Unsupervised Tokenization for Machine Translation

Tagyoung Chung Daniel Gildea

Computer Science Department
University of Rochester
Tokenization

• Usually the first step of the SMT

• Two different problems for different languages
 – Finding unknown word boundaries
 (isolating languages such as Chinese)
 – Finding morpheme groupings of right granularity
 (agglutinative languages such as Korean)

• Supervised methods require training data or set of rules

• We present two unsupervised methods for MT
Problem of Granularity - Examples

• Korean word *meok-eoss-da* consists of three morphemes
 – *eat-past-indicative* (*TRANSLATION: ate*)
 – No reason to separate morphemes

• Korean word *hakgyo-e* consists of two morphemes
 – *school-locative* (*TRANSLATION: at school*)
 – It is desirable to separate morphemes in this case

• Bilingual model may help with this issue
Overview

• Monolingual model
 – Model description
 – Handling overfitting

• Bilingual model
 – Model description
 – Inference
 – Handling overfitting

• Results
Monolingual Model

- A quick way to learn tokenization
- Easiest solution: substring counts
 - \(P(w_i) = \frac{\text{count}(w_i)}{\sum_k \text{count}(w_k)} \)
 - Single pass through corpus
 - Learning probability with EM overfits
 - Simple substring counts overfits as well
Overfitting

- Problem: Longer substrings are preferred under this model
- However, shorter tokens are more frequent in the real world
Solution to Overfitting

- Control token size with length factor

- $P(w_i) \propto count(w_i) \phi(|w_i|)$

- Geometric distribution would be a natural choice:

 - $\phi_1(\ell) = P(s)(1 - P(s))^{\ell-1}$

- Observation: Heavier penalty for longer tokens is desired

- Doubly exponential length factor:

 - $\phi_2(\ell) = 2^{-\ell\lambda}$
Length Factor

- Length factor vs. empirical token length distribution

![Graph showing length factor vs. empirical token length distribution with a peak at P(s) = 0.58 and lambda = 2.13 for Korean tokens.](image-url)
Setting the Parameter

- Both ϕ_1 and ϕ_2 have a single parameter
- We set the parameter such that number of tokens in the half of the parallel corpus match the other half
- Justification:
 - Hypothesis: Tokenizing this way will produce tokens that are closer to an ideal situation thus result in better MT system
 - Ideal case: one-to-one correspondence between tokens of two languages
Related Work

• Goldwater et al. (2006) use geometric distribution as base distribution for Dirichlet process in their Bayesian segmentation model to model word acquisition in infants

• Liang and Klein (2009) use doubly exponential length factor in their word segmentation model to test an online EM algorithm

• Chang et al. (2008) use a feature in their CRF Chinese segmenter to tweak average size of tokens to improve MT performance
Bilingual Model

• Can we learn segmentation of one language from the other language in parallel corpus?

• Our generative Model:

 \[c_1 \quad c_2 \quad c_3 \]

 \[c_4 \]

 \[f_1 \quad f_2 \]

 \[e_1 \quad e_2 \]

 The model learns alignments and segmentation is by-product of alignments
Inference

• The model uses IBM word alignment model 1

 \[P(f|e) = \prod_i \sum_j P(f_i | e_j) P(a_i = j) \]

• \(f \) is unknown

 \[f = s \circ c \]

• Apply dynamic programming over hidden segmentation \(s \)

 Analogous to HMM’s forward-backward algorithm

 Transition: segmentation

 Emission: alignment
Forward-Backward Algorithm

\[\alpha(i) = P(c_1^i, s_i = 1 \mid e) \]

\[\beta(j) = P(c_j^m, s_j = 1 \mid e) \]

\[P(c_{i+1}^j, a = k \mid e) = \frac{\alpha(i) P(c_{i+1}^j \mid e_k) P(a = k) \beta(j)}{P(c \mid e)} \]
Overfitting

- We know the solution has to be **very** sparse
 - Solution: use a sparse prior
 \[
 \theta_e \mid \alpha \sim \text{Dir}(\alpha),
 \]
 \[
 f_i \mid e_i = e \sim \text{Multi}(\theta_e).
 \]
 - Use VB: minor change to inference (Johnson 2007)

- Further controlling overfitting with length factor
 - \(\phi_1 \) can be embedded in the model
 (the parameter can be learned)
 - \(\phi_2 \) can be used in the same manner as the first model
Related Work

• Kikui and Yamamoto (2002) use similar word alignment-based unsupervised segmentation to find new translation pairs from untokenized corpus

• Xu et al. (2008) use similar word alignment-based segmentation model (using Gibbs sampling for inference) as part of their Chinese word segmenter
Summary of Models

• Both models are unigram segmentation model
• Both models have explicit means to control size of tokens
• Monolingual model uses substring count to estimate $P(f)$
• Bilingual model uses word alignment to estimate
 \[P(f) = \sum_e P(f \mid e)P(e) \]
• Both models use the Viterbi algorithm to find the best segmentation according to $P(f)$
• Both models limit maximum size of f for practical reasons
Experiments

• MT Systems for Chi-Eng, and Kor-Eng language pairs
 – 2M words on English side for both language pairs
 – monolingual/bilingual models with length factors
 – Moses (Koehn et al., 2007)

• Three Questions:
 – How do the models compare to other tokenization?
 – What are the effects of length factors?
 – Does bilingual model learn to segment better?
Comparison to Supervised Segmentation

<table>
<thead>
<tr>
<th>Supervised</th>
<th>Chinese</th>
<th>Korean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-based morphological analyzer</td>
<td></td>
<td>7.27</td>
</tr>
<tr>
<td>LDC segmenter</td>
<td>20.03</td>
<td></td>
</tr>
<tr>
<td>Xue’s segmenter</td>
<td>23.02</td>
<td></td>
</tr>
<tr>
<td>Stanford segmenter (pku)</td>
<td>21.69</td>
<td></td>
</tr>
<tr>
<td>Stanford segmenter (ctb)</td>
<td>22.45</td>
<td></td>
</tr>
<tr>
<td>Unsupervised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilingual model with ϕ_1 $P(s) = 0.9$</td>
<td>20.75</td>
<td>7.46</td>
</tr>
<tr>
<td>Bilingual model with ϕ_2</td>
<td>22.31</td>
<td>7.35</td>
</tr>
</tbody>
</table>
Effect of length factor

Chinese
Monolingual vs. Bilingual

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Chinese</th>
<th>Korean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilingual model with ϕ_1 $P(s) = learned$</td>
<td>20.04</td>
<td>7.06</td>
</tr>
<tr>
<td>Bilingual model with ϕ_1 $P(s) = 0.9$</td>
<td>20.75</td>
<td>7.46</td>
</tr>
<tr>
<td>Bilingual model with ϕ_1 $P(s) = 0.7$</td>
<td>20.59</td>
<td>7.31</td>
</tr>
<tr>
<td>Bilingual model with ϕ_1 $P(s) = 0.5$</td>
<td>19.68</td>
<td>7.18</td>
</tr>
<tr>
<td>Bilingual model with ϕ_1 $P(s) = 0.3$</td>
<td>20.02</td>
<td>7.38</td>
</tr>
<tr>
<td>Bilingual model with ϕ_2</td>
<td>22.31</td>
<td>7.35</td>
</tr>
<tr>
<td>Monolingual model with ϕ_1</td>
<td>20.93</td>
<td>6.76</td>
</tr>
<tr>
<td>Monolingual model with ϕ_2</td>
<td>20.72</td>
<td>7.02</td>
</tr>
</tbody>
</table>
Summary

• Unsupervised tokenization methods are comparable to supervised ones in use for MT

• Bilingual model does learn better token probability for MT

• Heavier penalty for longer tokens is a useful means to prevent overfitting in segmentation

• Need to optimize parameters for end-to-end translation quality
Additional Results

<table>
<thead>
<tr>
<th>Monolingual model with ϕ_1 (EM)</th>
<th>15.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolingual model with ϕ_2 (EM)</td>
<td>21.30</td>
</tr>
<tr>
<td>Monolingual model with ϕ_1</td>
<td>20.93</td>
</tr>
<tr>
<td>Monolingual model with ϕ_2</td>
<td>20.72</td>
</tr>
</tbody>
</table>