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Abstract When renting computing power, fairness and overall performance
are important for customers and service providers. However, strict fairness
usually results in poor performance. In this paper, we study this trade-off. In
our experiments, equal cache partitioning results in 131% higher miss ratios
than optimal partitioning. In order to balance fairness and performance, we
propose two elastic, or movable, cache allocation baselines: Elastic Miss Ratio
Baseline (EMB) and Elastic Cache Space Baseline (ECB). Furthermore, we
study optimal partitions for each baseline with different levels of elasticity, and
show that EMB is more effective than ECB. We also classify programs from
the SPEC 2006 benchmark suite based on how they benefit or suffer from the
elastic baselines, and suggest essential information for customers and service
provider to choose a baseline.

Keywords cache partition · fairness · elastic cloud

1 Introduction

Computing power is increasingly rented. Following Amazon’s Elastic Com-
puter Cloud (EC2), part of Amazon Web Services (AWS), many such com-
mercial services are now available. Their adoption is accelerating, shown for
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example by media reports on the rapid increase in usage and revenue of AWS.
On such rented computers, applications from one customer may frequently run
on the same physical computer with applications from other customers. The
performance of an application depends on the behavior of peer applications
and the management of shared resources.

One of most important resource is the shared cache. On a modern pro-
cessor, the most expensive operation is a memory access, which may take
hundreds of CPU cycles. In modern programs, most data accesses, 99% or
more, happen in not memory but in cache. It is so important to maximize
cache performance that most transistors on a processor chip are there to im-
plement the cache, especially the last-level cache (LLC), which is up to 45MB
and 96MB on recent Intel Haswell and IBM Power 8 architectures.

This paper studies the sharing of the last-level cache on cloud computers.
Since cache is the most important resource affecting the computing speed, its
allocation is critical to efficiency and customer satisfaction. Most online users
are affected by rented computing services directly or indirectly. Since 2010,
Amazon’s web stores have been run on AWS. As the processor core count
increases and the shift to cloud computing accelerates, the sharing problem
takes on the significance of societal-scale resource allocation.

A dilemma of sharing is whether to maximize the overall performance or to
regulate the quality of service. When running on the same type of hardware,
should an application maintain the same level of performance or should it
adapt depending on the co-run group? Amazon customers are encouraged to
measure the performance of their applications before renting computer time.
The tacit assumption is that the performance will be consistent. Otherwise, a
customer may be puzzled if the performance measured in testing varies greatly
or the performance of a rented run falls far below that of the test run.

Many studies have examined fair cache allocation among independent pro-
grams. Xie and Loh borrowed the labels of ecopolitics and called the equal
cache partition communist allocation, free-for-all sharing capitalist, and the
optimization utilitarian [14]. More formal conditions were later established
using the concepts of the game theory including sharing intensive, envy free-
ness and Pareto efficiency [2, 15].

It is a well-defined optimization problem to allocate the cache to minimize
the total miss ratio. Stone et al. solved it assuming that miss ratio curves are
convex [8]. Our recent solution uses dynamic programming to optimize for all
types of programs [1].

In this study, we define a new type of cache sharing policy called elastic
baseline. A baseline is a lower-bound on cache allocation for an individual
program. The baseline is elastic in that it can be adjusted up or down to
encourage or curtail optimization.

We consider the following baseline and two types of elastic baseline.

– The strict baseline. The program runs with 1/p of the cache, where p is the
number of programs sharing the cache.
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– Elastic miss ratio baseline (EMB). The program’s predicted miss ratio may
increase by up to some percentage, e.g. 5%, compared to what it would be
with the strict baseline.

– Elastic cache space baseline (ECB). The program may yield at most a given
percentage of its cache space to peer programs.

Our study is a novel combination of elasticity and optimization. In com-
parison, previous work either does not provide a baseline guarantee, e.g. in
optimal caching, or does not optimize, e.g. in capitalist allocation and Pareto
efficiency.

The paper makes two main contributions:

1. Formalism. The definition and optimization of two types of elastic baseline.
2. Experimentation. The performance and resource gain and loss under base-

line optimization, with different levels of elasticity.

This paper addresses cache allocation as a sub-problem of cloud computer
resource sharing. The performance is measured in miss ratio, which makes the
evaluation results direct (based only on the caching effect) and CPU indepen-
dent. The miss ratio does not fully determine execution time. The effects of
prefetching and memory-bandwidth contention are equally important. How-
ever, the miss ratio measures the effect of cache allocation directly. It provides
a well defined problem for optimization. Current hardware does not fully sup-
port cache partitioning, so it is impossible to actually measure the execution
time. The current hardware supports cache sharing. Our earlier empirical re-
sults have shown that the predicted miss ratio1 (which we use in this paper)
has a near-linear correlation with the co-run slowdown [10]. In contrast, the
measured miss rate (misses per second) does not provide such correlation.

2 Elastic Cache Utility

2.1 Background and Motivation

Amazon EC2 lets a user rent different types of computer instances. Three of
the types — burstable performance (T2), balanced (M3), compute optimized
(C4) — have subtypes where a user rent 1, 2 or 4 vCPUs. There are multiple
purchasing options including on-demand instances and spot instances. An on-
demand instance has a fixed price and can be rented at any time. A spot
instance is dynamically priced based on the system load. A user bids for a
spot instance, and the bid is accepted when the spot price falls below the user
bid. The spot price can be much lower than the on-demand price. Through
these options, Amazon can pool and run applications from multiple users on
the same multicore processor, sharing the last level cache. Through the spot

1 As described below, this miss ratio is predicted based on the Higher Order Theory of
locality.
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market, there is an inexhaustible supply of user tasks when Amazon has spare
cores, and it chooses to use them by running spot instances.

Another provider, Jelastic, sells resource by how much a customer uses per
hour. The unit is called Cloudlet. It counts both CPU and memory usage. The
CPU usage is the average number of CPUs used over the hour.

In these cases, the price implies that the same type CPU has the same cache
resource whenever it is rented, because the price for it is the same. Jelastic
charges a partial price if a CPU is only partially utilized. However, the price
is still the same for the part of the time the CPU is used. There is still the
implicit agreement is that the cache resource is the same for the period of time
whenever the CPU is used.

Consistency clashes with optimization. Taking equal cache partition as
the baseline, optimal cache partitioning reduces the total miss ratio of a co-
run group but may increase the miss ratio of individual programs. In the
experiments we will present in Section 3, we found that under optimal cache
partitioning, the average miss-ratio reduction for all programs was 131%, but
the worst-case increase in a single program was 32 times.

Uneven optimization also happens naturally when programs share the
cache, as is the case on current cloud computers. Our experimental data show
102% average reduction for all but 69 times increase for one. It may be argued
that a service provider should ensure that such slowdown does not happen
without the customer knowledge and consent.

Next we present the new technique of baseline optimization. We will build
on our recent research on locality analysis [10] and optimizing [1].

2.2 Rochester Elastic Cache Utility (RECU)

Rochester Elastic Cache Utility provides an algorithm to choose a cache par-
titioning for a set of programs in order to optimize the predicted cache perfor-
mance, but with some fairness concessions based on a baseline of each program
having an equal partition. With a miss-ratio baseline, the amount of cache a
program can give up is limited by the miss-ratio penalty it is expected to incur
due to this. With a cache-allocation baseline, each program can only give up
a small fraction of its cache.

Slowdown-Free Miss Rate (SFMR) An ideal cache partitioning policy would
minimize the overall miss rate for the whole group of programs (i.e. the sum
of the programs’ individual miss rates). However, while we can measure a
program’s access rate on a real machine, it is difficult to predict how the access
rate will change with with different cache allocation and memory bandwidth
(this would be equivalent to predicting its run-time). In order to have a well-
defined optimization problem, we define the slowdown-free miss rate below.
But first we must clarify the relationship between the miss rate, access rate
and miss ratio.
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Miss Rate and Group Miss Rate The miss rate of a program is defined as
its average number of misses per time. As a function of the memory access
rate AR and miss ratio mr, the miss rate is MR = AR ∗mr. For a group of
programs, the group miss rate is the sum of individual miss rates:

MRgroup =
∑
i

MRi. (1)

Slowdown-Free Miss Rate (SFMR) The slowdown-free miss rate of a program
is defined similarly to the miss rate2, as a function of the original access rate
AR and the predicted miss ratio mrpred:

SFMR = AR ∗mrpred. (2)

The SFMR gives a way to compare the contribution of misses from each pro-
gram to the group without knowing their slowdown by essentially assuming
there is none. The quantity we are minimizing is the sum of the SFMRs in a
co-run group:

SFMRgroup =
∑
i

SFMRi. (3)

Optimal Partition The Higher Order (or “Footprint”) Theory of locality pro-
vides a way to predict the miss ratio curve of a program based on an online
analysis of its memory-access trace [13]. We use an O(PC2) time and O(PC)
space dynamic programming algorithm to find the optimal partitioning for a
set of P programs on a cache with C blocks that can be allocated to any pro-
gram. The algorithm starts with one program, and adds the rest one-by-one.
For each added program, it chooses the partition size that minimizes the total
miss count for the whole group, computed using the optimal partitioning of
the remaining cache to the rest of the programs. The algorithm is described
by Brock et al. [1].

Baseline-Optimal Partition The above algorithm was previously modified to
include a guarantee to each program that it will be given enough cache so that
its miss ratio does not exceed a certain amount. We define two options that
allow for relaxation of that constraint, and one new constraint:

1. Elastic Miss-Ratio Baseline (EMB) With a miss-ratio baseline (i.e. lower-
bound), the algorithm only accepts partitions for which each program has
a predicted miss ratio of no more than it would have with an C/P of the
cache (call this miss ratio mrequal). By relaxing this requirement to allow
a program’s miss ratio to be some percentage higher than mrequal, we can
improve the overall miss ratio and get closer to the optimal partitioning

2 It is also similar to the common-logical time miss ratio defined by [10], which specifies
each co-run program’s miss ratio scaled by the interleaved memory accesses from other
programs.
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while maintaining a reasonable minimum predicted cache performance for
each program. If the miss ratio is allowed to increase by x% over mrequal,
we call this x%-EMB (e.g. 5%-EMB).

2. Elastic Cache-Allocation Baseline (ECB) Another option is to set a baseline
in cache allocation. For x%-ECB, every program is required to have at least
(100 − x)% of C/P of the cache. For example, 0%-ECB is the same as an
equal partitioning, but 5%-ECB allows any program to be given up to 5%
less of the cache in order to optimize cache performance for the group.
100%-ECB is the same as an optimal partitioning.

Note that EMB is in a sense a more restrictive policy. The miss ratio can
increase by any percentage (a 50% miss ratio can increase by 100%, a 10%
miss ratio can increase by 1000%, and so on). ECB is less restrictive in that
there is a maximum cache-space concession of 100%, so the ratio of allowed
degradation to possible degradation is necessarily smaller than for most cases
in EMB.

10.8

1
0.8

2

2

C2 (MB)

C1 (MB)

20% ECB
20% EMB

Equal Partitions

OPT Partition
Sharing Occupancy

Fig. 1: A toy example of the allowed partition sizes C1 and C2 for a pair of
programs sharing a 2 MB cache. The black dashed line (C1 +C2 = 2)indicates
the possible partitions. The green dot indicates the equal partitioning, and the
parentheses around it indicate the solution spaces for a 20% Elastic Cache-
Allocation Baseline (pink) and a 20% Elastic Miss-Ratio Baseline (blue). The
red star indicates the optimal partitioning, and the purple star the cache oc-
cupancies when the cache is shared.

Fig. 1 shows a toy example to demonstrate how our search spaces compares
to the search space of uninhibited partitioning. The dashed line shows the
possible partition sizes for each C1 and C2. For 20%-ECB (20%-EMB), the
search space is limited to the region encased by the pink (blue) parentheses.
If program 1 has a larger working set, or accesses cache more frequently, it
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may hog the cache but not benefit much from that cache space (purple star).
Therefore, the optimal partitioning would be to give program 2 more of the
cache (red star). But this may be unfair to program 1. EMB and ECB allow us
to find the optimal partition among a smaller set of options with the “baseline”
fairness constraint.

3 Evaluation

This section evaluates the benefits of RECU and compares it with alternative
methods.

Methodology We predict co-run performance for 16 programs (arbitrarily cho-
sen) from SPEC 2006: perlbench, bzip2, mcf, zeusmp, namd, dealII, soplex,
povray, hmmer, sjeng, h264ref, tonto, lbm,omnetpp, wrf, sphinx3. We use the
first reference input provided by SPEC. For co-run groups, we enumerate all 4-
program subsets, which gives us 1820 groups. We model their co-run miss ratio
with 8MB of shared cache. The shared cache is partitioned at the granularity
of 1024 128-block (8KB) units.

For each program, we measure the average footprint [12] and the access rate
(number of accesses per second in a solo execution). We then use the higher-
order theory of locality (HOTL) to compute the miss ratio of any program
group in any size cache, including the total and individual miss ratio in shared
and in partitioned cache [13].

For each set of 4 programs, the total number of partitions is
(
1027
3

)
, or

over 180 million. We use an optimization algorithm by Brock et al. [1] to
choose among all valid partition choices the one that minimizes the sum of the
slowdown-free miss rates.

Current technology can support cache partitioning. IBM processors provide
hardware support to partition resources including the cache. Intel has recently
added cache-partitioning support in Haswell processors, named as Cache Al-
location Technology. However, the information about such support is limited.
In this study, we do not experiment on real hardware.

We do not simulate system performance for several reasons. First, our pur-
pose and expertise both lie in program analysis and optimization, not hardware
cache design. Second, our goal is not to maximize performance, which depends
on more factors than we can rigorously study in one paper, but to minimize
an indicator of poor performance. By focusing on cache and the slowdown-free
miss rate, the achieved optimality is actually CPU independent, i.e. optimal
regardless of the CPU used.

A simulator, especially for a multicore system, has many parameters. We
are not confident that we can produce the same accuracy that we can with lo-
cality modeling. Finally, simulation is slow. Most computer architecture stud-
ies simulate a small fraction of a program. For example, Hsu et al. used a
cache simulator called CASPER to measure the miss ratio curves from cache
sizes 16KB to 1024KB in increments of 16KB [3]. They noted that “miss rate
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errors would have been unacceptably high with larger cache sizes” because
they “were limited by the lengths of some of the traces.” In our analysis, we
consider the whole trace of a program execution.

Validation Optimization must be built on theory, which in this case is the
higher-order theory of locality (HOTL) [13]. Three recent studies provide inde-
pendent validation. Wang et al. tested the analysis on program execution traces
for CPU cache [10], Hu et al. on key-value access traces for Memcached [4],
and Wires et al. on disk access traces for server cache [11]. The three studies
re-implemented the footprint analysis independently and reported high accu-
racy through extensive testing. Hu et al. tested the speed of convergence, i.e.
how quickly the memory allocation stabilizes under a steadystate workload,
and found that optimal partition converges 4 times faster than free-for-all
sharing [4]. Recent work also explored HOTL like statistics in memory al-
location (object liveness instead of object locality) [5]. Finally, Wang et al.
showed strong correlation (coefficient 0.938) between the predicted miss ratio
and measured co-run speed [10]. The correlation means that if we minimize
the miss ratio in shared cache using RECU, we minimize the execution time
of co-run programs.

3.1 Overall Comparison

From a provider’s perspective, RECU is designed to improve efficiency while
guaranteeing a baseline performance. The baseline is the lower bound perfor-
mance specified by the upper bound on the worst-case degradation compared
to equal partitioning. Table 1 shows the overall and individual program per-
formance when using different baselines.

RECU improves performance without the risk of pathological worst cases
incurred by other techniques. If we look at the QoS results for individual
programs in Table 1, we see that RECU keeps the bounds on the performance
loss. The worst case loss is bounded by the given threshold, from 0% to 100%,
for all programs. When the threshold is 0% worst-case loss, we call it strict
RECU. Indeed, the table shows that no single program incurs more misses
than equal partitioning. In contrast, the two alternatives, optimal caching
and free-for-all sharing, have much worse worst cases. The largest miss ratio
increase is 316 times and 687 times in optimal and free-for-all sharing. The
largest cache-space loss is 99% in both cases.

Table 1 is arranged with two sides. The left hand side shows the average
and median overall miss ratio reduction for co-run groups under each policy.
This represents the efficiency of a policy (that is, how close it is to achieving
the optimal miss ratio), and should be of interest to service providers. The
right hand side shows the fraction of programs that suffer worse than 0, 5 and
10% loss, miss ratio increases for EMB and cache space decrease for ECB, and
the worst single loss. This data should be of interest to consumers who want
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Table 1: Comparison of RECU methods, optimal caching, and free-for-all cache
sharing. The average miss ratio reduction (overall improvement) versus the
individual miss ratio increase (individual degradation) are relative to equal
partitioning. Two RECU methods are implicit in ECB: 0% cache space baseline
is the same as strict, and 100% is the same as optimal.

Methods of Overall performance Individual loss
cache improvement Percent prog. degraded by Worst

allocation Avg Median > 0% ≥ 5% ≥ 10% loss

RECU with elastic miss ratio baseline (EMB)
0% 5.67% 0% 0% 0% 0% 0%
5% 34.5% 6.22% 61.2% 0% 0% 4.99%
10% 42.6% 8.53% 58.6% 42.4% 0% 9.99%
20% 48.5% 11.1% 58.8% 43.7% 37.2% 19.9%
50% 51.9% 13.7% 59.1% 52.3% 46.0% 49.9%
100% 53.4% 18.3% 59.3% 53.3% 47.0% 99.7%

RECU with elastic cache space baseline (ECB)
5% 2.20% 1.09% 69.1% 0% 0% 4.68%
10% 6.31% 2.69% 70.8% 68.7% 0% 9.76%
20% 16.4% 5.02% 65.9% 65.2% 65.0% 19.9%
50% 46.2% 8.40% 60.7% 57.4% 55.7% 50.0%

alternatives to RECU (2 types of losses: miss ratio and cache space)
optimal 56.7% 30.4% 59.1% 53.2% 45.7% 31623%
caching 59.0% 57.7% 56.8% 98.8%

free-for-all 50.5% 17.0% 63.9% 58.3% 52.9% 68735%
sharing 64.0% 62.9% 61.6% 98.9%

quality of service guarantees. The percentiles on group performance are shown
later, in Table 2.

RECU’s gain in efficiency is significant, as shown on the left side of Table 1.
Strict RECU improves the average efficiency by 6% on average. The improve-
ment increases as the bound increases. For the same percentage-bound, the
miss ratio concession leads to a greater improvement than the cache space
concession. The average gain is much greater than the median gain, showing
that some programs have very large gains. For a service provider, the average
gain is important since it corresponds to the system throughput.

The increase in efficiency is not linearly proportional to the degree of con-
cession. For EMB, the average performance increases by 29% when moving
from no concession to 5% concession but only 1.5% from 50% concession to
100% concession. For ECB, the average performance increases by 30% when
moving from 20% to 50% concession but only 2.2% from no concession to 5%
concession.

RECU techniques maintain strict monotonicity in both efficiency gain and
worst-case loss — the larger the concession is, the greater the overall perfor-
mance and the worse the possible individual loss. As Table 1 shows, every
increase in the amount of concession leads to a greater gain in efficiency, and
more programs see degradation (over the baseline). Such monotonicity does
not come naturally; If we compare the two alternatives, optimal caching has
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Table 2: The reduction in group miss ratio for all tested groups. The reduction
is computed as (base− opt)/base. All methods reduce the group miss ratio for
all groups (100%) except for “sharing”, which improves 88% of all groups but
degrades the remaining 12%, by -34% in the worst case.

allocation Pct. of co-run groups whose group miss ratio is reduced by
methods ≥5% ≥10% ≥20% ≥30% ≥50% ≥ 70%

RECU miss ratio bound
0% 14.6% 10.3% 5.82% 4.84% 1.65% 0%
5% 54.4% 40.7% 22.6% 17.9% 8.63% 3.79%
10% 60.4% 46.8% 27.3% 22.4% 12.7% 5.93%
20% 66.9% 52.3% 34.0% 28.6% 14.2% 7.14%
50% 76.1% 60.1% 40.8% 35.1% 15.2% 7.64%
100% 80.3% 66.5% 47.3% 41.1% 15.3% 7.91%

RECU cache space bound
5% 6.75% 3.07% 0.65% 0% 0% 0%
10% 32.1% 21.0% 8.24% 0.65% 0% 0%
20% 50.1% 28.6% 22.4% 15.1% 5.66% 0%
50% 60.5% 46.3% 26.4% 23.2% 13.7% 7.42%

alternatives to RECU
optimal 87.0% 74.4% 56.8% 50.1% 15.9% 8.30%
sharing 74.1% 60.8% 46.1% 39.8% 11.1% 7.47%

a greater efficiency overall, but its worst individual losses are slightly better
than those of free-for-all sharing.

This monotonicity — more concession means higher performance and greater
worst individual loss — should be expected and welcomed by the provider and
the customer of an online service. It is the third reason that RECU is valuable,
after the first two we just saw: the maximal overall gain and the bound on the
individual loss. All three benefits are the result of the optimization by RECU.

3.2 Group Performance Improvement

The group performance is improved for most of the co-run groups. Table 2
shows the percentage of co-run groups whose slowdown-free miss rate is re-
duced by RECU, as compared to equal partitioning. At the 5% miss ratio
bound, over 54% of groups are improved by 5% or more and 8.6% by 50% or
more.

The miss-ratio bound enables greater optimization than the cache-space
bound does. The 10% miss ratio bound enables a similar improvement as the
50% cache space bound.

Baseline optimization can obtain the improvement of free-for-all sharing,
which is shown at the bottom of Table 2. The 50% miss-ratio bound shows a
similar improvement as free-for-all cache sharing. The difference is that with
RECU, no program will lose performance beyond the baseline, but free-for-all
sharing provides no such guarantee. In Table 1, we have shown that the worst-
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Table 3: Access rate, miss rate and slowdown-free miss rate for each program.
Combined with Fig. 2 and Fig. 3, winners are colored green, losers are colored
red, and others are colored black. The programs are sorted by slowdown-free
miss rate because that is the metric that directly affects speed.

Benchmark Access rate Miss Slowdown-free
(million) ratio miss rate(million)

lbm 12,727 6.32% 804
zeusmp 10,758 1.15% 124
sphinx3 2,754 4.24% 116

mcf 856 11.0% 94.2
wrf 5,292 1.35% 71.2

soplex 449 7.44% 33.4
dealII 3,029 0.66% 19.8

omnetpp 592 3.24% 19.2
hmmer 2,640 0.11% 3.01
tonto 3,778 0.08% 2.86
sjeng 1,497 0.11% 1.61
bzip2 367 0.32% 1.18
namd 1,915 0.04% 0.74

perlbench 56 0.90% 0.51
h264ref 427 0.08% 0.32
povray 3,249 0.00005% 0.001

case degradation is 49.9% for 50% EMB but about 69,000% for free-for-all
sharing. Hence, baseline optimization is strictly better.

3.3 Individual Comparison

Table 3 shows a breakdown of programs into three categories: winners, losers,
and others. The categories are based on the average results across every co-run
group, as shown in Fig. 2 and Fig. 3, and are described in detail below.

Winners Winners gain cache and have their miss ratio decreased in every con-
cession scenario, and generally have high equal-partition miss ratios. Notably,
lbm also has a high equal-partition miss ratio, but is not a winner. This is a
result of its stair-step shaped miss ratio curve: since it is usually nearly con-
stant, lbm typically has low cache utility. This is also showed by Fig. 2, lbm
gains little in 0%-EMB, then loses cache in 5% or 10%-EMB until 20%-EMB.

Losers Losers lose cache and have their miss ratio increased in every conces-
sion scenario, and generally have a low slowdown-free miss rate. There are
three exceptions to that generalization: bzip2 and dealII, h264ref. bzip2 gains
in 5%-EMB, but loses in all other cases. Furthermore, it only gains less than
3%. Thus bzip2 behaves in general like a loser. dealII is a loser despite its large
SFMR. It loses cache due to its nearly constant miss ratio, which means it has
lower cache utility. In other words, it is not sensitive to cache size, so it tends
to be robbed of cache. h264ref is cache sensitive, thus it gains improvement in
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Fig. 2: Effect of elastic miss ratio baseline optimization (a,b) in each of the 16
test programs, measured by the miss ratio reduction/increase (a) and cache
space gain/loss (b) for each program, averaged across all its

(
15
3

)
co-run ap-

pearances. The programs are ordered by the decreasing y-axis value. They are
ranked by performance gain in (a) and cache space gain in (b).
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(b) Cache space gain vs. loss

Fig. 3: Effect of elastic cache space baseline optimization (a,b) in each of
the 16 test programs, measured by the miss ratio reduction/increase (a) and
cache space gain/loss (b) for each program, averaged across all its

(
15
3

)
co-run

appearances. The programs are ordered by the decreasing y-axis value. They
are ranked by performance gain in (a) and cache space gain in (b).
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some cases. However, it has less much potential due to low miss SFMR. Thus
when other programs can benefit from more cache, its cache will be robbed.

Others Others do not fit into either of the above neat categories. However,
all of the others in our experiments eventually gain more cache with more
relaxed constraints. For example, the optimization allocates more to tonto
with 10% and 20%-ECB, but less in all cases of EMB. Our experiments also
show, paradoxically, that more cache space on average does not lead to miss
ratio reduction on average. For example, lbm loses cache in 10%-ECB, but
has reduction on miss ratio. zeusmp gains more cache but increases miss ratio.
The cause is related to the stair-steps in its miss ratio curve. lbm either loses
cache and pays a small penalty in misses, or gains cache and has its miss ratio
significantly reduced. In most cases of 10%-ECB, there is not enough cache
for lbm. zeusmp is similar but in a reverse situation.

3.4 Analysis Overhead

Online Locality Analysis Recent research has made it possible for in vivo anal-
ysis with several techniques. First, a metric called footprint measures the av-
erage working-set size [12]. The footprint measurement has linear-time com-
plexity and can be performed online by sampling. Second, the footprint is used
to compute the miss ratio curve [13].

We wrote the dynamic programming algorithm in C++, and the scripts
in Ruby. We tested the speed of analysis on a 1.7GHz Intel Core i5-3317U
(11 inch MacBook Air, with the power cord unplugged). On average, footprint
sampling can be done in 0.09 second per program using a technique called
adaptive bursty footprint (ABF) sampling [10]. Based on that, we computed
the optimal cache partitioning for each group of four in 0.21 second on average.

4 Related Work

Optimal Cache Partitioning Cache partitioning is an intuitive way to improve
fairness as well as performance. Stone et al. [8] proposed a greedy algorithm
for N programs, which is optimal for programs with convex miss ratio curves.
They start with each program having only one cache unit, then allocate cache
greedily. Suh et al. [9] relaxed the convexity assumption by dividing miss ratio
curves between non-convex points.

Our study employs a dynamic programming algorithm developed by Brock
et al. [1], whose optimality does not require miss ratios being convex. The
optimization handles general types of baselines or their mixtures. For example,
it can optimize cache partition when one customer uses 5%-EMB, and another
uses 10%-ECB.
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Fair Cache Partitioning There have been a plethora of work to partition the
cache among multiple threads and programs. A recent technique is cache ra-
tioning, which protects the cache ration of each program and at the same time
finds unused ration to share among the co-run programs [7]. Our technical
report contains references to many earlier, heuristics-based solutions [6]. More
formal conditions have been established using the concepts of the game the-
ory including sharing intensive, envy freeness and Pareto efficiency [2,15]. Our
approach uses the elastic baseline for fairness, which is straightforward from
the customer’s perspective, while maximizing the overall performance for the
service provider.

5 Conclusion

In this paper, we have described two elastic baselines for fair and efficient
cache allocation: elastic miss ratio baseline and elastic cache space baseline
to increase average performance by sacrificing a small amount of fairness. We
employed a dynamic programming algorithm to minimize overall slow-down
miss rate for each baseline. We have evaluated equal and optimal partitions,
6 levels of EMB, and 4 levels of ECB.

The results show that both ECB and EMB can significantly improve the
total performance of a group while limiting the worst loss for every individual.
For the same percentage of allowed concession, EMB is more effective than
ECB. The effect of RECU is montone — larger concession means greater
performance for the group and worse possible loss for the individual.

Lastly, we classified individual programs into three categories. Our results
show that lower slowdown-free miss rate usually leads to performance degra-
dation and higher miss ratio usually results in improvement. Furthermore, we
noted the seeming-paradox that programs which on average sacrifice cache can
also gain performance on average.
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