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Abstract
The locality metrics are many, for example, miss ratio to test perfor-
mance, data footprint to manage cache sharing, and reuse distance
to analyze and optimize a program. It is unclear how different met-
rics are related, whether one subsumes another, and what combina-
tion may represent locality completely.

This paper first derives a set of formulas to convert between
five locality metrics and gives the condition for correctness. The
transformation is analogous to differentiation and integration. As a
result, these metrics can be assigned an order and organized into a
hierarchy.

Using the new theory, the paper then develops two techniques:
one measures the locality in real time without special hardware sup-
port, and the other predicts multicore cache interference without
parallel testing. The paper evaluates them using sequential and par-
allel programs as well as for a parallel mix of sequential programs.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Modeling Techniques

General Terms Measurement, Performance, Theory

Keywords Locality metrics, Locality modeling

1. Introduction
The memory system of a computer is organized as a hierarchy.
Locality metrics are used in software and hardware to manage and
optimize the use of the memory hierarchy. For locality analysis, the
basic unit of information is a data access, and the basic relation is a
data reuse. The theory of locality is concerned with the fundamental
properties of data accesses and reuses, just as the graph theory is
with nodes and their links.

An influential theory developed over the past four decades is
the working-set locality theory (WSLT) [14]. In this paper, we
develop a similar theory for cache locality (CLT). Cache locality
metrics are many and varied. To quantify performance, we use the
miss rate. To manage sharing, we use the footprint. To analyze and
optimize a program, we use the reuse distance. Some metrics are
hardware dependent, useful for evaluating a specific machine and

∗ The work was done when Bin Bao was a graduate student at the University
of Rochester.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03. . . $10.00

managing it at run time. Others are hardware independent, useful
for optimizing a program for all cache sizes. The two types of
metrics are converging in multicore caching, where the total cache
size is fixed but the available portion for each program varies.

In this paper we consider five locality metrics, with a short
description here and the precise definitions in the next section.

• Footprint: the expected amount of data a program accesses in a
given length window.
• Inter-miss time: the average time between two cache misses in

a given size cache.
• Volume fill time: the average time for the program to access a

given volume of data.
• Miss ratio: the fraction of references that cause cache misses.
• Reuse distance: for each data access, the amount of data ac-

cessed between this and the previous access to the same datum.

To denote them collectively, we insert ‘et’ between the last two,
take the initial letters (except for the fill time from which we take
one ’l’), and produce the acronym “Filmer”.

We present a theory showing that the five Filmer metrics can be
mutually derived from each other. The conversion involves taking
the difference in one direction and the sum in the reverse direction.
The theoretical relation is analogous to differentiation and integra-
tion. Hence we call it a higher order theory of locality (HOTL).

Similar conversions have been part of the working set theory,
making it the first HOTL theory (Section 2.8). The working set
theory was developed to analyze locality in the main memory. The
new theory we develop is for cache memory. It endows each of the
five cache locality metrics the collective strength of all its Filmer
peers:

• Efficiency. If we can measure one Filmer metric on-line, we can
calculate all the others at the same time.
• Composability. The miss rate does not compose in that when a

group of programs are run together, the number of misses is not
the sum of the misses of each member running alone. If another
Filmer metric is composable, then we can compose the miss
rate indirectly.
• Hardware sensitivity. If we can measure the effect of cache

associativity and other hardware parameters on the miss rate,
we can compute their impact on the other metrics.

The conversion methods we describe are not always accurate.
The correctness depends on whether the footprint statistics in reuse
windows is similar to the footprint in general windows, in other
words, whether the reuse windows are representative of general
windows. We call the condition the reuse-window hypothesis. The
Filmer metrics capture different aspects of an execution: the reuse
distance is per access, the footprint is per window, while the miss-



ratio has the characteristics of both. Their conversion creates con-
flicts, and the reuse-window hypothesis is the condition for recon-
ciliation.

Our recent work shows that one of the Filmer metrics, the
average data footprint, can be computed efficiently [46]. In this
work, we further improve the efficiency through sampling. More
importantly, we apply the HOTL theory to convert it to reuse
distance and predict the miss ratio. The purpose of the miss-ratio
prediction is twofold: to validate the theory and to show a practical
value. The main results are:

• Real-time locality measurement. The HOTL-enabled technique
predicts the miss ratio for thousands of cache sizes with a
negligible overhead. When tested on SPEC 2006 and PARSEC
parallel benchmarks, the prediction matches the actual miss
ratio measured using the hardware counters. Without sampling,
the analysis is 39% faster than simulating a single cache size.
With sampling, the end-to-end slowdown is less than 0.5% on
average with only three programs over 1%.
• Cache interference prediction. The HOTL-enabled technique

predicts the effect of cache sharing without parallel testing. For
pair interference, the result can be characterized as half-and-
half (Section 4.5).

Knowing the miss rate does not mean knowing the memory per-
formance. The actual effect of a cache miss depends significantly
on data prefetching, memory-bus arbitration, and other factors ei-
ther in the CPU above the cache hierarchy or the main memory
below. In this paper, we limit our scope to the models of data and
cache usage and to methods that measure and reduce the number of
cache misses.

2. The Higher Order Theory of Cache Locality
The theory includes a series of conversion methods and their cor-
rectness condition. We will refer to these methods collectively as
the HOTL conversion for the Filmer metrics.

2.1 Locality Metrics
The working set theory defines the locality metrics to measure the
intrinsic demand of a process [13]. The actual performance is the
hardware response to the program demand. By defining locality
metrics independent of their specific uses, the approach combines
clarity and concision on the one hand and usefulness and flexibility
on the other. We follow the same approach and say that a locality
metric is program intrinsic if it uses only the information from the
data access trace of a program. Throughout the paper, we use n
to denote the length of the trace and m the total amount of data
accessed in the trace.

A footprint is defined on a time window, and the miss ratio for
a cache size. Since we do not know a priori in which window or
cache the metrics may be used, we define the footprint and miss
ratio metrics to include all windows and all cache sizes — they are
functions over a parameter range.

The five metrics we consider are program intrinsic functions
defined on a sequential data access trace. The time is logical and
counted by the number of data accesses from the start of the execu-
tion. The cache is fully associative and uses the LRU replacement,
with a fixed cache-block size. We will consider the physical time
and set associative cache when we apply the basic theory. We use
the term miss ratio if the time is logical and miss rate if it is physi-
cal.

2.2 Average Footprint
A footprint is the amount of data accessed in a time window. A
performance tool often measures it for some execution window,

i.e. taking a snapshot. A complete measure should consider all
execution windows. For each length l, the average footprint fp(l)
is the average footprint size in all windows of length l.

Let W be the set of all length-l windows in a length-n trace.
Each window w has a footprint fpw. The average footprint fp(l)
is the total footprint in these windows divided by n − l + 1, the
number of the length-l windows.

fp(l) =

∑
all w of length l fpw

n− l + 1
For example, the trace “abbb” has 3 windows of length 2: “ab”,

“bb”, and “bb”. The size of the 3 footprints is 2, 1, and 1, so
fp(2) = (2 + 1 + 1)/3 = 4/3.

The footprint is composable in that the combined footprint of
two programs is the sum of their individual footprints (assuming no
data sharing). We have used this property when developing efficient
models of cache sharing [45, 46]. Another useful property, which
we will explore in Section 3, is that the footprint is amenable to
sampling.

The working set theory defined the average number of pages ac-
cessed in a time window as the working set size and gave a linear-
time method to estimate the size [13]. A number of other approxi-
mate solutions followed [9, 27, 36, 39]. Our recent work gave two
algorithms to measure the footprints in all execution windows and
compute either the distribution [45] or the average [46] of the foot-
prints for windows of the same length. The average footprint, e.g.
the one in the preceding example, can be computed precisely in
linear time. We use the average footprint in this work. Our mea-
surement algorithm [46] will play a critical role in the new theory
in Section 2.7.

2.3 Volume Fill Time
Intuitively, we may consider the cache as a reservoir and the data
access of a program a stream feeding into the reservoir with new
content. Having a fixed capacity, the reservoir discharges (evicts)
previous volumes as it receives the new flows. The key concept in
this analogy is the volume fill time, the time taken for a stream to
fill the reservoir.

The volume fill time is the time a program takes to access a
given amount of data, or symbolically, vt(v) for volume v. The
metric is program intrinsic. To model hardware, we simplify and
assume that the cache is fully associative LRU. Under the assump-
tion, the volume fill time vt(c) is the time for a program to fill the
cache of size c. Whether the cache is empty or not, after vt(c), the
cache is populated with the data (and only the data) accessed in the
last vt(c) time. In the cold-start cache, all data will be brought in by
cache misses. In the warm cache, the fraction of the data already in
the cache will stay, and the rest will be brought in by cache misses.
We call the volume fill time interchangeably as the cache fill time.

The fill time can be defined in two different ways. First, we
define it as the inverse of the footprint function:

vt(c) =

{
fp −1(c) if 0 ≤ c ≤ m

∞ if c > m

where m is the total amount of program data. Within the range
0 ≤ c ≤ m, the invariant fp(vt(c)) = fp(fp −1(c)) = c
symbolizes the conversion that when the footprint is the cache
size, the footprint window is the fill time. The conversion is shown
visually in Figure 1. From the average footprint curve, we find the
cache size c on the y-axis and draw a level line to the right. At the
point the line meets the curve, the x-axis value is the fill time vt(c).

A careful reader may question the uniqueness of the fill time.
For example for the trace “xx...x”, it is unclear what should be
the fill time vt(1). When defined as the inverse function fp−1,
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Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =
fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vtFilmer(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vtdirect(1) = (1 + 1 + 1 + 2 + 1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+ 1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c + 1)− vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

{
vt(c + 1)− vt(c) if 0 ≤ c < m
n
m

if c ≥ m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e 

fo
ot

pr
in

t

403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + ∆x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x + ∆x)− fp(x)

∆x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c ∈ [fp(x), fp(x + ∆x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let ∆x = x2 − x1 be the
difference in the window length and ∆y = y2−y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) = vt(y2)−vt(y1)

y2−y1
= ∆x

∆y
, and the footprint

conversion computes the miss ratio mr(fp(x1)) = mr(y1) =
fp(x2)−fp(x1)

x2−x1
= ∆y

∆x
.

For associative cache, Smith showed that cache conflicts can
be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c− 1)−mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].



To review the conversion formulas, let’s consider the example
trace “xyzxyz...”. Assuming it infinitely repeating, we have m = 3
and n = ∞. The following table shows the discrete values of the
Filmer metrics computed according to the HOTL conversion.

t fp(t) c vt(c) im(c) mr(c) P(rd=c)
1 1 1 1 1 1 0
2 2 2 2 1 1 0
3 3 3 3 ∞ 0 1
4 3 4 ∞ ∞ 0 0

2.6 The Higher Order Relations
In algebra, the term order may refer to the degree of a polynomial.
Through differentiation, a higher order function can derive a lower
order function. If we use the concept liberally on locality functions
(over the discrete integer domain), we see a higher order locality
theory, as shown in a metrics hierarchy in Figure 3.

locality metrics formal 
property useful characteristics

3rd order: 
footprint, 

volume fill time

concave/
convex

linear-time, amenable to 
sampling, composable 

(dynamic locality)

2nd order: 
miss ratio, 

inter-miss time
monotone

machine specific, e.g. cache 
size/associativity 
(cache locality)

1st order:
reuse distance

non-
negative

decomposable by code units 
and data structures
(program locality)

Figure 3: The hierarchy of cache locality metrics. The five locality
metrics are mutually derivable by either taking the difference of the
metrics when moving down the hierarchy or taking the sum of the
metrics when moving up.

In the preceding sections, we have shown the series of conver-
sions from the third order metric, the footprint, to the first order
metric, the reuse distance. To compute a lower order metric, the
HOTL conversion takes the difference of the function of a higher
order metric. The inter-miss time is the difference of the fill times,
and the reuse distance is the difference of the miss ratios.

The conversion formulas are all reversible. We can calculate a
higher order metric by integrating the function of a lower order
metric. For example, the miss ratio is the sum of the reuse distances
greater than the cache size. The fill time is the sum of the inter-miss
times up to the cache size.

The mathematical property is different depending on the order
of the locality metric, as shown in the second column in Figure 3.
Going bottom up, the reuse distance is a distribution, so the range
is non-negative. For just compulsory and capacity misses, the miss
ratio is monotone and non-increasing, i.e. the stack property [31].
The footprint has been shown to be monotone [46]. Later we will
prove a stronger property.

Although the phrase higher order was not used, the working set
theory was about the higher order relations between the working
set size, the miss rate, and the reuse-time interval. In Section 2.8,
we will compare the two higher order theories.

2.7 The Correctness Condition
The conversion from the footprint to the miss ratio is not always
correct. To understand correctness, consider the reuse distance and
the footprint both as window statistics. The reuse distance is the

footprint of a reuse window. A reuse window starts and finishes
with two accesses to the same datum with no intervening reuses.
For a program with n accesses to m data, there are n −m finite-
length reuse windows. They are a subset of all windows. The
number of all windows is n choose 2 or n(n+1)

2
. We define the

average footprint over all reuse windows as rfp(l), the same way
we define fp(l) over all windows.

In this section, we show the correctness condition: for the HOTL
conversions to be correct, the two functions, fp(l) and rfp(l),
must be equal.

To show this result, we introduce a different formula for pre-
dicting the miss ratio. To estimate whether an access is a miss for
cache size c, we take the reuse window length l, find the average
footprint fp(l), and predict it a cache miss if and only if fp(l) > c.
We call this method the reuse-time conversion. Let P (rt = t) be
the density function of the reuse time, that is, the fraction of reuse
windows with the length t. The miss ratio predicted by the reuse-
time conversion is as follows. We label the result mrrt to indicate
that the prediction is based on the reuse time. The first access to a
datum has the reuse time of∞.

mrrt(fp(l)) = P (rt > l) =

∞∑
t=l+1

P (rt = t)

If we re-label fp(l) as the working set size, the formula is identical
to that of Denning and Schwartz (Section 2.8). However, the use
of fp(l) is an important difference. The reuse-time conversion is
a modified version of Denning and Schwartz. We may call it an
augmented Denning-Schwartz conversion.

Take the example trace “xxyxxz”. Two of the average footprints
are fp(3) = 2 and fp(4) = 7

3
. The reuse times, i.e. the length

of the reuse windows, are ∞, 2,∞, 3, 2,∞. The reuse-time con-
version is mrrt(2) = mrrt(fp(3)) =

∑∞
t=4 P (rt = t) = 50%.

The Filmer conversion is based on the footprint. We call it mrfp
and have mrfp(2) = fp(4)− fp(3) = 33%. In general for small
traces, the reuse-time conversion is more accurate, as is the case in
this example.

Next we prove that for large traces, the miss ratio prediction is
the same whether using the reuse time or using the footprint. Then
we will show the correctness condition of the entire HOTL theory
as a corollary.

From the view of the locality-metrics hierarchy, the reuse-time
conversion is bottom up from a first-order metric to a second-order
metric. The footprint conversion is top-down from a third-order
metric to the same second-order metric. If they meet and produce
the same result, we have the equivalence relation across the entire
hierarchy.

To prove the equivalence, we need the recently published for-
mula that computes the average footprint from the reuse-time dis-
tribution [46].

Lemma 2.1 (Xiang formula [46]).

fp(w) = m− 1

n− w + 1
(

m∑
i=1

(fi − w)I(fi > w)

+

m∑
i=1

(li − w)I(li > w)

+n

n−1∑
t=w+1

(t− w)P (rt = t)) (1)

The symbols are defined as:

• fi: the first access time of the i-th datum.



• li: the reverse last access time of the i-th datum. If the last
access is at position x, li = n + 1 − x, that is, the first access
time in the reverse trace.
• P (rt = t): the fraction of accesses with a reuse time t.
• I(p): the predicate function equals to 1 if p is true; otherwise 0.

If we assume n� w, the equation can be simplified to

fp(w) ≈ m−
n−1∑

t=w+1

(t− w)P (rt = t)

Theorem 2.2 (Footprint and reuse-time conversion equivalence).
For long executions (n � w ), the footprint conversion and the
reuse-time conversion produce equivalent miss-ratio predictions.

Proof Let the cache size be c and l and l + x be two consecutive
window sizes such that c ∈ [fp(l), fp(l + x)). The miss ratio by
the footprint conversion is fp(l+x)−fp(l)

x
.

Expand the numerator fp(l+x)−fp(l) using the approximate
equation from Lemma 2.1:

fp(l + x)− fp(l)

≈m−
n−1∑

t=l+x+1

(t− l − x)P (rt = t)−m +

n−1∑
t=l+1

(t− l)P (rt = t)

=

n−1∑
t=l+1

(t− l)P (rt = t)−
n−1∑

t=l+x+1

(t− l − x)P (rt = t)

=

l+x∑
t=l+1

(t− l)P (rt = t) +

n−1∑
t=l+x+1

(t− l)P (rt = t)

−
n−1∑

t=l+x+1

(t− l − x)P (rt = t)

=

l+x∑
t=l+1

(t− l)P (rt = t) + x

n−1∑
t=l+x+1

P (rt = t)

≈
l+x∑

t=l+1

xP (rt = t) + x

n−1∑
t=l+x+1

P (rt = t)

=x

n−1∑
t=l+1

P (rt = t)

≈x
∞∑

t=l+1

P (rt = t)

The miss ratio, fp(l+x)−fp(l)
x

, is approximately
∑∞

t=l+1 P (rt =
t), which is the result of the reuse-time conversion. Note that the
equation is approximately true also because of the earlier simplifi-
cations made to the Xiang formula.

The two predictions being the same does not mean that they
are correct. They may be both wrong. Since the correct calculation
can be done using reuse distance, the correctness would follow if
from the reuse time, we can produce reuse distance. In other words,
the correctness depends on whether the all-window footprint used
by the reuse time conversion is indeed the reuse distance. We can
phrase the correctness condition as follows:

COROLLARY 2.3 (Correctness). The footprint-based conversions
are accurate if the footprints in all reuse windows have the same
distribution as the footprints in all windows, for every reuse win-
dow length l.

When the two are equal, using the all-window footprint is the
same as using the reuse distance. We posit as a hypothesis that the
condition holds in practice, so the HOTL conversion is accurate.
We call it the reuse-window hypothesis.

Consider the following two traces. The second trace has a
smaller difference between the all-window footprint fp and the
reuse-window footprint rfp. The smaller difference leads to more
accurate miss ratio prediction by HOTL. The hypothesis does not
hold in either trace, so the prediction is not completely accurate.
As to real applications, we will show an empirical evaluation for
the full suite of SPEC CPU2006 benchmark programs [23] and a
number of PARSEC parallel programs [6].

mr(1) error
trace fp(2) rfp(2) pred real |pred− real|

wwwx 4/3 1 1/3 2/4 17%
wwwwx 5/4 1 1/4 2/5 5%

Finally, we show another consequence of Theorem 2.2.

COROLLARY 2.4 (Concavity). The average footprint fp(x) is a
concave function.

Since fp(l+x)−fp(l)
x

≈
∑∞

t=l+1 P (rt = t), fp(l) always
increases but increases at a slower rate for a larger l. The function
is obviously concave. In the higher order relation, the concavity
guarantees that the miss ratio predicted by HOTL is non-increasing
with the cache size (as expected from the inclusion property [31]).

2.8 Comparison with Working Set Theory
The first higher-order locality theory is the working set theory,
pioneered in Peter Denning’s thesis work [13]. His 1968 paper
established the relation between the working set size, the miss rate,
and the inter-reference interval (iri). The last one is the same as
reuse time. The notion of reuse distance or the LRU stack distance
was not formalized until 1970 [31]. Figure 4 shows the parallels
between the working set locality theory (WSLT) and the new cache
locality theory of this paper (CLT).

HOTL 
hierarchy

working set locality 
theory (WSLT)

cache locality theory 
(CLT)

data volume
(3rd order) mean WS size s(T) mean footprint fp(T), 

mean fill time vt(c)

miss rate
(2nd order)

time-window miss 
rate m(T), 

lifetime L(T)=1/m(T)

LRU miss rate mr(c), 
inter-miss time 
im(c)=1/mr(c)

reference 
behavior

(1st order)

inter-reference 
interval (reuse time) 
distribution P(iri=x)

reuse distance 
distribution P(rd=x)

Precise definition.
How are they related
  mutually derivable.
Two consequences
  fast measurement, get one, get all.
  composabilily, compose one, compose all.

Figure 4: Comparison between two higher order locality theories:
the working set locality theory (WSLT) for dynamic partitioned
primary memory and the cache locality theory (CLT) for cache
memory.

WSLT computes the metrics bottom-up. The base metric, P (iri =
x), is the histogram of the inter-reference intervals (reuse time),
measured in linear time in a single pass of the address trace. The
time-window miss ratio m(T ) is the sum of reuse time. The mean
working set size s(T ) is the sum of m(T ).



m(T ) = P (rt > T )

s(T + 1) = s(T ) + m(T )

Taking together, the working set size s(T ) is the second order sum
of the reuse frequency.

The s(T ) formula was first proved by Denning and Schwartz
in 1972 [15]. The formulation assumes an infinitely long execution
with a “stationary” state (“the stochastic mechanism ... is station-
ary”). The working set, w(t, T ), is the number of distinct pages
accessed between time t − T + 1 and t. The average working set
size, s(T ), is the limit value when taking the average of w(t, T ) for
all t. The proof is based on the fact that only recurrent pages with
an infinite number of accesses contribute to the mean working set
size.

In 1978, Denning and Slutz defined the generalized working set
(GWS) as a time-space product [16]. The product, denoted here
as st(T ), is defined for finite-length execution traces, variable-size
memory segments, all cache replacement policies that observe the
stack property. Interestingly, they found the same recursive relation.
The GWS formula is as follows, where the last term is the extra
correction to take into account the finite trace length.

st(T + 1) = st(T ) + Tm(T )− a(T )

Dividing both sides by T , we have the last term vanishing for large
T and see the same recursive relation for GWS in finite-length
traces as s(T ) in infinitely long traces.

In the present paper, the same recurrence emerges in Section 2.7
as an outcome of Theorem 2.2. For the average footprint, we have
effectively

fp(T + 1) = fp(T ) + m(T )

If we view the following three as different definitions of the
working set: the limit value in 1972 [15], the time-space product in
1978 [16], and the average footprint in 2011 [46], we see an iden-
tical equation which Denning envisioned more than four decades
ago (before the first proof in 1972). We state it as a law of locality
and name it after its inventor:

Denning’s Law of Locality The working set is the second-order
sum of the reuse frequency, and conversely, the reuse frequency is
the second-order difference of the working set.

As the relativity theory gives the relation between space and
time, Denning’s law gives the relation between memory and com-
putation: the working set is the working memory, and the reuse
frequency is a summary of program actions (time transformed into
frequency and a spectrogram of time). The law states that the rela-
tion is higher order.

Our work augments Denning’s law in two ways. First, it is the
final step to conclusively prove Denning’s Law — that it holds for
the footprint working set in finite-length program executions. The
1972 proof depends on the idealized condition in infinite-length
executions. Subsequent research has shown that the working set
theory is accurate and effective in managing physical memory for
real applications [14]. The new proof subsumes the infinitely long
case and makes Denning’s law a logical conclusion for all (long
enough) executions. It gives a theoretical explanation to the long
observed effectiveness of the working set theory in practice.

Second, we extend HOTL to include cache memory. For main
memory, the locality is parameterized in time: the working set of
a program in a time quantum. For cache, the primary constraint is
space: the miss ratio for a given cache size. Denning et al. named
them the “time-window miss ratio” and the “LRU miss ratio” and

noted that the two are not necessarily equal [15, 16]. The following
formulas show the two miss ratios:

working set m(T ) = P (rt > T )
cache locality mr(fp(T )) = P (rt > T )

In the above juxtaposition, the only difference is the parame-
ter to the miss rate function. In m(T ), the parameter is the time
window length. In mr(fp(T )), the parameter is the cache size.
Through the second formula, this work connects the cache size and
the reuse frequency. In Section 2.4, we show how the time-centric
and the space-centric views have different derivations but the same
miss ratio. Then in Section 2.7, we give the reuse-window hypoth-
esis as the condition for correctness, which implies the equality
between the time-window miss ratio and the LRU miss ratio.

3. Sampling-based Locality Analysis
The footprint can be analyzed through sampling, e.g. by tracing
a window of program execution periodically. Sampling has two
benefits. First, by reducing the sampling frequency, the cost can be
arbitrarily reduced. Second, sampling may better track a program
that has significant phase behavior.

Uniform sampling We implement footprint sampling using a
technique pioneered by shadow profiling [32] and SuperPin [42].
When a program starts, we set the system timer to interrupt at some
preset interval. The interrupt handler is shown in Figure 5. It forks
a sampling task and attaches the binary rewriting tool Pin [29].
The Pin tool instruments the sampling process to collect its data
access trace, measures all-window footprints using the Xiang for-
mula [46]. In the meanwhile, the base program runs normally until
the next interrupt.

Require: This handler is called whenever a program receives the
timer interrupt

1: pid← fork()
2: if pid = 0 then
3: Attach the Pin tool and begin sampling until seeing c distinct

memory accesses
4: Exit
5: else
6: Reset the timer to interrupt in k seconds
7: Return
8: end if

Figure 5: The timer-interrupt handler for footprint sampling

Footprint Sampling Footprint by definition is amenable to sam-
pling. We can start a sample at any point in an execution and con-
tinue until the sample execution accesses enough data to fill the
largest cache size of interest. We can sample multiple windows in-
dependently, which means they can be parallelized. It does not mat-
ter whether the sample windows are disjoint or overlapping, as long
as the choice of samples is random and unbiased.

The Associative Cache A program execution produces a series of
m samples at regular intervals, x1, x2, . . . , xm. We use them in the
following way:

1. For each sample xi, with trace length ni, predict the miss ratio
function mr(xi, c) for each cache size c by the following:

(a) Use the analysis of Xiang et al. [46] to compute the average
footprint function fp.

(b) Use the footprint conversion to compute the capacity miss
ratio for cache size c.



(c) Use the miss-ratio conversion to compute the reuse distance
distribution and the Smith formula [37] to estimate the num-
ber of conflict misses for cache size c.

2. For all xi, take the weighted average and compute the miss ratio
for all cache sizes for the program mr(c) =

∑m
i=1 mr(xi,c)∗ni∑m

i=1 ni
.

The Phase Effect The preceding design assumes phase behavior.
Since different samples may come from different phases, combin-
ing their footprints would lose the phase distinction. To validate
the conjecture, we will compare the phase-sensitive sampling with
phase-insensitive sampling. The former, as just described, com-
putes the miss ratio for each sample and then takes the average.
The next design combines the footprint from all the samples and
then computes the miss ratio. Specifically, the second design is as
follows:

1. For each sample xi, with trace length ni,
• Use the analysis of Xiang et al. [46] to compute the average

footprint function fp.

2. For all samples xi, take the weighted average and compute the
fp function for the program fp =

∑m
i=1 fp(xi)∗ni∑m

i=1 ni
.

3. Use the footprint and miss-ratio conversions and the Smith
formula [37] to estimate the number of cache misses.

Comparison with Reuse Distance Sampling To be statistically
sound, reuse distance sampling must evenly sample reuse windows.
After picking an access, it needs to trace the subsequent program
accesses until the next data reuse. When a reuse window is long,
it does not know a priori how long to monitor, so it has to keep
analyzing until seeing the next reuse or until the reuse distance
exceeds the largest cache size of interest. The cut-off strategy is
also used in footprint sampling.

Beneath this similarity lies two important differences. The reuse
distance measures the locality by examining reuses. The footprint
measures the locality by examining data accesses. Footprint sam-
pling computes the distribution of all reuse distances from a single
sample window using the HOTL conversion. The footprint analysis
and conversion take linear time. In comparison, each reuse window
sample produces just one reuse distance. It takes asymptotically
higher time cost to measure the reuse distance in the sample (than
it takes HOTL conversion to compute all reuse distances from the
same sample). Hence the advantage of footprint sampling is algo-
rithmic and computational, and this strength comes from the HOTL
theory.

4. Evaluation
4.1 Experimental Setup
We have tested the full set of 29 benchmarks from SPEC 2006
and 8 from the PARSEC v2.1 suite. All programs are instrumented
by Pin [29] and profiled on a Linux cluster where each node has
two Intel Xeon 3.2GHz processors. PARSEC is run on a machine
with two Intel Xeon E5649 processors. In simulation, we simulate
a single-level cache, which is shared in the case of parallel code.
On a real machine, the baseline is the program run time without
instrumentation or any analysis.

For SPEC 2006, we use the first reference input provided by the
benchmark suite. Table 1 shows for each SPEC 2006 program the
length of trace n, the size of data m and the time of the unmodified
program execution. The length of SPEC 2006 traces ranges from
20 billion in 403.gcc to 2.1 trillion in 436.cactusADM. The amount
of data ranges from 3MB in 416.gamess to 1.7GB in 429.mcf. For
PARSEC, we test programs using the three provided input sizes:

benchname n m T
(1011) (107bytes) (sec)

400.perlbench 4.2 24.4 457
401.bzip2 1.7 39.3 263
403.gcc 0.2 40.4 72

410.bwaves 14.4 98.2 1664
416.gamess 4.8 0.3 444

429.mcf 1.2 175.7 1172
433.milc 3.8 74.2 1077

434.zeusmp 5.7 51.9 1555
435.gromacs 9.8 1.4 1272

436.cactusADM 20.6 65.5 3411
437.leslie3d 6.8 12.9 1212
444.namd 6.8 4.7 915

445.gobmk 0.9 2.7 173
447.dealII 7.3 88.5 773
450.soplex 1.0 16.2 604
453.povray 4.8 0.3 493
454.calculix 9.5 16.4 1512
456.hmmer 4.9 4.2 303
458.sjeng 7.0 18.2 1356

459.GemsFDTD 8.6 86.9 1397
462.libquantum 3.0 16.8 1391

464.h264ref 2.6 2.7 143
465.tonto 10.0 5.2 1312
470.lbm 3.3 42.9 1491

471.omnetpp 2.3 17.6 1048
473.astar 1.4 29.5 512
481.wrf 9.7 76.8 1895

482.sphinx3 8.9 5.1 1765
483.xalancbmk 3.6 43.8 778

Table 1: The SPEC2006 integer and floating-point benchmarks. For
each benchmark, n is the memory trace length of whole execution,
m is the number of distinct data blocks (size in bytes) accessed
during the execution, and T is the execution time without any
instrumentation or analysis.

simsmall, simmedium and simlarge. We run each with 4 threads, a
commonly used configuration.

Locality sampling is implemented using fork, as described in
Section 3. The implementation does not yet recognize system calls,
so sampling handles only 22 of the 29 sequential programs. Nor
does the sampling implementation handle multi-threaded code. We
evaluate miss-ratio prediction using the full trace of the 8 parallel
programs.

3073 Cache Sizes In the analysis, the footprint and reuse distance
numbers are bin-ed using logarithmic ranges as follows. For each
(large enough) power-of-two range, we sub-divide it into (up to)
256 equal-size increments. As a result, we can predict the miss ratio
not just for power-of-two cache sizes, but 3073 cache sizes between
16KB and 64MB.

4.2 Miss-Ratio Prediction
We first evaluate the accuracy and the speed of miss-ratio predic-
tion, made by the Filmer conversion and locality sampling, tested
on sequential and parallel programs, and verified through simula-
tion and hardware counters.

4.2.1 Sequential Programs
We first use cache simulation to evaluate the accuracy of Filmer-
based miss ratio prediction. Instead of evaluating each of the 29
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(a) 8-way, 32KB cache
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(b) 8-way, 256KB cache
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(c) 16-way, 8MB cache

Figure 6: Accuracy of the miss-ratio prediction by reuse distance, footprint (HOTL conversion in Section 2.4), and footprint sampling
(Section 3) for 29 SPEC 2006 benchmarks, each on 3 (of the 3073) cache configurations, compared with cache simulation. (a) 8-way, 32KB
cache. (b) 8-way, 256KB cache. (c) 16-way, 8MB cache. The sampling results are for 22 out of 29 programs (not the last 7). The average
time cost of sampling is 0.5% (Table 2).



programs on 3073 cache sizes, we show results for 3 configura-
tions: 32KB, 8-way associative L1D; 256KB, 8-way associative
L2; and 8MB, 16-way associative L3. They are the cache configu-
rations on our test machine. We will compare our prediction to the
performance counter result later. The cache-block size is 64 bytes
in all cases. The accuracy for the other 3070 cache sizes looks sim-
ilar.

Figure 6 plots the measured and predicted miss ratios. The rd-
prediction, which uses the measured reuse distance, is the most ac-
curate. The other two, fp-prediction and sampling measure the foot-
print and then use the HOTL conversion in Section 2.4. The HOTL
conversion fp-prediction closely matches the reuse-distance anal-
ysis rd-prediction in almost all cases, showing that the footprint-
converted reuse distance is almost identical to the measured reuse
distance—hence the validity of the reuse-window hypothesis.

The Phase Effect The reuse distances of a program, when added
together regardless of phases, predict the (capacity) miss ratio ac-
curately, because an access is a cache capacity miss if and only if its
reuse distance is greater than the cache size. On the other hand, the
footprint should be affected by phases. As the footprint changes
from phase to phase, it is possible that taking the global average
might lose critical information.

A consistent result from the theory and the experiments is that
the two are largely equivalent, as far as computing the miss ratio
is concerned. The theory gives the conversion procedure from the
footprint to the reuse distance. The experiments show, by the close
match between rd-prediction and fp-prediction in Figure 6, the
conversion is accurate for most programs. This suggests that reuse
windows are representative of all windows, and this is why the
prediction is accurate in spite of the phase effect.

Another evidence, for which we do not include the results in the
paper, is that the two sampling designs in Section 3, phase sensitive
and insensitive, produce almost identical predictions.

Analysis Speed Table 2 compares the cost of four analysis meth-
ods: the simulation sim, the reuse distance rd [49], the footprint
fp [46], and the footprint sampling sp. For simulation we could
use the algorithm of Smith and Hill [25] to simulate all three con-
figurations in one pass. For speed comparison, we ran the simplest
simulator once for each configuration. The simulation cost in ta-
ble 2 is the average of the three runs.

The cost for reuse distance analysis ranges from 52 times to
426 times with an average of 153 times. The footprint analysis
costs about 7 times less, with slowdowns between 6 and 66 times
and on average 23 times. Simulation for a single configuration has
slowdowns from 14 to 80 times, with an average of 38 times.

Comparing the average, we see that measuring the footprint, the
third order Filmer metric that can compute the second order metric
miss ratio for all cache sizes, is 39% faster than simulating for a
single cache size, before we use footprint sampling.

4.2.2 Locality Sampling
For this experiment, we choose somewhat arbitrarily the frequency
of one sample every 10 seconds. The sample length is the volume
fill time for the cache size. Sampling analysis is not always accu-
rate. Visible errors are seen in mcf, libquantum and astar in Fig-
ure 6. The reason, as shown by the last column of Table 2, is that it
covers less than 1% of the execution. The coverage is computed by
the ratio of the number of sampled instructions to the total number
of instructions (counted by our full trace profiling). The coverage is
as low as 0.006% in lbm. The low coverage does not mean low ac-
curacy. The prediction of lbm is 99% accurate for the 32KB cache,
97% for the 256KB cache, and 92% for the 8MB cache.

In Table 2, we show the slowdown in the end-to-end run time
by the column marked samp. It ranges from 0% to 2.14%. Three

benchname sim rd fp samp cov

400.perlbench 49 219 34 0.24% 3.1%
401.bzip2 34 139 24 0.73% 1.5%
403.gcc 24 88 15 0.55% 0.1%

410.bwaves 57 196 35 2.14% 0.5%
416.gamess 62 286 40 0.29% 2.9%

429.mcf 10 56 6 0.14% 0.03%
433.milc 21 74 9 1.53% 0.04%

434.zeusmp 25 102 14 0.81% 0.06%
435.gromacs 40 142 19 - -

436.cactusADM 40 167 21 0.00% 1.1%
437.leslie3d 42 131 23 0.00% 0.01%
444.namd 44 155 24 0.00% 2.2%

445.gobmk 35 130 23 0.22% 1.1%
447.dealII 54 209 34 - -
450.soplex 13 52 7 - -
453.povray 51 220 33 0.00% 1.8%
454.calculix 39 127 19 0.11% 1.8%
456.hmmer 80 426 59 0.00% 0.8%
458.sjeng 34 152 23 0.82% 0.4%

459.GemsFDTD 42 181 21 1.28% 0.01%
462.libquantum 17 48 9 0.00% 0.01%

464.h264ref 101 424 66 0.00% 1.2%
465.tonto 52 168 30 - -
470.lbm 14 76 6 0.00% 0.01%

471.omnetpp 17 69 10 - -
473.astar 15 73 11 0.80% 0.9%
481.wrf 33 113 19 - -

482.sphinx3 30 117 16 0.59% 1.2%
483.xalancbmk 31 99 21 - -

average 38 153 23 0.47% 0.9%

Table 2: Time comparison between different profiling methods and
cache simulation for SPEC 2006. The baseline is the execution time
without any instrumentation or analysis. The middle four columns
show the slowdown compared to the baseline: sim for simulating
one cache size, rd for reuse distance profiling, fp for footprint
profiling, and samp for footprint sampling. The last column cov
gives the sampling coverage.

programs have a visible cost of over 1%. They are bwaves 2.1%,
GemsFDTD 1.3% and milc 1.5%. The reason for the relatively
high cost may be the non-trivial interference between the sampling
task and the parent task. Across all programs, the average visible
overhead is below a half percent. If we measure the total CPU
time, sampling takes between 0% and 80% of the original run time.
The average cost is 19%, of which over 18% is hidden by shadow
profiling.

4.2.3 Parallel Programs
Figure 7 shows that for 3 of the 3073 cache configurations and
across the 3 input sizes, the predicted miss ratio matches closely
with the simulated miss ratio, similar to the results we saw in the
sequential programs. The accuracy shows that the reuse-window
hypothesis holds for these threaded applications.

The last column of table 3 shows the slowdowns of footprint
profiling, which ranges from 14 times to 159 times with an aver-
age of 113 times. We did not profile reuse distance for PARSEC
because it took too long. We note that the footprint analysis shows
5 times as much overhead in 4-threaded tests as in sequential pro-
grams (159 times in PARSEC vs. 23 times in SPEC 2006). The
reason is that our data analysis is still serial, so the overhead is pro-
portional to the total amount of work. We plan to parallelize the
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Figure 7: Accuracy of the miss-ratio prediction for 3 (of the 3073)
cache configurations and 3 input sizes, compared with cache simu-
lation. (a) 8-way, 32KB cache. (b) 8-way, 256KB cache. (c) 16-way,
8MB cache.

footprint analysis in the future, building on recent work in paral-
lelizing the reuse-distance analysis [12, 22, 33].

4.3 Validation on a Real Machine
In Figure 8, we compare the simulation result with the miss ratio
measured by the hardware counters on our test machine. To mea-

bench input n m T slow-
name size (109) (106bytes) (sec) down
black S 0.1 0.4 0.093 129
-scholes M 0.4 1.2 0.384 91

L 1.6 4.4 1.542 88
body S 0.3 8.1 0.285 129
-track M 1.1 11.1 0.948 155

L 4.0 14.8 3.35 111
canneal S 0.6 43.0 1.525 19

M 1.3 84.3 3.859 15
L 2.7 164.9 8.804 14

facesim S 12.7 344.2 7.448 139
M 12.7 344.2 7.306 131
L 12.7 344.2 7.86 116

fluid S 0.5 10.5 0.429 114
-animate M 1.3 20.6 0.983 145

L 3.9 57.6 2.9 124
stream S 0.5 1.2 0.722 87
-cluster M 2.6 2.9 1.641 138

L 9.6 9.5 6.951 173
swapt S 3.6 0.9 2.349 134
-ions M 1.4 1.2 0.935 114

L 5.7 1.9 3.766 132
vips S 1.0 13.5 0.748 159

M 3.1 26.9 2.228 140
L 8.6 15.7 7.332 103

Table 3: The PARSEC parallel benchmarks. For each benchmark,
n is the memory trace length of whole execution, m is the size of
program data (in bytes) accessed during the execution, and T is the
execution time without any instrumentation or analysis. The last
column is the slowdown of the footprint analysis.
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Figure 8: Comparison between hardware counter measured L3
cache miss ratio and the simulation result.

sure the actual misses, we use Intel’s VTune tool to record three
hardware counter events named

OFFCORE RESPONSE 0.DATA IN.LOCAL DRAM
MEM INST RETIRED.LOADS
MEM INST RETIRED.STORES

The measured miss ratio is the first count divided by the sum of the
last two counts.

The figure shows a significant difference in gcc. The reason is
that the simulation considers only data accesses but the hardware
counter counts instruction misses in the data cache, which we
believe are significant in gcc.



4.4 Direct Fill Time vs. Filmer Fill Time
The measurement of the direct fill time, definition in Section 2.3
and algorithm in Section A, takes so long that the only programs
we could finish are 10 of the 11 SPEC 2000 integer benchmark
programs. Table 4 compares the average time for these programs.
An unmodified SPEC 2000 program runs for 3 minutes on aver-
age, the direct fill time analysis takes over 22 hours. The average
overhead is more than 7 hours for each minute. In comparison, the
per minute overhead is an hour and a half for reuse distance and 7
minutes if we first compute footprint and then derive the Filmer fill
time.

analysis avg. time avg. slowdown
direct fill time (Section A) 22h12m11s 446x
reuse distance 3h57m36s 84x
Filmer fill time (Section 2.3) 22m4s 8x

Table 4: Speed comparison for 10 SPEC 2000 integer benchmarks.
The average trace length n is 47 billion, data size m is 73MB, and
baseline run time is 3 minutes and 16 seconds.

More problematic is that with the direct fill time, the predicted
miss ratio is not monotone. Worse, the miss ratio may be negative.
Consider an example trace with 100 a’s followed by 11 b’s, 1 c, 20
d’s, 15 e’s, 1 f and 320 g’s. The average time to fill a 4-element
cache, vt(4), is 161.5, is longer than the average time to fill a
5-element cache, vt(5), which is 149.5. Since the direct fill time
decreases when the cache size v increases, the predicted miss ratio
is negative!

The preceding example was constructed based on an analysis of
real traces. During experimentation, we found that the miss ratios
of some cache sizes were negative. While most of the 3000 or so
sizes had positive predictions, the negatives were fairly frequent
and happened in most test programs. It seemed contradictory that
it could take a program longer to fill a smaller cache. The reason
is subtle. To compute the direct fill time, we find windows with
the same footprint and take the average length. As we increase the
footprint by 1, the length of these windows will increase but the
number of such windows may increase more, leading to a lower
average, as happened in the preceding example.

In contrast, the Filmer fill time is a positive, concave function
(Corollary 2.4). Its miss-ratio prediction is monotone and can be
measured in near real time (Section 4.2.2).

4.5 Predicting Cache Interference
A complete 2-program co-run test for the 29 SPEC 2006 bench-
marks would include

(
29
2

)
= 406 program pairs. To reduce the

clutter in the graphs we show, we choose 20 programs. To avoid
bias, we pick programs with the smallest benchmark ids. Since we
profile data accesses only, we exclude perlbench and gcc because
their large code size may cause significant instruction misses in the
data cache. After the removal, we have 20 SPEC benchmark pro-
grams from 401.bzip2 to 464.h264ref. The trimming reduces the
number of pair-run tests to

(
20
2

)
= 190.

Cache interference models were pioneered by Thiebaut and
Stone [41], Suh et al. [39] and Chandra et al. [9], who computed
the cache interference by the impact of the peer footprint on the self
locality.2 The footprint is measured for a single window length [41]
and approximated for multiple lengths [9, 39]. Our subsequent
work found a way to measure all-window footprints precisely and

2 Chandra et al. also gave a model that used only the reuse distance [9].
Zhuravlev et al. used it and two other such models and found that in task
scheduling, they did not significantly outperform a simple model that used
only the miss rate [51].
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Figure 9: The predicted and measured miss ratios of the 380 exe-
cutions in 190 pair runs. The executions are ordered by the ascend-
ing miss ratio as measured by the hardware counters in exhaustive
testing. For each execution, the solid (black) line shows the hard-
ware counter result, and the dotted (red) line shows the prediction.
The prediction takes about a half percent of the time of exhaustive
testing. Just two executions have a significant error in both graphs,
which are a half percent of all executions.

efficiently [17, 45, 46]. The self locality is measured by the reuse
distance. As the measurement problem for the footprint is solved,
the speed of reuse-distance analysis becomes the bottleneck. We
found that by profiling up to two days for each program, the reuse
distance analyzer by Zhong et al. [49] could finish only 8 SPEC
2006 programs [46]. The total modeling time was over 106 CPU
hours, 94% of which was spent on the reuse-distance analysis. In



this study, we have measured reuse distance for all benchmarks (see
Table 2 for measurement costs). Some programs took over 4 days.

Based on the new theory, we compute the reuse distance from
the footprint and predict the co-run interference. Figure 9 compares
the measured and predicted miss ratios. There are 190 pair runs for
a total of 380 executions. The x-axis orders these executions by
the measured miss ratios from the lowest to the highest. For easy
viewing, we connect the points into a line. The measured curve is
necessarily monotone. The prediction is to match the measurement.

Figure 9 has two graphs, showing the miss ratio in the linear
scale in the upper graph and the logarithmic scale in the lower
graph. The prediction is mostly accurate. The errors happen but
for different executions in the two graphs. If an error is visible
in the linear scale but not in the logarithmic scale, the error is
significant in absolute terms but not in relative terms. Similarly, we
have errors significant relatively but not absolutely. The two graphs
show just two errors that are significant in both scales. In the other
378 (99.5%) executions, the prediction is either accurate or the
error insignificant. From visual inspection, the error is significant
in just 0.5% of all executions.

To make the prediction, the analysis needs 1 hour 4 minutes
CPU time for sampling, almost as fast as we can run the 20 pro-
grams without analysis. In comparison, the exhaustive testing takes
over 9 days (estimated) of CPU time. The cost saving is 99.5%.

To see interference in 3-program co-runs, the exhaustive test-
ing has to re-test and collect results anew, but the modeling needs
no additional testing. Indeed, the new model has been used in an
on-line system to regroup eight programs to run on two quad-core
processors (to have a higher performance or at least a more repeat-
able performance) [47]. The exhaustive testing of the 4-program
co-runs in our 20-program suite would need 19 thousand test exe-
cutions and have taken months of time.

To summarize the pair interference experiment, we can say that
the result is half and half: the modeling takes half percent of the
time and has a significant error in a half percent of executions.

5. Related Work
The concept of locality has evolved from an observation that a
program does not use all the data at all times, to quantitative metrics
that we can evaluate and compare but for which we must solve the
dual problems of speed and precision.

Locality sampling A publicly available system for locality sam-
pling is the SLO tool developed by Beyls and D’Hollander [5]. SLO
instruments a program to skip every k accesses and take the next
address as a sample. A bounded number of samples are kept in a
sample reservoir. To track reuse windows, it checks each access to
see if it is an access to some sampled datum. The instrumentation
code is carefully engineered in GCC to have just two conditional
statements for each memory access (one for address and the other
for counter checking). Reservoir sampling reduces the time over-
head from 1000-fold slow-down to only a factor of 5 and the space
overhead to within 250MB extra memory. The sampling accuracy
is 90% with 95% confidence. The accuracy is measured in the reuse
time, not the reuse distance or the miss ratio.

To accurately measure reuse distance, a record must be kept
to count the number of distinct data appeared in a reuse window.
Zhong and Chang developed the bursty reuse distance sampling,
which divides a program execution into sampling and hibernation
periods [48]. In the sampling period, the counting uses a tree struc-
ture and costs O(log logM) per access. If a reuse window extends
beyond a sampling period into the subsequent hibernation period,
the counting uses a hash-table, which reduces the cost to O(1) per
access. Multicore reuse distance analysis uses a similar scheme for
analyzing multi-threaded code [35]. Its fast mode improves over hi-

bernation by omitting the hash-table access at times when no sam-
ples are being tracked. Both methods compute the reuse distance
accurately.

StatCache is based on unbiased uniform sampling [3]. After
a data sample is selected, StatCache puts the page under the OS
protection to capture the next access to the same datum. It uses the
hardware counters to measure the time distance till the reuse. OS
protection is limited by the page granularity. Two other systems,
developed by Cascaval et al. [7] and Tam et al. [40], used the
special support on IBM processors to trap accesses to specified data
addresses. To reduce the cost, these methods used a small number
of samples. Cascaval et al. used the Hellinger Affinity Kernel to
infer the accuracy of sampling [7]. Tam et al. predicted the miss
rate curves in real time [40].

Locality measurement Reuse distance is a shorter name for the
LRU stack distance defined by Mattson et al. [31]. The fastest pre-
cise method takes O(n logm) time, where n is the length of the
trace and m is the size of data [34]. A variation of the algorithm
powered the Cheetah cache simulator [38], widely distributed as
part of the SimpleScalar tool set. By approximating long-distance
reuses (with a guaranteed precision e.g. 99%), the cost can be re-
duced to O(n log logm) [49]. This n log logm algorithm is used
in the two most recent sampling studies [35, 48]. In our experi-
ments, the cost is several hundred times slowdown. The average
cost reported in another study is as high as several thousand times
slowdown (although with a different implementation) [35]. Zhong
et al. gave a lower bound result indicating that the (asymptotic)
cost cannot be further reduced for full reuse distance analysis [49].
Recent studies found efficient algorithms to parallelize the reuse
distance analysis to run on MPI [33] or GPU [12, 22].

Time-based conversion [27, 36] and StatStack [19, 20] each
gave a statistical formula to convert the reuse time distribution to
miss rate, so did the working set theory [15]. These methods were
not guaranteed to be correct or have a bounded error. This work
gives a different conversion method based on the footprint formula
and the correctness condition for the conversion.

If the cost of measuring O(n) reuse windows was high, the
cost of measuring O(n2) footprint windows was prohibitively
high. In 2008, a sub-quadratic cost O(n logm) solution was pro-
posed [17]. Later, the algorithm was implemented and made 70
times faster [45]. These two methods measure the full distribution,
including for example, the maximum and the minimum sizes. In-
stead of the full distribution, Xiang et al. showed that the average
footprint can be measured in linear time O(n), and it is a mono-
tone function [46]. Based on the HOTL theory in this paper, we
have reduced the analysis cost to a negligible level using sampling
and proved that the footprint function is concave.

Program sampling Arnold and Ryder pioneered a general frame-
work to sample Java code, i.e. the first few invocations of a function
or the beginning iterations of a loop [2]. It has been adopted for hot-
stream prefetching in C/C++ in bursty sampling [11] and extended
to sample both static and dynamic bursts for calling context pro-
filing [50]. Shadow profiling pauses a program at preset intervals
and forks a separate process to profile in parallel with the base pro-
gram [32, 42]. Before the new theory, the reuse distance analysis
is not a good target for these techniques because of the uncertain
length of the reuse windows. With the new theory, locality sam-
pling becomes a similar task as frequency profiling. Like frequency
profiling, the cost can be adjusted by simply changing the sampling
rate.

Filmer metrics in multi-threaded code The locality metrics in
particular the footprint and the reuse distance have been extended
to multi-threaded code by a number of studies, including compos-
able modeling of shared footprint [18], statistical modeling in con-



current reuse distance [27], and direct measurement by multi-core
reuse distance [35]. In a concurrent program, the reuse distance
is affected by data sharing, thread interleaving and composition.
These studies solved the problems by characterizing the relation
between the private reuse distance (PRD) and the concurrent reuse
distance (CRD). For loop-based code, Wu and Yeung gave a scaling
model to predict how the reuse distance changes when the work is
divided by a different number of threads [43]. These modeling tech-
niques have found uses in co-scheduling [26] and multicore cache
hierarchy design [44]. In this paper, we use footprint sampling and
HOTL conversion in multi-threaded code and show the result that
the reuse-window hypothesis holds there as it does in sequential
code.

6. Summary
In this paper, we have compiled five Filmer metrics— the footprint,
the inter-miss time, the volume fill time, the miss ratio curve and
the reuse distance—and shown that they are mutually derivable.
The derivations form a higher order relation. We prove that two of
the miss-ratio derivations, by the footprint and by the reuse time,
are mathematically equivalent. As a result, the correctness of the
conversion depends on the reuse-window hypothesis. In addition,
we prove that the average footprint is a concave function. We also
give a direct definition of the fill time and show it to be unusable in
practice. When comparing with the working set theory, we show
the recurring theoretical result which we call Denning’s law of
locality. We show how the new theory complements and extends
the previous theory.

Based on the new theory, we have developed a novel technique
of locality sampling and used it to predict the miss ratio. When
tested on the full suite of the SPEC 2006 benchmarks, the HOTL
conversion predicts the miss ratio for over 3000 cache sizes at a
speed 39% faster than cache simulation for a single cache size.
The prediction is accurate compared to simulation and hardware
counter results. Locality sampling obtains a similar accuracy by
examining 0.9% of the execution and incurring a cost of less than
0.5% of the time of the unmodified code. When used to predict
cache interference, the new technique takes 0.5% of the time of
the exhaustive testing and predicts the interference accurately for
99.5% of the executions.

In summary, we have shown that the Filmer metrics can be
measured in real time, and they are easy to compose and convert.
We expect that the higher order theory and the sample technique
will provide a new foundation for developing future techniques of
locality analysis and optimization.

Acknowledgments
The comparison with the working set theory was done in collabora-
tion with Peter Denning. It was a rare privilege to discuss the field
defining ideas with their creator. He was also the first to use the
acronyms HOTL, WSLT and CLT when commenting on our paper
and suggested the comparative view in Figure 4. Kim Hazelwood,
Ramesh Peri and Tipp Moseley answered our questions about Pin
and shadow profiling. We also thank Jacob Brock, Xipeng Shen,
Donald Yeung, other colleagues, the reviewers of ASPLOS and the
program committee especially P. Sadayappan for the careful review
and constructive critiques, which are invaluable in improving the
presentation of both the theory and the evaluation.

References
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-

tures: A Dependence-based Approach. Morgan Kaufmann Publishers,
Oct. 2001.

[2] M. Arnold and B. G. Ryder. A framework for reducing the cost of in-
strumented code. In Proceedings of PLDI, pages 168–179, Snowbird,
Utah, June 2001.

[3] E. Berg and E. Hagersten. Fast data-locality profiling of native execu-
tion. In Proceedings of SIGMETRICS, pages 169–180, 2005.

[4] K. Beyls and E. D’Hollander. Generating cache hints for improved
program efficiency. Journal of Systems Architecture, 51(4):223–250,
2005.

[5] K. Beyls and E. D’Hollander. Discovery of locality-improving refac-
toring by reuse path analysis. In Proceedings of HPCC. Springer. Lec-
ture Notes in Computer Science Vol. 4208, pages 220–229, 2006.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications. In Proceedings
of PACT, pages 72–81, 2008.

[7] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wisniewski.
Multiple page size modeling and optimization. In Proceedings of
PACT, pages 339–349, 2005.

[8] C. Cascaval and D. A. Padua. Estimating cache misses and locality
using stack distances. In Proceedings of ICS, pages 150–159, 2003.

[9] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In Proceed-
ings of HPCA, pages 340–351, 2005.

[10] A. Chauhan and C.-Y. Shei. Static reuse distances for locality-based
optimizations in MATLAB. In Proceedings of ICS, pages 295–304,
2010.

[11] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching
for general-purpose programs. In Proceedings of PLDI, Berlin, Ger-
many, June 2002.

[12] H. Cui, Q. Yi, J. Xue, L. Wang, Y. Yang, and X. Feng. A highly
parallel reuse distance analysis algorithm on gpus. In Proceedings
of the International Parallel and Distributed Processing Symposium,
2012.

[13] P. J. Denning. The working set model for program behaviour. Com-
mun. ACM, 11(5):323–333, 1968.

[14] P. J. Denning. Working sets past and present. IEEE Transactions on
Software Engineering, SE-6(1), Jan. 1980.

[15] P. J. Denning and S. C. Schwartz. Properties of the working set model.
Communications of ACM, 15(3):191–198, 1972.

[16] P. J. Denning and D. R. Slutz. Generalized working sets for segment
reference strings. Communications of ACM, 21(9):750–759, 1978.

[17] C. Ding and T. Chilimbi. All-window profiling of concurrent execu-
tions. In Proceedings of PPoPP, 2008. poster paper.

[18] C. Ding and T. Chilimbi. A composable model for analyzing locality
of multi-threaded programs. Technical Report MSR-TR-2009-107,
Microsoft Research, August 2009.

[19] D. Eklov, D. Black-Schaffer, and E. Hagersten. Fast modeling of
shared caches in multicore systems. In Proceedings of HiPEAC, pages
147–157, 2011. best paper.

[20] D. Eklov and E. Hagersten. StatStack: Efficient modeling of LRU
caches. In Proceedings of ISPASS, pages 55–65, 2010.
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A. Measuring the Direct Fill Time
As defined in Section 2.3, the direct fill time is the average length
of all windows that have the same-size footprint. For a trace of
n accesses to m data, the fill time algorithm counts all O(n2)
windows but reduces the quadratic cost of counting in three ways.
The solution is similar in design to all-window footprint measure-
ment [17, 45].

Counting by footprint size rather than window length The foot-
print size in a window is up to m, the size of data. Although there
are up to n windows ending at each element, there are at most m
different footprint sizes. By counting m footprint sizes rather than
n windows, the algorithm reduces the counting cost from O(n2) to
O(nm).

Consider the example in Figure 10. Take the trace till the second
access of b (before |). It is the 6th access, so there are 6 windows
ending there. Only 3 distinct elements are accessed, so the 6 win-
dows have at most 3 different footprint sizes. From small to large,
the 6 windows have a length 1 to 6 and footprints 1,2,3,3,3,3 re-
spectively.

aabacb|acadaadeedab

Windows ending at the second b

b, cb, acb, bacb, abacb, aabacb

Figure 10: There are 3 different footprints for the 6 windows ending
at the second b, so the 6 windows can be counted in 3 (instead of 6)
steps.

Relative precision footprint size By measuring data sizes with
a relative precision, for example, 99% or 99.9%, the number of
different footprint sizes becomes O(logm) instead of m. The cost
of the algorithm becomes O(n logm).

Trace compression A user sets a positive threshold c. The trace
is divided into a series of k intervals. Each interval has c distinct
elements (except for the last interval, which may have fewer than
c distinct elements). This is known as trace compression [28]. The
algorithm traverses the trace interval by interval rather than element
by element. The length of the trace is reduced from n to k, and the
cost becomes O(ck logm).

The algorithm computes the full distribution of the fill time
V T (v), from which we can compute the average fill time vt(v).
As far as we know, this is the first algorithm that computes the
direct fill time with a guaranteed precision. We have implemented
it and shown the results in the evaluation section.


