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Abstract

This thesis presents Kage: a software defense system that protects control data of both

applications and the kernel for real-time embedded systems with ARMv7-M microcontroller.

Kage uses Silhouette to provide protected shadow stacks and CFI checks to applications and

the kernel. Kage combines Silhouette with KageOS , an embedded operating system based

on AWS FreeRTOS that protects control data in the memory. KageOS ensures that data

structures containing control data are stored in a protected memory space that only the small

trusted code in the kernel have write access. KageOS also adds runtime checks to the entry

points of the trusted kernel to prevent untrusted code from calling trusted functions with

corrupted arguments. Comparing to FreeRTOS, Kage incurs 71.57% performance overhead

in context switching, 82.76% performance overhead in transferring data between tasks using

a the queue API, and 47.70% performance overhead in transferring data between tasks using

the stream buffer API. Kage incurs 313 additional CPU cycles in exception handling with

an untrusted exception handler, and up to 397 cycles in executing a secure API. Kage incurs

18.62% code size overhead comparing to FreeRTOS.
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Chapter 1

Introduction

Embedded systems are becoming increasingly popular and feature-rich. In addition to tradi-

tional embedded systems such as routers, modems and security cameras, recent developments

of Internet of Things devices [14] such as smart sensors, smartwatches and smart door locks

allow more embedded systems than ever to connect to the Internet. Today, many embedded

systems use microcontrollers instead of general purpose processors for the benefit of low cost

and simple software design [43].

The benefit of simple software design comes at a cost, however. Most software for

microcontroller-based embedded system is developed in C. Since C is not a memory-safe

programming language, these embedded systems can be vulnerable to memory safety er-

rors [26, 39], similar to C programs running on desktop systems. Moreover, by default,

embedded operating systems for these systems provides little to no isolation between appli-

cations and the kernel [2], meaning an application has full access to kernel memory and the

memory of other applications.

Previous work presented Silhouette [44], a software defense that protects against control-

flow hijacking attacks on bare-metal software on the ARMv7-M architecture. Silhouette

utilizes ARMv7-M’s unprivileged store instructions, a set of store instructions that always

check the unprivileged access permissions regardless of the current privilege mode. Silhouette

efficiently protects the shadow stack it provides with store hardening, an intra-address space
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isolation mechanism by transforming all store instructions in application code to unprivileged

store instructions. Silhouette instruments the application code to access return addresses from

the parallel shadow stack [21], configures the Memory Protection Unit (MPU) to prevent

application code to write to the shadow stack and other critical memory regions, and adds

forward-edge CFI checks. While it can protect the control-flow of bare-metal programs,

Silhouette does not protect all control data in a multi-task system with context switching

and interrupts—the processor state needs to be protected as well.

In this thesis, we present Kage (the word “kage” means “shadow” in Japanese). Kage is a

software defense system that combines Silhouette and KageOS, a secure real-time operating

system based on Amazon AWS FreeRTOS [2] that ensures that control data of both applica-

tions and the kernel are stored in protected memory. Together, Kage protects the operating

system and applications from control-flow hijacking attacks.

We summarize this thesis’s contributions:

• We built KageOS, a real-time operating system that provides a shadow stack for each

application and the kernel to store the processor state during context switch and ex-

ception handling, and protected memory regions to securely store other data structures

that contain control data including the scheduler data and task management data.

• We have developed Kage, a combination of the Silhouette compiler and runtime system

and KageOS real-time operating system, that protects control data of applications and

the kernel from corruption.

• We evaluated Kage on a STM32L475 Discovery board [36]. Comparing to an unmodi-

fied FreeRTOS system with default configuration, Kage incurs performance overheads

of 71.57% in context switching, 82.76% in transferring data using the queue API, and

47.70% in transferring data using the stream buffer API. KageOS’s additional protec-

tions incur 313 CPU cycles in untrusted exception handling, and up to 397 cycles for

the secure API. Kage incurs 18.62% of code size overhead comparing to an unmodified

FreeRTOS system with default configuration.
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Chapter 2

Background

2.1 ARMv7-M

Kage targets the ARMv7-M architecture [12]. ARMv7-M belongs to the ARM Cortex-M

product family, which is designed to be an architecture for low-performance, energy efficient,

and low-cost microcontrollers [43]. As a result, ARMv7-M has many different design de-

cisions than architectures designed for general-purpose processors such as X86 [30] or the

ARM Cortex-A product family [11,13]. These differences lead to the need for novel software

defenses.

2.1.1 Processor Modes

ARMv7-M supports two processor modes: Thread mode and Handler mode [12]. Applications

usually run in Thread mode, whereas exception handlers always run in Handler mode. Thread

mode allows two privilege modes: privileged mode and unprivileged mode; Handler mode

always runs in privileged mode.

ARMv7-M has a process stack pointer register (PSP) and a main stack pointer register

(MSP). In the context of an embedded operating system, the system initialization code and

exception handlers use the main stack; applications and kernel functions called by applications

use the process stack.
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Figure 2.1: Reference address space

of ARMv7-M [12] (left) and address space of STM32L475 Discovery board [36,38] (right)

2.1.2 Memory Address Space

Unlike desktop systems, ARMv7-M does not provide a Memory Management Unit (MMU);

therefore, ARMv7-M does not support virtual memory. All memory regions for both privi-

leged and unprivileged code are in the same address space. Furthermore, ARMv7-M maps

all flash, memory, peripherals and the processor’s system control registers to the same ad-

dress space. Figure 2.1 [44] shows the reference address space of ARMv7-M and the address

space of the STM32L475 Discovery board [36] used in this thesis. The gray area indicates

unmapped addresses. QUADSPI is a feature of the discovery board to access an external

NOR FLASH memory. We do not utilize this feature in this thesis. The microcontroller of

the discovery board [38] reserves memory space for external RAM support, but it is unused

because the board does not contain any external RAM.

2.1.3 Memory Protection Unit

Although ARMv7-M does not contain a MMU, the architecture provides a Memory Pro-

tection Unit (MPU) as an optional feature [12]. Microcontroller manufacturers can choose
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to implement this feature in their products. The MPU allows developers to define memory

protection regions. For each region, developers can configure the base address, length, and

access permissions of this region. ARMv7-M supports up to 256 protection regions, but the

exact number of protection regions supported varies in different hardware implementations.

The MPU supports defining sub-regions within a protection region and allows a sub-region

to have different access permissions than the region that contains it. This feature saves the

number of MPU regions required and simplifies the process of configuring the MPU. When

the MPU is disabled, ARMv7-M applies a default access control configuration, which sets the

Peripheral, Device, and System (which contains system registers) memory regions to execute-

never. This default configuration can also optionally be enabled when the MPU is enabled to

serve as a background region. The System region is always only writable in privileged mode

regardless of the MPU configuration.

2.1.4 Hardware Abstraction Library

In the world of ARMv7-M microcontrollers, manufacturers provide a Hardware Abstraction

Library (HAL) [35] for applications to access the hardware. The HAL also includes the

default interrupt handlers and part of the startup code such as setting the processor clock.

2.1.5 Unprivileged Store Instructions

ARMv7-M supports a special set of store instructions—the unprivileged store instructions—

that always check the unprivileged access permission, regardless of the current processor

mode. Even if the processor is currently in privileged mode, the unprivileged store instruc-

tions can only successfully write to memory locations that are configured as writable in

unprivileged mode; attempting to write to a privileged only memory location will trigger a

memory management fault. This set of instructions is also available on several other ARM

architectures such as ARMv7-A [11] and ARMv8-M Main Extension [29].
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2.1.6 Exception Handling

ARMv7-M automatically stores a subset of the current processor state when executing an

exception handler and automatically restores it on exception return [12]. Depending on the

current processor mode, on exception entry, the processor stores a subset of the processor state

on either the process stack or the main stack. The other registers are up to the exception

handler to save them if needed. ARMv7-M allows exception chaining when an exception

occurs while another exception handler is running: if the new exception has higher priority

than the current exception, then the new exception will preempt the current exception;

otherwise, the new exception will be pending until the handler of the current exception

returns.

2.2 Silhouette

Silhouette [44] is a software system that protects bare-metal embedded applications from

control-flow hijacking attacks. Silhouette uses store hardening, a technique that provides

intra-address space isolation without the expensive switches between privileged and unprivi-

leged mode using unprivileged store instructions. We describe this technique in more detail

in the next paragraph. Silhouette uses store hardening to prevent application code from

writing to the shadow stack. Combined with label-based forward-edge control-flow integrity

checks [8], a privileged code scanner, and a secure MPU configuration, Silhouette guarantees

return address integrity: a function always returns to the correct return address stored on

the shadow stack, and the return address cannot be corrupted.

Silhouette consists of four compiler passes to transform and check the application code

during linking stage. Silhouette’s compiler passes are:

1. Shadow Stack Transformation: Silhouette instruments function prologue and epi-

logue of each application function such that when entering a function, the return address

is saved on the shadow stack, and when returning from the function, the system uses

the return address from the shadow stack instead of the regular stack.
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2. Store Hardening: In order to provide intra-address space isolation while running

both trusted and untrusted code in privileged mode, Silhouette transforms all store in-

structions of the application code into ARMv7-M’s unprivileged store instructions such

that the application code only has write permission to unprivileged memory regions.

3. CFI Transformation: With the shadow stack transformation pass protecting the

system from backward-edge control-flow hijacking, Silhouette also protects forward-

edge control flow with CFI. For indirect jumps and indirect function calls, Silhouette

inserts CFI labels to the beginning of the destination basic blocks and inserts checks

before the jump or the function call to verify that target location has the correct label.

4. Privileged Code Scanner: In order to protect ARMv7-M’s control registers, which

contains critical data structures such as the location of stack pointer, Silhouette scans

the compiled native code of application code to ensure that the application code cannot

overwrite control registers under any circumstances.

Silhouette applies the following MPU policies. First, Silhouette sets the code segment to

be readable, executable but non-writable for both unprivileged and privileged accesses. The

code segment is the only memory region with executable permission. This ensures that an

attacker cannot inject code to the device’s memory and execute it. Second, Silhouette sets the

shadow stack region to be writable for privileged accesses only in order to prevent application

code to overwrite values stored on the shadow stack. Third, Silhouette sets the peripheral

and device regions to be writable in privileged mode only. Finally, Silhouette enables the

background MPU regions to make the peripheral, device, and system regions non-executable.

ARMv7-M always rejects unprivileged write to the system region, so no special configuration

is needed to protect the system region.

2.3 AWS FreeRTOS

Amazon AWS FreeRTOS [2] is a popular open-source real-time operating system that sup-

ports a variety of embedded architectures including ARMv7-M, ARMv7-R, MIPS and RISC-
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V [4]. The STM32L475 Discovery board [36] is one of the officially supported devices for AWS

FreeRTOS. At its core, AWS FreeRTOS uses the FreeRTOS kernel [3], another open-source

project. FreeRTOS kernel provides core functionalities of the OS, and AWS FreeRTOS pro-

vides additional features. The rest of this section focuses on the ARMv7-M version of AWS

FreeRTOS with default configurations for STM32L475 Discovery board, which may be dif-

ferent from other versions or devices.

In FreeRTOS, applications run as tasks. A task in FreeRTOS is conceptually similar

to a process in desktop OS. When creating a new task, the kernel creates a Task Control

Block (TCB), which is similar to a process control block, and add the TCB to the ready list

for the scheduler. A TCB contains important data for the task including the stack pointer,

MPU configuration, the task’s execution priority, notification bits and notification state.

By default, the kernel stores the TCB in the heap. FreeRTOS provides one heap for both

application tasks and the kernel.

By default, application tasks and the kernel both execute in privileged mode with the

MPU disabled. It is a common practice to run all code in privileged mode in embedded

world for better performance and less programming complexity [17, 44]. AWS FreeRTOS

assumes that everything runs in privileged mode, but the FreeRTOS kernel provides an

option and a set of kernel functions to support using different privilege modes and the MPU.

However, regardless of the privilege mode or the MPU configuration, FreeRTOS does not

fully isolate application memory and kernel memory. For example, FreeRTOS uses the one

and only heap for both application tasks and the kernel. When using dynamic allocations

to create an application task, FreeRTOS stores the TCB on the heap and allocates the task

stack on the same heap. All dynamic allocations in application tasks are also using the same

heap.

While FreeRTOS is an operating system, it has far less features than a desktop operating

system. Most notably, both the OS and applications tasks are compiled at the same time

into one binary executable file. The FreeRTOS kernel only provides the scheduler, task

management API, kernel exception handlers, a heap, queue API, semaphores, timer API, and
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a stream buffer API for communication between an exception handler and a task. The AWS

FreeRTOS adds device-specific initialization, a logging task, Wi-Fi support, and networking

protocols to communicate with Amazon Web Service.
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Chapter 3

Design

3.1 Threat Model

Our threat model assumes that an attacker can exploit memory errors in code of any task

running on the system and the kernel, except for a small trusted portion, to write malicious

data to any memory location, with the goal of maliciously changing the control data, which

includes the return address, the processor state and the stack pointer, of any application or

the operating system and therefore hijacking the control flow. The trusted portion of the

kernel should be verified to be free of memory errors.

3.2 Overview of Kage

Kage combines the Silhouette compiler and runtime system [44] and KageOS to protect the

control-flow of application tasks and the OS. KageOS is a real-time operating system based

on Amazon AWS FreeRTOS [2].

By default, AWS FreeRTOS executes both tasks and system functions in privileged mode.

KageOS keeps this default configuration, as Silhouette allows unprivileged code to execute

in privileged mode while protecting the control flow of the system. Also, AWS FreeRTOS

is mainly designed for single-processor devices. The FreeRTOS kernel does not support

scheduling for multiprocessor devices, so on these devices, each processor needs to run an
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HAL Library
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Figure 3.1: Architecture of KageOS

instance of FreeRTOS [6]. KageOS inherits this limitation of FreeRTOS and focus on single-

processor devices. KageOS requires the device to support a MPU with at least eight memory

regions.

Figure 3.1 shows the architecture of KageOS. Kage uses Silhouette to transform tasks

and the untrusted kernel, meaning that tasks and the untrusted kernel save return addresses

on the parallel shadow stack, use unprivileged store instructions in function bodies, contain

CFI [8] labels in the beginning of each basic block, and perform CFI checks before indirect

branches or indirect jumps.

3.3 Overview of KageOS Kernel

The kernel of KageOS consists of two isolated sections: a trusted portion that needs privileged

permission to access protected memory regions and system registers, and the rest of the

kernel that does not need such permission. Kage uses Silhouette to transform the untrusted

kernel. The trusted kernel includes device-specific functions to access system registers, kernel

exception handlers, and the task management module, which contains the scheduler code

and functions that access the task control blocks, which contain critical data of each task

including the task stack pointer and task-specific MPU configuration.
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3.4 Memory Isolation

In order to protect control data and data of the trusted kernel, KageOS needs to isolate

data that only the trusted kernel can access and data that the untrusted kernel and tasks can

access. KageOS separates privileged and unprivileged data into different memory regions and

utilizes the MPU to protect each memory region. Figure 3.2 shows the access permissions

of KageOS’s overall address space. Figure 3.3 shows the layout and access permissions of

KageOS’s RAM.

3.4.1 Memory Regions

KageOS divides the RAM into eight memory regions.

The Privileged Data region, which is only writable in privileged mode, contains critical

data for the trusted kernel including data structures to control the scheduler and the current

state of tasks. The Unprivileged Initialized Global Data region and the Unprivileged Unini-

tialized Global Data region contain other global data for trusted kernel, untrusted kernel,

and application tasks. These two regions do not contain any control data.
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Similarly, KageOS has two heap regions. The trusted kernel stores dynamically allocated

data in the Privileged Heap region. Notably, the Privileged Heap contains the task control

block of all tasks. As Chapter 3.3 states, the task control block contains critical data of each

task including the stack pointer and MPU configurations. Dynamically allocated data of the

untrusted kernel and application tasks is stored in the Unprivileged Heap region. Similar to

AWS FreeRTOS, all tasks and the untrusted kernel share the same unprivileged heap. Since

dynamically allocated data of tasks and the untrusted kernel contains no control data or

critical data, there is no need to create a heap for each task and the untrusted kernel.

The Application Task Stacks region contains the stack and the shadow stack of each task.

The stack of the current foreground task is writable in unprivileged mode; the shadow stack,

as well as all stacks and shadow stacks of other tasks, are writable in privileged mode only.

Therefore, the current task cannot write to any shadow stack or the stacks of other tasks.

Since KageOS uses the same parallel shadow stack as Silhouette, the shadow stack pointer

is calculated from the stack pointer, so a stack overflow could cause the shadow stack to

overflow into unprivileged stack region. However, as Figure 3.3 shows, the memory region

before any task stack region is always either the shadow stack of the previous task or the

special Barrier Region, whose sole purpose is to prevent stack overflow. Both these two kinds

of regions are always not writable in unprivileged mode. Therefore, overflow of task stack is

not possible in KageOS.

Finally, the kernel stack and the kernel shadow stack are in separate memory regions. In

KageOS, the system initialization code and exception handlers use the kernel stack. Since

a portion of the initialization code is untrusted, and since KageOS allows developers to call

untrusted functions in exception handlers (See Chapter 3.8 for more details), there needs to be

a kernel shadow stack, and the kernel stack needs to be writable in unprivileged permission.

Every time when the system switches from the kernel stack to the task stack, KageOS resets

the kernel stack pointer to the initial address, ensuring that no data is left on the kernel

stack.
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3.4.2 MPU Configuration

In addition to the access permissions of each RAM region, KageOS also configures the MPU

to protect the Code, Peripheral, Device, and System regions in the address space. The

MPU configuration of these regions are identical to that of Silhouette [44]. KageOS sets the

Code region to be read-only and Peripheral and Device regions to be writable in privileged

permission only. KageOS also enables the processor’s default background MPU configuration

to set Peripheral, Device, and System regions to be execute-never. Finally, as Chapter 2.1.3

explains, the System region is always writable in privileged permission only regardless of

MPU configuration.

3.5 Secure API

The trusted kernel provides a secure API for untrusted kernel and application tasks to use.

Table 3.1 lists the secure API for task management available to both application tasks and

the untrusted kernel, excluding untrusted exception handlers. Table 3.2 lists the secure API

only available to the untrusted kernel, also excluding untrusted exception handlers. Finally,

Table 3.3 lists the secure API only available to untrusted exception handlers. Table 3.4

explains the data types of the arguments and returns.

To enforce Kage’s security policy, KageOS performs runtime checks in the secure API to

ensure that the arguments cannot cause the secure API or functions of the trusted kernel

called by the secure API to corrupt any control data.

KageOS limits xTaskCreateRestricted such that only the system initialization code can

create new tasks. Without any restriction, this API can be dangerous because an attacker can

corrupt the argument to change the task stack to overlap with a current task and corrupt the

stack and the shadow stack of the task. The system initialization code includes trusted code

that initializes the hardware, trusted code that initializes and starts the scheduler, untrusted

code that creates the system timer task, and untrusted code that the system timer task calls

exactly once that creates all application tasks. The system initialization code only executes
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Name(argument types): return type Description

xTaskCreateRestricted(TaskParameters t*,

TaskHandle t*): BaseType t

Create a task with given parameters. Write the task control block of
the task created to second argument. Return true if the task is
successfully created, false otherwise.

vTaskDelete(TaskHandle t): void Delete given task.

vTaskDelayUntil(TickType t*, TickType t): void
Delay current foreground task for given ticks relative to the first
argument and write the wake up tick to it.

vTaskDelay(TickType t): void
Delay current foreground task for given ticks relative to the tick
this function is called.

vTaskPrioritySet(TaskHandle t, UBaseType t): void Set the priority of given task to given value.
vTaskSuspend(TaskHandle t): void Suspend given task.
vTaskResume(TaskHandle t): void Resume given task. Do nothing if the task is not suspended.
vTaskAllocateMPURegions(TaskHandle t,

MemoryRegion t*): void

Change the MPU configuration of given task to given memory
region configuration.

ulTaskNotifyTake(BaseType t, TickType t): uint32 t

Block current foreground task and use notification as semaphore
until given ticks. Set notification value to 0 if first argument is true,
decrement value if false. Return notification value before it changes. .

xTaskNotifyWait(uint32 t, uint32 t, uint32 t*,

TickType t): BaseType t

Block current foreground task until notified or for given ticks. First
argument is notification value bits to clear before block; second
argument is bits to clear after receiving notification. Write notification
value bits received to third argument. Return true if notification is
received, false on timeout.

xTaskGenericNotify(TaskHandle t, uint32 t,

eNotifyAction, uint32 t*): BaseType t

Unblock given task and optionally update its notification value bits.
Second and third arguments specify how to update given task’s
notification value bits. Write the old notification value bits to fourth
argument. Return true if notification bits are updated successfully,
false otherwise.

xTaskNotifyStateClear(TaskHandle t): BaseType t

Clear notification state of given task without clearing notification value
bits. Return true if this function changes the notification state; return
false if no action is needed.

Table 3.1: Task management secure API for application tasks and untrusted kernel

Name(argument types): return type Description

vTaskMissedYield(void): void Request for a context switch.
xTaskPriorityInherit(TaskHandle t): BaseType t Raise the priority of given task to that of the current foreground task.
xTaskPriorityDisinherit(TaskHandle t): BaseType t Reset the priority of given task to its original value.
xTaskPriorityDisinheritAfterTimeout(TaskHandle t,

UBaseType t): void

Set the priority of given task to given priority value if the task’s current
priority is lower than the value.

pvTaskIncrementMutexHeldCount(void): TaskHandle t Increment the mutex count of current foreground task. Return its task control block.
vTaskSuspendAll(void): void Stop the scheduler.
xTaskResumeAll(void): BaseType t Resume the scheduler. Return true if a context switch is scheduled.

vTaskPlaceOnEventList(List t*, TickType t): void
Delay current foreground task for given ticks and add it to the given
event waiting list. Store the task priority and sort the list by it.

vTaskPlaceOnEventListRestricted(List t*,TickType t,

BaseType t):void

Same as vTaskPlaceOnEventList, but use the third argument to
determine whether to delay indefinitely or not.

vTaskPlaceOnUnorderedEventList(List t*, TickType t,

TickType t): void

Delay current foreground task for given ticks and add it to the given
event waiting list. Store second argument and do not sort the list.

xTaskRemoveFromEventList(List t*): BaseType t
Resume the first task in the list and remove the task from the event list.
Return true if a context switch is required, false otherwise.

vTaskRemoveFromUnorderedEventList(ListItem t*,

TickType t): void

Resume the task associated with given list item. Store second argument
to the value of list item.

Table 3.2: Task management secure API for untrusted kernel only

Name(argument types): return type Description

xTaskResumeFromISR(TaskHandle t): BaseType t

Resume given task. Do nothing if the task is not suspended. Can only
be called in exception handlers. Return true if a context switch
is required; return false otherwise.

xTaskGenericNotifyFromISR(TaskHandle t, uint32 t,

eNotifyAction, uint32 t*, BaseType t*): BaseType t

Same as xTaskGenericNotify, but write to fifth argument whether
a context switch is needed after unblocking given task.

vTaskNotifyGiveFromISR(TaskHandle t,

BaseType t*): void

Unblock given task, using notification as semaphore. Write the second
argument to true if the unblocked task has higher priority than current
foreground task. Can only be called in exception handlers. The normal
version of this API is defined as a macro of xTaskGenericNotify.

Table 3.3: Task management secure API for untrusted exception handlers only
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Data Type Internal Data Type Description

TaskHandle t tskTaskControlBlock* The pointer to a task control block

TickType t uint32 t Number of ticks

BaseType t long General data

UBaseType t unsigned long Unsigned general data

List t N/A A struct representing a doubly linked list

ListItem t N/A A struct representing a node in List t

MemoryRegion t N/A A struct to store a memory region configuration

TaskParameters t N/A A struct to store configurations of a task

Table 3.4: Data types of secure API

once, and it executes before malicious party could interfere with the system. KageOS defines

a macro for developers to specify the finite number of tasks on the system. KageOS tracks

the number of tasks created in total and adds check to xTaskCreateRestricted so that

additional tasks cannot be created. This number of tasks created is not decremented when

deleting a task, so an attacker cannot create a new task even if they manage to maliciously

delete a task.

For other task management secure API, KageOS adds runtime checks to functions that

takes in pointers in its arguments. Since secure API uses privileged store instructions, a

malicious pointer could cause the API to overwrite control-flow data such as return addresses

on the shadow stack. Within all pointers in the arguments of secure API, TaskHandle t,

which points to a task control block, and ListItem t, which points to a list item struct

inside a task control block, are the only types of pointer that points to protected memory; all

other pointers point to unprivileged memory with no control-flow data. Therefore, KageOS

performs two types of runtime checks.

For TaskHandle t, KageOS verifies if the pointer points to a valid task control block.

The trusted kernel maintains a table of pointers to task control block of task created. When

xTaskCreateRestricted successfully creates a task, xTaskCreateRestricted adds a pointer

to the task control block to the table. When a task is deleted, KageOS removes the pointer

to its task control block right before the task control block is de-allocated. With this task

control block table, KageOS could effectively check if a pointer points to a valid task control

block. ListItem t requires an additional step. ListItem t contains a pointer to the data
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structure it represents. While this pointer is not always a task control block, this is a require-

ment of vTaskRemoveFromUnorderedEventList, the only secure API function that takes in

a ListItem t pointer. Therefore, KageOS checks if the owner pointer of the ListItem t

points to a valid task control block.

For other types of pointers, KageOS checks if they point to an address within an un-

privileged memory region by comparing its address and its size with all privileged memory

regions. To perform the check, KageOS needs to know the size of the data. Thankfully,

almost all secure API functions have deterministic size of the pointer’s data, with only one

exception, vTaskAllocateMPURegions, which takes in an array of memory region configura-

tions. However, this function does not write any data to this pointer. Therefore, it is not

capable of overwriting any control-flow data stored in trusted memory.

The vTaskAllocateMPURegions API performs an additional check. As the MPU provides

hardware protection to privileged memory regions, it is important to prevent attackers from

altering the MPU configuration. Therefore, vTaskAllocateMPURegions checks if the new

MPU configuration violates any of KageOS’s MPU configuration.

The secure API for untrusted exception handlers also needs an additional runtime check.

When an untrusted exception handler calls a secure API, the handler must raise its priority

such that it cannot be interrupted by another exception with untrusted handler. To en-

force this requirement, secure API available to untrusted exception handlers verifies that the

current exception priority is set to the highest configurable priority.

For all runtime checks, KageOS executes a pre-configured failing routine if a check fails.

By default, the routine is an infinite loop.

3.6 The Untrusted Kernel

KageOS considers all kernel modules that do not directly modify tasks, the scheduler, or

access the peripheral or system regions as untrusted and applies Silhouette [44] to make

them unprivileged. Untrusting a large portion of the kernel means that only a small part of

the kernel needs to be verified as memory error-free. The data these modules use are stored in
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their corresponding unprivileged memory regions. Namely, the untrusted kernel modules use

the unprivileged heap for dynamic memory allocations. Different from FreeRTOS, KageOS

stores the event list item of each task outside of its task control block. Instead, the event list

items of all tasks are stored separately in the unprivileged uninitialized global data region

because they are not control data. The event list item data structure of each task includes data

such as a pointer to the task control block and a 32-bit value. Untrusted kernel modules such

as the queue use this data structure to maintain a list of tasks waiting on data or resources.

Other data of kernel modules that are now untrusted is stored either in the unprivileged

initialized data region or in the unprivileged uninitialized data region. This configuration

reduces the number of secure API required and the size of the trusted data.

The untrusted kernel also includes an unprivileged version of the C library. Since the

trusted kernel, the untrusted kernel, and application tasks all use the C library, KageOS

needs to provide two sets of the C library such that the trusted kernel calls the default C

library with regular store instructions, and the untrusted kernel and tasks call the unprivileged

C library with unprivileged store instructions. The untrusted kernel and tasks should not

call the default C library functions because the default C library functions such as memset

could overwrite protected data if the pointer argument is corrupted and points to a privileged

memory region. Duplicating the C library inevitably inflates the code size. The exact amount

of code size increase depends on the number of C libraries used by tasks because when building

the binary, the linker only links C library functions that are used.

3.7 Protecting Processor State

In an operating system with context switching and exception handling support, the kernel

needs to store the processor state to memory during context switch or when an exception

occurs [15]. The processor state contains critical control-flow data including the current

program counter and the stack pointer. The processor state needs to be protected in order

to prevent control-flow hijacking.

The processor state KageOS protects includes all general purpose registers, the LR link
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register, the program status register, the CONTROL register, the stack pointer, and all float-

ing point registers if the processor supports floating point, which is optional on ARMv7-M

architecture [12]. For exceptions, KageOS also protects the exception return address.

KageOS stores processor state in privileged memory regions during context switching and

exception handling. ARMv7-M provides a PendSV interrupt to efficiently switch context [12].

As Chapter 2.1.6 explains, the processor automatically saves a subset of the processor state

on exception entry. During a context switch, the PendSV handler of KageOS first copies the

registers that are automatically spilled by the processor from the task’s stack to the task’s

shadow stack. Then, the handler stores the rest of the processor state to the task’s shadow

stack and calls the scheduler function to decide the next task to run.

The scheduler function from FreeRTOS [3]also checks for stack overflow. This stack over-

flow check is necessary because in a situation where the task first decrements the stack pointer

and then store data to the stack, a context switch may occur between these instructions. As

Chapter 2.1.6 states, the processor automatically pushes a subset of registers to the current

stack. If decrementing the stack pointer causes stack overflow, the automatic register spilling

and the trusted PendSV handler may corrupt the memory region before the task stack region,

which could be a task shadow stack, without violating the MPU configuration.

After the scheduler function returns, the handler loads the processor state of the next

task that are not automatically saved by the processor from its shadow stack. Finally, the

handler copies the other processor state from the task’s shadow stack to its stack and returns.

No untrusted code could execute during PendSV handler’s execution (See Chapter 3.8), so the

processor state restored to the task stack could not be corrupted before the handler returns.

3.8 Exception Handling

The kernel exception handlers, which include the handler of SysTick, PendSV, SVCall,

MemManage, BusFault and HardFault, are in the trusted kernel because they either need

to access privileged memory regions or only execute when an error occurs.
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KageOS allows developers to configure hardware-specific exception handlers and the

UsageFault handler to execute functions in the untrusted kernel in order to avoid adding

code to the trusted kernel unnecessarily. However, these exceptions must have lower excep-

tion priority than any of the exceptions whose handler is in the trusted kernel. Currently,

Kage relies on the developer to correctly configure exception priority. Since trusted code in

exception handlers use the unprivileged kernel stack to store local variables, this restriction

prevents untrusted code from corrupting data of trusted kernel saved on the kernel stack.

Moreover, because this restriction prevents untrusted code to preempt exception handlers

in the trusted kernel, these trusted exception handlers do not need to spill processor state

on the shadow stack: the system will not run any untrusted code when a trusted exception

handler executes, so processor state saved on the regular stack cannot be corrupted. By the

time that untrusted code can execute, the trusted exception handler has already returned

and popped the saved processor state.

KageOS’s exception handling mechanism needs to prevent the kernel stack from overflow,

with similar reasons that the scheduler function in context switching performs stack overflow

check. While the MPU policy of the task shadow stack before the kernel stack prevents

untrusted exception handlers to write to an overflowed stack, an untrusted exception handler

may decrement the stack pointer first and then write to it. If a trusted exception handler or

an exception dispatcher preempts the current handler after the stack pointer is decremented

but before the store instruction, then ARMv7-M’s automatic register spilling mechanism on

exception entry could overwrite protected data in the task shadow stack region.

As a task can call secure API to execute functions in trusted kernel, the secure API and

trusted kernel function it calls use the task stack to store local variables. This behavior can

also cause a potential security risk: when the task calls a secure API and is executing code

in trusted kernel, an exception whose handler is untrusted may occur. In this situation, the

task stack is still writable in unprivileged mode, so the untrusted handler could corrupt local

variables of the secure API on the task stack.

To mitigate these two issues, KageOS disables privileged write access to task stacks and
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task shadow stacks when entering an untrusted exception handler. Since all exception han-

dlers use the kernel stack, disabling write access to task stacks and task shadow stacks does

not affect the execution of any exception handler, trusted or untrusted. After the untrusted

handler finishes, KageOS restores the MPU to the original configuration. In the case of nested

exceptions with untrusted or trusted exception handlers preempting an untrusted exception

handler, KageOS restores the MPU to the original configuration after all exception handlers

finish.

Beside a task, an untrusted exception handler can also call secure API. In this case,

the untrusted exception handler must raise its priority to prevent other untrusted exception

handlers from preemption.

To protect the processor state when executing an untrusted exception handler and to

perform the above MPU re-configuration, KageOS adds a trusted “dispatcher” function to

each untrusted exception handlers. When an exception whose handler is untrusted occurs,

KageOS would call this dispatcher function first instead of directly calling the untrusted

handler. The dispatcher function saves all processor state to the shadow stack and configures

the MPU such that the entire task stack and task shadow stack region is read-only in both

privileged and unprivileged mode. Then, the dispatcher calls the untrusted exception handler.

After the handler returns, the dispatcher restores the processor state. If this exception does

not preempt any other untrusted exception, the dispatcher restores the MPU configuration.

When saving and restoring the processor state, the dispatcher temporarily sets its priority

to the maximum configurable priority, preventing other untrusted exception handlers from

preempting it.
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Chapter 4

Implementation

Our implementation of Kage includes two main components: the Silhouette compiler system

and the KageOS real-time OS. We modified the original prototype of Silhouette [44], and we

built KageOS by modifying and extending Amazon AWS FreeRTOS v1.4.9 [2]. We choose

to target STM32L475 Discovery board [36] for this prototype instead of the more powerful

STM32F469 Discovery board [37] used in Silhouette project because the STM32L475 board is

officially supported by AWS FreeRTOS, and the STM32F469 board is not [4]. We modified

less than 20 lines of code in Silhouette implementation. We measured the line count of

KageOS and an unmodified AWS FreeRTOS v1.4.9 using SLOCCount [42]. KageOS adds

1129 lines of code to AWS FreeRTOS.

4.1 System Assumptions

We make two assumptions on our implementation. First, identical to the original Silhou-

ette [44], we assume that the Hardware Abstraction Layer (HAL), provided by the hardware

manufacturer, is part of the trusted computing base and is not transformed by Silhouette’s

compiler passes. Then, we assume that the hardware includes a memory protection unit

(MPU), as Silhouette relies on the MPU to protect shadow stacks and other security-critical

memory regions.
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1 str.w lr , [sp , #4092] // Save LR to mem[sp + 4092]

Listing 4.1: Instructions to Spill Return Address

1 add sp , #4 // Restore the stack pointer

2 ldr.w pc , [sp , #4092] // Lode PC from mem[sp + 4092]

Listing 4.2: Instructions to Restore Return Address

4.2 Changes of Silhouette

Because of the difference between bare-metal applications and applications running in Ka-

geOS, we need to modify the implementation of Silhouette in order to use it as a component

of Kage.

Our prototype of Kage restricts the stack size of each task and the kernel stack to be 4KB,

due to extremely limited 128KB of RAM on the STM32L475 Discovery board. Since ARMv7-

M’s store immediate and load immediate instructions support an immediate offset up to 4KB,

Silhouette’s shadow stack transformation pass no longer need to insert the shadow stack

offset to the IP register before storing to the shadow stack or loading from the shadow stack.

Silhouette now inserts only one instruction in function prologue before saving callee-saved

registers to the regular stack. Listing 4.1 shows the instruction added in function prologue.

Since Silhouette keeps the original store instruction of LR, Silhouette does not decrement

the stack pointer after the store instruction. Silhouette inserts two instructions in function

epilogue after restoring other callee-saved registers. Listing 4.2 shows the instructions added

in function epilogue. As Silhouette removes the original load instruction of return address,

Silhouette needs to increment the stack pointer.

As Chapter 3.5 explains, part of the kernel is trusted and should not be transformed

by Silhouette. FreeRTOS provides an optional privileged functions section in the Code

region to store privileged kernel functions. KageOS uses this section to store all trusted kernel

functions. Silhouette detects this attribute and skips the function if this attribute exists.
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4.3 KageOS

As Chapter 2.3 explains, AWS FreeRTOS executes both application code and the kernel in

privileged mode and disables the MPU by default. First, we configured FreeRTOS to use

the MPU. Since Silhouette allows all code to execute in privileged mode while providing

protections, KageOS keeps the AWS FreeRTOS’s default configuration of running everything

in privileged mode. We modified FreeRTOS such that the prototype matches the design in

Chapter 3.

4.3.1 Un-trusting the Kernel

The FreeRTOS kernel annotates privileged kernel functions with privileged functions

attribute. In KageOS, only the scheduler, task management module, the kernel list module,

the trusted dynamic allocation and de-allocation module, and the device-specific support

module (including exception handlers) are trusted. We removed the privileged functions

attribute from all other kernel functions. These functions include the queue, stream buffer,

event groups, and the timer modules.

Both trusted and untrusted kernel use the kernel list module to access list data structure.

KageOS includes another copy of list module for untrusted kernel such that trusted kernel can

call the trusted list module to access protected memory while the untrusted kernel uses the

untrusted list module. Similarly, KageOS provides two dynamic allocation and deallocation

modules. The trusted kernel calls the trusted version, which allocates memory from the

Privileged Heap memory region, and untrusted kernel and application tasks call the untrusted

version, which allocates memory from the Unprivileged Heap region.

For C library, KageOS includes the default pre-compiled C library, but only the trusted

kernel uses it. For the untrusted kernel and tasks, KageOS includes another C library from

Newlib [1], a C library designed for embedded systems. In our prototype of KageOS, we only

imported functions that the untrusted kernel needs.

The FreeRTOS kernel uses another attribute, privileged data, to annotate privileged

global variables. In KageOS, only the scheduler data and task management data have this
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attribute. All other data in the kernel are now untrusted, so we removed this attribute from

these variables.

AWS FreeRTOS assumes that everything runs in privileged mode, and kernel functions

added by Amazon AWS do not have the privileged attribute. This means that Silhouette

transforms them by default, and they are untrusted.

In KageOS, there are 66 functions in the trusted kernel (excluding pre-compiled library

functions), 1042 functions in the untrusted kernel, and 834 functions in the HAL library [35].

4.3.2 Isolating Trusted and Untrusted Memory

As Chapter 3.4.1 explains, KageOS provides a privileged heap for the trusted kernel and an

unprivileged heap for untrusted kernel and application code. FreeRTOS only provides one

heap and uses the same heap for all dynamically allocated data. We added another set of

heap API for unprivileged data and replaced all function calls to the heap API in untrusted

code with the unprivileged heap API.

KageOS configures the MPU as Figure 3.3 and Chapter 3.4.2 describes. Table 4.1 shows

the detailed MPU configuration of KageOS prototype. The STM32L475 Discovery board has

two disconnected RAM regions. The first region, RAM2, is 32KB, and the other region, RAM,

is 96KB. ARMv7-M supports overlapping MPU regions [12]. Therefore, KageOS configures

the entire RAM region as unprivileged Read/Write first and then configures the privileged

regions as privileged only Read/Write. The only difference between the implementation of

our prototype and the design is that the implementation does not include the barrier region

before the stack of the first task. Since the application task stacks region is at the beginning

of RAM hardware region, and as Figure 2.1 shows, a stack overflow of the first task will cause

the system to write to the unmapped region between RAM2 and RAM. This will trigger a

BusFault and will fail. The number of configurable MPU regions varies by hardware. The

STM32L475 Discovery board only allows eight MPU regions, and KageOS uses all eight

regions to protect all security-critical regions. Therefore, the vTaskAllocateMPURegions

secure API, which allows an application task to change its MPU configuration, will not
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Hardware Region MPU Region Access

FLASH Code Privileged RO, Unprivileged RO

RAM2 Privileged heap and privileged data Privileged RW, Unprivileged RO, XN

RAM2 Unprivileged initialized global data Privileged RW, Unprivileged RW, XN

RAM Entire RAM region Privileged RW, Unprivileged RW, XN

RAM Application task stacks Privileged RW, Unprivileged RO, XN

RAM Kernel shadow stack Privileged RW, Unprivileged RO, XN

RAM Stack of current foreground task Privileged RW, Unprivileged RW, XN

Peripheral Peripheral Privileged RW, Unprivileged RO, XN

Table 4.1: MPU configurations

RW = Read/Write, RO = Read-only, XN = Execute-Never

succeed in any condition in our prototype.

4.3.3 Secure API

The trusted kernel provides a set of secure API for untrusted kernel and application tasks. We

added xVerifyTCB and vVerifyUntrustedData API to check TCB pointer and other types

of pointer, respectively. Each secure API function that takes one or more pointer arguments

calls these two functions in the beginning of the function to verify the pointers. We added

ulPortGetBASEPRI API to check the current exception priority. Secure API for untrusted

exception handlers calls this function to verify that the current exception priority is set to

the highest configurable priority.

For vTaskAllocateMPURegions, which takes in a new set of MPU configuration, we added

checks in the beginning of the function to ensure that the new MPU configuration does not

violate the MPU policy of KageOS. However, since our prototype uses all eight MPU regions

that our board supports, this API function can never succeed in the prototype.

For all runtime checks, KageOS uses FreeRTOS’s configASSERT(cond) macro to check

conditions. If cond is false, then KageOS executes the failing routine defined in the configASSERT

macro. By default, the failing routine is an infinite loop.

4.3.4 Context Switching

ARMv7-M uses an interrupt, PendSV, to handle context switching. The PendSV handler
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in FreeRTOS saves the processor state of current foreground task its task stack, calls the

scheduler function to select the next task with highest priority from the list of ready tasks,

and restores the processor state of the next task from its task stack. KageOS stores processor

state to the task’s shadow stack instead of the its regular stack.

While the scheduler function in FreeRTOS contains stack overflow check, it only checks

whether the last 16 bytes on the stack is overwritten. KageOS has an additional condition

to the check: it checks whether the task stack pointer is smaller than the beginning of the

task stack.

4.3.5 Exception Handling

Our prototype only contains exception handlers required for the system to operate, which

are the kernel exception handlers in the trusted kernel. As trusted exception handlers do

not back up the processor state to the shadow stack, the exception handlers from FreeRTOS

work as intended without modification.

To evaluate the overhead of untrusted exception handlers, we implemented a dummy

exception handler and its dispatcher. The exception handler itself does not contain any

code, and this exception is not declared in the vector table. However, the dispatcher is fully

functional. The dispatcher first sets its priority to the highest configurable priority to prevent

other untrusted exception handlers from preempting it. Then, the dispatcher copies registers

that are saved by the processor to either the task shadow stack or the kernel shadow stack,

depending on where these registers are spilled, and it spills other registers, the current value

of the control register, the lr register that contains data on how this exception returns,

and the current active stack pointer to the kernel shadow stack. After spilling all processor

state, the dispatcher configures the MPU to set the entire task stack and shadow stack

region to read-only in both privileged and unprivileged mode. Then, the dispatcher restores

the priority of the exception and calls the exception handler. After the exception handler

returns, the dispatcher sets the priority to the highest configurable priority again. Then, the

dispatcher checks if it is in a set of nested exceptions, preempting another exception. If not,
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the dispatcher restores the MPU configuration. It then restores all processor state it saves

that are not automatically saved by the processor from the kernel shadow stack. Finally,

the dispatcher copies the registers that are saved by the processor from the corresponding

shadow stack to the stack, restores the exception priority, and returns.

4.4 Limitations of Implementation

There are a number of limitations in our current implementation of Kage.

First, we have not made changes to Silhouette’s privielged code scanner. As the trusted

kernel of KageOS needs to use privileged instructions for context switch and exception han-

dling, the privileged code scanner needs to be modified to allow trusted kernel functions to

contain the pivileged instruction. The privileged code scanner should also check the usage

of secure API in tasks to ensure that tasks only call secure API functions they are allowed

to call. Since the privileged code scanner is not required for evaluation and does not affect

evaluation results, we currently disable it in Kage.

Second, our current implementation keeps the parallel shadow stack [21] design of Sil-

houette. While parallel shadow stack works well in bare-metal applications on embedded

systems, it causes much higher RAM usage in an embedded OS as it requires double the

stack memory of each task. Also, our implementation of the shadow stack requires all tasks

to have stacks with the same size in order to properly access the parallel shadow stack.

Finally, our current implementation only imports required untrusted C library functions

for the untrusted kernel. Since KageOS needs both the default C library for the trusted kernel

and an untrusted C library for the untrusted kernel and tasks, we would need to rename

untrusted C library functions such that they can exist with their trusted counterparts.
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Chapter 5

Security Discussion

In this chapter, we discuss Kage’s security guarantees and how Kage enforces them.

5.1 Overview

We list the security guarantees of Kage:

1. On function return, the return instruction will always branch to its legal return address

saved during function prologue.

2. On context switch, the processor state of the upcoming foreground task will always be

the same values they were immediately before the task is previously switched out. When

a task first starts executing, its initial processor state, including the program counter

and the control register, will always be the initial values defined in task initialization.

3. On exception handling return, the processor state will always be the values immediately

before the exception occurs.

4. Only the trusted kernel code can access task management data and scheduler data,

including task control blocks, which contain control data, and scheduler’s ready and

pending list, which contain pointers to task control blocks.



30

Kage inherits the first guarantee from Silhouette [44]. Silhouette enforces this security

guarantee with its protected shadow stack and forward-edge CFI checks. The same CFI check

mechanism applies to application code and untrusted kernel code in KageOS. The protected

shadow stack guarantees that function prologue code saves the return address of the caller

function on the shadow stack, function epilogue code loads the return address from the shadow

stack, and the shadow stack cannot be corrupted. The CFI checks ensures that a function

cannot jump to the middle of a function, corrupting the stack pointer with unmatched stack

pushing or popping. The second and third guarantees both require protecting processor state

when it is spilled to the memory. The last guarantee requires task managent and scheduler

data to be protected.

In this chapter, we first discuss how Kage stores all of the above security-critical data

in a protected memory region. Then, we discuss how Kage protects the protected memory

regions from corruption.

5.2 Storing Security-Critical Data

Kage ensures that scheduler data, task management data and control data are saved in

protected memory regions through a combination of memory configuration, compile-time

transformation, and spilling at runtime. Chapter 3.4 explains how Kage prevents untrusted

code to change data saved in protected memory regions. To prevent the trusted kernel from

unintended behaviors, Kage also ensures that the local and global data of the secure API

cannot be corrupted by untrusted code.

5.2.1 Scheduler Data and Task Management Data

Kage protects all scheduler-related data and task management data. Scheduler-related data

includes scheduler lists (ready lists, the delay list, the suspend list, and the pending list)

that consist of pointers to task control block of tasks in different status, the pointer of the

current running task, and the status of the scheduler. Task management data includes all

task control blocks, and the list of pointers to initialized tasks.
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Kage needs to protect these scheduler data and task management data. The task control

block contains security-critical data including the stack pointer of the task and the task-

specific MPU configuration. The runtime checks of secure API that takes an argument of a

task control block pointer uses the list of pointers to initialized tasks to verify the legality of

the argument. The scheduler lists include pointers to task control blocks that will be executed.

Without protecting the scheduler lists, an attacker could corrupt the ready list and point the

pointer to garbage data such that the scheduler would switch context to execute arbitrary

code pointed by the garbage data.

KageOS stores the task control blocks in the Privileged Heap region. When creating a new

task, KageOS allocates the memory for the task control block dynamically on the privileged

heap. For other scheduler and task management data, KageOS stores them in the Privileged

Data memory region by statically allocating these data in this region at compile time.

5.2.2 Secure API Data

Kage protects the data of secure API from corruption. As part of the trusted kernel, secure

API uses the Privileged Data memory region for global data and the Privileged Heap region

for dynamically allocated data. However, since application tasks and the untrusted kernel

can call secure API, secure API uses either the task stack or the kernel stack for local data,

meaning that the local data could be corrupted by untrusted code. Kage takes several

measures to prevent this situation.

First, all functions that a secure API calls are either functions from the trusted kernel or

untrusted kernel functions that do not store any data to the memory. These untrusted kernel

functions simply return data requested by its caller and do not contain any store instruction

other than its prologue or epilogue. An attacker cannot use these untrusted functions to

corrupt the stack data of a secure API.

Second, during context switch, KageOS disables unprivileged write permission of the stack

of all tasks other than the upcoming foreground task. This ensures that when a context switch

occurs when a task calls a secure API, the secure API’s local data cannot be corrupted by
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the other tasks.

Third, when an exception with untrusted handler occurs when a task calls a secure API,

the handler’s dispatcher configures the MPU to temporarily disable unprivileged write access

of the task stack. This prevents an untrusted exception handler from corrupting the stack

data of a secure API called by a task.

Finally, untrusted exception handlers must raise their priority before calling a secure API

such that the exception cannot be preempted by another exception with untrusted handler.

This prevents an untrusted exception handler from corrupting the stack data of a secure API

called by an untrusted exception handler.

5.2.3 Control Data

Kage ensures that all control data is saved in protected memory regions. This includes the

return address and processor state for both applications and the kernel.

Kage uses Silhouette’s shadow stack transformation [44] to store return addresses to a

shadow stack. For application code, return addresses are stored in the shadow stack of its

task. For kernel code called by a task, return addresses are stored in the shadow stack of

the calling task. For trusted kernel code in system initialization and exception handling,

return addresses are stored in the kernel shadow stack region. Silhouette’s shadow stack

transformation loads the return address from the corresponding shadow stack in the function

epilogue to ensure that the function returns to its correct return address.

In both context switching and exception handling, processor state is saved on one of the

shadow stacks, with the exception of the task stack pointer, which is in the task control

block. The kernel stack pointer is never saved to the memory: when the kernel transfers

control back to a task, it resets the kernel stack pointer to the initial value. For the rest of

this section, processor state refers to the processor state beside the stack pointer.

When initializing a task, KageOS initializes the processor state values on the task’s shadow

stack and initializes the stack pointer. During context switch, KageOS’s PendSV handler

saves the processor state of current foreground task to the task’s shadow stack, saves the
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stack pointer to the task control block, loads the stack pointer of the next task from its task

control block, and loads other processor state of the next task from the task’s shadow stack.

For exception handling, all untrusted exception handlers use their dispatcher to spill the

processor state to a shadow stack. Each untrusted exception handler has a corresponding

dispatcher. The dispatcher saves processor-spilled registers to either the task’s shadow stack

or the kernel shadow stack, depending on the execution mode before the exception occurs.

The dispatcher saves the other processor state, along with the task stack pointer, to the

kernel shadow stack. To prevent corruption of the processor-spilled registers when they are

on the stack, the dispatcher raises its priority to prevent other untrusted exception handlers

from preempting it when saving or restoring the processor state.

Trusted exception handlers do not spill the processor state to a shadow stack because when

a trusted exception occurs, no untrusted code could execute until the exception returns: the

priority of any exception whose handler is trusted is higher than the priority of any exception

whose handler is untrusted, and all functions called by trusted exception handlers are trusted.

5.3 Securing Protected Memory Regions

With critical data in the protected memory regions, Kage ensures that an attacker cannot

overwrite data in protected memory regions. First, Kage configures the MPU to only allow

write access in privileged permission. Then, Kage transforms application code and untrusted

kernel code to only use unprivileged write instructions, and KageOS performs runtime checks

in trusted secure API that unprivileged code can call to ensure that unprivileged code cannot

take advantage of the secure API to corrupt protected memory regions or nullify the MPU

configuration.

5.3.1 Application Code and Untrusted Kernel Code

Kage uses Silhouette’s store hardening pass [44] to transform the application code and the

untrusted kernel code. The store hardening pass uses ARMv7-M’s unprivileged store instruc-

tions, which always checks the unprivileged access permission when writing to the memory
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regardless of the current permission mode. Silhouette replaces all store instructions of ap-

plication code and untrusted kernel code with unprivileged store instructions, except for

the store instruction to spill return address to the shadow stack in function prologue. This

means that store instructions in the function body cannot overwrite data stored in protected

memory regions. However, the privileged write instruction to save the return address could

potentially overwrite privileged memory if the current stack pointer is corrupted.

Silhouette guarantees the integrity of stack pointer for bare-metal applications. First,

Silhouette ensures that the stack pointer is never spilled to the memory. Second, it prevents

stack overflow and stack underflow. Finally, it uses forward-edge CFI checks to prevent

indirect call from branching into the middle of a function. Kage directly inherits the last

enforcement. With additional mechanisms to prevent stack overflow in context switching (See

Chapter 3.7) and exception handling (See Chapter 3.8), Kage persists the second enforcement

as well. However, since KageOS supports context switching, KageOS has to save the stack

pointer of a task to the memory when it is not running. As Chapter 2.3 states, the stack

pointer of each task is saved in the task’s task control block. Task control blocks are saved

in the Privileged Heap region, which is protected and only writable in privileged permission.

Therefore, an attacker cannot use the store instructions in function body to overwrite the

value of the stack pointer of any task. The privileged store instruction that saves the return

address to the shadow stack saves to an address relative to the stack pointer, so unless the

stack pointer is already corrupted, this privileged store instruction cannot be used to alter

the stack pointer. The secure API of the trusted kernel performs checks at runtime to prevent

writing into incorrect address (See Chapter 5.3.2). Therefore, the attacker cannot overwrite

the stack pointer saved in task control blocks. Conbining this property with stack overflow

and underflow prevention and CFI checks, Kage guarantees the integrity of stack pointer.

5.3.2 Runtime Checks of Secure API

The trusted kernel of KageOS provides a list of secure API for application code and the

untrusted kernel to call. Since the secure API has full privileged permission with regular store
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instructions, it could potentially overwrite data in protected memory regions if the arguments

are altered by an attacker. KageOS adds runtime checks to secure API for different types of

arguments.

For secure API that takes a pointer to task control block, KageOS checks if the pointer is

pointing to a valid task control block. For other types of pointer, KageOS checks if it points

to an unprivileged memory region. For MPU re-configuration, KageOS checks if the new

MPU configuration violates any of KageOS’s MPU policies. Finally, for secure API available

to exception handlers, KageOS checks if the exception priority is the highest configurable

priority value such that during the execution of the secure API, another untrusted exception

handler cannot preempt the current exception. If a check fails, KageOS executes a code

sequence defined by the developer. By default, the system stops by executing an infinite

loop.
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Chapter 6

Evaluation

We evaluate the performance and code size overhead of Kage. For performance overhead,

we use microbenchmarks to measure the overhead that Kage introduces by untrusting the

majority of the RTOS kernel, adding runtime checks to the secure API, and protecting

processor state in context switch and exception handling. For code size overhead, we measure

the code size of the kernel and evaluate the overhead incurred by KageOS’s changes to the

kernel and Silhouette’s transformations. For baseline, we measure the code size of the same

task running on an unmodified AWS FreeRTOS [2], compiled with an unmodified LLVM 9.0

compiler [31], the same version that Silhouette [44] prototype uses. By default, the FreeRTOS

for our discovery board disables the MPU, and we use this configuration as the baseline. To

better understand Kage’s overhead, we also use a configuration of FreeRTOS with the MPU

enabled.

We decided to use only microbenchmarks in our evaluation because currently there is

no benchmark suite that can represent the performance of the FreeRTOS kernel. Common

benchmark suites for embedded systems such as BEEBS and CoreMark [10] are designed such

that they can run on bare-metal devices without an OS. They make no use of multitasking,

system calls, or exception handling. Therefore, running these benchmark suites in Kage

is meaningless beside showing the overhead of Silhouette. Running real-world FreeRTOS

applications in Kage as a benchmark is also not feasible. Most commercial applications that
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use FreeRTOS are proprietary and are limited to their specific hardware. While few open-

source FreeRTOS projects are available [22,23,28], they either target different hardware with

features specific to that hardware or require additional peripherals. More importantly, most

of these programs are hobby projects or learning projects. They cannot represent real-world

programs, and they have almost no documentation. We could not find any open-source

FreeRTOS project that requires no special hardware, represents real-world applications, and

has sufficient documentation.

We use STM32L475 Discovery board [36,38] to run all experiments. This board contains

an ARMv7-M [12] microcontroller capable of running up to 80 MHz with MPU support, 128

KB of SRAM and 1 MB of flash memory. We use the default configuration of AWS FreeRTOS

to run at 80 MHz.

For all experiments, we use the -O3 optimization level to better simulate real-world usages.

6.1 Performance Experiments

We designed microbenchmarks to measure the overhead incurred by Kage. In each mi-

crobenchmark written in C, we measure the processor cycles using the KIN1 library [25]; for

benchmarks written in assembly, we added code to manually reset the cycle counter and code

to read current cycle count.

We designed microbenchmarks to evaluate performance overhead of Kage in four aspects:

exception handling, secure API, context switching, and untrusted kernel modules.

For exception handling, our microbenchmark measures the overall overhead of the dis-

patcher function that copies and spills the processor state to the shadow stack and restore

them from the shadow stack. In this microbenchmark, we use the dummy exception handler

and its dispatcher as Chapter 4.3.5 describes. As this dummy exception is not declared in the

vector table, we added a function call to call the dispatcher from the function that creates ap-

plication tasks, vApplicationDaemonTaskStartupHook. In the beginning of the dispatcher,

we added code to simulate an exception by assigning the lr register with the exception

properties and added code to reset the cycle counter before the dispatcher code. After the
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dispatcher code finishes, we added code to restore the value of lr to properly return. After

the function call to the dispatcher returns, the caller function then prints the cycle count.

Since the dummy exception handler itself is simply an empty function, we believe that this

experiment can accurately show the performance overhead of the dispatcher.

For secure API, our microbenchmark measures the overhead of all types of runtime checks.

There are four types of runtime checks in the secure API of Kage: pointers to TCB, pointers to

other data types, MPU configuration, and exception priority for the secure API for untrusted

exception handlers. In our prototype, we implemented the first two checks as their own

functions, so they are easy to evaluate. We added a new dummy secure API. This API would

reset the cycle counter, call the TCB pointer check function with the pointer to the current

foreground TCB, read and print the cycle counter, and repeat this procedure for the function

that checks other types of pointer. The runtime check for MPU configuration is integrated

into the trusted function that applies the MPU configuration. As Chapter 4.3.2 states, our

prototype uses all eight MPU regions available on our board, so the secure API that changes

the MPU configuration can never succeed. However, this trusted function that applies the

MPU configuration is also called when creating a new task. While a task cannot declare its

custom MPU regions in our prototype, we configured the arguments when creating the task

such that this trusted function would check the MPU region of the task’s stack. We added

code to reset the cycle counter in this trusted function immediately before the checks, and

we added code to read the cycle counter after the checks. For the runtime check of exception

priority, we added the microbenchmark in the SVC handler. We defined a new SVC number,

and the SVC handler would execute the microbenchmark sequence if the SVC number matches.

Similar to other runtime checks, we added code to reset the cycle counter before calling the

check and code to record the cycle count after the check.

For context switching, our microbenchmark measures the overall overhead of a context

switch. This overhead includes overhead of copying and spilling processor state to the shadow

stack and restoring processor state from the shadow stack. ARMv7-M uses PendSV interrupt

to switch context. The PendSV handler of Kage is written entirely in assembly, so we had to
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add code to manually write to the cycle counter to reset it, in the beginning of the handler.

Immediately before the handler returns, we added code to read the cycle counter and store

the value to a global variable. We made the same changes on AWS FreeRTOS and compare

the differences in cycle counts.

Finally, for untrusted kernel modules, our microbenchmark measures the overhead Silhou-

ette incurs to kernel API that are now untrusted. Specifically, we evaluate the performance

of the queue and the stream buffer API [3]. We selected these two modules for evaluation

because we can control their performance factors easily: they do not depend on network

connectivity, they only require minimal amount of arguments, and they are not triggered by

timer events. Both modules provide features to transfer data between different scopes, but

they are not the same. The queue API provides a queue that multiple senders and receivers

can transfer data; the stream buffer API provides a buffer that exactly one sender can send

data to exactly one receiver. In both cases, the sender and the receiver can be either a task or

an exception handler, but only the stream buffer can transfer data between tasks executing

on different cores on a multi-core system. We programmed our microbenchmark such that it

can use either a queue or a stream buffer to transfer some dummy data. We use two tasks as

the sender and receiver in both cases. We first created a new queue or stream buffer before

creating the sender and receiver tasks, and we added code to measure the amount of cycles to

create the queue or the stream buffer. Then, we create the tasks such that the receiver task

has higher execution priority than the sender task, ensuring that the receiver task will execute

first. When the receiver task starts, it resets the cycle counter and calls xQueueReceive()

or xStreamBufferReceive() to wait for data. Then, as the receiver is blocked waiting for

the data, the sender task starts and calls xQueueSend() or xStreamBufferSend() to send

data. The corresponding API will then unblock the receiver task, and since the receiver task

has higher priority, the system will perform a context switch back to the receiver task. The

receiver task then records the cycle count and prints it.

For application tasks, we believe that Kage incurs similar performance overhead as Sil-

houette [44], with the addition of the overheads of FreeRTOS features discussed above. In
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Microbenchmark Time (cycle)

Exception dispatcher 313

Secure API: task control block 70

Secure API: other pointers 72

Secure API: MPU configuration 258

Secure API: Exception priority 5

Table 6.1: Performance overhead of exception handling and secure API incurred by Kage

Microbenchmark
FreeRTOS
(cycle)

FreeRTOS w/ MPU
(cycle)

Kage
(cycle)

Context switching 197 222 338

Queue: create 573 712 871

Queue: send and receive 2094 2736 3827

Stream buffer: create 653 730 957

Stream buffer: send and receive 2413 2750 3564

Table 6.2: Performance overhead of context switching and untrusted kernel API

summary, Silhouette incurs a geomean of 1.2% performance overhead in CoreMark-Pro bench-

mark suite [24] and a geomean of 3.6% performance overhead in BEEBS benchmark suite [32].

6.1.1 Experiment Results

Table 6.1 and Table 6.2 summarize the results of the microbenchmarks. Table 6.1 shows

performance overhead of new security checks Kage provides that FreeRTOS does not have,

so there is no baseline data. Table 6.2 shows performance overhead of mechanisms where

Kage differs from FreeRTOS.

The exception handling dispatcher incurs 313 cycles of overhead due to backing up the

processor state, changing the MPU configuration, and restoring the processor state. As

Chapter 3.8 discusses, only untrusted exception handlers need to use the dispatcher. Trusted

exception handlers that execute at a high frequency, such as the SysTick handler and the

PendSV handler, do no have this overhead.

The secure API runtime checks incurs minimal overhead overall. Within the four types

of runtime checks, most secure API uses only the runtime check of task control block and

the check of other pointers. Nineteen of 26 secure API functions call the runtime check of
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task control block. Ten of the secure API functions call the runtime check of other pointers.

Within these secure API, eight functions call both the runtime check of task control block and

other pointers. Of the 26 secure API functions, nineteen of them contain the runtime check

of task control block. Ten of them contain the runtime check of other pointers. Only one

secure API function calls the check of MPU configuration. The three secure API functions

for untrusted exception handlers contain the runtime check of exception priority. Nine of the

secure API functions contain more than one runtime check. Within these nine functions, five

contain both runtime checks of task control block and other pointers. One of them contains

both runtime checks of task control block and exception priority. Two functions contains

the runtime checks of task control block, other pointers, and exception priority. Finally,

one function contains the runtime checks of task control block, other pointer, and the MPU

configuration, adding up to a total of 397 cycles of overhead in runtime checks.

Context switching incurs high performance overhead. Comparing to FreeRTOS with

default configuration, the context switching mechanism of Kage slows down by 71.57%; com-

paring to FreeRTOS with MPU enabled, the performance overhead is 52.25%. The difference

in context switching code between FreeRTOS with MPU and FreeRTOS without MPU is

that during a context switch, the kernel would read the MPU configurations of the next task

from the task control block and write them to the MPU control registers, taking slightly more

cycles. Comparing to FreeRTOS with MPU, the main sources of performance overhead in

KageOS’s context switching code are additional instructions to backup and restore processor

state that are automatically spilled by the hardware. In ARMv7-M, the hardware automat-

ically saves seven general-purpose registers and the exception return address to the stack on

exception entry [12]; if the processor supports floating point operations, the hardware further

saves sixteen floating-point registers and the fpscr register to the stack. As Chapter 3.7

states, KageOS copies this part of the processor state to the shadow stack.

The queue and the stream buffer untrusted API also incur relatively high performance

overheads. When creating a new queue, Kage incurs an overhead of 52.01%, comparing

to baseline, and 22.33% comparing to FreeRTOS with MPU. In the case of sending and
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receiving data in the queue, Kage incurs an overhead of 82.76% comparing to baseline and

39.88% comparing to FreeRTOS with MPU. To better understand the source of the overhead,

we ran the queue experiment with KageOS and an unmodified LLVM 9 [31] compiler. This

time, creating a queue took 776 cycles, and sending and receiving data took 3559 cycles.

This shows that Silhouette is the main source of overhead when creating the queue but not

when sending and receiving data. The main sources of overhead when sending and receiving

data in the queue are calls to the secure API and context switching. When a task calls

xQueueReceive to receive data from the queue, since the queue is empty at that time, the

function calls a secure API, vTaskPlaceOnEventList, to set the status of the task to delayed

and waiting. This secure API that contains two of the above runtime checks, the check of task

control block and the check of other pointers. Then, the function requests a context switch

to wait for the data to appear in the queue. After that, the receiver task calls xQueueSend

to send data to the queue. This function calls the xTaskRemoveFromEventList secure API

to remove the receiver task from delayed and waiting status. This secure API also contains

the same set of runtime checks as vTaskPlaceOnEventList. Finally, the function requests a

context switch to resume the receiver task.

The stream buffer untrusted API incurs similar performance overhead with the queue

API. When creating a new stream buffer, Kage incurs a performance overhead of 46.55%

comparing to baseline, and 31.10% comparing to FreeRTOS with MPU. When sending and

receiving data in the stream buffer, Kage incurs 47.70% of performance overhead comparing

to baseline and 29.60% comparing to FreeRTOS with MPU. Similar to the queue API, we

also ran the stream buffer microbenchmarks with an unmodified LLVM 9 compiler: creating a

new stream buffer took 849 cycles, and sending and receving data took 3358 cycles. Another

source of performance overhead when creating a new stream buffer is the C library. While

the queue creation API does not contain any call to the C library, the stream buffer initializes

the buffer using C library function memset. We ran the stream buffer creation experiment

again with the default memset library function instead of the Newlib [1] library function and

with an unmodified LLVM 9 compiler, and the execution time of creating a stream buffer was
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reduced to 790 cycles, indicating that the memset Newlib library function is slower than the

function in the default C library. Sending and receiving data in the buffer stream has similar

sources of overhead with sending and receiving data in the queue. While the exact secure API

is different, xStreamBufferSend and xStreamBufferReceive both call secure API functions

that contain runtime checks, and these two functions also cause context switches.

For real-time operating systems, one of the most important features is predictability [7].

While Kage incurs high performance overhead comparing to FreeRTOS, Kage still persists

predictability in all its modules. For example, excluding the impact of code layout, on the

same hardware and with the same configuration, the exception dispatcher and context switch-

ing should take the same number of cycles accross different runs. While the performance of

some of the features varies depending on task configurations, the performance is still overall

predictable. For example, the secure API runtime check of task control block depends on

the number of tasks created, but with the same number of tasks, this runtime check should

always take the same amount of time to run.

6.2 Code Size Experiments

For code size overhead, we use similar methodology to measure code size as Silhouette [44].

We added code to Silhouette’s shadow stack pass, the first compiler pass of Silhouette, to

measure the code size of the untrusted code before Silhouette’s transformations and the

code size of the trusted code. We then added code to Silhouette’s CFI pass to measure the

code size of the untrusted code after Silhouette’s transformations. We measure the code

size of each function using the getFunctionCodeSize API in Silhouette. For baseline and

configurations without Silhouette compiler passes, we still compile them with Silhouette, but

we only measure the code size data before applying Silhouette’s transformations.

The code size evaluation contains four configurations: unmodified AWS FreeRTOS with

default configuration, unmodified AWS FreeRTOS with MPU enabled, Kage, and KageOS

without Silhouette compiler passes. Our measurement of each configuration contains the

RTOS kernel, library functions in the kernel, and the HAL library [35]. Contrary to the code
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Function Type
FreeRTOS
(bytes)

FreeRTOS w/
MPU
(bytes)

Kage
(bytes)

KageOS w/o
Silhouette
(bytes)

Privileged functions 0 27254 19526 19526

HAL library 139460 139460 139460 139460

Other functions 235934 214930 286292 235346

Total 375394 381644 445278 394332

Table 6.3: Code size measurements

size evaluation of Silhouette, we include the code size of the HAL library because the main

purpose of our code size evaluation is to evaluate the overall code size of Kage, which requires

the HAL library.

We choose to measure the code size during compilation instead of measuring the size

of the compiled binary file because while the compiler would compile every function in the

source code, the linker would exclude unused functions in the final binary file. As we could

not find a capable benchmark suite or real-world program that uses any of the FreeRTOS

API, we believe that measuring the code size of the binary file could not accurately show the

overhead of Kage.

For application tasks, we believe that Kage incurs the same code size overhead as Silhou-

ette because Kage uses Silhouette to transform application code and does not add additional

code to it. In summary, Silhouette [44] incurs a geomean of 21.4% code size overhead in

CoreMark-Pro benchmark suite [24] and a geomean of 25.5% code size overhead in BEEBS

benchmark suite [32]. Note that, as Chapter 4.4 states, our prototype only includes untrusted

C library functions that the untrusted kernel requires. Since all C library functions that tasks

use also need to have an untrusted version, tasks that use more C library functions will have

higher code size overhead.

6.2.1 Experiment Results

Table 6.3 shows the code size measurement results.

In total, Kage incurs a code size overhead of 18.62% comparing to FreeRTOS with default

configuration and an overhead of 16.67% comparing to FreeRTOS with MPU configuration.
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Most of the overhead comes from Silhouette transformations. Without Silhouette, KageOS

incurs only 5.04% of overhead comparing to FreeRTOS with default configuration and 3.32%

comparing to FreeRTOS with MPU.

Some of the code size results require explanations. First, FreeRTOS with default config-

uration does not assign the privileged function attribute to privileged kernel functions as

it does not use the MPU and always use the privileged mode. Therefore, it has no “privileged

function” in the measurement. Second, Kage has less privileged kernel functions than unmod-

ified FreeRTOS with MPU because KageOS only keeps a portion of FreeRTOS’s privileged

kernel functions as trusted, as Chapter 3.6 explains. Other kernel functions are now untrusted

and are in the “other functions” category. Finally, as Chapter 3.1 discusses, the HAL library

is part of the trusted computing base, so it is untouched by KageOS or Silhouette. Therefore,

the code size of HAL library is consistent across all configurations.
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Chapter 7

Related Works

7.1 Control-flow Hijacking Defense on General Purpose Sys-

tems

SVA [19, 20] is a compiler-based virtual machine that enforces control-flow integrity, mem-

ory safety, and type safety on applications and the kernel. At its core, SVA uses its virtual

machine to manage low-level data and provides a set of API for the OS to call at low-level op-

erations. SVA requires the OS to be instrumented and compiled into a virtual ISA. KCoFI [18]

uses the SVA infrastructure to enforce control-flow integrity for the operating system. KCoFI

provides similar protections as Kage such as protecting the processor state during context

switch and on exception entry, and KCoFI has additional security enforcements that are

required for general purpose systems with virtual memory and memory management unit.

However, Kage and KCoFI use different approaches. KCoFI is a separate middleware be-

tween the operating system and the hardware, and the operating system requires little to no

modification other than being compiled in a virtual ISA. KCoFI does not trust the OS kernel.

While both KCoFI and the OS execute in privileged mode, KCoFI protects its memory space

from being overwritten by the OS using software fault isolation [40]. KCoFI stores control

data in its memory space such that neither application code nor the OS could corrupt it. On

the other hand, Kage enforces its security guarantees by modifying and adding runtime checks
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to the FreeRTOS kernel. Kage does not use a virtual machine or a middleware. Instead, it

moves a portion of the OS kernel to unprivileged and hardens the portion of the kernel that

is still privileged and trusted. Kage stores control data in protected memory regions such

that only the trusted kernel has write access to them. Kage uses only the MPU to protect

privileged memory space from being overwritten by untrusted code.

OS-level Address space randomization (ASR) [27] is a defense that relies on randomizing

the address space of the entire system to hide sensitive data from a malicious party. ASR

continuously randomizes the address space such that an attacker cannot realistically perform

an attack through brute forcing. However, for embedded systems, ASR cannot effectively

hide sensitive data by randomization because embedded systems have significantly smaller

memory and no virtual memory. An attacker has a much higher probability of accessing the

correct data by guessing.

7.2 Security Enhancement of Embedded OS

7.2.1 Control-flow Hijacking Defense

RECFISH [41] provides CFI checks and protected shadow stack to FreeRTOS. However,

RECFISH uses the traditional privileged and unprivileged modes to isolate tasks and the

kernel. When accessing the shadow stack, the system needs to use an SVC call to switch to

privileged mode. Kage, on the other hand, uses Silhouette’s mechanisms [44] that allows both

privileged and unprivileged code to run in privileged mode. Moreover, RECFISH does not

protect the scheduler from other kernel modules or have runtime checks in the kernel API

available to application code. Another minor difference is that RECFISH’s prototype targets

ARMv7-R [11] where Kage’s prototype targets ARMv7-M [12].

7.2.2 Memory Safety

nesCheck [33] is a compiler that enforces memory safety on programs written in nesC, a C

dialect used in applications for TinyOS. nesCheck uses whole-program static analysis to detect
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memory bugs vulnarible locations in the code and adds runtime checks to these locations.

As nesCheck adds runtime check to every location in the code that may cause a memory

error, complex programs that contain a large amount of memory operations could have high

overhead. While Silhouette’s store hardening mechanism also incurs overhead on store-heavy

programs, many types of store instructions can be directly converted into unprivileged store

instructions with no overhead. Also, Kage does not provide full memory safety and only

protects control data.

7.2.3 Intra-address Space Isolation

Mbed OS [5] provides a secure partition manager in its Platform Security Architecture,

allowing each application to create independent secure partitions. However, the Platform

Security Architecture of Mbed OS only supports multi-core ARMv7-M [12] and ARMv8-

M [29] microcontrollers, where Kage supports single-core ARMv7-M microcontrollers.

7.3 Control-flow Hijacking Defense on Bare-metal Embedded

Devices

Beside Silhouette [44], various other works focus on preventing control-flow hijacking attacks

on bare-metal embedded devices. uRAI [9] protects the return address of a function by saving

all return addresses in the code segment in compile time and reserving a register to indicate

the proper entry for current function, combining with a forward-edge CFI. CFICaRE [34]

provides a protected shadow stack and forward-edge CFI for ARMv8-M [29] by providing a

branch monitor that accesses the ARM TrustZone-M-protected secure memory [29] to handle

control-flow transfers. As TrustZone-M is only available to ARMv8-M architecture, CFICaRE

does not support ARMv7-M.
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Chapter 8

Conclusions

In this thesis, we presented Kage: a software defense that protects the operating system and

applications against control-flow hijacking attacks. Kage combines Silhouette [44] compiler

and runtime system and KageOS, a hardened real-time operating system that protects control

data of applications and the kernel. Kage protects the return address, processor state, and all

data that the trusted kernel uses from corruption by memory errors. Existing FreeRTOS [2]

programs should be relatively simple to be ported to Kage, since the secure API of Kage

uses the same interface as the task API of FreeRTOS, and other API has the same interface

as FreeRTOS as well even though they are now untrusted. With the exception dispatcher,

Kage allows developers to add untrusted exception handlers. We evaluated the performance

and code size overhead of Kage. Comparing to FreeRTOS with default configuration, Kage

incurs 71.57% performance overhead in context switching, 82.76% performance overhead

when transferring data using the queue API, 313 additional CPU cycles in untrusted exception

handling, and up to 258 additional CPU cycles in runtime checks for secure API functions. In

code size, Kage incurs 18.62% overhead comparing to FreeRTOS with default configuration.

In its current state, Kage has a number of weaknesses. First, Kage uses significantly more

memory than FreeRTOS. While KageOS adds only few global variables to track the number

of tasks created and pointers to task control blocks, its parallel shadow stack doubles the

stack size of each task and the kernel. The parallel shadow stack also requires the stack size
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of all tasks and the kernel to be the same, meaning that if one task needs a very large stack,

all tasks and the kernel need to match the size, taking even more memory. As embedded

systems have limited amount of memory, parallel shadow stack puts limits on the number

of tasks a device can run. Using a different shadow stack approach [16] could improve the

high memory consumption of Kage, with potential sacrifices such as slower shadow stack

access and lack of setjmp/longjmp support. Second, since the HAL library [35] runs at the

same level as the trusted kernel, the entire HAL library needs to be trusted. To reduce the

amount of trusted code from the HAL library, one could either manually identify functions

in the HAL library that requires privileged access or use static analysis to automatically skip

functions that requires privileged access during compilation. Third, Kage requires tasks and

the untrusted kernel to use a separate untrusted C library instead of the pre-built library

provided by the manufacturer, which is used by the trusted kernel. In the current prototype,

we only implemented functions that the untrusted kernel uses. Since both C libraries are

used, all functions in the untrusted library need to be renamed. Finally, since Kage applies

store hardening but does not transform load instructions, application tasks in Kage are not

fully in unprivileged execution mode. Although they cannot write to privileged memory or

execute privileged instructions, they use regular load instructions and can read from memory

regions configured to be readable only in privileged mode.
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