size for
pseudoJBB benchmark running with 192 megabytes physical mem-
ory. A reasonable explanation is that 192M physical memory is big
enough for the default GC without too much page faults.

It is interesting to consider the situation that a person needs to
select a uniform heap size for all benchmarks with physical mem-
ory fixed. We consider pseudoJBB and ipsixql when physical mem-
ory is 128 megabytes. For GenCopy, CopyMS and MarkSweep,
people will select 128M, 80M and 224M separately. Our adaptive
scheme outperforms these selected heap size by 1.6%, 6.5% and
9.4% separately. When the physical memory is 96 megabytes, peo-
ple will select 48M, 24M and 128M separately for the SPECjvm98
benchmarks. Our adaptive scheme is faster than these selected heap
size by 1.4% 1.8% and 3.9% separately.

6. Conclusion
In the presence of automatic memory management, the relationship
between allocated memory and application performance becomes
more complicated. Allowing a larger heap size will reduce the
frequency of garbage collections. Once the heap size exceeds the
available physical memory, portions of the heap will be paged to
the backing store. Paging is particularly detrimental when garbage
collections are performed because the collection is likely to access
every page of the heap, thus incurring additional paging overhead.
Somewhere on the continuum of heap sizes lies a balance between
frequency and cost of collection.

We have introduced a scheme for adaptively identifying the op-
timal heap size for a program while it is running within a Java vir-
tual machine. We are able to use phase level behavioral information
to monitor a program’s performance. By observing how the execu-
tion time responds to changes in the heap size we can force garbage
collection to limit the program’s heap usage. Using this mechanism
we can get performance either close to or better than the best pos-
sible with a virtual-machine controlled heap size, independent of
the garbage collector, the physical memory size, and the compiler
optimization. In the extreme case, the adaptive heap sizing leads to
a factor of 7.8 overall speedup over the best possible single heap
size, when both are using the same garbage collector.



pJBB pJBB pJBB ipsixql ipsixql compress jess db mtrt AVG192M opt 128M opt 128M base 128M opt 128M base

GenCopy
best -30% 26% -0% -30% -10% -16% -39% 9% 13% -9%
2nd -27% 34% 2% -15% -9% -15% -30% 20% 80% 4%
3rd -24% 37% 3% -11% -8% 11% -7% 32% 85% 13%

default -28% 274% 20% 129% 17% 26% 9% 13% 118% 64%

CopyMS
best -8% 14% -14% -45% -14% -3% 2% 3% -28% -10%
2nd -7% 22% -12% -39% -14% -1% 6% 10% 159% 14%
3rd -6% 45% -2% -37% -14% 3% 168% 12% 571% 82%

default -2% 648% 100% -37% -0% 28% 2925% 40% 1016% 524%
best -6% 780% -7% -23% -14% 4% 262% 52% -35% 113%

Mark- 2nd -6% 791% 4% -9% -12% 13% 725% 53% 369% 214%
Sweep 3rd -6% 835% 28% -4% -10% 18% 748% 54% 381% 227%

default -5% 1603% 436% 1368% -2% 40% 861% 92% 584% 553%

Table 3. The speedup of the adaptive scheme over the performances of the best fixed, the second best fixed, the third best fixed and the
default VM-controlled heap sizes for the three garbage collectors. A negative number means a slowdown.

7. Related Work
Several recent studies examined methods by which a program (and
not the JVM) controls when the heap is collected, and what part of
the heap to collect. Buytaert et al. use offline profiling to determine
the amount of reachable data as the program runs, and then gener-
ate a listing of program points to indicate when collecting the heap
will be most profitable. At runtime, they then can then collect the
heap when the ratio of reachable to unreachable data is most favor-
able [5]. Similar work by Ding et al. used a Lisp interpreter to show
that limiting collections to occur only at phase boundaries reduced
GC overhead and improved data locality [9]. We expand upon these
past studies by including information from the application, VM,
and operating system to guide our collection decisions and select
collection points that both minimize the amount of reachable data
and maximize the use of available memory.

Soman et al. used a modified JVM to allow a program to se-
lect which garbage collector to use at the program load time based
on profiling and user annotation [20]. The control mechanism was
applied before the start of the program, and the heap size was
fixed rather than adaptive. Other studies have proposed methods by
which the JVM adapts the heap size to improve performance. Sev-
eral of these approaches, like ours, were focused on reducing pag-
ing costs. Alonso and Appel presented a collector which reduced
the heap size when advised that memory pressure was increas-
ing [1]. Yang et al. modified the operating system to use an approx-
imate reuse distance histogram to estimate the current available
memory size. They then developed collector models that enabled
the JVM to select heaps size that fully utilize physical memory [22].
Hertz et al. developed a paging-aware garbage collector and a mod-
ified virtual memory manager that cooperated to greatly reduce the
paging costs of large heaps [11]. While these past schemes require
modifications to the virtual machine and, for all but one, the oper-
ating system, our approach runs only at the application-level and
does not need these intrusive modifications.

Our technique depends on recurring phase behavior in a pro-
gram. Many phase detection techniques have been proposed. These
algorithms exploit aspects of the program structure such as loops
and procedures [4, 10, 13, 16], regions [12], and call sites [15] to
determine phase boundaries. Most techniques use fixed thresholds
to select coarse-grained, recurring phases. Georges et al. selected
Java methods whose behavior variation was relatively small [10].
Unfortunately the phase behavior of the utility programs on which
we focus is dependent upon the program inputs, and may not be
captured by static analysis. We rely upon the active profiling tech-
niques we developed in earlier work that use regular inputs to

induce behavior repeatable enough for analysis and phase mark-
ing [18]. This analysis can be performed on low-level code includ-
ing program binaries.

While heap management adds several new wrinkles, there is
a long history of work on creating virtual memory managers that
adapt to program behavior to reduce paging. Smaragdakis et al. de-
veloped early eviction LRU (EELRU), which made use of recency
information to improve eviction decisions [19]. Last reuse distance,
another recency metric, was used by Jiang and Zhang to prevent in-
teractive applications from thrashing. Chen et al. [6] also used last
reuse distance to reduce the total amount of paging [14]. Zhou et
al. tracked reuse distance histograms for each fixed time interval
to improve the throughput and response time of multiple processes
through selective memory allocation [23]. All of these techniques
try finding the best subset of the working set to keep in physical
memory, but are of limited benefit when the working set fits en-
tirely in available memory. Heap management, on the other hand,
can improve performance when given additional physical memory
by increasing the heap size, thus reducing the frequency of garbage
collection. Our program-level adaptive memory management sys-
tem tries balancing these costs by choosing heap sizes that mini-
mize the costs of smaller heap sizes (more frequent garbage collec-
tions) and of larger heap sizes (increased paging activity).
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