
The Asynchronous Partitioned Global Address Space Model

Vijay Saraswat George Almasi Ganesh Bikshandi Calin Cascaval David Cunningham
David Grove Sreedhar Kodali Igor Peshansky Olivier Tardieu

IBM

1. A diversity of parallel architectures
The multicore discontinuity is forcing application program-
mers to deal with a variety of concurrent architectures, such
as clusters of SMPs/multicores, hetereogeneous accelerators
such as the Cell and GPUs, and integrated high core-count
architectures such as Blue Gene.

2. The need for a programming model
The central question in front of us is the design of a program-
ming model that can address this diversity of architectures.
By a programming model, we mean the central mental con-
structs around which every activity around the programming
enterprise – specification, design, implementation, testing,
debugging – is organized. That is, a programming model
gives us a coherent set of principles around which to orga-
nize our thinking about the computation.

While it is relatively easy for the industry to come up
with new architectures, it is far more difficult for the in-
dustry to adopt new programming models. Indeed, it took
about twenty years since the first introduction of object-
oriented (OO) programming for the industry to finally accept
it. It took about ten years for the US National Labs to move
to the MPI programming model. While declarative (func-
tional, logic) programming ideas have been around for sev-
eral decades — and flourish in certain niche areas — they
have not yet established themselves in the main-stream. Ap-
plication lifetime, number of programmers and users, test-
ing, verification, and maintenance are all factors that con-
tribute to the slow acceptanace.

We believe that each computing era is characterized by a
dominant programming model – programming models tend
to exhibit a “winner take all” effect. The era of concur-
rency we now have embarked on essentially requires that a
programming model that expects to be dominant must fun-
damentally account for concurrency, distribution, and com-
position, and must be able to address heterogeneous archi-
tectures. Further, much as the OO revolution did not com-
pletely eliminate the previous programming model – proce-
dural programming – rather improved on it in a fundamen-
tal way (by providing much better control on structure and
extensibility), the new concurrent programming model must

improve on the current dominant programming model (OO,
procedural programming).

In this note we put forward the APGAS programming
model as such a candidate. APGAS is currently being real-
ized through a new programming language (X10), language
extension proposals for existing concurrent languages, such
as UPC and CoArray Fortran, and through a runtime library
which can be invoked from C/C++.

3. Existent approaches
Two broad programming models are currently used: mes-
sage passing (MPI) and shared memory. Combinations of
these models have some penetration, however the burden is
on the programmer to isolate them. We discuss each of these
programming models with respect to: parallelism (execution
model), data structures, and communication.

Message Passing Interface (MPI) [6] is the de-facto stan-
dard for programming large distributed memory systems. In
MPI, computation is organized around a collection of pro-
cesses1 which communicate with each other by sending mes-
sages. Each process has a private address space that is inac-
cessible to other processes (Figure 1a). In most applications,
MPI processes are single-threaded, though, increasingly ap-
plications are being organized as multi-threaded MPI pro-
cesses. Single-threaded processes progress sequentially until
they encounter a communication action (a call to a function
in the MPI API). It is not necessary that all processes execute
the same code – however, in practice, many MPI programs
are data-parallel SPMD programs. That is, the data on which
the computation must be performed is split into roughly
equal pieces, each piece is allocated to a process, and all
processes execute the same code. Another popular use is
in multi-physics codes, in which two or more SPMD codes
are linked together by a thin communication layer. There is
no explicit mechanism to express global data structures; the
programmers are expected to partition the data between the
local address spaces of each process and all the abstractions
that variables are globally distributed are hidden in the com-
munication patterns. Communication may be point-to-point

1 MPI permits the collection to be dynamically varying. The vast majority
of MPI applications, however, spawn a fixed set of processes at the outset.
We will mainly discuss such applications.

1 2010/3/27

(a) MPI

. . .

(b) Shared Memory: e.g., OpenMP, pthreads, Java

Accelerator

.

Execution context

Address space

(c) Partitioned Global Address Space

Figure 1. Programmer’s view of computation and memory. Arrows represent memory accesses.

2 2010/3/27

(e.g. send/receive) or collective – organized via a communi-
cator that identifies a subset of processes that perform the
same operation simultaneously. Importantly, there is no rep-
resentation of remote accesses to memory – a “pointer” in
the address space of a process may point only to memory
allocated in that process.

An orthogonal approach is shared memory concurrency.
In this model, multiple threads of execution share a com-
mon address space, communicating with each other by read-
ing and writing shared variables (Figure 1b). This is re-
alized in existing programming languages such as Fortran
and C either through libraries such as pthreads and Thread
Building Blocks [4], or through language directives, such as
OpenMP [3]. In general, library approaches are quite flexi-
ble, providing the ability to express all types of parallelism:
task-, data-, or pipeline parallelism, SPMD or MIMD. Be-
cause of this flexibility, there are no guarantees; the program-
mer is responsible for all aspects of control and synchroniza-
tion. In OpenMP, constructs are provided for parallel loops
and nested parallel regions.

The biggest drawback of this approach is that it is hard
to scale on machines that do not support shared memory in
hardware. Because by default all data is shared, it is difficult
to make this approach scale when the computation must be
spread across a cluster and the latency/bandwidth associated
with accessing a remote location is very different from that
associated with accessing a local location. Attempts to get
distributed shared memory have not been very successful.

The partitioned global address space (PGAS) model ex-
tends the shared memory model to a distributed memory set-
ting (Figure 1c). The execution model allows for computa-
tional threads to be distributed across a machine. The ex-
isting programming languages in this space – Titanium [9],
UPC [7], Co-Array Fortran [2] – all follow the SPMD model
of execution. That is, a computation is launched by specify-
ing a single program, which is run in each of the processes
that make up the computation. The programming model
threads are mapped to processes and threads as supported by
the language runtime. The key point here is that most current
PGAS runtimes support multiple processes (like MPI), mul-
tiple threads in a process (like OpenMP), or a combination.
The user decides on the mapping either at compile time or at
runtime.

The address space of the processes comprising a PGAS
job is unified – so it is possible for a location in the address
space of one process to point to a location in the address
space of another process. The affinity of a location to a pro-
cess is enshrined in the programming model, i.e. made ex-
plicit – hence we talk of a partitioned global address space.
Data structures can be allocated either globally (shared by
all the computation threads with previously mentioned affin-
ity) or privately. Global data structures are distributed across
address spaces, typically under the control of the program-
mer. Remote global data is accessible to any thread as simple

assignment or dereference operations. The compiler and run-
time are responsible for converting such operations into mes-
sages between processes on a distributed memory machine.
While programs may require nothing else but communica-
tion through global data structures, most PGAS languages
provide library APIs for bulk communication and synchro-
nization: bulk memory transfers, collective communication,
and collective synchronization.

An important property of all three of these models is that
they are essentially agnostic to the underlying sequential
model. That is, they are primarily models of concurrency
and distribution. They may be realized more or less in the
same fashion as extensions to members of the Fortran family
of languages, or the C family, or object-oriented languages
such as C++ or Java. In practice, MPI is mostly used with
Fortran and C, and OpenMP with C and C++.2

4. The Asynchronous Partitioned Global
Address Space (APGAS) Model

There are two drawbacks of the PGAS model that make it
difficult to adopt outside the HPC space. First, the PGAS
model implicitly assumes that all processes run on simi-
lar hardware – only then does the SPMD assumption make
sense. Further, the PGAS model does not support dynami-
cally spawning multiple activities. This makes it difficult to
handle many non-HPC/non-data-parallel applications, e.g.
those that require run-time dynamic load-balancing (as can
be expressed in Cilk [1], for example).

The APGAS model can be thought of as being derived
from both the MPI and OpenMP models by extending the
PGAS model with two simple ideas: places and asyncs. The
preferred mechanism of expressing these constructs is the
X10 [8] programming language.

4.1 Places
A place is simply a coherent portion of the address space –
a collection of data together with the threads (activities) that
operate on that data. A computation consists of many places.

Places have two important properties. First, they are not
required to be single-threaded. That is, multiple activities
may be active simultaneously in a single place. More impor-
tantly, activities are decoupled from processes and/or threads
– they are simply tasks that can be invoked on the data, ei-
ther locally or remotely. Second, it is not required that all the
places in a computation be homogoneous, i.e. be mapped to
processors having the same instruction set, or, even, the same
number of cores.

This means that places permit expressing computations
beyond the SPMD model. Instead we move to a general
thread-parallel model, while preserving the locality proper-

2 In order to handle the hierarchical concurrency offered by clusters of mul-
ticores/SMPs, programmers are increasingly turning to the complicated hy-
brid model of MPI processes each of which is multithreaded and internally
is structured as an OpenMP process.

3 2010/3/27

ties of a PGAS programming model. In addition, places can
be defined hierarchically, such that the programmer can ex-
ploit the hierarchical design of current architectures: clusters
of multithreaded SMPs with deep memory hierarchies 3.

4.2 Asyncs
An async is the denotational mechanism to express activities
that perform computation in a place. We introduce expres-
sions in the language to denote places. Let p range over such
expressions. Then if S is a statement, we introduce the state-
ment async(p) S. This statement is executed by launching
a new activity at place p to execute the statement S.

Thus an async is launched at a given place and stays at
that place for its lifetime. There are language specific limi-
tations on how asyncs reference remote data. For example,
in X10, we require that the async not access locations at re-
mote places. If it desires to operate on remote locations it
has access to, it must launch a new async at that place. It is
possible to use basic APGAS constructs to get synchronous
remote access, so this is not as onerous a restriction as it
may sound (see atomics below). In UPC, we allow remote
accesses, there restricting only the calling collective opera-
tions.

Asyncs may be used not just to run computations at a
remote place but also to specify data-transfers (e.g. array
copies from an array at a place p to an array at a place
q). Such an async while running ostensibly at the remote
place may in fact be executed “in the network”. Mechanisms
specified below (conditional atomics, finish) can be used to
determine when the transfer has finished at either the source
or the destination, and to group multiple transfers together.

Activities in a place can be spawned locally or remotely.
To control their execution, we shall introduce the notion
of finish – a synchronization construct that allows a parent
computation to wait for the completion of all its children
activities. If S is a statement, finish S is another state-
ment. finish S executes S and waits until all the activities
spawned by S (recursively) have terminated. Thus finish
captures the very powerful notion of distributed termination
detection. It is also extremely easy and natural to use.

Asyncs and finishes represent a tree of computation –
each activity has a unique parent (the spawning point) and
each parent can have multiple children, which at their turn
spawn other children. The finish construct allows synchro-
nization at the desired level in the tree.

Support for a simple form of (nested) data-parallelism is
provided through parallel for loops (foreach and ateach).
Both take some form of iteration spaces as arguments. Both
spawn an activity simultaneously at every point in the iter-
ation space – the former spawns the activity locally and the

3 The current X10 programming language specification does not support
building of hierarchical places, but this will be considered in future revisions
of the language

latter at a place determined from the point in the iteration
space.

4.3 Coordination
Concurrent activities may require tighter coordination and
data synchronization than the synchronization offered by the
finish construct. In this section we discuss the atomics and
conditional atomics.

Atomics. The actions of multiple activities must some-
times be coordinated to ensure the desired result. Typically
this is done by introducing locks. However, programming
with locks is quite low-level, messy and error-prone. The
programmer has to identify a mapping of data to locks, en-
sure that the same mapping is used always, that locks are ac-
quired in the right order etc. Over-locking can lead to dead-
lock and under-locking can lead to race conditions.

Instead we propose (as have other language researchers [])
to use atomic blocks. If S is a statement, atomic S is a state-
ment that must be executed as if in a single step while no
other activities are executing simultaneously. This makes a
clean description between specification and implementation
– the specification is simple enough for a programmer to
work with directly, whereas the mechanism can be realized
through a variety of mechanisms. (For instance, a pessimistic
mechanism may use a system of locks. An optimistic mech-
anism may keep track of dependencies (reads and writes
performed in the atomic block) and check that these depen-
dencies are not violated at a commit point.) Since we intend
atomics to be used for low-level programming, we shall typ-
ically require that the granularity of atomic blocks be small.

In the simplest version of atomic, we also require that all
the locations read and written are local, i.e. exist in the same
place in which the activity is executing. This leads to a sim-
ple cost model for implementing atomics – the programmer
can be assured that no communication is involved.4

We also permit conditional atomics, when (c) S. Here c
is condition and S a statement. Such a statement is executed
atomically, but only in those memory states which satisfy c.
That is, execution waits until a state is reached in which c is
true. In such a state, S is executed atomically. Importantly,
the evaluation of c and execution of S is done atomically.
This is a very powerful construct (this is the conditional
critical region of Per Brinch Hansen and Tony Hoare) that
can be used to obtain the effect of locks, bounded buffers,
communication channels, barriers etc.

Ordering. (Local and remote) Asyncs and conditional
atomics offer a powerful concurrent language. However, all
ordering between the steps of activity in this language is
defined through data-interaction (i.e. through reading and
writing variables). While the language is flexible and power-
ful, it is not easy to analyze statically, e.g. establish that the

4 There is an extension to permit atomic blocks to operate on one more more
syntactically specified places, other than the local place. This will be dealt
with in a fuller version of this note.

4 2010/3/27

program is determinate. However, used in conjunction with
the finish construct, it provides the determinacy guarantees
that make the APGAS programming model attractive to use.

5. Discussion
The central premise behind APGAS is that the core problems
of modern architectures – heterogeneity and non-uniform ac-
cess to memory – should not be hidden under the rug. Hence
APGAS reflects explicit spatial organization of memory and
temporal organization of activities. This means that the pro-
grammer has to directly confront difficult computational is-
sues. Our basic approach has been to surface simple and ele-
gant ways of addressing these computational issues – places,
asyncs, finish, atomicity. In this section we address several
details that embellish the model.

5.1 Top-level execution
Computation in an APGAS program is initiated by submit-
ting to the job control system a program and a representa-
tion of the places over which the program is to execute.5

The job control/operating system is responsible for spawn-
ing processes with the input information to execute the AP-
GAS runtime. Place 0 then launches a single activity to exe-
cute the “main” method specified on the command line. The
constructs of the APGAS language (or APGAS API) may
be used to spawn activities at multiple places and wait for
them to terminate. Thus an APGAS program is a “fork join”
program rather than an SPMD program.

5.2 Categorizing places
As discussed above, all places need not be equal – a GPU is
very different from a Cell SPE and from a core in a multicore
chip with coherent caches and from an SMP node. Should
the type of a place be reflected in the programming notation?

We believe this is necessary for two reasons. First, it
helps the programmer to understand that a particular piece
of code (async) is intended to be executed in a particular
kind of place (e.g. a GPU). Second, the compiler may need to
generate different code for different places — the instruction
set may be different, a place may have a limited amount
of memory. Further, it may need to statically analyze code
to ensure that it can run in a particular kind of place. For
instance, GPUs typically do not permit an async to invoke a
recursive method.

We are currently designing a framework for such a static
representation of place types in X10, building on the depen-
dent type framework in X10. A key question is the way in
which places can be classified. Should they be classified by
name (e.g. SPE, Tesla GPU, Intel CoreDuo)? This is clearly
not going to be sustainable – technology changes much more
rapidly than software. A property-based mechanism must be
developed. Examples of properties that can be specified for

5 For X10 v1.7, this representation is similar to that used by MPI to specify
which processes must run on which nodes

Place

Activities

Hardware Contexts

Memory

N
et

w
o

rk
 C

tx
s

S
y

n
ch

ro
n

iz
a

ti
o

n
 C

tx
s

M
em

o
ry

 T
ra

n
sf

er
 C

tx
s

Figure 2. Place resources

a place are shown in Figure 2. This is an area of active in-
vestigation.

5.3 Flat vs structured places
Architectures often are designed as hierarchies: threads,
memory, communication are all packaged hierarchically.
For instance, the Road Runner architecture has a backbone
of Opterons, each coupled with some Cell processors. Thus
there is a natural affinity between a Cell processor and the
Opteron node it is associated with. The question is: Should
this affinity be reflected in the programming model?

Logically, it is not difficult to extend the basic model so
that computation runs over a graph of places, rather than
a flat (unconnected) set of places. One can imagine a sim-
ple (declarative) querying model which permits information
about the graph to be determined at runtime. The key ques-
tion is whether this is worth surfacing in the programming
model – i.e. will this make a significant difference in the
readability of the program or aid the compiler in generating
better code? This is an area of active investigation

5.4 Granularity of a place
What should the granularity of a place be?

The granularity of a place will depend on architectural
constraints. The APGAS runtime, for instance, does not sup-
port distributing a single place across multiple processes.
However, multiple places may be hosted within a single pro-
cess. For instance, a computation on a Cell will typically
map eight places – one for each of the SPEs – to a single
process.

As a rule of thumb, a programmer should look to keep
places as fine-grained as possible – given the data require-
ments of the program – subject to architectural limitations.
(For instance it would not make sense to have each thread in
a Tesla MT live in its own place.) Note that single-threaded
places (places in which only one core is active at any given

5 2010/3/27

time) enjoy the enormous computational advantage that
atomic operations are “free” – as long as the core is not
interrupted in the middle of an atomic operation.

5.5 Fixed vs dynamic number of places
Should it be possible to spawn places dynamically at run-
time? In certain situations (e.g. the program is but one of
many jobs running on the operating system) it may make
sense for the program to dynamically request more resources
from the OS or release resources it can no longer use, reflect-
ing the available concurrency in the program (e.g. see recent
work by Kunal Agarwal.) Perhaps the simplest way of re-
questing more resources is to spawn a new place and launch
a computation at that place. The APGAS runtime could then
determine — based on the “density” of places over the given
set of computational resources — whether to request more
resources from the OS.

As an aside, when should a place “die”? It makes most
sense to think that a place should cease to exist if it has no
resident data that is “live”, i.e. that can be accessed from
the rest of the computation. However, this would mean that
places like GPGPU places – which have no resident data but
essentially serve as “compute servers” – would die as soon as
they are created. So clearly there should be some mechanism
to mark a place as “persistent” and permit it to be available
even if it has no live data. (By default, a place would be
“transient” – live only as long as it has live data.)

Another illustrative example for dynamic creation of
places is provided by web servers. It is most natural to think
of a “web session” as associated with its own (transient)
place. A place thus serves as a “container” for all the objects
created during the course of this web session. When there is
no oustanding reference to the web session, the session/place
can be garbage collected. This is an area of active investi-
gation

5.6 Failure and recovery
Many applications outside the HPC area that are using large
systems are designed for clusters of commodity machines
that tend to fail. Therefore, middleware such as Hadoop and
the like include fault tolerance support. In addition, current
work has in MPI has also started addressing fault tolerance.
The APGAS places are a natural point to encapsulate check-
pointing, but there are a number of open questions with re-
spect to providing fault tolerance at the level of the program-
ming model. For example, should the programmer be in-
volved in specifying the state that needs to be checkpointed?
Mark quiescence points in the program or just piggyback on
finishes? What are the guarantees provided by the system?
This is an area of active investigation

5.7 Load balacing of places
While a static mapping of places to computational nodes
makes sense for many applications, it is problematic for
situations in which load may vary dynamically in a data-

dependent fashion. For such situations, some form of load
balancing across homogeneous nodes may be appropriate.
Here we expect the notion of a place to play a central role
– the unit of relocation and redistribution should be a place.
This is an area of active investigation

5.8 The deadlock-freedom guarantee
Programs written using async, (unconditional) atomic, fin-
ish6 are guaranteed to not deadlock. This property can be
established quite simply by realizing that this language does
not permit the creation of cyclic dependency structures.

5.9 Global data structures
APGAS languages also offer some capabilities to define
global data-structures, i.e. data-structures portions of which
live at different places. A canonical example of such a data-
structure is a global array, scattered over multiple places.

5.10 Remote Invocation
As discussed before, activities can be invoked on a place lo-
cally or remotely. As the APGAS places decouple the notion
of activities from the physical processes and threads, we now
face the problem of providing fairness guarantees for the ex-
ecution of activities. One may envision different solutions:
priority queues that allow progress in a place on all posted
activities, dedicated physical threads to process remote ac-
tivities and communication, etc. Each solution has different
advantages and its benefits depend on the characteristics of
the application: its communication and synchronization pat-
terns and computation load balance. This is an area of ac-
tive investigation.

5.11 One-sided and Collective Communication
While atomics provide simplified coordination through mem-
ory, most distributed memory machines provide high perfor-
mance interconnects optimized for bulk transfer. One such
example is RDMA communication, which can be well ex-
ploited by the one-sided APGAS programming model. Col-
lective communication, in particular collective communica-
tion between subsets of activities determined by data distri-
bution (data-centric collectives) are another direction where
the APGAS programming model offers advantages over ex-
isting PGAS and MPI models. This is an area of active
investigation.

5.12 Higher-level language
We anticipate that higher-level concurrent languages can be
built on top of the APGAS model. Such languages may
offer stronger guarantees – e.g. determinacy – and permit the
programmer to specify complicated patterns of concurrent
computation and communication in a simple fashion (e.g.
nested data parallelism).

6 And a general form of barriers called clocks which are programmable
using conditional atomics

6 2010/3/27

We expect that compilers/translators for such high-level
languages would be able to use the APGAS tool-chain.

6. Pragmatics
How is the APGAS programming model to be realized?
Above, we have outlined a set of language constructs for
concurrency and distribution. These constructs can be added
to Java or Fortran or C. The X10 programming language may
be thought of as being obtained from Java by adding these
control constructs. Below we outline two other approaches:
a runtime library approach and UPC extensions.

6.1 Runtime library
We provide an API that realizes the APGAS programming
model through a runtime library. Similar to the MPI library,
the APGAS API provides the following capabilities:

1. Create a remote reference to a location. Such a remote
reference can be transmitted to other places

2. Spawn an async (at a given place) to execute a given
function with given data.

3. Execute a finish operation on a given async.

4. Efficiently execute multiple asyncs in a given place,
e.g. using dynamic scheduling techniques such as work-
stealing.

5. Implementation of atomic, and conditional atomic.

6.2 UPC extensions
UPC already supports the PGAS programming model, there-
fore, we need to extend the language to handle aysncs. We
propose the following extensions:

• upc async ([(affinity clause]) <stmt block>
— spawns an activity at the remote place specified
in the affinity clause (or locally if the affinity clause
is not present). The block of statements that executes
as an async may execute any arbitrary UPC code, ex-
cept for code involving collective operations (such as
upc forall, upc all alloc or any of the collective
functions defined in the UPC collectives API. In partic-
ular, upc async blocks may spawn other asyncs, access
remote memory location, etc.

• upc finish [<stmt block>] — waits for the termi-
nation of all the asyncs spawned from within the block of
statements. That includes all dynamically scoped asyncs,
i.e., asyncs spawned by other asyncs, not only the lexi-
cally scoped asyncs. If the statement block is not speci-
fied, the thread executing upc finish will wait for the
completion of all locally spawned asyncs.

In the current proposal, the asynchronous extensions to
UPC preserve the SPMD execution model, in which all UPC
threads start executing before the main routine is entered.
upc async provides a mechanism to easily express fine-

grain, “user-level” tasks, akin to the tasks presented in [5],
but relying on the compiler and runtime system to schedule
and execute the tasks. The asyncs get executed by the worker
UPC threads. There are no fairness and progress guarantees,
except when upc finish is used. upc barrier implies a
upc finish, i.e., the barrier will complete only when all
activities spawned in the sychronization epoch complete.

As mentioned before, the only restriction that we put
on aysncs is that they can not invoke collective operations.
Therefore, strict accesses in upc async regions have fence
semantics, not barrier semantics, since barriers can not be
called from within an upc async.

7. Conclusion
APGAS offers a simple but powerful concurrency and distri-
bution model. It can bre realized through programming lan-
guages or through an API that can be used within any exist-
ing sequential language. It can be implemented on top of ar-
chitectures which support clusters of multicores, symmteric
multiprocessors, accelerators (such as the Cell, GPGPUs),
and high core-count integrated networks such as the Blue
Gene.

Acknowledgements. The APGAS model arose from an ab-
straction of the X10 programming model, and was first de-
fined in Novemeber 2007. It is being developed in collabora-
tion with several colleagues at IBM and elsewhere, including
colleagues on the X10 team, Kevin Gildea, Bob Blainey and
others.

Please send comments to Vijay Saraswat, vsaraswa@us.ibm.com.

References
[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,

K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 207–216, Santa Barbara, California, July
1995.

[2] R. W. Numrich and J. Reid. Co-array fortran for parallel
programming. ACM Fortran Forum, 17(2):1 – 31, 1998.

[3] The OpenMP API specification for parallel programming.
http://www.openmp.org/.

[4] J. Reinders. Intel Threading Building Blocks: Multi-core
parallelism for C++ programming. O’Reilly, 2007.

[5] A. G. Shet, V. Tipparaju, and R. J. Harrison. Asynchronous
programming in upc: A case study and potential for improve-
ment. In Proceedings of the First Workshop on Asynchrony in
the PGAS Programming Model, June 2009.

[6] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI - The Complete Reference, second edition. The
MIT Press, 2000.

[7] UPC Language Specification, V1.2, May 2005.

[8] The X10 Programming Language. http://www.x10-lang.
org.

7 2010/3/27

[9] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit,
A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella,
and A. Aiken. Titanium: A high-performance java dialect.
Concurrency: Practice and Experience, 10(11-13), September-
November 1998.

8 2010/3/27

