
Defensive Loop Tiling for
Shared Cache

 Bin Bao
Adobe Systems

Chen Ding
 University of Rochester

Bird and Program

2

“Unlike a bird, which can learn to fly better and
better, existing programs are sort of dumb---the
one millionth run of a program is typically not a
bit better than the first-time run.” --- Professor
Xipeng Shen @ W&M

Peer Interaction

Peers: threads, tasks, and independent programs

3

Interfering

Limited resources

Collaborative

Parallel tasks

Co-Run Program Optimization

Existing shared-cache optimization

Cache partitioning

Job scheduling

Task throttling

Compiler optimization?

4

Loop Tiling --- A Matrix Multiplication Example

5

Figure 1 shows the simulated miss counts for square tile
sizes up to the size of the private L1 cache (256KB). To ease
the comparison, we link the miss counts into curves. The best
tile size is given by the lowest point of a curve. Comparing
the two curves, we see that the best tile size differs by a
factor of 10 because of cache interference. If we use in best
tile size from the solo run in the co-run, the program would
incur 10 times as many cache misses. The dramatic increase
is entirely due to cache interference, in particular, inclusion
victim misses.

The figure shows the importance of considering cache in-
terference in loop tiling. On machines with inclusive cache,
it is far from sufficient to tile for the private cache. Defensive
tiling must minimize the number of inclusion victim misses,
a problem we solve in this paper. We call the program opti-
mization defensive tiling.

In the following, Section 2 describes a model of inclusion
victim misses, the compiler technique for defensive tiling, its
integration in the Open64 compiler, and a compiler analysis
of interference. Section 3 evaluates defensive tiling using the
PLUTO [3] benchmarks by testing the effect in solo- and co-
run tests. The remaining sections discuss related work and
conclude.

2. Defensive Tiling

In this section we describe loop tiling, the effect of inclusion
victim and its amelioration by defensive tiling.

2.1 Loop Tiling

Figure 2a shows the kernel code of matrix multiplication and
Figure 2b the tiling transformation that we will use as an
example throughout this section, where N = 2048.

for(i = 0; i < N ; i = i+ 1)
for(j = 0; j < N ; j = j + 1)
for(k = 0; k < N ; k = k + 1)
C[i][j] = beta ⇤ C[i][j] + alpha ⇤A[i][k] ⇤B[k][j];

(a) Original code

for(jj = 0; jj < N ; jj = jj +Bj)
for(kk = 0; kk < N ; kk = kk +Bk)
for(i = 0; i < N ; i = i+ 1)
for(j = jj; j < min(jj +Bj , N); j = j + 1)
for(k = kk; k < min(kk +Bk, N); k = k + 1)
C[i][j] = beta ⇤ C[i][j] + alpha ⇤A[i][k] ⇤B[k][j];

(b) Tiled code

Figure 2: Loop tiling in matrix multiplication

The results presented in Figure 1 show the relation be-
tween loop tiling and cache performance. For ease of presen-
tation, it shows results for only square tiles (Bj = Bk = B)
for B from 10 to 180, with an increment of 10. The x-
axis shows the 18 data points with the tile size measured
by the reuse distance of B[k][j] in i-loop from about 1KB to

256KB. In this experiment, the machine has private 8-way
256KB L1 and shared 16-way 2MB L2.

When the matrix multiplication is running alone, the L1
miss count goes down as the tile size increases, due to the
greater utilization of the L1 cache. However, the benefit di-
minishes when B grows larger than 160, and the reuse dis-
tance of B[k][j] larger than 200KB. This is due to partly ca-
pacity, not enough L1 space is left for other data, and partly
conflict, interference among data tiles. Such phenomenon is
well known.

When the same matrix multiply is co-running with a
stream benchmark, larger private-cache usage decreases the
number of misses only until B = 50 or reuse distance of
24KB, after which the miss count increases rapidly. The best
tile size occupies less than 10% of the private cache in this
co-run case, in sharp contrast to near 80% in the solo-run
case. The reason is the interference from the peer program
in the shared cache, which we model in the next section.

2.2 Inclusion Victim Modeling

The execution of a tiled program has a regular set of data
being reused: the data tiles. The program computes on them
for a duration before moving to the next set of tiles. In
general, it may access other data blocks that are not reused.
We introduce two metrics to represent this type of cache
usage:

• Reused data, which is the volume of data being reused;
• Active period, which is the duration of the time the same

amount of data is reused.

While a tiled program runs, peer programs bring their
data into the shared cache and evicts the data tiles. We model
the interference using the following metric:

• Survival window, which the time taken for peer programs
to access the amount of data equal to the size of the
shared cache.

Consider a data tile that fits inside the private cache. Its
copy in shared cache would be evicted by the end of the
survival window and has to be reloaded, incurring inclusion
victim misses in the amount of the reused data. The follow-
ing example demonstrates the three metrics:

prog. 1: a b c a b d a b e ...

prog. 2: p q u v w x y z p q u v ...

The first program reuses two data blocks repeatedly. The
reused data is two. The active period is the length of the
execution. The second program repeatedly traverses 8 data
blocks. Assuming the shared cache is of size 8, the survival
window is 8. After every 8 accesses of program 2, program 1
incurs two inclusion victim misses to reload the two reused
data blocks.

The frequency of the reloads equals to how many times
the reuse data do not survival in shared cache, i.e. the ra-

2

Tiling Strategy for Shared Cache

6

Tile for whole
shared cache

Tile for part of
shared cache

Tile for private
cache only

Inclusion Victim Misses

Inclusive cache

E.g. L3 cache in Intel Nehalem processor

Inclusive victim [Jaleel et al. MICRO’10]

A toy example: L1 cache size 2; L2 cache size 8

7

Defensive Loop Tiling for Shared Cache

Abstract

Loop tiling is a compiler transformation that tailors an ap-
plication’s working set to fit in a cache hierarchy. On today’s
multicore processors, part of the hierarchy especially the last
level cache (LLC) is shared. The available cache space in
shared cache changes depending on co-run applications. Fur-
thermore on machines with an inclusive cache hierarchy, the
interference in the shared cache can cause evictions in the
private cache, a problem known as the inclusion victims.

This paper presents defensive tiling, a set of compiler
techniques to estimate the effect of cache sharing and then
choose the tile sizes that can provide robust performance in
co-run environments. The goal of the transformation is to
optimize the use of the cache while at the same time guard
against interference. It is entirely a static technique and does
not require program profiling. The paper shows how it can be
integrated into a production-quality compiler and evaluates
its effect on a set of tiling benchmarks for both program
co-run and solo-run performance, using both simulation and
testing on real systems.

1. Introduction

Loop tiling is a compiler optimization that reorganizes a loop
nest so it computes on data tiles whose size can be adjusted
to fit in one or more levels of cache. A basic problem in
loop tiling is the selection of the best tile shape and size.
The best strategy in the past utilizes the most space that
does not cause data conflicts due to limited associativity (for
examples in [4, 9, 14, 20, 32, 33]). However, these methods
do not consider the effect of cache sharing.

Contemporary chip multiprocessor (CMP) has greatly
improved system throughput and power efficiency. An im-
portant characteristic in CMP is cache sharing. In a typical
multi-core processor today, each core may have multiple
levels of caches used exclusively by the core, but a group of
cores would share the last level cache (LLC). Cache sharing
allows a program to use the full LLC space when running by
itself. However, when running with other programs, sharing
leads to interference. The portion of LLC occupied by a pro-
gram’s data can be hard to ascertain. If a program uses more
than its share of cache, its performance can drop. The prob-
lem is especially serious for a tiled program since it depends
on its data tiles residing in cache.

In this paper, we present defensive tiling to safeguard per-
formance in the presence of interference. As a starting point,
we may tile for private cache only. However, the solution is
problematic on machines with an inclusive cache hierarchy,
which includes most processor families from Intel. On these
systems, interference in shared LLC can cause eviction in
private cache.

Consider a 2-core toy machine with private L1 and shared
L2. The cache sizes are 2 and 8 blocks respectively. Suppose

Tile size in terms of B[j][k] reuse distance

M
is

s
co

un
t

0.94KB 64.7KB 255.9KB

0e
+0

0
2e

+0
8

4e
+0

8

Private cache misses in solo−run
Private cache misses in co−run

Figure 1: The effect of cache interference on tiled matrix
multiply. For the tile size ranging from 0 to the size of
L1 (256KB), the figure shows the total miss count of solo
execution and of co-run with another program. The best tile
size for the solo run incurs 10 times as many misses in the
co-run execution, showing the dramatic impact of inclusion
victim misses.

we have two programs: one uses just one block a and the
other iterates over 8 other blocks. As block a stays in the
private cache, its copy in the shared cache is not accessed.
As a result of good private-cache locality, a becomes “stale”
in the shared cache. In the meanwhile, program 2 constantly
loads “fresh” data into the shared cache. After every 8 ac-
cesses, program 2 erases the old content of the shared cache
and evicts a. To maintain inclusion, a has to be purged from
program 1’s private cache as it leaves the shared cache. The
next access to a then incurs a cache miss. Following Jaleel
et al. [16], we call such a cache miss an inclusion victim.

The following shows the co-run traces and the private-
cache misses incurred by program 1. The first miss is com-
pulsory (c), while the other two are inclusion victims (v).

misses: c v v

prog. 1: a a a a a a a a a a a a a a a a a ...

prog. 2: p q u v w x y z p q u v w x y z p ...

Inclusion victim has been identified as a major factor
that limits the performance of inclusive cache, particularly
in the case of cache sharing [16]. As an optimization that
improves data locality, loop tiling magnifies the problem. As
a demonstration, we measure the number of inclusion victim
misses in a simulator when running tiled matrix multiply
with the STREAM benchmark [23] and compare it with the
solo-run of the same matrix multiplication.

1

Matrix Multiplication Results on a Cache Simulator

8

Defensive Loop Tiling for Shared Cache

Abstract

Loop tiling is a compiler transformation that tailors an ap-
plication’s working set to fit in a cache hierarchy. On today’s
multicore processors, part of the hierarchy especially the last
level cache (LLC) is shared. The available cache space in
shared cache changes depending on co-run applications. Fur-
thermore on machines with an inclusive cache hierarchy, the
interference in the shared cache can cause evictions in the
private cache, a problem known as the inclusion victims.

This paper presents defensive tiling, a set of compiler
techniques to estimate the effect of cache sharing and then
choose the tile sizes that can provide robust performance in
co-run environments. The goal of the transformation is to
optimize the use of the cache while at the same time guard
against interference. It is entirely a static technique and does
not require program profiling. The paper shows how it can be
integrated into a production-quality compiler and evaluates
its effect on a set of tiling benchmarks for both program
co-run and solo-run performance, using both simulation and
testing on real systems.

1. Introduction

Loop tiling is a compiler optimization that reorganizes a loop
nest so it computes on data tiles whose size can be adjusted
to fit in one or more levels of cache. A basic problem in
loop tiling is the selection of the best tile shape and size.
The best strategy in the past utilizes the most space that
does not cause data conflicts due to limited associativity (for
examples in [4, 9, 14, 20, 32, 33]). However, these methods
do not consider the effect of cache sharing.

Contemporary chip multiprocessor (CMP) has greatly
improved system throughput and power efficiency. An im-
portant characteristic in CMP is cache sharing. In a typical
multi-core processor today, each core may have multiple
levels of caches used exclusively by the core, but a group of
cores would share the last level cache (LLC). Cache sharing
allows a program to use the full LLC space when running by
itself. However, when running with other programs, sharing
leads to interference. The portion of LLC occupied by a pro-
gram’s data can be hard to ascertain. If a program uses more
than its share of cache, its performance can drop. The prob-
lem is especially serious for a tiled program since it depends
on its data tiles residing in cache.

In this paper, we present defensive tiling to safeguard per-
formance in the presence of interference. As a starting point,
we may tile for private cache only. However, the solution is
problematic on machines with an inclusive cache hierarchy,
which includes most processor families from Intel. On these
systems, interference in shared LLC can cause eviction in
private cache.

Consider a 2-core toy machine with private L1 and shared
L2. The cache sizes are 2 and 8 blocks respectively. Suppose

Tile size in terms of B[j][k] reuse distance

M
is

s
co

un
t

0.94KB 64.7KB 255.9KB

0e
+0

0
2e

+0
8

4e
+0

8

Private cache misses in solo−run
Private cache misses in co−run

Figure 1: The effect of cache interference on tiled matrix
multiply. For the tile size ranging from 0 to the size of
L1 (256KB), the figure shows the total miss count of solo
execution and of co-run with another program. The best tile
size for the solo run incurs 10 times as many misses in the
co-run execution, showing the dramatic impact of inclusion
victim misses.

we have two programs: one uses just one block a and the
other iterates over 8 other blocks. As block a stays in the
private cache, its copy in the shared cache is not accessed.
As a result of good private-cache locality, a becomes “stale”
in the shared cache. In the meanwhile, program 2 constantly
loads “fresh” data into the shared cache. After every 8 ac-
cesses, program 2 erases the old content of the shared cache
and evicts a. To maintain inclusion, a has to be purged from
program 1’s private cache as it leaves the shared cache. The
next access to a then incurs a cache miss. Following Jaleel
et al. [16], we call such a cache miss an inclusion victim.

The following shows the co-run traces and the private-
cache misses incurred by program 1. The first miss is com-
pulsory (c), while the other two are inclusion victims (v).

misses: c v v

prog. 1: a a a a a a a a a a a a a a a a a ...

prog. 2: p q u v w x y z p q u v w x y z p ...

Inclusion victim has been identified as a major factor
that limits the performance of inclusive cache, particularly
in the case of cache sharing [16]. As an optimization that
improves data locality, loop tiling magnifies the problem. As
a demonstration, we measure the number of inclusion victim
misses in a simulator when running tiled matrix multiply
with the STREAM benchmark [23] and compare it with the
solo-run of the same matrix multiplication.

1

2 cores

Private 256KB
L1 cache

Shared 2MB L2
cache

Matmul and
streaming

Inclusion Victim Modeling

Data usage

Reused data, active period

Cache interference

Survival window

9

Defensive Loop Tiling for Shared Cache

Abstract

Loop tiling is a compiler transformation that tailors an ap-
plication’s working set to fit in a cache hierarchy. On today’s
multicore processors, part of the hierarchy especially the last
level cache (LLC) is shared. The available cache space in
shared cache changes depending on co-run applications. Fur-
thermore on machines with an inclusive cache hierarchy, the
interference in the shared cache can cause evictions in the
private cache, a problem known as the inclusion victims.

This paper presents defensive tiling, a set of compiler
techniques to estimate the effect of cache sharing and then
choose the tile sizes that can provide robust performance in
co-run environments. The goal of the transformation is to
optimize the use of the cache while at the same time guard
against interference. It is entirely a static technique and does
not require program profiling. The paper shows how it can be
integrated into a production-quality compiler and evaluates
its effect on a set of tiling benchmarks for both program
co-run and solo-run performance, using both simulation and
testing on real systems.

1. Introduction

Loop tiling is a compiler optimization that reorganizes a loop
nest so it computes on data tiles whose size can be adjusted
to fit in one or more levels of cache. A basic problem in
loop tiling is the selection of the best tile shape and size.
The best strategy in the past utilizes the most space that
does not cause data conflicts due to limited associativity (for
examples in [4, 9, 14, 20, 32, 33]). However, these methods
do not consider the effect of cache sharing.

Contemporary chip multiprocessor (CMP) has greatly
improved system throughput and power efficiency. An im-
portant characteristic in CMP is cache sharing. In a typical
multi-core processor today, each core may have multiple
levels of caches used exclusively by the core, but a group of
cores would share the last level cache (LLC). Cache sharing
allows a program to use the full LLC space when running by
itself. However, when running with other programs, sharing
leads to interference. The portion of LLC occupied by a pro-
gram’s data can be hard to ascertain. If a program uses more
than its share of cache, its performance can drop. The prob-
lem is especially serious for a tiled program since it depends
on its data tiles residing in cache.

In this paper, we present defensive tiling to safeguard per-
formance in the presence of interference. As a starting point,
we may tile for private cache only. However, the solution is
problematic on machines with an inclusive cache hierarchy,
which includes most processor families from Intel. On these
systems, interference in shared LLC can cause eviction in
private cache.

Consider a 2-core toy machine with private L1 and shared
L2. The cache sizes are 2 and 8 blocks respectively. Suppose

Tile size in terms of B[j][k] reuse distance

M
is

s
co

un
t

0.94KB 64.7KB 255.9KB

0e
+0

0
2e

+0
8

4e
+0

8

Private cache misses in solo−run
Private cache misses in co−run

Figure 1: The effect of cache interference on tiled matrix
multiply. For the tile size ranging from 0 to the size of
L1 (256KB), the figure shows the total miss count of solo
execution and of co-run with another program. The best tile
size for the solo run incurs 10 times as many misses in the
co-run execution, showing the dramatic impact of inclusion
victim misses.

we have two programs: one uses just one block a and the
other iterates over 8 other blocks. As block a stays in the
private cache, its copy in the shared cache is not accessed.
As a result of good private-cache locality, a becomes “stale”
in the shared cache. In the meanwhile, program 2 constantly
loads “fresh” data into the shared cache. After every 8 ac-
cesses, program 2 erases the old content of the shared cache
and evicts a. To maintain inclusion, a has to be purged from
program 1’s private cache as it leaves the shared cache. The
next access to a then incurs a cache miss. Following Jaleel
et al. [16], we call such a cache miss an inclusion victim.

The following shows the co-run traces and the private-
cache misses incurred by program 1. The first miss is com-
pulsory (c), while the other two are inclusion victims (v).

misses: c v v

prog. 1: a a a a a a a a a a a a a a a a a ...

prog. 2: p q u v w x y z p q u v w x y z p ...

Inclusion victim has been identified as a major factor
that limits the performance of inclusive cache, particularly
in the case of cache sharing [16]. As an optimization that
improves data locality, loop tiling magnifies the problem. As
a demonstration, we measure the number of inclusion victim
misses in a simulator when running tiled matrix multiply
with the STREAM benchmark [23] and compare it with the
solo-run of the same matrix multiplication.

1

tio of the active period to the survival window. The follow-
ing equation shows how the three metrics, the active period
ap(p1), the reused data reuse(p1) of program 1 and the sur-
vival window from program 2 sw(p2), compute the number
of inclusion victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
⇤ reuse(p1) (1)

The model has several limitations. It assumes stable data
reuse and negligible effect in shared cache from the other
data accessed by program 1. The two assumptions are valid
for tiled programs but not true in general. Second, the time
is logical not actual. The unit of the active period may not
match that of the survival window. This is not a serious prob-
lem because our goal is to defend against as much interfer-
ence as possible not some specific interference that we can
know in advance.

Finally, there is mutual interaction between the co-run
programs, as studied by Xiang et al. using a recursive equa-
tion and a fixed solution [35]. In this paper, we treat the in-
teraction only qualitatively, in particular, its important effect
in determining the “friendliness” of defensive tiling as dis-
cussed at the end of Section 2.4.

Next we show how to estimate the above three factors
inside a compiler, without profiling or knowing the exact
execution sequence of the compiled program.

2.3 Compiler Enhancement of Defensiveness

The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al. [33]. Part
of the description (Section 3.2) deals with the problem of
tile-size selection. The description is more intuitive than it is
precise. Our design is based on the current Open64 design,
which we review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for

an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount of
active data, and the relation with the survival window. Once
we extend the cost function to include cache interference,
defensive tiling is accomplished by the same search proce-
dure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multipli-
cation (Figure 2b), the footprint of i, j, and k loop are de-
noted as Fi, Fj and Fk respectively. The formulas are: Fi =
8⇤(N⇤Bk+Bj⇤Bk+N⇤Bj), Fj = 8⇤(Bk+Bj⇤Bk+Bj),
Fk = 8 ⇤ (Bk +Bk + 1).

Next the compiler computes the cache requirement of
each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is loop j, we denote the
requirement of loop i as Rj , the cache required for one
iteration of i:

Rj = Fj + (di � 1) ⇤ Fi � Fj

N � 1
(2)

Part of the required cache space holds the reused data.
The amount is

reusej = Fj � (Fi � Fj)/N (3)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i has N instances of loop
j, but Fi is smaller than N ⇤ Fj . The difference is due to the
reuse of the data tile in this case of size Bj ⇤Bk. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 4 as follows.

CMj =
Fi

N

+(↵⇤ Ri

ecsz

+� ⇤ |Ri � ecsz|+

ecsz

)⇤ reusej (4)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.

↵ and � are factors used to model program induced cache
conflict and capacity misses. The former penalizes if the
cache requirement is close to the cache size. The second
penalizes if the requirement exceeds the cache size (the term

3

Implementation in Open64 Compiler

Wolf, Maydan, and Chen. IJPP, 26(4):479–503, 1998.

A cache cost function

Example: matrix multiplication

Footprint

10

tio of the active period to the survival window. The follow-
ing equation shows how the three metrics, the active period
ap(p1), the reused data reuse(p1) of program 1 and the sur-
vival window from program 2 sw(p2), compute the number
of inclusion victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
⇤ reuse(p1) (1)

The model has several limitations. It assumes stable data
reuse and negligible effect in shared cache from the other
data accessed by program 1. The two assumptions are valid
for tiled programs but not true in general. Second, the time
is logical not actual. The unit of the active period may not
match that of the survival window. This is not a serious prob-
lem because our goal is to defend against as much interfer-
ence as possible not some specific interference that we can
know in advance.

Finally, there is mutual interaction between the co-run
programs, as studied by Xiang et al. using a recursive equa-
tion and a fixed solution [35]. In this paper, we treat the in-
teraction only qualitatively, in particular, its important effect
in determining the “friendliness” of defensive tiling as dis-
cussed at the end of Section 2.4.

Next we show how to estimate the above three factors
inside a compiler, without profiling or knowing the exact
execution sequence of the compiled program.

2.3 Compiler Enhancement of Defensiveness

The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al. [33]. Part
of the description (Section 3.2) deals with the problem of
tile-size selection. The description is more intuitive than it is
precise. Our design is based on the current Open64 design,
which we review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for

an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount of
active data, and the relation with the survival window. Once
we extend the cost function to include cache interference,
defensive tiling is accomplished by the same search proce-
dure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multiplica-
tion (Figure 2b), the footprint of i, j, and k loop are denoted
as Fi, Fj and Fk respectively. The formulas are:

Fi = 8 ⇤ (N ⇤Bk +Bj ⇤Bk +N ⇤Bj) (2)

Fj = 8 ⇤ (Bk +Bj ⇤Bk +Bj) (3)

, Fk = 8 ⇤ (Bk +Bk + 1).
Next the compiler computes the cache requirement of

each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is loop j, we denote the
requirement of loop i as Rj , the cache required for one
iteration of i:

Rj = Fj + (di � 1) ⇤ Fi � Fj

N � 1
(4)

Part of the required cache space holds the reused data.
The amount is

reusej = Fj � (Fi � Fj)/N (5)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i has N instances of loop
j, but Fi is smaller than N ⇤ Fj . The difference is due to the
reuse of the data tile in this case of size Bj ⇤Bk. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 6 as follows.

CMj =
Fi

N

+(↵⇤ Ri

ecsz

+� ⇤ |Ri � ecsz|+

ecsz

)⇤ reusej (6)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.

↵ and � are factors used to model program induced cache
conflict and capacity misses. The former penalizes if the

3

tio of the active period to the survival window. The follow-
ing equation shows how the three metrics, the active period
ap(p1), the reused data reuse(p1) of program 1 and the sur-
vival window from program 2 sw(p2), compute the number
of inclusion victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
⇤ reuse(p1) (1)

The model has several limitations. It assumes stable data
reuse and negligible effect in shared cache from the other
data accessed by program 1. The two assumptions are valid
for tiled programs but not true in general. Second, the time
is logical not actual. The unit of the active period may not
match that of the survival window. This is not a serious prob-
lem because our goal is to defend against as much interfer-
ence as possible not some specific interference that we can
know in advance.

Finally, there is mutual interaction between the co-run
programs, as studied by Xiang et al. using a recursive equa-
tion and a fixed solution [35]. In this paper, we treat the in-
teraction only qualitatively, in particular, its important effect
in determining the “friendliness” of defensive tiling as dis-
cussed at the end of Section 2.4.

Next we show how to estimate the above three factors
inside a compiler, without profiling or knowing the exact
execution sequence of the compiled program.

2.3 Compiler Enhancement of Defensiveness

The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al. [33]. Part
of the description (Section 3.2) deals with the problem of
tile-size selection. The description is more intuitive than it is
precise. Our design is based on the current Open64 design,
which we review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for

an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount of
active data, and the relation with the survival window. Once
we extend the cost function to include cache interference,
defensive tiling is accomplished by the same search proce-
dure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multiplica-
tion (Figure 2b), the footprint of i, j, and k loop are denoted
as Fi, Fj and Fk respectively. The formulas are:

Fi = 8 ⇤ (N ⇤Bk +Bj ⇤Bk +N ⇤Bj) (2)

Fj = 8 ⇤ (Bk +Bj ⇤Bk +Bj) (3)

, Fk = 8 ⇤ (Bk +Bk + 1).
Next the compiler computes the cache requirement of

each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is loop j, we denote the
requirement of loop i as Rj , the cache required for one
iteration of i:

Rj = Fj + (di � 1) ⇤ Fi � Fj

N � 1
(4)

Part of the required cache space holds the reused data.
The amount is

reusej = Fj � (Fi � Fj)/N (5)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i has N instances of loop
j, but Fi is smaller than N ⇤ Fj . The difference is due to the
reuse of the data tile in this case of size Bj ⇤Bk. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 6 as follows.

CMj =
Fi

N

+(↵⇤ Ri

ecsz

+� ⇤ |Ri � ecsz|+

ecsz

)⇤ reusej (6)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.

↵ and � are factors used to model program induced cache
conflict and capacity misses. The former penalizes if the

3

Reuse

tio of the active period to the survival window. The follow-
ing equation shows how the three metrics, the active period
ap(p1), the reused data reuse(p1) of program 1 and the sur-
vival window from program 2 sw(p2), compute the number
of inclusion victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
⇤ reuse(p1) (1)

The model has several limitations. It assumes stable data
reuse and negligible effect in shared cache from the other
data accessed by program 1. The two assumptions are valid
for tiled programs but not true in general. Second, the time
is logical not actual. The unit of the active period may not
match that of the survival window. This is not a serious prob-
lem because our goal is to defend against as much interfer-
ence as possible not some specific interference that we can
know in advance.

Finally, there is mutual interaction between the co-run
programs, as studied by Xiang et al. using a recursive equa-
tion and a fixed solution [35]. In this paper, we treat the in-
teraction only qualitatively, in particular, its important effect
in determining the “friendliness” of defensive tiling as dis-
cussed at the end of Section 2.4.

Next we show how to estimate the above three factors
inside a compiler, without profiling or knowing the exact
execution sequence of the compiled program.

2.3 Compiler Enhancement of Defensiveness

The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al. [33]. Part
of the description (Section 3.2) deals with the problem of
tile-size selection. The description is more intuitive than it is
precise. Our design is based on the current Open64 design,
which we review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for

an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount of
active data, and the relation with the survival window. Once
we extend the cost function to include cache interference,
defensive tiling is accomplished by the same search proce-
dure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multiplica-
tion (Figure 2b), the footprint of i, j, and k loop are denoted
as Fi, Fj and Fk respectively. The formulas are:

Fi = 8 ⇤ (N ⇤Bk +Bj ⇤Bk +N ⇤Bj) (2)

Fj = 8 ⇤ (Bk +Bj ⇤Bk +Bj) (3)

, Fk = 8 ⇤ (Bk +Bk + 1).
Next the compiler computes the cache requirement of

each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is loop j, we denote the
requirement of loop i as Rj , the cache required for one
iteration of i:

Rj = Fj + (di � 1) ⇤ Fi � Fj

N � 1
(4)

Part of the required cache space holds the reused data.
The amount is

reusej = Fj � (Fi � Fj)/N (5)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i has N instances of loop
j, but Fi is smaller than N ⇤ Fj . The difference is due to the
reuse of the data tile in this case of size Bj ⇤Bk. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 6 as follows.

CMj =
Fi

N

+(↵⇤ Ri

ecsz

+� ⇤ |Ri � ecsz|+

ecsz

)⇤ reusej (6)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.

↵ and � are factors used to model program induced cache
conflict and capacity misses. The former penalizes if the

3

Implementation in Open64 Compiler (cont.)

Original cache miss equation

11

tio of the active period to the survival window. The follow-
ing equation shows how the three metrics, the active period
ap(p1), the reused data reuse(p1) of program 1 and the sur-
vival window from program 2 sw(p2), compute the number
of inclusion victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
⇤ reuse(p1) (1)

The model has several limitations. It assumes stable data
reuse and negligible effect in shared cache from the other
data accessed by program 1. The two assumptions are valid
for tiled programs but not true in general. Second, the time
is logical not actual. The unit of the active period may not
match that of the survival window. This is not a serious prob-
lem because our goal is to defend against as much interfer-
ence as possible not some specific interference that we can
know in advance.

Finally, there is mutual interaction between the co-run
programs, as studied by Xiang et al. using a recursive equa-
tion and a fixed solution [35]. In this paper, we treat the in-
teraction only qualitatively, in particular, its important effect
in determining the “friendliness” of defensive tiling as dis-
cussed at the end of Section 2.4.

Next we show how to estimate the above three factors
inside a compiler, without profiling or knowing the exact
execution sequence of the compiled program.

2.3 Compiler Enhancement of Defensiveness

The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al. [33]. Part
of the description (Section 3.2) deals with the problem of
tile-size selection. The description is more intuitive than it is
precise. Our design is based on the current Open64 design,
which we review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for

an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount of
active data, and the relation with the survival window. Once
we extend the cost function to include cache interference,
defensive tiling is accomplished by the same search proce-
dure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multiplica-
tion (Figure 2b), the footprint of i, j, and k loop are denoted
as Fi, Fj and Fk respectively. The formulas are:

Fi = 8 ⇤ (N ⇤Bk +Bj ⇤Bk +N ⇤Bj) (2)

Fj = 8 ⇤ (Bk +Bj ⇤Bk +Bj) (3)

, Fk = 8 ⇤ (Bk +Bk + 1).
Next the compiler computes the cache requirement of

each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is loop j, we denote the
requirement of loop i as Rj , the cache required for one
iteration of i:

Rj = Fj + (di � 1) ⇤ Fi � Fj

N � 1
(4)

Part of the required cache space holds the reused data.
The amount is

reusej = Fj � (Fi � Fj)/N (5)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i has N instances of loop
j, but Fi is smaller than N ⇤ Fj . The difference is due to the
reuse of the data tile in this case of size Bj ⇤Bk. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 6 as follows.

CMj =
Fi

N

+(↵⇤ Ri

ecsz

+� ⇤ |Ri � ecsz|+

ecsz

)⇤ reusej (6)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.

↵ and � are factors used to model program induced cache
conflict and capacity misses. The former penalizes if the

3

Cache misses caused by inclusion victim

cache requirement is close to the cache size. The second
penalizes if the requirement exceeds the cache size (the term
is 0 if Ri ecsz). They are computed as a fraction by which
the data reuse is not realized as cache reuse.

Now we are ready to introduce the cache interference
model. Assuming each iteration of loop i is a loop j, the
amount of data reused in private cache is reusej and the
length of the active period is the duration of loop i. The evic-
tion frequency is the ratio of the active period to the survival
window. Both terms are time and difficult to estimate inside
the compiler. Instead, we convert the time ratio into the data
ratio. In particular, we assume it is proportional to ratio of
the footprint of loop i to a fraction of the shared cache size.
The formula is given by Equation 7 as follows:

IVj =
Fi

scsz/�

⇤ reusej (7)

We should note the distinction between ecsz, which is the
effect size of the private cache, and scsz, which is the size of
the shared cache. � is a number greater than 1. It represents
the defensiveness. The larger is the number, the shorter is the
survival window. Ideally, the defensiveness is tuned based on
the co-run cache interference. In implementation, we control
� using a compiler option “-LNO:blocking defensiveness”.
We will experimentally study the effect of � in Section 3.

The revised formula for the miss estimate, CM

0
j is then

CM

0
j = CMj + IVj (8)

Given this cost function, defensive tiling continues by search-
ing for the tile sizes that minimize CM

0
j , employing loop in-

terchange and other loop nest transformations as before [33].
In the above description we have used the matrix multi-

plication as an example. The main assumption is that loop j

is one iteration of loop i. The i, j distinction helps to clarify
when we describe the formulas that use both the metrics for
the loop and the metrics for one of its iterations. The formu-
las for a generic loop i are the same except that we replace
the metrics for loop j with those for an iteration of loop i.

2.4 Compiler Analysis of “Friendliness”

A program’s role in cache interference is two sided. The
first is the effect due to the interference from others. This
is often called sensitivity. Defensive tiling is to minimize the
sensitivity. The second is the program’s interference to oth-
ers. It has been called friendliness [17] and politeness [29].
Friendliness has been estimated using on-line measurements
(e.g. [41]), profiling (e.g. [36, 37] in linear and real time),
and simulation and modeling [28, 34].

In this section, we describe as far as we know the first
compiler analysis that estimates the friendliness. Through
this we may see the impact of defensive tiling on friend-
liness and identify any conflict between the optimizing for
defensiveness and optimizing for friendliness.

0
5

15
25

reuse distance (log−scale)

ac
ce

ss
 fr

eq
ue

nc
y

(p
er

ce
nt

ag
e)

1B 32B 1KB 32KB 1MB 32MB

0
20

40
60

80

cache size (log−scale)
m

is
s

ra
tio

 (p
er

ce
nt

ag
e)

1B 32B 1KB 32KB 1MB 32MB

cache size (log−scale)

life
tim

e
(a

cc
es

se
s,

 lo
g−

sc
al

e)

1B 32B 1KB 32KB 1MB 32MB

1
32

32
K

32
M

Figure 3: Locality metrics calculation.

We start with reuse distance, which has been shown
amenable to static analysis through dependence analysis [5,
6] and reuse distance equations [2]. Given a loop nest, reuse
distance is a histogram showing the distribution of reuse dis-
tances. For an execution of matrix multiply, the top graph
in Figure 3 shows that one third of references have a reuse
distance of 24B, 2.4KB and 178KB respectively.

Compiler analysis produces a histogram parameterized
by the loop trip counts. For tiled matrix multiply in Fig-
ure 2b, the reuse distances for different references are given

4

𝛾 is the defensiveness parameter

Experimental Results

PLUTO benchmarks

Pin-based cache simulator

256KB private L1, 2MB shared L2

Intel Nehalem processor

private 32KB L1 and 256KB L2, shared 8MB L3

Co-run peers

STREAM benchmark, in addition to PLUTO

12

We tile loops only for the private cache and do not consider
tiling for TLB.

Test Suite We have compiled all 25 benchmarks dis-
tributed with the PLUTO compiler [3]. 5 programs are not
included because Open64 can not tile the imperfect loops in
them, for example, the one in dsyrk. 2 more programs cannot
be tiled for other reasons. Another 13 are excluded because
they do not show a significant problem of inclusion victim
misses, that is, their solo-run and co-run miss counts do not
differ much. A common reason seems to be that the amount
of data reuse is relatively small. For instance, the mvt bench-
mark is a matrix-vector multiplication kernel which the reuse
only happens on the vector data. According to the model in
Section 2.3, when the reused data are few, the number of in-
clusion victim misses is low relative to the number of misses
caused by the matrix data. Indeed when measured in simu-
lation, the number of L1 misses increases by less than 0.1%
from the solo- to the co-run. After removing these programs,
we have 5 remaining programs which have significant data
reuse in private cache and for which Open64 can perform
the tiling transformation.

Next we evaluate defensive tiling first on a cache sim-
ulator to measure the cache effect and on real hardware to
measure the performance effect.

3.1 The Effect on Cache

For simulation, we have extended the basic cache simulator
in Intel Pin tool [22] to simulate a multi-level CMP cache.
The simulator is designed similar to CMP$im[15] (CMP$im
is not publicly available). One difference is that our simula-
tor does not include an L1 cache as they did, because the L1
cache does not significantly affect the interference between
L2 and L3, which we model using our simulator. L1 has a
performance impact, which we will include when testing on
a real system. Other than L1, we use the same cache con-
figuration used by Jaleel et al.: 2-core CMP, each has 8-way
256KB unified private cache, and both share inclusive 16-
way 2MB unified cache [16].

Our CMP simulator is Pin-based and trace-driven. The
simulator reads the same binaries as those running on the
real machine. Then Pin will instrument binaries and run the
cache simulation. The cache sharing is implemented through
process shared memory. With the cache simulator, we can
measure the total number of misses in the private cache. For
this experiment, we set the cache parameters in the Open64
compiler according to the simulated cache configuration:
private 256KB cache and shared 2MB cache.

We test the 5 PLUTO benchmarks in solo-run and in co-
run with a STREAM benchmark on the neighboring core.
We test five versions of each program: original Open64 tiling
and defensive tiling with the defensiveness level (�) set to
1, 2, 4 and 8. Figures 4a and 4b show the relative number
of private cache misses. The former is for the 5 versions
when the program co-runs with STREAM, and the latter

corcol covcol dct matmul tce

N
or

m
al

ize
d

pr
iva

te
 c

ac
he

 m
is

se
s

0%

100%

200%

300%

400%

500%

600%
default tiling
defensiveness=1
defensiveness=2
defensiveness=4
defensiveness=8

(a) Co-run simulation result

corcol covcol dct matmul tce

N
or

m
al

ize
d

pr
iva

te
 c

ac
he

 m
is

se
s

0%

100%

200%

300%

400%

500%

600%
default tiling
defensiveness=1
defensiveness=2
defensiveness=4
defensiveness=8

(b) Solo-run simulation result

Figure 4: Private cache miss comparison between the orignal
Open64 loop tiling and the defensive tiling for single run and
co-run cases.

for the 5 program versions when the program runs alone.
In each program, the number of misses is normalized to that
of the default Open64 tiling, so the first bar in each group in
Figure 4b is always 1.

The default tiling is vulnerable to program co-run. We
see in Figure 4a that the number of private cache misses (the
first bar in each group) increases by 321% to 449% in the
first four programs, corcol, covcol, dct, matmul, and 26% in
the last program tce. Inclusion victim is the culprit as it is
the only way the STREAM benchmark can affect the private
cache of the tiled program.

Defensive tiling reduces the number of misses by as much
as 80% for corcol and matmul, near 60% for covcol, over
40% for dct, and less than 5% for tce. For the first four pro-
grams, the defensiveness (“-LNO:blocking defensiveness”)
of 2 gives consistently good cache performance. The best
performance is seen when the defensiveness is either 2 or 4.

The effect of defensive tiling on solo runs is shown in
Figure 4b. As tiling become more defensive, there is a steady

6

Effect on private
cache miss

Baseline: default
tiling on solo-
run

4 defensiveness
values

Real Machine Performance

14

corcol covcol dct matmul tce
default tiling [105,105,220] [90,90,240] [56,56,320] [60,60,272] [5,5,5,5,36]
defensiveness=1 [56,56,160] [60,60,204] [32,32,280] [36,36,224] [6,6,6,6,25]
defensiveness=2 [42,42,126] [50,50,168] [26,26,231] [30,30,180] [6,6,6,6,25]
defensiveness=4 [20,20,91] [40,40,136] [21,21,182] [25,25,136] [6,6,6,6,18]
defensiveness=8 [20,20,91] [30,30,104] [17,17,144] [20,20,105] [5,5,5,5,15]

Table 2: Tile sizes generated by Open64

corcol covcol dct matmul tce

sp
ee

du
p

0.8x

1.0x

1.2x

1.4x
solo−run
with 1 STREAM
with 2 STREAM
with 3 STREAM

(a) -LNO:blocking defensiveness = 1

corcol covcol dct matmul tce

sp
ee

du
p

0.8x

1.0x

1.2x

1.4x
solo−run
with 1 STREAM
with 2 STREAM
with 3 STREAM

(b) -LNO:blocking defensiveness = 2

corcol covcol dct matmul tce

sp
ee

du
p

0.8x

1.0x

1.2x

1.4x
solo−run
with 1 STREAM
with 2 STREAM
with 3 STREAM

(c) -LNO:blocking defensiveness = 4

corcol covcol dct matmul tce

sp
ee

du
p

0.8x

1.0x

1.2x

1.4x
solo−run
with 1 STREAM
with 2 STREAM
with 3 STREAM

(d) -LNO:blocking defensiveness = 8

Figure 5: Speedup of defensive tiling over Open64 default tiling as measured on Intel Nehalem. Each benchmark co-runs with
1 to 3 STREAM benchmarks. The four graphs show defensive tiling with � = 1, 2, 4, 8.

improvements based on our simulation, which is the case
except for the 1.18x speedup.

Symmetric Co-runs We have tested each PLUTO bench-
mark running with one, two, or three of its own replicas.
Figure 6 shows the result for the solo- and co-run tests when
the defensiveness level is set to 4. The baseline is the default
tiling in the solo run and in 2 to 4 symmetric co-runs. The
first bar in each group shows the same speedup as those in
Figure 5c.

All tests show improvements, although most are small
and lower than the solo-run improvement. The results for
other defensiveness levels are similar, thus we omit them for
brevity.

Defensive tiling seems not effective since in all programs
the lead over the default tiling is narrowed, often signif-
icantly. For explanation we need to examine the friendli-
ness as defined and discussed in Section 2.4. The tiled pro-
grams have excellent locality, so they are among the friendli-

Defensiveness parameter 𝛾 = 4

Comparison with Cache Oblivious Algorithm

Recursive version matrix multiplication [Qing et al.
PLDI 2000]

15

corcol covcol dct matmul tce

Sp
ee

du
p

1x

1.1x

1.2x

1.3x
1 instance
2 instances
3 instances
4 instances

Figure 6: Speedup of the defensive tiling over the default
tiling for the solo-run and symmetrical co-runs with 2 to 4
replicas. The defensiveness level is 4.

recur_16 recur_32 recur_64 recur_128 recur_256

sp
ee

du
p

0.8x

1.0x

1.2x

1.4x
solo−run
with 1 STREAM
with 2 STREAM
with 3 STREAM

Figure 7: Speedup of cache oblivious matrix multiplica-
tion by Yi et al. [50] over default tiling.

est peers and do not yield much room for improvement
by defensive tiling. More importantly, as discussed at the
end of Section 2.4, in these tests the default tiling produces
friendlier code than defensive tiling. Hence the default tiling
co-runs better and regains some of the losses we see in the
solo-run test.

The Defensiveness of Cache Oblivious Algorithms Cache
oblivious algorithms recursively divide the computation [12].
For example, a matrix multiplication can be broken into
eight sub-matrix multiplications, and the subproblems can
be further divided until a threshold size is reached. The re-
cursion in effect tiles the computation for all possible cache
levels. Yi et al. [50] developed a compiler transformation to
convert loop nests into a recursive form. Our test suite and
theirs have one overlap—the matrix multiply.

Figure 7 shows the performance comparison between
cache oblivious algorithms and the default Open64 tiling in
the solo- and co-run tests with 1 to 3 STREAM benchmarks.
The numbers are reported for different threshold sizes from
as small as 16 to as large as 256. When the termination size
is 16 and 32, the recursive version shows 20% and over 40%
improvements in the high cache-contention cases (2 and 3
streaming peers). The largest improvement exceeds that of
defensive tiling. Open64 shows better performance in other
cases. The results suggest that although the recursive version
has a higher overhead in the solo run, there can be signifi-
cant benefits gained from being defensive. While a detailed
analysis is beyond the scope of the paper, we note that the
higher improvements in small threshold sizes are consistent
with our model and technique of defensive tiling, which also
seek to reduce the size of data reuse.

4. Related Work

Peer-Aware Program Optimization QoS-Compile from
Tang et al. [36] is the first compiler solution to mitigate
memory hierarchy contention for independent co-located

programs on multicore processors. The optimization first re-
quires a profiling pass to identify contentious code regions.
Once the high-interference regions of a program are found
through profiling and modeling, the compiler will pad non-
memory instructions and insert intermittent sleep in those
regions to throttle back the program’s memory request rate.
The two transformations are done at the binary level.

Defensive tiling differs in several aspects. First, it im-
proves the performance of the transformed code, instead of
slowing it down to make its peer run faster. Second, it is a
static technique at the loop level and does not require any
profiling information. The static notions of defensiveness
and friendliness are new, so is the model of cache inclusion
victim misses. However, defensive tiling is limited to cer-
tain kinds of applications, while QoS-Compile is generally
applicable.

Single-level Tiling For a single-level cache, loop tiling has
been used to reduce capacity miss [5, 18, 25, 39]. Temam et
al. [11, 38] showed that the number of conflict misses in
numerical code can be modeled and data locality optimiza-
tions should consider conflict misses. Coleman and McKin-
ley [10] developed a Tile Size Selection algorithm which
eliminates self-interference misses and minimizes cross-
interference misses. Ghosh et al. [13] proposed Cache Miss
Equations which consider both loop structure and data lay-
out, including loop tiling and array padding. Hsu and Kre-
mer [16] gave several algorithms to combine tile selection
and array padding. Huang et al. combined loop tiling with
data tiling and showed robust performance by a single tile
size for different problem sizes [17].

Multi-level Tiling Open64 uses a combined model to unify
several loop optimizations including loop tiling [40]. Unified
transformations have been studied with unimodular trans-
formation to maximize reuse [47], in data shackling using
high-dimensional optimization [24], and for multiple loop
nests, through loop fusion enabled by loop tiling and array

Summary and Future Work

Defensive tiling

Self-aware -> Peer-aware

Reduce interference

Currently investigating

Co-run with other programs, add adaptivity

Use the shared cache model to direct compiler
optimization

16

