
1

Assessing Safe Task Parallelism in SPEC 2006 INT
Tongxin Bai, Chen Ding, Pengcheng Li

Department of Computer Science
University of Rochester

Rochester, NY, USA
{bai, cding, pli}@cs.rochester.edu

Abstract—To migrate complex sequential code to multicore,
profiling is often used on sequential executions to find oppor-
tunities for parallelization. In non-scientific code, the potential
parallelism often resides in while-loops rather than for-loops.
The do-all model used in the past by many studies cannot detect
this type of parallelism. A new, task-based model has been used
by a number of recent studies and shown safe for general loops
and functions.

This paper presents a feedback-based compiler that measures
the amount of safe task parallelism in a program and ranks
the potential candidates. It solves two problems unique for task
analysis. The first is the relation between loop parallelism and
function parallelism. The second is the effect of the calling
context. The new tool is built in the GCC compiler and used
to analyze the entire suite of SPEC 2006 integer benchmarks.

I. INTRODUCTION

The proliferation of multithreaded and multi-core systems
has propelled research on extraction and utilizing task-level
parallelism in general purpose applications. Because of the
difficulty of precisely analyzing dependences at compile time,
researchers have resorted to exploiting optimistic parallelism
through speculation at run time.

Recent advances have enabled speculative parallelization
of general-purpose code on conventional machines and made
speculation programmable by direct programmer control. The
new systems, for examples [9, 16, 2], can safely parallelize
programs with tens of thousands of lines of legacy C/C++
code, suggesting that even large programs may be parallelized
fully automatically or with minimal programmer involvement.
These studies, however, have handpicked test programs. While
the results are promising, it is unclear how much benefits there
are in other programs.

This paper proposes and evaluates parallelism potential
assessment. It models safe task parallelism in the form of pos-
sibly parallel routinesPPRs, supported in software by a system
called software behavior-oriented parallelization (BOP) [4].
In this paper, safety means sequential equivalence, that is, a
program with safe task parallelism always produces the same
output as the program without task parallelism. Syntactically
we mark a task using the following hint:
• possibly parallel{ code } marks a block of code as

a possibly parallel routine (PPR) and suggests task
parallelism—the PPR block may be parallel with the code
after the PPR block.

As an interface, PPR is equivalent to safe future [19] and
ordered transactions [18]. It is a safe variant of the future

primitive, originated in Multilisp [7] and evolved into spawn
in Cilk, future in Java, async in X10 and the newest version
of C++, among others. As a safe task, a PPR differs from a
parallel loop and a conventional task in several ways:

• Loop and function parallelism. A PPR can bracket the
body of a loop (a loop task), the body of a function (a
function task), a loop as a whole, a call site, or any block
of code anywhere in a program.

• Continuous parallelism. A PPR is a fork. There is no need
to specify when the spawned task has to end. With avail-
able processors, tasks may be started continuously [21, 9].

• Speculative synchronization. Tasks may have depen-
dences and can be synchronized (by dependence hints [9])
to avoid speculation failure. Rollbacks only happen
on unexpected conflicts. Synchronization enables safe
pipelining and other types of do-across parallelism.

To find potentially parallel tasks, we analyze the code using
a compiler and then analyze its executions using a profiler.
To refer to them, we use a acronym, STAPLE, for safe task
parallelism.

The STAPLE compiler instruments a program to capture
all data accesses and the start and the end of all loops
function calls when the program executes. The STAPLE
profiler uses all-construct profiling, pioneered by Zhang et al.
in Alchemist [22]. Alchemist uses the full call tree to keep
track of nested loops and function calls. To improve efficiency,
it adaptively erases previous execution history. The analysis is
independent of the number of processors. Unlike Alchemist,
STAPLE uses the calling-context tree (CCT [1]) and maintains
the entire tree. The analysis considers all contexts in addition
to all constructs. Using all contexts, STAPLE ranks all pro-
gram constructs based on the potential improvement for the
overall program speed.

Trace analysis is costly. Compared to locality profiling,
which needs to capture only memory loads and stores, par-
allelism profiling must track all accesses to all data so not to
miss a single dependence. Previously, loop profilers analyze
one loop at a time and ignore dependences outside the loop.
In task profiling, STAPLE has to consider all dependences
in complete executions, including the effect of abnormal
control flow such as exceptions, which complicates context
tracking. To evaluate the cost and verify our design, we have
implemented STAPLE using GCC and tested it on the entire
set of SPEC 2006 integer benchmarks (using the train input).
The source code may have thousands of nested loops and

2

recursive functions (as in GCC itself) , and the unmodified
run time can be over 4 minutes.

Finding parallelism does not mean automatic paralleliza-
tion. Once candidate code is identified, a programmer may
still need to use loop blocking to increase task granularity,
add dependence hints to synchronize on known dependences,
and protect shared data and monitor their access to guard
against unknown conflicts. Efficient dependence marking and
program monitoring require one to understand the code being
parallelized. The purpose of STAPLE is to help with the
manual effort. First, a user needs not spend time on code
that has little parallelism. In addition, a user can start with
the most profitable loops or functions, so to prioritize the
use of programming time. Furthermore, a user can use the
dependence profile to arrange synchronization between safe
tasks to avert unnecessary rollbacks.

The rest of the paper is organized as follows. Section II
defines possibly parallel loops and functions and discusses
their relation. The next section describes the all-context, all-
construct analysis. Section IV describes an empirical study of
the analysis cost and outcome. Finally the last two sections
review related work and recap.

II. SAFE LOOP AND FUNCTION PARALLELISM

Safe task parallelism comes from two sources: possibly
parallel loop tasks and possibly parallel function tasks.

A. Possibly Parallel Loops with Function Calls

A do-all loop is the most common parallel construct,
supported in practice by OpenMP and CUDA and in array
languages such as SaC. It is the default loop in Fortress. If the
iterations have dependences between them, the loop is called
do-across. The number of iterations is known before a do-all
loop executes.

A possibly do-all loop is created by placing the body of
a sequential loop a PPR. PPR extends do-all in three ways.
First, it can parallelize a loop that has unpreditable conflicts
and exploit parallelism in loops that are mostly parallel and
loops that are parallel only for certain program inputs. Second,
it can parallelize a while-loop or a for-loop with an early exit,
where the iteration count is unknown until the loop ends, e.g. a
search loop that exits upon the first match. Finally, the possibly
do-all loop does not require a barrier at the end as a do-all
loops does. It permits parallelism between the end of the loop
and the post-loop code. Listing 1 shows an example of safe
do-all.

Possibly do-all loops are supported by speculative execu-
tion, which may be implemented either in hardware or soft-
ware. Hardware speculation, known as task-level speculation
(TLS), is both efficient and transparent to the user. However,
since it has to buffer the intermediate states in the limited on-
chip memory, the loop body must not access too much data.

A software solution has the opposite constraints. It has to
instrument the code and replicate data explicitly, which is
costly. But it does not have a size limit. In fact, it needs large
loop tasks to amortize the cost of speculation.

1 for (i=0; i<N; i++)
2 possibly_parallel { / / safe loop parallelism
3 if (a[i] < 0)
4 break / / an early exit requiring speculation
5 else if (a[i] == 0)
6 b[a[i]] = 0 / / good for hardware speculation
7 else
8 b[a[i]] = lots_of_work(a[i]) / / good for software speculation
9 }

Listing 1: A possibly do-all loop. A short-running loop body
is required by hardware speculation and a long-running loop
body by software speculation.

A consequence is that hardware speculation (TLS) prefers
innermost loops while software speculation prefers outermost
loops. The implication on parallelism profiling is the role of
function calls in a loop. For TLS, if a loop body contains a
function call cannot be completely inlined, the loop is probably
too large. Most proposed TLS hardware terminates a thread at
a function call. For SPEC 2006, the TLS potential is reported
to be limited—1% [10] and 60% [13].

We target coarse-grained tasks beyond the limit of TLS in
hope of finding additional parallelism. For this we have to
analyze loops with function calls.

B. Possibly Parallel Functions in Loops

Function parallelism has many variants, known also by
names such as module, procedure, or method-level parallelism.
A basic abstraction comes from Multilisp, where a function
is executed by spawning a new task (called the future) and
running in parallel with the code after the future (called the
continuation) [7]. Additional tasks may be spawned in the
future or in the continuation.

A possibly parallel function is a function whose body is
folded inside a PPR block. Speculation extends future in two
ways. Semantically, a PPR function is safe. Syntactically, a
PPR is a fork without a join, unlike the future-type primitives
in Cilk, Java, and X10. The join for a PPR happens implicitly
when the PPR finishes. The speculation mechanism ensures
the correctness1.

Listing 2 shows how safe function parallelism helps with
loop parallelization. Two loops are shown. In the main
function, the first loop traverses an array of lists and for each
one, calls two functions to process, sub1,sub2. In sub1,
the second loop traverses the incoming list. The code also calls
sub2 in the first loop and sub1 outside it. Their effects will
become clear when we later explain mixed function and loop
parallelism in Section II-D.

Neither loop is do-all or possibly do-all. In the body of the
first loop, the array index is tested at the start and incremented
at the end. As a result, the next iteration cannot start until the
previous one finishes. A similar loop-carried dependence is
caused in the second loop by moving the next pointer. For

1by a rollback in the worst case but one can suggest a join using a
dependence hint to forestall the rollback [9]

3

1 main() {
2 i = 0
3 while (lists[i] 6= nil) { / / not a do−a l l loop
4 sub1(lists[i]->list)
5 sub2(lists[i]->aux)
6 i++ / / because of end−to−start dependence on i
7 }
8 sub1(extra_list)
9 }

10
11 sub1(head) {
12 possibly_parallel { / / safe function parallelism
13 node = head
14 while (node 6= nil) {
15 sub3(node)
16 node = node->next
17 }
18 }
19 }
20 ...

Listing 2: An example program with two loops and one
function shown. Neither loop is do-all because of the loop-
carried end-to-start dependences on i,node. To parallelize,
sub1 is made into a possibly parallel function.

ease of reference, we term it an end-to-start dependence.2

The functions may be parallel. In particular, the calls to
sub1 are parallel if the lists array does not contain
duplicate entries. The function body is marked as a PPR. Such
function parallelism enables a loop to run in parallel even if
the loop is not do-all or possibly do-all.

C. Alternative methods of loop parallelization

There are other ways of dealing with loop-carried end-to-
start dependences such as the ones in Listing 2. A compiler
can statically parallelize this and other types of loops in
scientific code. It can perform interprocedural analysis to
extract parallelism regardless of the number of functions being
called in the loop [6]. Similar analysis can select the best loops
for parallelization [11]. Compiler analysis cannot parallelize
as effectively for general-purpose code written in C/C++ with
most of data dynamically allocated in heaps and accessed
through pointers. Our method targets programs that cannot be
statically parallelized.

Another solution is to combine compiler analysis with TLS
run time. A compiler lifts the source of the dependence from
the end to the start of the loop body, as done by a number
of TLS compilers including SPT [5] and POSH [12] (see
Section V for a more complete list). TLS targets innermost
loops with no function calls. The full view of the loop
body allows a compiler to perform the transformation safely.
STAPLE targets much longer tasks. A static approach would
amount to automatic parallelization of C/C++ programs. Safe
task parallelism described here may parallelize loops when
static analysis is unable or unavailable.

2The exact boundary between loop iterations depends on code generation.
GCC generates the test at the end of the loop body. In this case, the
loop-carried end-to-start dependence happens between the increment and the
function call (parameter passing).

D. Implications for Parallelism Analysis

a) Coarse-grained tasks: PPR is supported by a system
called BOP, which uses processes to implement (speculative)
tasks. The forking overhead can be reduced by copy-on-write
in threads implemented by a compiler [16] or by reusing a
pool of processes (rather than forking one for each PPR) [9].
In the latter work, Ke et al. reported large speedup numbers
for millisecond-short PPR tasks. At this size, it still requires
a task to possible execute many functions and loops.

b) Task selection: Both loop and function parallelism
may be nested. Nesting is favored for reasons of granularity
but makes the analysis more complex. More importantly, it
raises the problem of task selection. To parallelize a program
with many loops and functions, we have to choose whether
to parallelize loops and functions and in each case, choose
which loops or functions to parallelize. Speculative systems
do not support nested parallelism, so the problem is finding
the best single-level parallelism. In the example in List 2, the
two loops are nested, so only one can be parallelized. The
choice depends on the number of iterations in each loop. In
the algorithm we will describe, the one with more iterations
will be selected because it utilizes more processors.

c) Mixed loop and function parallelism: A loop may
call multiple functions, e.g. sub1,sub2 in Listing 2, that
may be parallel. Function parallelism enables the concurrent
execution of different functions rather than loop iterations. In
addition, the same function may be called in different contexts,
e.g. sub1 called inside the loop and then outside the loop.
The PPR designation means that not only loop iterations are
parallelized but also the loop is parallel with the sub1 call
after the loop. Mixing of function and loop parallelism is a
natural consequence of function parallelism. It has not been
considered by past studies on loop parallelization (see the next
paragraph), and it may improve parallelism significantly if
multiple functions are mixed-in with a parallel loop with a
small trip count.

d) All-construct task parallelism: The PPR hint can mark
any program construct not just a function, e.g. the body of
sub1. It can mark a loop, a branch, or a statement (including
a call site). The effect is the same. Consider the example in
Listing 2 one last time. If sub1 is in-lined, the analysis still
considers the second while loop as a candidate PPR. As a
construct, it does not make a difference whether it is a loop
or a function call. For task parallelism, we consider three
constructs: the body of each loop, the loop as a whole, and
each function call.

III. ALL-CONTEXT AND ALL-CONSTRUCT PARALLELISM

A. Basic Data Structure

The profiling algorithm has three basic tasks: recording the
time range of all instances of all program contructs, tracking
all dependences across all contexts, and updating the ideal
parallel speedup for each construct.

For the first task, the algorithm keeps a progress map and
updates it whenever entering and exiting a program construct,
e.g. a loop, a loop iteration or a function. It answers the
question whether a time point is inside or outside an execution

4

instance of a construct. A hash table is used to detect depen-
dences. It contains an entry for each memory location used
by a program. The entry is updated at each write to reflect
the latest memory state. Later reads and writes would trigger
a dependence that affects parallelism.

Figure 1 shows the major components and their relation.

on heapstatic data

live range map

wt_ctx

wt_time

wt_stmt

stmt_stub

loop_stub

call_stub

mem_htabmem_record

context_tree

Fig. 1: The components of the profiling framework.

• Memory record table, the hash table that maintains the
latest states of all the active memory locations. Each
memory record contains the latest write time, along with
a pointer to the definition context and a pointer to a
structure describing the definition statement.

• Context tree, a variant of CCT [1] we call Extended
Calling Context Tree (ECCT, or CCT for brief), in
which a node represents either a function call or a loop.
During execution, each calling sequence (or loop nest) is
uniquely mapped to a tree path starting from the root. To
identify dependence, each tree node holds a range map
which contains complete or partial time range information
for the calling context.

• Profiling stubs, compiler allocated space for program
constructs. Each stub is dedicated to a single construct.
The contents of the stubs are serialized and stored to
permanent storage after profiling. When the program is
compiled again, the compiler knows how to read back
and associate the profile data with each construct.

Consider an example (figure omitted for space), where the
j-loop calls function foo, which runs the i-loop, which calls
bar. If there is a dependence spanning two instances of bar,
the memory record table would detect it and return the time
pair for the source and the sink. The context tree, in particular,
the range map, differentiates whether the dependence happens
inside a j-iteration or across j-iterations.

B. Procedures of CCT-based Profiling

As a program executes, the profiler for the most time
handles four types of events: read references, write references,

Algorithm 1: Procedures taken at construct boundaries
Input: stubC , pointer to the construct’s profiling stub.
Data: δr , the depth of recursion in the current context

1 enter construct(stubC):
2 begin
3 if δr > 0 then
4 Increment δr , then return
5 end
6 if stubC .active then
7 Set δr to 1, then return
8 end
9 if a fresh new context is encountered then

10 Create a new context node and update the CCT
11 end
12 Update the current context pointer
13 Update the schedule table of the current context or the current

construct
14 Set stubloop.active
15 end
16
17 exit construct():
18 begin
19 if δr > 0 then
20 Decrement δr , then return
21 end
22 Update the schedule table of the current context or the current

construct
23 Update the critical path of the current context or the current

construct
24 Unset stubC .active
25 Change current context to its parent
26 end
27
28 at loop latch():
29 begin
30 if δr > 0 then
31 return
32 end
33 Update the schedule table of the current context or the current

construct
34 Update the critical path of the current context or the current

construct
35 end

construct enters and construct exits. In this section we describe
the procedures and variations when analyzing different types
of safe parallel tasks.

1) Capturing and Maintaining Contexts: Context tracking
has two difficulties: one is abnormal control flow, and the other
is recursion. Usually a context change happens when control
flow crosses a construct boundary at the end of the scope of
program construct. Unusual context changes can happen due
to exception handlings and other irregular control flows such
as co-routines. In C, they are implemented using setjmp
and longjmp. In our profiling framework, we intercept after
each call of setjmp and enforce context state recording and
recovering according to the return value.

Algorithm 1 outlines the procedures taken at contruct
boundaries for maintaining the usual context changes. When
control enters a construct, the first step is recursion check.
Deep recursion can dramatically increase the size of the
context tree without adding a proportional amount of new
information. We handle recursion by ignoring all context
changes inside a recursive call. To that end we use a global
variable δr to store the recursion depth, with zero indicating
not recursive in the current context. When entering a construct,

5

Algorithm 2: Procedures at memory read and write
Input: addr, memory access location
Input: stmtuse, pointer to the statement’s profile stub

1 handle memory read(addr, stmtuse):
2 begin
3 Get memory record 〈timedef , stmtdef , ctxdef 〉 by addr
4 ctx← get lowest common ancestor of ctxdef and ctxcur
5 while timedef < ctx.range0.start do
6 ctx← get parent context of ctx
7 end
8 Update ctx’s task schedule
9 Record this dependence information

10 end
11 handle memory write(addr, stmtdef):
12 begin
13 Update memory record of addr with ctxcur and stmtdef
14 end

if δr is zero, the context is not recursive. If δr is positive,
the context is recursive. Algorithm 1 simply increments the
counter and returns. Symmetrically, leaving a construct inside
a recursive context only involves decrementing the recursion
level. Detecting recursion is done simply by checking the
construct stub’s active bit, with 1 indicating the construct has
been entered but not yet fully exited. Therefore, entering a
construct whose active bit is 1 implies entering a recursive
context.

The previous system, Alchemist, used a run-time call tree
to store contexts and dynamically trimmed the tree to save
space [22]. In comparison to the call tree, CCT has less
memory consumption and a lower overhead in memory alloca-
tion and reclamation. When a context is repeated, its change
involves only a pointer update. In addition, Alchemist used
binary rewriting. STAPLE uses a compiler, which can more
precisely track program constructs especially in the presence
of exceptions.

2) Computing the Parallel Speedup: STAPLE quantifies
parallelism by counting the number of run-time instructions
in a task. The model is efficient and architecture neutral, and
the result easy to interpret. It does not include the overhead
of spawning and monitoring and the complexity of modern
processors and memory hierarchy, needed when targetting
STAPLE for a specific machine.

To start, let’s consider a pair of consecutive run-time
instances of a construct. The maximal overlap is given by
the longest cross-instance dependence, as characterized by
Alchemist. The Alchemist distance, when cumulated across
all instances, give the shortest time to execute a construct. We
use a more elaborate method. For each instance, we schedule
it at the earliest possible time based not just on the Alchemist
distance but also the next available processor. In this way
we can compute speedups for all processor counts (which
Alchemist does not do).

To determine scheduling delays caused by a inter-task data
dependence, we need to quickly find all the constructs to
which the dependence may affect. We will evaluate three task
models. In addition to parallel loops and functions, we also
consider parallel loops that have a barrier at the end as do-all
loops do. With the barrier, we just need to consider a single
context—the loop. In continuous loop parallelism, we also

consider all related nesting constructs and compute the effect
of a dependence on all of them. Algorithm 2 outlines how to
locate related contexts for a data dependence by finding the
Minimum Covering Context.

Definition 1: Minimum Covering Context. For a given time
range, a covering context is one that has a live range that
covers it. A minimum covering context of a time range is the
covering context with the smallest covering live range.

In the example illustrated in Figure 2, the dependent read
and write are in context c5 and c6 respectively. The write
time is 20751. For any context that covers both the read and
the write, it must cover both the read context and the write
context. According to Algorithm 2 the common ancestor c4 is
reached. Since c4’s late live range is [21000, -) which doesn’t
cover the dependence range, c4’s parent c3 is then checked.
c3’s late live range is [20000, -) which covers the dependence
so the algoritm determines that c3 is the minimum covering
context of the dependence.

c6c5

c3

c4 [21000 -)

[20000 -)

write time = 20751

Fig. 2: Illustration of the minimum covering context

When modeling function tasks and continuous loops, we
need to traverse up the CCT from the defining context, updat-
ing all the constructs along the path until an active construct
is found (algorithm omitted for lack of space). Intuitively,
this type of parallelism for all constructs should take more
time to profile than loop parallelism. If k is the average
number of steps that each dependence seeks from the defining
context to the minimum overing context, then the function
profiler takes k times as many steps as its loop counterpart,
not to mention that each record searching may take longer
if there are more function contexts than loop contexts. For
a clean comparison, we have implemented the function and
loop profilers seperatedly to compare their speed. The results
are not as simple as the intuition predicts, as we will show in
Section IV-B.

The profiler produces two types of outputs: the context level
results and the construct level results. Constructs are ranked
by the aggregate speedup for use as a programming aid, which
are results we will show in the evaluation. Context profiles are
displayed on the CCT, which are used by both the compiler
and users in context-aware transformation and in the selection
of possible parallel loops and functions. A simple bottom
up analysis on the CCT to compute the aggregated speedup
(algorithm omitted for lack of space).

6

IV. EVALUATION

A. Implementation and Experimental Setup

The STAPLE compiler is a customized version of GCC
(version 4.3.2). The instrumentation is implemented as a
GIMPLE pass after all the GIMPLE optimization passes.
Since the STAPLE instrumentation precedes code generation,
there’s no need to track register dependences as required if
instrumentating at the binary level (e.g. using Pin or Valgrind).
Besides instrumenting references and regular control flow
edges, the STAPLE compiler also inserts special function calls
to handle the side effects of frequently used standard library
functions. These library functions include common IO API’s
(read, write, fread, fwrite, etc), common string operations
(strcpy, strncpy, strcat, memcpy, memset, etc), memory allo-
cation (calloc), and irregular control flows (setjmp, sigsetjmp,
longjmp, siglongjmp). Memory references by the library calls
are treated as a sequence of memroy references. Each IO
operation is treated as a memory read followed by a write
to virtual address 1. Hence, all IO operations are serialized.

The profiling is a C library. To reduce false sharing in
dependence detection, the STAPLEś memory hash table dif-
ferentiates memory locations at byte granularity. To balance
between efficiency and space, STAPLE allocates a 1M-entry
pool at a time, and can support up to 512 pools for the memory
hash table.

SPEC2006 was created for testing the performance of
modern computer systems with ever growing computation (up
to tens of minutes long execution) and resource demands (hun-
dreds of megabytes data on average) . The full suite includes
12 integer applications and 17 floating point applications. We
choose the integer applications for evaluation because they are
difficult to parallelize by a compiler and hence a major target
for safe speculative parallelization.

We profile all 12 integer benchmarks in SPEC 2006, us-
ing machines with identical hardware and system software
configuration, each equipped with an Intel Core i5 processor
running at 3.3GHz and 4G DRAM and running Fedora Core
15, with Linux kernel version 2.6.40.3 and configured to have
a 32bit address space. Exceptions are with the benchmarks
458.sjeng and 473.astar, for which we have to use an Intel
x86 64 machine with 12G memory. To correctly locate source
information and avoid parallelism loss due to compiler opti-
mization, we compile the benchmarks with no optimization
(-O0) then link with the STAPLE profiler compiled with -O2.
All profiling results are shown for the train input.

B. Profiling Costs

Table I shows the loop and function counts. Statically, the
programs have up to 2,243 loops (gcc) and 9,100 functions
(xalancbmk). The profiling runs have up to 2.1 billion loop
instances (h264ref) and 6.1 billion function calls (omnetpp).
The programs do not uniformly favor loops or functions. bzip
has 3 times as many loops as function calls, while xalancbmk
has 15 times more functions than loops.

The execution and profiling times are shown in Table II.
The base run times, shown in the second column, range from
1.52 seconds in gcc to nearly 5 minutes in xalancbmk. The

BENCHMARK LOOP COUNT FUNCTION COUNT
STATIC DYNAMIC STATIC DYNAMIC

400.perlbench 362 99177840 358 318066421
401.bzip2 184 171995584 62 56444929
403.gcc 2243 29156895 2234 44610523
429.mcf 47 366863062 22 250027726
445.gobmk 867 36372738 1061 13828145
456.hmmer 83 121326995 70 121760365
458.sjeng 113 1131329 68 288484
462.libquantum 44 9493514 61 13902621
464.h264ref 574 2060349291 319 6113116078
471.omnetpp 131 280040303 504 6098676787
473.astar 104 641930138 128 6017477219
483.xalancbmk 658 89624773 9100 1425328795

TABLE I: Benchmark statistics

BENCHMARK BASE LOOP-B LOOP FUNCTION
400.perlbench 7.80 406.43 812.55 329.70
401.bzip2 12.55 792.22 1813.91 680.16
403.gcc 1.52 51.22 122.25 72.14
429.mcf 20.94 3356.65 4346.48 3163.92
445.gobmk 8.94 349.10 908.20 391.72
456.hmmer 204.71 8027.94 21612.74 3895.29
458.sjeng 249.82 17543.57 16214.98 16668.49
462.libquantum 6.22 151.06 601.48 260.41
464.h264ref 239.68 12812.81 50053.03 13002.02
471.omnetpp 139.97 3224.81 7020.68 5957.68
473.astar 93.45 2568.55 4305.27 4453.88
483.xalancbmk 290.34 2759.39 6324.71 6842.56

TABLE II: Benchmarks’ profiling running times (in seconds)

average slowdowns for the 3 analysis— loops with the loop-
end barrier (LOOP-B), loops without the barrier (LOOP),
and functions—are 50, 102 and 53 respectively. LOOP-B
represents the traditional do-all loop, with a barrier at the end.
PPR loops do not use a barrier and naturally exploits nested
loop parallelism. Profiling nested parallelism is twice as costly
as no nesting. Overall, the highest slowdown is 173 in mcf and
the lowest is 18 in xalancbmk.

The statistics of the calling context tree is shown in Ta-
ble III. The largest data structure in the profiler is the memory
hash table (column 2) (two programs had over 6GB tables
and had to run on 64-bit machines). The number of CCT
nodes (columns 4 and 6 for loops and functions) ranges from
tens to millions of nodes. Most benchmarks have fewer than
1000. The programs are roughly balanced: seven have more
function contexts than loop contexts, while the other five have
the reverse. This again shows that integer code is not always
function intensive.

Column 3 shows the numbers of run-time dependences,
ranging from 650 million to 223 billion. Column 5 and 7
shows the average number of CCT walk-up steps needed for
each dependence. Interestingly, for most cases, there’s no need
to lookup parent context in loop profiling, which implies that
the majority of dependences do not cross loop boundaries. In
contrast, function dependences have on average 2 to 4 CCT
walk-ups, indicating that most data uses in a function are
for variable defined outside the function. It is interesting that
function profiling, although performing more CCT operations,
is on average twice as fast as loop profiling (53 vs. 102) as
shown in Table II.

7

Benchmark TabSz Deps CCT(L) Seeks(L) #CCT(F) Seeks(F)
(MB) (billion) per dep per dep

perlbench 456 5.35 965 0.25 7067 4.09
bzip2 480 6.93 300 0.58 102 1.91
gcc 456 0.65 13987 0.16 32137 3.36
mcf 1440 6.17 53 0.94 24 2.14
gobmk 96 6.14 1211338 0.17 280120 2.78
hmmer 24 125.46 123 0.16 92 1.50
sjeng 6904 164.90 380 0.07 431 1.30
libquantum 72 4.60 93 0.08 336 2.81
h264ref 408 223.81 870 0.09 815 2.60
omnetpp 624 54.72 871 0.54 7753 3.75
astar 6744 36.65 145 0.89 505 2.68
xalancbmk 840 77.46 1501 0.23 70261 3.02

TABLE III: Calling context tree statistics

Benchmark
Effective Amount Speedups

Loops Functions Loops # Functions
sgl-w/ sgl-w/o nest-w/ nest-w/o w/ w/o sgl-w/ sgl-w/o nest-w/ nest-w/o w/ w/o

perlbench 2 2 4 4 8 8 1.07 1.08 1.07 1.07 1.08 1.09
bzip2 3 3 4 4 5 5 1.11 1.11 1.10 1.10 1.16 1.18
gcc 0 3 0 5 6 7 0 1.07 0 1.08 1.07 1.09
mcf 7 7 9 10 3 4 1.28 1.31 1.31 1.28 1.23 1.26

gobmk 0 0 0 0 7 10 0 0 0 0 1.14 1.11
libquantum 5 5 5 5 11 11 1.35 1.36 1.36 1.36 2.55 2.55

h264f 4 5 6 11 5 6 1.35 1.54 1.34 1.47 1.08 1.43
omnetpp 1 1 1 1 2 2 1.17 1.17 1.17 1.17 1.10 1.10

astar 6 8 6 8 4 8 1.20 1.17 1.29 1.25 1.21 1.17
hmmr 2 3 2 3 0 1 2.88 2.93 3.69 3.51 0 52.48

TABLE IV: Average whole-program speedups from parallelizing single loops and functions. The effective amount shows the
number of loops and functions whose overage is over 5% and speedups are over 1.05. Each loop has 4 types: single-level
parallelism with and without false dependences (denoted by sgl-w/ and sgl-w/o) and nested parallelism with and without false
dependences(denoted by nest-w/ and nest-w/o). Each function has two types to show just the effect of false dependences(denoted
by w/ and w/o).

C. Loop and Function Parallelism

We show the results of STAPLE for two types of constructs:
loops and functions. The coverage of a loop is the total length
of all its instances. The coverage of a function is the portion of
the smallest continuous execution window that contains all its
run-time instances. The difference is that loop coverage does
not include the gap between loop instances, but the function
coverage does. The parallel time is measured by running
loop iterations and function instances in parallel assuming no
parallel or speculation overhead. The speedup is the sequential
(coverage) time divided by the parallel time. In this section we
use results from 256 processors and will show other results in
Section IV-E. We show the overall speedup—the improvement
of each loop or function on the whole-program finish time.

Table IV show all loops and functions with coverage over
5% and a minimal (overall) speedup of 1.05, where the left
part shows the total amount and the right part shows the
average whole-program speedups. gobmk has no qualifying
loop so it has only data for function parallelism. sjeng and
xalancbmk have little parallelism since nothing qualifies, not
shown in Table IV. Even in average, the speedups are obvious,
up to 3.69 times in hmmr, over or near 1.5 times in {h264ref,
libquantum, mcf, astar} and around 1.1 times in the remaining.

Figure 3 shows maximum whole-program speedups of par-
allelizing loops and functions. The overall speed of 7 out of
12 tests can be improved significantly by single-loop paral-
lelization, in particular, over 2 times in {hmmer, libquantum,
mcf}, over or near 1.5 times in {h264ref, astar}, around 1.2
times in {bzip2, omnetpp}.

The overall speed of 10 out of 12 tests can be improved sig-
nificantly by single-function parallelization, more specifically,
over 50 times in hmmer, 12 times in libquantum, near 2 times
in h264ref, over or near 1.5 times in {mcf, astar}, over 20% in
{gcc, bzip2, gobmk}, and over 10% in {perlbench, omnetpp}.

Assuming our test set is representative of integer code, we
observe that both loop and function parallelism are impor-
tant. Neither one dominates the other. Function parallelism
improves over do-all loops (as in hmmer and libquantum)
and enables parallelization when loops cannot be parallelized
(most notably gobmk).

D. Continuous Speculation and False Sharing

The loop has four corresponding types of data in Table IV
and four bars in Figure 3. The single-level parallelism is for
loops with an end barrier, and the nested parallelism no barrier.
A barrier permits parallelism for this loop alone. Otherwise,
the parallelism includes those of its outer loops, named nested-
loop parallelism. Single-loop parallelism subsumes innermost
loop parallelism. For the loop, the first type shows parallelism
limited by all dependences, while the second type only flow
(read-after-write) dependences. The second case is more than
a theoretical interest. Many current speculation systems can
already remove all false dependences via data copy-on-write
in each task.

From Table IV, of the 9 programs that have significant
loop parallelism, 7 benefit from removing the loop barrier,
nearly doubling the parallelism for the highest performing loop
in hmmer. Removing false dependences is no less dramatic,

8

perlbench bzip2 gcc mcf hmmr astar libquantum h264ref omnetpp

S
pe

ed
up

1
1.

2
1.

4
1.

6
1.

8
2

2.12
2.12

2.12
2.12

4.65
4.53

6.28
8.28

2.13
2.13

2.13
2.13

single w/ false−dep
single w/o false−dep
nested w/ false−dep
nested w/o false−dep

(a) The maximum speedup (for the entire prorgram) from parallelizing a single loop

perlbench bzip2 gcc mcf gobmk libquantum h264f omnetpp astar hmmr

S
pe

ed
up

1
1.

2
1.

4
1.

6
1.

8
2

12.62
12.62 52.48w/ false−dep w/o false−dep

(b) The maximum speedup (for the entire program) from parallelizing a single function

Fig. 3: Maximum whole-program speedups from parallelizing single loops and functions. Each loop has 4 bars: single-level
parallelism with and without false dependences and nested parallelism with and without false dependences. Each function has
two bars to show just the effect of false dependences. The numbers beyond scale are marked in bars.

enabling parallelization for all 5 loops in gcc (small improve-
ments), the largest loop in hmmer and 3 of the 11 loops in
h264ref. For function parallelism, removing false dependences
is essential for hmmer and also enables the highest single-
function speedup in gcc, mcf and h254ref.

Interestingly, only 2 loops in h264ref benefit non-trivially
from removing both the barrier and false dependences. We
conjecture that outermost loops (no benefit from nested par-
allelism) are often the ones to have false dependences, while
inner loops often do not.

E. Scalability

Using all context information, STAPLE can measure paral-
lel speedup for different number of processors (compared to
Alchemist, which measures only the maximal speedup [22]).
For a subset of programs, Figure 4 shows two graphs for
each program: one for loop scaling and the other for function
scaling. Instead of the overall speedup in bar graphs as in
Figure 3, here we show self speedups in line graphs.

First, we see that in libquantum loops are more scalable
than functions, but in hmmer, the reverse is true, consistent

with our previous observation that loops are not always better
than functions for parallelization. Also clear is that the scaling
results help to direct parallelization for a specific processor
count. For example in libquantum, the previous bar graph
shows that the function muin can give a factor of 12 overall
speedup with 256 processors. From the line graph, we see that
half of the improvement can be obtained with 8 processors,
making it a good candidate for current multicore systems. The
self speedup should be read in correlation with the overall
speedup. For example in hmmer, the most scalable loop, loop
55, has a maximal speedup of over 100. The overall effect is
small due to its 10% coverage. While 10% is good benefit, it
is far more effective to parallelize function P7Viterbi, which
can improve overall performance by a factor of 50 (shown in
the bar graph) and has near perfect scaling (shown by the line
graph). We are also measuring the maximal speedup and plan
to quantify the relation between program parallelism and the
available processors using a concept called smoothability [15].

9

●

●

●

●

2 5 10 20 50 100 200

1
2

5
10

20
50

10
0

20
0

2p 4p 8p 256p

● 19/0.5339
16/0.2675
24/0.1824
23/0.1824
22/0.143

Loop scalability, in libquantum

●

●

●

●

2 5 10 20 50 100 200

1
2

5
10

●

●

● ●

●

●

● ●

2p 4p 8p 256p

●

●

●

mul_mod_n/0.9883
addn_inv/0.9859
addn/0.9857
muln_inv/0.957
muln/0.9555
quantum_toffoli/0.7583
test_sum/0.7544
quantum_sigma_x/0.465
quantum_cnot/0.2048
muxfa/0.202
muxfa_inv/0.2017

Function scalability, in libquantum

●

●

●

●

2 5 10 20 50 100 200

2
5

10
20

50
10

0

2p 4p 8p 256p

● 44/1
54/0.8583
55/0.1008

Loop scalability, in hmmer

●

●

●

●

2 5 10 20 50 100 200
2

5
10

20
50

2p 4p 8p 256p

● P7Viterbi/1

Function scalability, in hmmer

Fig. 4: Scalability (i.e. smoothability) shown by self speedups for individual loops and functions in 2 benchmarks.

V. RELATED WORK

a) All-construct profiling: To find parallelism, most of
profiling techniques analyze innermost loops (discussed next)
or selected units such as phases [4]. Alchemist analyzes all
program constructs. It defines what we call the Alchemist
distance to quantify the amount of parallelism between a
program construct and its continuation [22]. It ranked all
program constructs to find the most profitable and enabled
a set of programs to be hand parallelized for the first time.

Alchemist uses the call tree to track all program constructs.
While the full size of the call tree is proportitional to the length
of the execution, Alchemist keeps only the part enough to fully
overlap the execution of the construct being analyzed and its
continuation and produces the maximal speedup as well as the
statistical average of the Alchemist distance. Instead of taking
the call tree and trimming it as in Alchemist, STAPLE uses
the calling-context tree. It keeps either full records or a fixed
number of records so to estimate the parallel speedup more
accurately. It can simulate the scheduling of k-processor runs
with at most k records per tree node and without tree trimming.
Like Alchemist, our tool ranks all program constructs but on
the complete parallelism information. Perhaps more significant
especially for SPEC 2006 is the speed. Calling-context tree
is smaller and less dynamic. STAPLE uses GCC instead of
a binary rewriter to track data accesses more efficiently and
execution contexts more robustly. It may be extended to insert
PPRs atomatically into a program.

b) Loop profiling by a compiler: Du et al. used depen-
dence profile in the SPT tool in the ORC compiler to select
loops for speculative parallelization [5]. Dependences were
used to divide a loop body into a serial region and a parallel
region. Based on a cost model, the partitioning algorithm

minimizes the misspeculation overhead for a given parallel-
region size. The problem of loop partitioning was subsequently
addressed by Quinones et al. in the Mitosis compiler (based
on ORC) using a value prediction technique called p-slices to
improve parallelism [14], by Liu et al. in the POSH compiler
using static information [12], and by Vachharajani et al. in the
SpecDSWP compiler to partition a loop for pipelining [17].
A complementary technique was developed by Wu et al. in
the IBM XL compiler to select the most profitable loops
for speculation [20]. A similar compiler framework was used
by Chen et al. in the ORC compiler to guide speculative
optimization [3].

These techniques consider only loops, and with the excep-
tion of the IBM XL compiler, only innermost loops, excluding
those that are too large or too small. The execution before
and after the loop is excluded from analysis. As a result, the
analysis does not consider all dependences in the execution or
the context beyond a single loop.

Profile-driven analysis requires high efficiency and robust-
ness to be able to handle large benchmark code. Most of the
compiler techniques predates the release of the SPEC 2006
benchmarks. The most capable technique, the Mitosis p-slice
insertion, analyzed the smallest tests, the Olden programs [14].
The ORC compiler analyzed all SPEC 2000 benchmarks
except for two (for lack of C++ library and system call
supports) [5]. The IBM study evaluated a subset of SPEC 2006
programs and did not consider while-loops (due a limitation
in the implementation) [20]. A recent tool called Kismet ac-
curately estimates the potential parallel speedup in sequential
code but does not consider speculative parallelism (so finding
little potential in SPEC 2000INT) [8]. There had not been
a characterization for both loop and function parallelism in

10

SPEC 2006.
c) Loop profiling by a simulator: We consider it a

simulation if the analysis does not record a dependence graph
among program statements. Indeed, most techniques focus
on loops that are do-all loops or loops that can made into
do-all by hardware-based techniques in particular speculation
and value prediction. Kejariwal et al. measured the potential
of control speculation, data dependence speculation, and data
value speculation and found that the maximal effect computed
by the geometric mean is less than 1% for SPEC 2006 [10].
The modest improvement has two reasons. Many of the do-all
loops can be parallelized by the Intel compiler without the
need of speculation. In addition, they observed that “the total
loop coverage in many integer applications is quite low.” Their
study considered only innermost loops. A compiler can enable
additional parallelism by partitioning a loop into a serial and
a parallel part. Equipped with such a compiler, Packirisamy
found that SPEC 2006 could benefit more from speculative
parallelization and obtain an average speedup of 60% with
four cores [13].

VI. SUMMARY

We have developed all-context, all-construct parallelism
analysis and used it to identify safe loop and function par-
allelism in SPEC 2006 integer applications. The results show
mixed characteristics in integer programs—they do not always
have more functions than loops nor have they more function
contexts than loop contexts. All programs have a significant
amount of parallelism in loops and functions. Loops are no
more scalable to parallelize than functions. In the absence of
speculation and scheduling overheads, we found that single-
loop parallelization can improve overall performance by 20%
or more in 7 programs, and single-function parallelization by
10% or more in 10 out of 12 programs. The new tool can
help programmers to parallel large sequential code to utilize
the spare cores on today’s multicore machines.

REFERENCES

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting
hardware performance counters with flow and context
sensitive profiling. In Proceedings of PLDI, pages 85–
96, 1997.

[2] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
multithreaded programming for C/C++. In Proceedings
of OOPSLA, pages 81–96, 2009.

[3] T. Chen, J. Lin, X. Dai, W.-C. Hsu, and P.-C. Yew. Data
dependence profiling for speculative optimizations. In
Proceedings of CC, pages 57–72, 2004.

[4] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and
C. Zhang. Software behavior oriented parallelization. In
Proceedings of PLDI, pages 223–234, 2007.

[5] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and
T.-F. Ngai. A cost-driven compilation framework for
speculative parallelization of sequential programs. In
Proceedings of PLDI, pages 71–81, 2004.

[6] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W.
Liao, and M. S. Lam. Interprocedural parallelization
analysis in SUIF. ACM TOPLAS, 27(4):662–731, 2005.

[7] R. H. Halstead. MULTILISP: A language for concurrent
symbolic computation. ACM TOPLAS, 7(4):501–538,
Oct. 1985.

[8] D. Jeon, S. Garcia, C. M. Louie, and M. B. Taylor.
Kismet: parallel speedup estimates for serial programs.
In Proceedings of OOPSLA, pages 519–536, 2011.

[9] C. Ke, L. Liu, C. Zhang, T. Bai, B. Jacobs, and C. Ding.
Safe parallel programming using dynamic dependence
hints. In Proceedings of OOPSLA, pages 243–258, 2011.

[10] A. Kejariwal, X. Tian, M. Girkar, W. Li, S. Kozhukhov,
U. Banerjee, A. Nicolau, A. V. Veidenbaum, and C. D.
Polychronopoulos. Tight analysis of the performance
potential of thread speculation using SPEC CPU 2006.
In Proceedings of PPoPP, pages 215–225, 2007.

[11] S.-W. Liao, A. Diwan, R. P. B. Jr., A. M. Ghuloum,
and M. S. Lam. SUIF Explorer: An interactive and
interprocedural parallelizer. In Proceedings of PPoPP,
pages 37–48, 1999.

[12] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau,
and J. Torrellas. POSH: a tls compiler that exploits
program structure. In Proceedings of PPoPP, pages 158–
167, 2006.

[13] V. Packirisamy, A. Zhai, W.-C. Hsu, P.-C. Yew, and T.-F.
Ngai. Exploring speculative parallelism in spec2006. In
Proceedings of ISPASS, pages 77–88, 2009.

[14] C. G. Quiñones, C. Madriles, F. J. Sánchez, P. Marcuello,
A. González, and D. M. Tullsen. Mitosis compiler:
an infrastructure for speculative threading based on pre-
computation slices. In Proceedings of PLDI, pages 269–
279, 2005.

[15] K. B. Theobald, G. R. Gao, and L. J. Hendren. On the
limits of program parallelism and its smoothability. In
Proceedings of MICRO, pages 10–19, 1992.

[16] C. Tian, M. Feng, and R. Gupta. Supporting speculative
parallelization in the presence of dynamic data structures.
In Proceedings of PLDI, pages 62–73, 2010.

[17] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges,
G. Ottoni, and D. I. August. Speculative decoupled
software pipelining. In Proceedings of PACT, pages 49–
59, 2007.

[18] C. von Praun, L. Ceze, and C. Cascaval. Implicit
parallelism with ordered transactions. In Proceedings of
PPoPP, pages 79–89, Mar. 2007.

[19] A. Welc, S. Jagannathan, and A. L. Hosking. Safe futures
for Java. In Proceedings of OOPSLA, pages 439–453,
2005.

[20] P. Wu, A. Kejariwal, and C. Cascaval. Compiler-driven
dependence profiling to guide program parallelization.
In Proceedings of the LCPC Workshop, pages 232–248,
2008.

[21] C. Zhang, C. Ding, X. Gu, K. Kelsey, T. Bai, and
X. Feng. Continuous speculative program parallelization
in software. In Proceedings of PPoPP, pages 335–336,
2010. poster paper.

[22] X. Zhang, A. Navabi, and S. Jagannathan. Alchemist: A
transparent dependence distance profiling infrastructure.
In Proceedings of CGO, pages 47–58, Washington, DC,
USA, 2009. IEEE Computer Society.

